REIHE INFORMATIK
TR-04-003
Conflict Visualization for Collaborative Multi-user Applications

Jirgen Vogel
Universitdt Mannheim
Praktische Informatik IV
L15, 16
D-68131 Mannheim

Conflict Visualization for Collaborative
Multi-user Applications

Jiirgen Vogel
Praktische Informatik IV, University of Mannheim, Germany
vogel@informatik.uni-mannheim.de

Abstract— If a collaborative multi-user applica-
tion allows concurrent or asynchronous manipu-
lation of shared data, user actions may conflict.
While conflicts can be resolved syntactically by
concurrency control, the system is not able to in-
terpret actions, and the determined result might
violate the users’ intentions. We propose a visual
feedback scheme so that users are aware of critical
situations and may react accordingly. In our ap-
proach, the action history is represented as an in-
teractive timeline that can be analyzed by the user.
A prototype was realized for a shared whiteboard
application.

Inder Terms— CSCW, Collaboration,

rency Control, Awareness.

Concur-

I. INTRODUCTION

Collaborative multi-user applications support re-
mote collaboration of people through information
sharing via computer networks. Examples are group-
ware and distributed virtual environments. In order
to achieve high responsiveness for local user actions
as well as a smooth multi-user interaction, collabo-
rative applications often employ a replicated archi-
tecture with optimistic concurrency control [1], [2].
Thus, users are allowed to change the application’s
shared state anytime so that their actions may over-
lap and even conflict semantically (e.g., when two
users want to move the same object simultaneously
into different directions). The probability for such
conflicts is particularly high if an application facili-
tates asynchronous collaboration [3]; here, a user may
change data while being disconnected from the net-
work, and the corresponding events can be consoli-
dated only later on when going online. In the mean-
time, other users may modify the same data, leading
to conflicts.

While concurrency control algorithms keep the
shared state consistent at all sites, they are in gen-
eral not able to determine which result would be pre-
ferred by the users (e.g., where the object in the exam-
ple from above should be). Such situations could be

resolved explicitly with user interaction (e.g., by vot-
ing), but this would interrupt the collaboration when-
ever a conflict is discovered. Instead, we propose to
supplement automatic concurrency control with visual
feedback so that users become aware of conflicts and
may react accordingly. Before presenting our visual-
ization scheme, we discuss concurrency control algo-
rithms.

II. CONCURRENCY CONTROL

Collaborative applications with a replicated archi-
tecture maintain a copy of the shared application state
at each site. Local user events can be executed im-
mediately and are also transmitted to all other sites
so that their data copies can be updated. Since mul-
tiple users may issue events concurrently (i.e., with-
out having received each other’s actions), a concur-
rency control mechanism ensures that all sites reach
the same state after executing the same events, even
when events are received in different orders, or after
their scheduled execution times in the case of a real-
time application [2].

The events exchanged in such a setting may conflict
semantically if they modify correlated aspects of the
shared state and if their execution times lie within a
certain timespan 7. For instance, a move event con-
flicts semantically with an event that deletes the same
object since the users obviously disagree about the de-
sired state of that object. 7" depends on the propaga-
tion delay of the events and the user’s reaction time.
For a shared whiteboard, preliminary experiments in-
dicated that T is approximately one second. For asyn-
chronous applications, T' can be much higher [3].

Well-known concurrency control algorithms are se-
rialization, operational transformation, and object
duplication. Serialization executes events in a dis-
tinct order at all sites, e.g., based on their scheduled
execution times. This order has to be restored if a
received event would violate it when appended to the
history. The timewarp algorithm described in [2] es-
tablishes an order based on the event history: Each

site saves a history of local and remote events together
with periodic state snapshots. If necessary, the state
is recalculated using an older snapshot and the sub-
sequent events. For events that conflict semantically,
this means that only the effects of the last event are
reflected in the updated state.

Operational transformation also establishes consis-
tency using a local history [1]: Events are transformed
against the events executed before so that they can be
applied to the state in the order in which they are re-
ceived. As in timewarp, a certain event is favored
in situations where events are opposed semantically
(e.g., two move events).

