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Abstract

One of the main features of XQuery compared to traditional query languages
like SQL, is that it preserves the input order—unless specified otherwise. As
a consequence, order-preserving algebraic operators are needed to capture the
semantics of XQuery correctly. One important algebraic operator is the order-
preserving join.

The order-preserving join is associative but, in contrast to the traditional join
operator, not commutative. Since join ordering (i.e. finding the optimal execu-
tion plan for a given set of join operators) has been an important topic of query
optimization for SQL, it is expected that it will also play a major role in opti-
mizing XQuery. The search space for ordering traditional joins is exponential
in size. Although the lack of commutativity reduces the search space for order-
ing order-preserving joins, we show that it is still exponential. This raises the
question whether the join ordering problem is also NP-hard, as in the traditional
setting. We answer this question by introducing the first polynomial algorithm
that produces optimal bushy trees possibly containing cross products.

1 Introduction

XQuery1 specifies that the result of a query is a sequence. If no unordered or
order by instruction is given, the order of the output sequence is determined by
the order of the input sequences given in the for clauses of the query. If there are
several entries in a for clause or several for clauses, order-preserving join operators
[CKK98] can be a natural component for the evaluation of such a query.

Whenever there are several join operators, whether order-preserving or not, the
problem arises to find an optimal (with respect to some given cost function) query
evaluation plan. This problem is termed join ordering. It has been treated first in
the seminal paper by Selinger et al. [SAC+79]. They proposed to use dynamic pro-
gramming to solve the problem. Since the search space for plans is rather large, they
proposed three heuristics to reduce it:

1see http://www.w3.org/XML/Query
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1. push selections down as far as possible,

2. avoid cross products, and

3. restrict the evaluation plan to left-deep trees.

Left-deep trees are those operator trees where the right input of every join operator
is a base table. Even with these restrictions, the search space is exponential. In fact,
for n join operators there are n! possible orderings. Using dynamic programming, the
search space is diminished to 2n.

The use of dynamic programming instead of a polynomial algorithm was justified
later by Ibaraki and Kameda [IK84], who proved that constructing optimal left-deep
trees for a special cost function for n-way nested-loops joins generally is NP-hard.
However, they also gave a polynomial algorithm in case the join graph is acyclic and
the cost function has the so called ASI property. This result was made more popular by
Krishnamurthy, Boral, and Zaniolo [KBZ86], who also indicated that the complexity
of the original algorithm can be improved to O(n2).

Ono and Lohman looked at restrictions 2) and 3) above and gave examples that
sometimes it is favorable to construct bushy trees (i.e. general trees and not just left-
deep trees) and to perform cross products even if the join graph is connected. They
also gave search space estimates for these cases. Hence, the problem arose whether
it is possible to find optimal left-deep trees which might contain cross products for
acyclic queries in polynomial time. Cluet and Moerkotte [CM95] showed that this is
quite unlikely by proving for a simple cost function which has the ASI property that
the problem is NP-hard. Scheufele and Moerkotte investigated the question whether
there exists a polynomial algorithm to construct bushy trees for cost functions having
the ASI property. Again, the result was negative. In fact, even if we do not have any
join predicate, i.e. if we construct an optimal bushy tree for cross products only, the
problem is already NP-hard [SM96a].

Restriction 1) above demands that selections are evaluated as early as possible.
Hellerstein and Stonebraker showed that this is not always optimal [HS93, Hel94] and
provided a good heuristics to avoid this problem. However, their algorithms do not
always construct an optimal plan. Yayima, Kitagawa, Yamaguchi, Ohbo and Fujiwara
[YKY+91] provided an algorithm that produced optimal results. However, they did not
take the cost of join predicates into account. This deficiency was later eliminated by
Scheufele and Moerkotte [SM96b]. Both algorithms produce provably optimal results
for cost functions with the ASI property and have an exponential runtime. Chaudhuri
and Shim [CS96] tried to be better, but their main theorem is wrong. They corrected
it later [CS99] by restricting themselves to linear cost functions. However, since every
linear cost function has the ASI property, they are back to a special case of [YKY+91].
It still remains an open question whether there exists a polynomial time algorithm that
orders joins and selections in an optimal way.

