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Abstract

We examine Kingsbury’s dual–tree complex wavelet transform in the frequency do-
main, where it can be formulated for standard wavelet filters without special filter design
and apply the method to the classification of signals.

The obtained transforms achieve low shift sensitivity and better directionality compared
to the real discrete wavelet transform while retaining the perfect reconstruction property.

1 Introduction

Wavelet techniques are successfully applied to various problems in signal and image processing.
Data compression [2], motion estimation [1], texture synthesis [21], segmentation, classification
[27] and denoising [9] are only some examples. In most applications special properties of the
wavelets like symmetry, smoothness, shape or the number of vanishing moments are useful or
even necessary. Best basis approaches [5, 22], [29, Chap. 8] or shape adaptation procedures
[26] were designed to find optimal wavelet bases or frames for the application at hand.

However, a major problem of the common decimated discrete wavelet transform is its lack
of shift invariance. This means that on shifts of the input signal, the wavelet coefficients vary
substantially. The signal information may even not be stationary in the subbands so that the
energy distribution across the subbands may change [24, 16].

The shift dependence is illustrated in Fig. 1 as also done in [24]. For presentation purposes,
we chose a dilated Daubechies wavelet with three vanishing moments in Fig. 1 (a) as signal.
Making a wavelet transform with itself, the result is clearly a single non-zero coefficient result-
ing in a single subband with positive energy in Fig. 1 (c). For later comparison purposes, we
only plotted the coefficients’ absolute value. Now on a signal shift of one sample to the right
(Fig. 1 (e)), the other subbands in (f) and (h) also contain a significant portion of the signal en-
ergy. This shows that the orthogonal discrete wavelet transform is highly sensible to the signal
alignment relative to the subsampling points.

To overcome the problem of shift dependence, one possible approach is to simply omit the
subsampling that causes the shift dependence. In m dimensions this introduces a redundancy of
at least 1 + d(2m − 1) : 1 for d decomposition levels (in non–standard form). As a result, the
coefficients are completely shift invariant in that they undergo the same shift as the input signal,
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 1: shift sensitivity of the discrete wavelet transform: (a) original signal, (b)–(d) magni-
tude of wavelet subband coefficients, (e) signal (a) shifted by one sample, (f)–(h) magnitude of
new wavelet subband coefficients

but under a high cost that is often not desirable in signal processing. Techniques which omit or
partially omit subsampling are also known as cycle spinning [4], oversampled filter banks [6] or
undecimated wavelet transforms [18].

As an alternative, Kingsbury proposed a wavelet transform [16, 17, 14] that achieves ap-
proximate shift invariance with a redundancy of only 2m : 1 and showed some applications for
motion estimation and denoising [17], texture synthesis [14] and retrieval [8]. The transform
yields complex wavelet coefficients via a ‘dual–tree’ of parallel real filter banks. Another ad-
vantage of this complex wavelet transform is its directional selectivity in more dimensions that
comes out without explicitly rotating a filter as in a Gabor filter bank, for example. However,
if one wants to work with two real filter banks in the time domain, a special filter design is
necessary which may not be the best with respect to the intended application.

In this paper we examine the dual–tree complex wavelet transform in the frequency do-
main where the known wavelet filters can be used and no special filter design is necessary. Of
course this requires the application of fast Fourier transforms (FFTs) so that with respect to the
arithmetic complexity this approach can only compete with real filter banks in the time domain
having not too small filter lengths.
Organisation of the paper. In Sec. 2 we review Kingsbury’s approach to achieve translation
invariant combined filter banks in a sophisticated way. Sec. 3 proves that the construction
proposed by Kingsbury indeed leads to wavelets with vanishing negative frequency parts. After
explaining how the wavelet transform works in the frequency domain in Sec. 4, we point out the
generalisation to higher dimensions in Sec. 5. Numerical examples illustrating the behaviour
of the dual–tree complex wavelet transform for some standard wavelets with respect to shift
invariance and rotation invariance are given in Sec. 6. Finally, Sec. 7 shows how the proposed
transforms are suited to solve a signal classification problem. Sec. 8 summarises our findings.