Object duplication generates a new version of an
object when conflicting events occur, thus presenting
multiple versions of the same object to the user so
that all user intentions are preserved [4]. But this
might be confusing, and there is no support for merg-
ing different versions and finding a joint state. Like
operational transformation, object duplication is dif-
ficult to realize for real-time applications.

Even though semantic conflicts can be resolved by
these concurrency control mechanisms, they do not
understand the users’ intentions and are not able to
determine the desired state. Thus, information about
conflicts should be provided so that the users become
aware of critical situations and are able to analyze and
resolve them.

III. DESIGN CONSIDERATIONS

Besides notifying the users about a conflict, detailed
awareness information is required in conflict situa-
tions: Which objects are modified and how? Which
participants are involved? What is their current task?
Which past actions are related? And what would an
alternative state look like?

Design options to visualize this information con-
cern its placement (where), representation (how), trig-
ger (when), and duration (how long). For instance,
the information can be displayed in the shared work-
space next to the objects concerned. While providing
a direct reference, this might be distracting or con-
ceal other content. Alternatively, a separate window
can be used. Second, information can be represented
graphically or as text. With graphical representations
(e.g., icons), information can be encoded using differ-
ent colors, shapes, and sizes. This requires that the
user learns the different meanings, which is demand-
ing if many categories exist. If encoded as textual
descriptions, information is easy to understand but
might require more time to take in. Third, informa-

tion can be displayed automatically or on the explicit
request of the user which is a tradeoff between effort
and distraction. And fourth, the data might be visible
permanently or only temporarily.

General design goals have to be considered as well:
First, the mechanism should be easy to use. Second,
while there should be sufficient information available,
an overload should be prevented. Finally, information
should be accessible anytime, and its analysis should
not disturb remote users.

IV. RELATED WORK

Even though awareness information is vital for col-
laborative applications, existing work mostly focuses
on general aspects and does not address conflict man-
agement in particular. [5] provides mechanisms to
demonstrate the evolution of the current state in case
the user did not observe the joint editing process or
wants to review it: A history lists textual descriptions
of past actions (e.g., “Alice creates an oval”), a trail-
ing function shows the path of moved objects, and a
replay mechanism repeats the course of action. The
replay is very successful when controlled via the his-
tory. But since it is text-based, this history becomes
complex in large sessions.

A scheme with multiple, alternative event histo-
ries is presented in [6]: Similar to object duplication,
events are not merged into a single history but form
a directed graph with paths that may split and join.
Each node of this graph reflects a different applica-
tion state. The user has direct access to past states
and may navigate within the graph to explore differ-
ent versions. Moreover, the user is allowed to add new
events at arbitrary positions in the graph. Different
paths may also be merged in order to create a joint
state. While such a history graph is very flexible, it
may become complex during a session. Keeping track
of these multiple “realities” is difficult, especially since
users can work on different parts of the graph (i.e., dif-
ferent points in time) simultaneously. Adding events
to the inner graph is likely to cause more conflicts
instead of resolving them. Finally, there is no sup-
port to merge conflicting paths into a single and non-
conflicting shared state which should be the ultimate
goal of a collaborative multi-user application.

V. VISUALIZING THE EVENT HISTORY

Our goal is a visualization mechanism that shows
how the shared state of a collaborative application
evolved, especially when events conflict. Such a mech-
anism supports the user in changing the current state

[l i 1.0 M=
Fle Edt Insert Yew Inols Options Help
FH | Teex | o | COOO0ALELNNTA | 28
Doaurens £ [[
5 3 Docuerts Tabres I i '
=/ Shared
-
Bl 1 Page
Chairs. .
a Gupboares T — II IE
— Lamps
= T T Plans A £ §

ﬁ e it hs
4 athes []
Paticiparts 5 I Beds I

Juergen Vogel

Walfgang Effelsberg mE e

Goushes
Do n EEEEE (R R E R E (S E
[l Patticiparts =] T o |
] - -l

;lé ..':‘;g Al G L AT

Fig. 1. The mlb with event history

to the semantically desired state and in coordinating
future actions.