The latter gives rise to the restriction on the problem discussed in this paper.
We give a polynomial algorithm that produces bushy trees for a sequence of order-
preserving joins and selections. These trees may contain cross products even if the
join graph is connected. Hence, we do not apply heuristics 2) and 3) above. However,
we apply selections as early as possible. The algorithm then produces the optimal
plan among those who push selections down. The cost function is a parameter of our
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algorithm, and we do not need to restrict ourselves to those having the ASI property.
Further, we need no restriction on the join graph, i.e. our algorithm produces the opti-
mal plan even if the join graph is cyclic.

The rest of the paper is organized as follows. For self-containedness, we define the
order-preserving join in Section 2. The algorithm is given in Section 3. An example
illustrating the algorithm is given in Section 4. Section 5 concludes the paper and
mentions some open problems for further research.

2 Order Preserving Join

The order-preserving join operator is used in several algebras in the context of

• semi-structured data and XML (e.g. SAL [BT99], XAL [FHP02]),

• OLAP [SJS02], and

• time series data [LS03].

Before defining the order-preserving join, we need some preliminaries. The above
algebras work on sequences of sets of variable bindings, i.e. sequences of unordered
tuples where every attribute corresponds to a variable. Single tuples are constructed
using the standard [·] brackets. Concatenation of tuples and functions is denoted by
◦. The set of attributes defined for an expression e is defined as A(e). The set of free
variables of an expression e is defined as F(e). For sequences e, we use α(e) to denote
the first element of a sequence. We identify single element sequences with elements.
The function τ retrieves the tail of a sequence, and ⊕ concatenates two sequences. We
denote the empty sequence by ε.

We define the algebraic operators recursively on their input sequences. We define
the order-preserving join operator as the concatenation of an order-preserving selection
and an order-preserving cross product. For unary operators, if the input sequence is
empty, the output sequence is also empty. For binary operators, the output sequence is
empty whenever the left operand represents an empty sequence.

The order-preserving join operator is based on the definition of an order-preserving
cross product operator defined as

e1 × e2 := (α(e1)×e2) ⊕ (τ(e1) × e2)

where

e1×e2 :=

{

ε if e2 = ε

(e1 ◦ α(e2)) ⊕ (e1×τ(e2)) else

We are now prepared to define the join operation on ordered sequences:

e1
�

p e2 := σp(e1 × e2)

where the order-preserving selection is defined as

σp(e) :=







ε if e = ε

α(e) ⊕ σp(τ(e)) if p(α(e))
σp(τ(e)) else
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As usual, selections can be reordered and pushed inside order-preserving joins.
Besides, the latter are associative. The following equivalences formalize this.

σp1
(σp2

(e)) = σp2
(σp1

(e))
σp1

(e1
�

p2
e2) = σp1

(e1)
�

p2
e2 if F(p2) ⊆ A(e1)

σp1
(e1

�

p2
e2) = e1

�

p2
σp1

(e2) if F(p2) ⊆ A(e2)
e1

�

p1
(e2

�

p2
e3) = (e1

�

p1
e2)

�

p2
e3 if F(pi) ⊆ A(ei) ∪A(ei+1)

While being associative, the order-preserving join is not commutative, as the fol-
lowing example illustrates. Given two tuple sequences R1 = 〈[a : 1], [a : 2]〉 and
R2 = 〈[b : 1], [b : 2]〉, we have

R1
�

true R2 = 〈[a : 1, b : 1], [a : 1, b : 2], [a : 2, b : 1], [a : 2, b : 2]〉

R2
�

true R1 = 〈[a : 1, b : 1], [a : 2, b : 1], [a : 1, b : 2], [a : 2, b : 2]〉

3 Algorithm

Before introducing the algorithm, let us have a look at the size of the search space.
Since the order-preserving join is associative but not commutative, the input to the
algorithm must be a sequence of join operators or, likewise, a sequence of relations to
be joined. The output is then a fully parenthesized expression. Given a sequence of
n binary associative but not commutative operators, the number of fully parenthesized
expressions is (see [CLR90])