2



2 ↓

H0(z) 2 ↓ C1(z)

D1(z)

S(z)

2 ↑

S(z)

2 ↑

H1(z)

H0(z−1)

H1(z−1)

Figure 2: orthonormal filter bank

2 Translation Invariance by Parallel Filter Banks

We are interested in orthogonal two–channel filter banks with analysis low–pass filter given by
the z–transform H0(z) =

∑
k∈Z h0[k]z−k, analysis high–pass filter H1(z) =

∑
k∈Z h1[k]z−k

and with synthesis filters H0(z−1) and H1(z−1). The corresponding filter bank is depicted in
Fig. 2.

For an input signal S(z), the analysis part of the filter bank inclusive subsequent up–
sampling produces the low–pass and the high–pass coefficients

C1(z2) =
1

2
[S(z)H0(z) + S(−z)H0(−z)] , (1a)

D1(z2) =
1

2
[S(z)H1(z) + S(−z)H1(−z)] , (1b)

respectively, and decomposes the input signal into a low frequency part S 1
l (z) and a high fre-

quency part S1
h(z), more precisely

S(z) = S1
l (z) + S1

h(z) ,

where

S1
l (z) = C1(z2)H0(z−1) =

1

2
[S(z)H0(z)H0(z−1) + S(−z)H0(−z)H0(z−1)] , (2a)

S1
h(z) = D1(z2)H1(z−1) =

1

2
[S(z)H1(z)H1(z−1) + S(−z)H1(−z)H1(z−1)] . (2b)

Unfortunately, this decomposition is not shift invariant due to the second summands in (1)
and (2), respectively, which were introduced by the down–/up–sampling operators. More pre-
cisely, if the input signal is shifted, say z−1S(z), the application of the filter bank results in the
splitting

z−1S(z) = S̃1
l (z) + S̃1

h(z) ,

where

S̃1
l (z) =

1

2
z−1[S(z)H0(z)H0(z−1)− S(−z)H0(−z)H0(z−1)] 6= z−1S1

l (z)

and similarly for the high–pass part. From this calculation one can see that the shift dependence
is caused by the terms not containing S(z), the so–called aliasing terms. Note that the filter
bank is of course shift invariant with respect to a double shift since by (−1)2 = 1 we have that
z−2S(z) = z−2(S1

l (z) + S1
h(z)).

One possibility to obtain a shift invariant decomposition consists in applying an additional
filter bank with shifted analysis filters z−1H0(z) and z−1H1(z) and averaging the low– and the
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S(z)

2 ↓

2 ↓

2 ↑

2 ↑

2 ↑

2 ↑2 ↓

C2(z)H2
0(z)

D2(z)

D1(z)

H1
0(z)

H1
1(z)

H2
1(z)

S(z)

2 ↓ H2
0(z−1)

H2
1(z−1)

H1
0 (z−1)

H1
1 (z−1)

Figure 3: cascaded orthonormal filter bank

high–pass channels of both filter banks. If we signify the first filter bank by index a and the
second one by index b, then this procedure implies the decomposition

S(z) = S1
l (z) + S1

h(z) ,

where

S1
l (z) =

1

2

(
C1
a(z2)H0a(z

−1) + C1
b (z2)H0b(z

−1)
)

=
1

4

[
S(z)

(
H0(z)H0(z−1) +H0(z)H0(z−1)

)

+S(−z)
(
H0(−z)H0(z−1)−H0(−z)H0(z−1)

)]

=
1

2
S(z)H0(z)H0(z−1)

and similarly for the high–pass part. The aliasing term containing S(−z) in S 1
l (z) has vanished

and the decomposition becomes indeed shift invariant.
Iteration of the two–channel filter bank as shown in Fig. 3 for J = 2 levels leads to a band–

pass decomposition of the input signal. Note that the jth filter bank may use its own filters
Hj
· .