The concurrency control algorithms discussed
above require each site to store at least parts of the
event history. This history contains important aware-
ness information: If visualized, it demonstrates the
course of action and the correlations among events
(actions). Our approach therefore provides the in-
formation identified above (i.e., who changed which
object by which event conflicting with which other
events) by means of a graphical representation of the
history that the user can access and analyze if nec-
essary. We realized a prototype of this visualization
scheme for the shared whiteboard multimedia lecture
board (mlb) [7] that employs timewarp [2] for concur-
rency control. As depicted in Figure 1, the event his-
tory is displayed underneath the mlb’s shared work-
space and visualizes information about events, ob-
jects, and participants, provides a replay function, and
allows the user to explore past actions and alternative
states.

The history is represented as a timeline with an icon
for each event (see Figure 2). The most recent event
is shown on the right, and new events are appended
immediately. Each icon on the timeline encodes dif-
ferent information depending on its shape, color, and
background: Events issued by the local user have an
outgoing arrow (1), while all remote events show an
incoming arrow (2). Events that are part of a con-
flict sequence are marked by a dot that is either red
(3) or orange (4) in order to distinguish among dif-
ferent conflict sequences. In (3), one remote and one
local event conflict semantically. The user can choose
whether he wants to see all conflicts (5), always the
last conflict, or a conflict that occurred at a certain

PR LN,

[.&II Farticipants ﬂ

=
[Acoticts @y ¥ T i m | 4o
6 (8]

Fig. 2. Visualization of the event history

time (see Figure 3 (1)). If the mlb detects a new con-
flict, this is also indicated in the workspace window
by attaching a temporary tool-tip window naming the
users involved, and by highlighting the involved users
in the participant window (see Figure 1).

When selecting the icon of an event that is part
of a certain conflict sequence, the entire sequence is
marked so that the history can be examined by the
user. Also, the corresponding object is highlighted
in the shared workspace so that the user can explore
which object belongs to which event. Vice versa, all
icons targeting a certain object are highlighted by a
white background when the object is selected.

A. Exploring Past States

Our visualization scheme includes a replay function
for reviewing the past course of action. It is controlled
with a VCR-like interface (see Figure 2): After press-
ing play (6), events are replayed in the order given
by the history, and the appropriate state is displayed
in the workspace window. The replay can run either
in the original time lapse or in a fast-forward mode
(7). The skip buttons (8) change the current posi-
tion in the history. The event that was executed last
is marked by a green background (4 left), its target
object is marked in the workspace, and the responsi-
ble user is named in a tool-tip window if desired. All
events not yet executed are displayed with gray icons
(10), instead of black ones (2).

The user can also browse through the history by
means of a slider (9). The slider’s position marks the
last event executed. When the slider is moved, the
content of the workspace is updated accordingly.

Exploring the event history has only effects on the
local view and does not disturb remote users. While
a past state is displayed, objects cannot be created or
modified. All remote events received in the meantime
are appended to the history, but their effect is not vis-
ible until the replay reaches their scheduled execution
time. An event is marked as new (11) until it is exe-
cuted for the first time so that the local user is aware
of remote users’ actions. After the latest event was
executed, the local user is able to modify the state
again.

O 69 = 9 8
Ve M EEFEGREA @6 e
fluergen vogel ej = _[Polvgon (wioligang Effelsberg) €23 |

Femote action, enabled and executed |+
[i2:3z57 1) |

(N W UTRTE
Fig. 3. Exploring alternative states

B. Exploring Alternative States

A user might not only be interested in how the cur-
rent state came to be but also in alternative states.
For instance, when several users issue concurrent and
conflicting actions, it is useful to understand the inten-
tions of a certain user. For this purpose, a dominating
user can be selected as depicted in Figure 3 (2). This
disables the events of all other users, starting from
the event executed last. In the situation shown in
Figure 3, some remote events are disabled, indicated
by a flat icon (3) while enabled events are sunken.
Starting the replay or browsing the history will now
apply enabled events only to the workspace. Thus,
the workspace shows the evolution of an alternative
state. Similarly, the evolution of certain objects se-
lected in the workspace can be tracked while all other
objects remain unchanged.