P (n) =

{

1 if n = 1
∑n−1

k=1 P (k)P (n − k) if n > 1

We have that P (n) = C(n − 1), where C(n) are the Catalan numbers defined as
C(n) = 1

n+1

(

2n
n

)

. Since C(n) = Ω( 4n

n3/2
), the search space is exponential in size.

Our algorithm is inspired by the dynamic programming algorithm for finding op-
timal parenthesized expressions for matrix-chain multiplication [CLR90]. The differ-
ences are that we have to encapsulate the cost function and deal with selections. We
give a detailed example application of the algorithm in the next section. This example
illustrates (1) the optimization potential, (2) that cross products can be favorable, (3)
how to plug in a cost function into the algorithm, and (4) the algorithm itself. For
space reasons, we do not give its formal derivation (and hence its correctness proof)
from recurrences. It can be found in the report.

The algorithm itself is broken up into several subroutines. The first is appli-
cable-predicates (see Fig. 1). Given a sequence of relations Ri, . . . , Rj and a
set of predicates, it retrieves those predicates applicable to the result of the join of the
relations. Since joins and selections can be reordered freely, the only condition for a
predicate to be applicable is that all its free variables are bound by the given relations.

The second subroutine is the most important and intrigued. It fills several arrays
with values in a bottom-up manner. The third subroutine then builds the query evalua-
tion plan using the data in the arrays.
The subroutine construct-bushy-tree takes as input a sequence R1, . . . , Rn of
relations to be joined and a set P of predicates to be applied. For every possible subse-
quence Ri, . . . , Rj , the algorithm finds the best plan to join these relations. Therefor,
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applicable-predicates(R, P)

01 B = ∅
02 foreach p ∈ P
03 if (F(p) ⊆ A(R))
04 B+ = p

05 return B

Figure 1: Subroutine applicable-predicates

construct-bushy-tree(R, P)

01 n = |R|
02 for i = 1 to n

03 B =applicable-predicates(Ri, P)
04 P = P \ B
05 p[i, i] = B
06 s[i, i] = S0(Ri,B)
07 c[i, i] = C0(Ri,B)
08 for l = 2 to n

09 for i = 1 to n − l + 1
10 j = i + l − 1
11 B = applicable-predicates(Ri...j, P)
12 P = P \ B
13 p[i, j] = B
14 s[i, j] = S1(s[i, j − 1], s[j, j],B)
15 c[i, j] = ∞
16 for k = i to j − 1
17 q = c[i, k] + c[k + 1, j] + C1(s[i, k], s[k + 1, j],B)
18 if (q < c[i,j])
19 c[i, j] = q

20 t[i, j] = k

Figure 2: Subroutine construct-bushy-tree

it determines some k such that the cheapest plan joins the intermediate results for
Ri, . . . , Rk and Rk+1, . . . , Rj by its topmost join. For this it is assumed that for all k

the best plans for joining Ri, . . . , Rk and Rk+1, . . . , Rj are known. Instead of directly
storing the best plan, we remember (1) the costs of the best plan for Ri, . . . , Rj for all
1 ≤ i ≤ j ≤ n and (2) the k where the split takes place. More specifically, the array
c[i, j] contains the costs of the best plan for joining Ri, . . . , Rj and the array t[i, j]
contains the k such that this best plan joins Ri, . . . , Rk and Rk+1, . . . , Rj with its top-
most join. For every sequence Ri, . . . , Rj , we also remember the set of predicates that
can be applied to it, excluding those that have been applied earlier. These applicable
predicates are contained in p[i, j]. Still, we are not done. All cost functions we know,
use some kind of statistics on the argument relation(s) in order to compute the costs
of some operation. Since we want to be generic with respect to the cost function, we

5



extract-plan(R, t, p)

01 return extract-subplan(R, t, p, 1, |R|)

extract-subplan(R, t, p, i, j)

01 if (j > i)
02 X = extract-subplan(R, t, p, i, t[i, j])
03 Y = extract-subplan(R, t, p, t[i, j] + 1, j)
04 return X

�

p[i,j] Y

05 else
06 return σp[i,i](Ri)

Figure 3: Subroutine extract-plan and its subroutine

encapsulate the computation of statistics and costs within functions S0, C0, S1, and
C1. The function S0 retrieves statistics for base relations. The function C0 computes
the costs of retrieving (part of) a base relation. Both functions take a set of applicable
predicates as an additional argument. The function S1 computes the statistics for inter-
mediate relations. Since the result of joining some relations Ri, . . . , Rj may occur in
many different plans, we compute it only once and store it in the array s. C1 computes
the costs of joining two relations and applying a set of predicates. The next section
shows how concrete (simple) cost and statistics functions can look like.

Given the above, the algorithm (see Fig. 2) fills the arrays in a bottom up manner
by first computing for every base relation the applicable predicates, the statistics of
the result of applying the predicates to the base relation and the costs for computing
this intermediate results, i.e. for retrieving the relevant part of the base relation and
applying the predicates (lines 02-07). Note that this is not really trivial if there are
several index structures that can be applied. Then computing C0 involves considering
different access paths. Since this is an issue orthogonal to join ordering, we do not
detail on it.

After we have the costs and statistics for sequences of length one, we compute the
same information for sequences of length two, three, and so on until n (loop starting
at line 08). For every length, we iterate over all subsequences of that length (loop
starting at line 09). We compute the applicable predicates and the statistics. In order
to determine the minimal costs, we have to consider every possible split point. This is
done by iterating the split point k from i to j − 1 (line 16). For every k, we compute
the cost and remember the k that resulted in the lowest costs (lines 17-20).

The last subroutine takes the relations, the split points (t), and the applicable pred-
icates (p) as its input and extracts the plan. The whole plan is extracted by calling
extract-plan. This is done by instructing extract-subplan to retrieve the
plan for all relations. This subroutine first determines whether the plan for a base rela-
tion or that of in intermediate result is to be constructed. In both cases, we did a little
cheating here to keep things simple. The plan we construct for base relations does not
take the above-mentioned index structures into account but simply applies a selection
to a base relation instead. Obviously, this can easily be corrected. We also give the
join operator the whole set of predicates that can be applied. That is, we do not distin-
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guish between join predicates and other predicates that are better suited for a selection
subsequently applied to a join. Again, this can easily be corrected.

Let us have a quick look at the complexity of the algorithm. Given n relations with
m attributes in total and p predicates, we can implement applicable-predicates
in O(pm) by using a bit vector representation for attributes and free variables and
computing the attributes for each sequence Ri, . . . , Rj once upfront. The latter takes
O(n2m).

The complexity of the routine construct-bushy-tree is determined by the
three nested loops. We assume that S1 and C1 can be computed in O(p), which
is quite reasonable. Then, we have O(n3p) for the innermost loop, O(n2) calls to
applicable-predicates, which amounts to O(n2pm), and O(n2p) for calls of
S1. Extracting the plan is linear in n. Hence, the total runtime of the algorithm is
O(n2(n + m)p)

4 Example

In order to illustrate the algorithm we need to fix the functions S0, S1, C0 and C1.
We use the simple cost function Cout [CM95, SM96a]. It calculates the total cost of
evaluating an expression by summing up the cardinalities of the intermediate results.
As a consequence, the array s simply stores cardinalities, and S0 has to extract the
cardinality of a given base relation and multiply it by the selectivities of the applicable
predicates. S1 multiplies the input cardinalities with the selectivities of the applicable
predicates. We set C0 to zero and C1 to S1. The former is justified by the fact that
every relation must be accessed exactly once and hence, the access costs are equal in
all plans. Summarizing, we define