Moreover, single events can be disabled or enabled
by switching to the change mode (4) and clicking on
the icons. In case the execution time of a disabled
event lies before the time of the current state, the
workspace is updated immediately. In some cases, it
might also be necessary to disable subsequent events
together with the one disabled by the user. For in-
stance, when disabling a create event, all other events
for the same object need to be disabled as well.

Disabling certain events affects only the local view,
i.e., the current shared state is not affected. But it
might happen that the user creates a state that she ac-
tually prefers. For instance, she might not have issued
a certain event if she had known about the modifica-
tions of another user. Or perhaps events were issued
on the basis of a state that suffered from a short-term
inconsistency [2]. For such cases, a convenient way to
alter the shared state is provided: The state displayed
in the user’s local view can be finalized by pressing the
apply button (5). Then, the local state becomes the
new shared state for all users and is propagated to all
sites.

Summing up, icons indicate whether an event is lo-
cal or remote, conflicting or not, is executed or not, is
the last event executed, is enabled or not, and is se-
lected or not. Although it would be possible to encode
even more information into an icon such as the event’s

type (e.g., create, move, etc.) or the responsible user,
this would increase the representation’s complexity.
Instead, textual descriptions for each event are pro-
vided via a tool-tip window (see Figure 3 (8)).

C. Implementation Issues

For the mlb, we had two possibilities to implement
the replay mechanism: Using the event history, past
states can be calculated either on the basis of the con-
currency control algorithm or by employing the mlb’s
undo scheme.

In the first case, a timewarp is executed when a
state older than the current one is to be displayed
(e.g., when moving the slider to the left or when jump-
ing to the history’s beginning). When moving forward
in time, the respective next state can be calculated
by applying the next event to the current state at the
appropriate execution time. This execution time is
determined on the basis of the current time and the
offset between the execution times of the current and
the next event (divided by the fast forward factor if
in the fast forward mode). The main advantage of
the timewarp-based approach is its easy implementa-
tion if the application uses timewarp for concurrency
control, as is the case for the mlb. Moreover, it is ap-
plicable to all applications, including real-time appli-
cations. But executing a timewarp is costly in terms
of processing power [2], which might be critical when
browsing quickly through the history.

For the mlb, we therefore decided to realize the re-
play by means of undo and redo operations: When
moving backward in time, the last event executed
is undone by applying the appropriate undo event,
and when moving forward in time, events are redone.
Jumping to a position (e.g., to the end of the history)
is realized by executing an entire sequence of undo
The mlb generates undo and redo
events semantically, i.e., an undo event restores the
attributes changed by the corresponding event to their
original state. For instance, the undo for a move event
encodes the original position of the moved object, and
the undo for a delete event holds the complete state
of the deleted object. While this approach requires
that the application is able to undo all events (as it is
the case for the mlb but might be rather difficult for
real-time applications), it achieves a very good perfor-
mance resulting in smooth state updates even when
skimming quickly through the history.

or redo events.

Disabling events, when exploring alternative states
as described above, again can be realized either by
executing a timewarp on the basis of the changed his-

tory or, as in the case of the mlb, by undoing the
concerned events.

When finalizing a modified state, we also use the
application’s undo functionality: For each disabled
event, the corresponding semantic undo is created and
distributed to all sites. Thus, the original event his-
tory is not modified but new events are appended that
are handled just like regular events: They are dis-
played in the history’s representation and can be an-
alyzed or undone if desired. Implementing the propa-
gation of a modified state via timewarp instead would
require to notify all remote sites about the events to
be undone so that these can execute a timewarp on
the changed history. This is considerably more com-
plex than the semantic undo approach and has the
severe drawback that all sites need to store the same
parts of the event history. And in order to redo un-
done events at a later point in time, they would have
to be retained by all sites.

VI. DISCUSSION

We evaluated our visualization scheme in prelimi-
nary experiments with two users. The task was to
place furniture from a given set in a small apartment
(see Figure 1). In this setting, it is likely that two
users move the same piece of furniture and raise a
semantic conflict. By introducing artificial network
delays, the probability of conflicts could be increased.
The experiments indicate that the visualization mech-
anism provides sufficient information to notice and
analyze conflicts. Especially the slider-based brows-
ing of the event history together with the possibility
to review the actions of a certain user proved to be
very efficient. In this context, we plan a feature that
allows to save different versions of the state so that
the user can quickly compare them.

However, some shortcomings were discovered as
well. First, the user has to acquaint himself with the
different visualizations. In an earlier prototype, the
history was displayed only when a conflict occurred
or when requested by the user. But we discovered
that a permanent view of the history together with
immediate updates and tool-tip descriptions of icons
accelerated the user’s learning process.

When the remote users continue to issue events, an-
alyzing the history might be too slow so that the local
user permanently lags behind. An analysis might also
be difficult when multiple events conflict. Further-
more, changing the shared state by disabling events
is problematic when several users do this at the same
time. In such situations, it is likely that new conflicts

emerge, and that the resulting state violates the users’
intentions once more. In order to lower the probability
for repeated conflicts, it is not allowed to disable re-
mote events when finalizing a state. The risk for new
conflicts might also be reduced by indicating which
users are currently reviewing the history so that users
can coordinate.

In sessions with many members and a high activ-
ity, the history might become large and difficult to
analyze. In order to shorten the history, it is possi-
ble to find a more compact representation for some
event sequences without losing vital information. For
instance, when creating a freehand line on an mlb
slide, each point is propagated singly in order to
achieve good responsiveness. But for later examina-
tion, this event sequence can be substituted with a
single state containing the complete line which short-
ens the history significantly. If the history is still too
long, its granularity can be reduced by switching to
an overview mode (see Figure 3 (6)) where homoge-
neous event sequences are subsumed and displayed as
a single icon (7). A sequence is homogeneous if all
events from a certain user target the same object and
do not raise a conflict, e.g., subsequent move events.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a novel visualization scheme
for collaborative multi-user applications that supple-
ments the application’s concurrency control mecha-
nism and provides extensive awareness information
about semantic conflicts in user actions, and about
past and alternative states. Our graphical represen-
tation of the event history allows to quickly detect
and analyze conflicts, which may also help to prevent
future ones. The viability of our approach was demon-
strated for a shared whiteboard. But the visualization
scheme is generic, and we plan to integrate it into
other collaborative applications as well. Our main
interest lies in real-time applications, where the rep-
resentation should also reflect the correct time lapse
of events, and in applications for asynchronous collab-
oration, where conflicts occur more frequently. So far,
no large-scale user study was conducted but we plan
to evaluate different conflict scenarios.

REFERENCES

[1] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen, “Achieving
Convergence, Causality Preservation and Intention Preser-
vation in Real-Time Cooperative Editing Systems,” ACM
Transactions on Computer-Human Interaction, vol. 5, no.
1, pp. 63-108, 1998.

2]

(3]

[4]

[5]

[6]

[7]

M. Mauve, J. Vogel, V. Hilt, and W. Effelsberg, “Local-lag
and Timewarp: Providing Consistency for Replicated Con-
tinuous Applications,” IEEE Transactions on Multimedia,
vol. 6, no. 1, pp. 45-57, 2004.

W. Geyer, J. Vogel, L.-T. Cheng, and M. Muller, “Sup-
porting Activity-centric Collaboration through Peer-to-Peer
Shared Objects,” in Proc. ACM SIGGROUP, Sanibel Is-
land, FL, USA, Nov. 2003, pp. 115-124.

C. Sun and D. Chen, “Consistency Maintenance in Real-
Time Collaborative Editing Systems,” ACM Transactions
on Computer-Human Interaction, vol. 9, no. 1, pp. 1-41,
2002.

L. McCaffrey, “Representing Change in Persistent Group-
ware Environments,” Tech. Rep., Grouplab Report, Depart-
ment of Computer Science, University of Calgary, Canada,
1998.

W.K. Edwards and E.D. Mynatt, “Timewarp: Techniques
for Autonomous Collaboration,” in Proc. ACM SIGCHI,
Atlanta, GA, USA, Mar. 1997, pp. 218-225.

J. Vogel, “multimedia lecture board (mlb),” URL
http://www.informatik.uni-mannheim.de/informatik /pi4/-
projects/mlb/, 2004.