S0(R,B) := |R|
∏

p∈B

f(p)

S1(x, y,B) := xy
∏

p∈B

f(p)

C0(R,B) := 0

C1(x, y,B) := S1(x, y,B)

where f(p) gives us the selectivity of a predicate p.
We illustrate the algorithm by an example consisting of four relations R1, . . . , R4

with cardinalities |R1| = 200, |R2| = 1, |R3| = 1, |R4| = 20. Besides, we have
three predicates pi,j with F(pi,j) ⊆ A(Ri)∪A(Rj). They are p1,2, p3,4, and p1,4 with
selectivities 1/2, 1/10, 1/5.

Let us first consider an example plan and its costs. The plan

((R1
�

p1,2 R2)
�

true R3)
�

p1,4∧p3,4 R4

has the costs 240 = 100 + 100 + 40.
For our simple cost function, the algorithm construct-bushy-treewill fill

the array s with the initial values:
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s

200
1

1
20

After initilization, the array c has 0 everywhere in its diagonal and the array p empty
sets.

For l = 2, the algorithm produces the following values:

l i j k s[i,j] q current c[i,j] current t[i,j]

2 1 2 1 100 100 100 1
2 2 3 2 1 1 1 2
2 3 4 3 2 2 2 3

For l = 3, the algorithm produces the following values:

l i j k s[i,j] q current c[i,j] current t[i,j]

3 1 3 1 200 101 101 1
3 1 3 2 200 200 101 1

3 2 4 2 2 4 4 2
3 2 4 3 2 3 3 3

For l = 4, the algorithm produces the following values:

l i j k s[1,4] q current c[1,4] current t[1,4]

4 1 4 1 40 43 43 1
4 1 4 2 40 142 43 1
4 1 4 3 40 141 43 1

where for each k the value of q (in the following table denoted by qk) is determined as
follows:

q1 = c[1, 1] + c[2, 4] + 40 = 0 + 3 + 40 = 43
q2 = c[1, 2] + c[3, 4] + 40 = 100 + 2 + 40 = 142
q3 = c[1, 3] + c[4, 4] + 40 = 101 + 0 + 40 = 141

Collecting all the above t[i, j] values leaves us with the following array as input
for extract-plan:

i \ j 1 2 3 4

1 1 1 1

2 2 3

3 3

4

The function extract-planmerely calls extract-subplan. For the latter,
we give the call hierarchy and the result produced:

000 extract-plan(. . ., 1, 4)
100 extract-plan(. . ., 1, 1)
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200 extract-plan(. . ., 2, 4)
210 extract-plan(. . ., 2, 3)
211 extract-plan(. . ., 2, 2)
212 extract-plan(. . ., 3, 3)
210 return (R2

�

true R3)
220 extract-plan(. . ., 4, 4)
200 return ((R2

�

true R3)
�

p3,4 R4)
000 return (R1

�

p1,2∧p1,4 ((R2
�

true R3)
�

p3,4 R4))

The total cost of this plan is c[1, 4] = 43.

5 Conclusion

We presented the first polynomial algorithm that computes a plan with minimal costs
for a given sequence of order-preserving join operators and a set of selections. The
plan has minimal costs among those plans that push selections. Hence, ordering joins
and selections is not integrated. On the positive side, cross products are considered and
plans are not restricted to left-deep trees. Further, no assumptions on the cost function
are made. Specifically, we do not need the ASI property, as in the traditional unordered
context. Also, the algorithm does not depend on any assumption about the join graph.

If pushing selections as far down as possible does not yield the best plan, our algo-
rithm fails. It remains an open question whether there exists a polynomial algorithm
that orders joins and selections at the same time. Note that this question is not only
open for order-preserving operations, but also for the traditional case when plan gener-
ation is restricted to left-deep trees with no cross products—the other cases have been
proven to be NP-hard even if we have no selections.

Acknowledgement. I thank Simone Seeger for her help in preparing the manuscript.
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