We are interested in cascaded filter banks with J ≥ 2 levels. LetA1(z) := H1
0 (z),B1(z) :=

H1
1 (z) and

Aj(z) := H1
0 (z) · · ·Hj−1

0 (z2j−2
)Hj

0(z2j−1
) , (3a)

Bj(z) := H1
0 (z) · · ·Hj−1

0 (z2j−2
)Hj

1(z2j−1
) (3b)

for j = 2, . . . , J . Then the cascaded filter bank produces the low–pass coefficients

CJ(z2J ) =
1

2J

2J−1∑

k=0

S(wk2J z)A
J (wk2J z) , (4)

where wm := e−2πi/m and for j = 1, . . . , J the band–pass coefficients

Dj(z2j ) =
1

2j

2j−1∑

k=0

S(wk2j z)B
j(wk2j z) =

1

2j

2j−1−1∑

k=−2j−1

S(wk2j z)B
j(wk2j z) . (5)
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The input signal decomposes as

S(z) = SJl (z) +
J∑

j=1

Sjh(z)

= CJ(z2J )AJ(z−1) +

J∑

j=1

Dj(z2j )Bj(z−1)

= SJl (z) +

J∑

j=1

1

2j

2j−1−1∑

k=−2j−1

S(wk2jz)B
j(wk2jz)B

j(z−1) . (6)

Of course this decomposition is not shift invariant because the decomposition of z−rS(z) with
2j - r doesn’t result in a jth band–pass part z−rSjh(z) since (wk2j )

−r 6= 1 for several k.
The ideal low–pass filter has the property suppH0(e2πiω) =

[
−1

4 ,
1
4

]
for ω ∈

[
−1

2 ,
1
2

]
.

Here and in the following we write supp f instead of supp f∩
[
−1

2 ,
1
2

]
for a 1–periodic function

f . Let us assume that Hj
0(z) fulfils

suppHj
0(e2πiω) ⊆

[
−1

3
,

1

3

]
∀j = 1, . . . , J (7)

for ω ∈
[
−1

2 ,
1
2

]
. Then the corresponding orthogonal high–pass filters H j

1 satisfy

suppHj
1(e2πiω) ⊆

[
−1

2
,−1

6

]
∪
[

1

6
,

1

2

]
∀j = 1, . . . , J . (8)

In the following sections we will restrict ourselves to the QMF setting H j
1(z) = z−1Hj

0(−z−1)
although the filter sign and translation do not affect our principal results. From (7) and (8) it
follows for j ≥ 2 that

suppAj(e±2πiω) ⊆
[
− 1

3 · 2j−1
,

1

3 · 2j−1

]
, (9a)

suppBj(e±2πiω) ⊆
[
− 4

3 · 2j ,−
1

3 · 2j
]
∪
[

1

3 · 2j ,
4

3 · 2j
]
. (9b)

Fig. 4 illustrates the support properties for J = 3.
Let x mod 1 ∈

[
−1

2 ,
1
2

)
denote the symmetric residue of x ∈ R modulo 1 and [·, ·] mod 1

the ’interval’ with elements taken modulo 1. Now B j(wk2je
2πiω) = Bj(e

2πi(ω− k

2j
)
) is a (1–

periodic) shift of Bj(e2πiω) by k
2j

. Thus,

suppBj(wk2je
2πiω) ⊆

([−4 + 3k

3 · 2j ,
−1 + 3k

3 · 2j
]
∪
[

1 + 3k

3 · 2j ,
4 + 3k

3 · 2j
])

mod 1

and consequently

suppBj(wk2je
2πiω)Bj(e−2πiω) ⊆





[
− 4

3·2j ,− 1
3·2j
]
∪
[

1
3·2j ,

4
3·2j
]

k = 0 ,

±
[

1
3·2j ,

2
3·2j
]

k = ±1 ,

±
[

2
3·2j ,

4
3·2j
]

k = ±2 ,

∅ 3 ≤ |k| ≤ 2j−1
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j=1
−1/2 −2/6 −1/6 0 1/6 2/6 1/2

ω

|A1(e2 π i ω)| = |H
0
1(e2 π i ω)|

|B1(e2 π i ω)| = |H
1
1(e2 π i ω)|

j=2
−1/2 −2/6 −1/6 0 1/6 2/6 1/2

ω

← |A2(e2 π i ω)| = |H
0
1(e2 π i ω) H

0
2(e4 π i ω)|

|H
0
2(e4π iω)|

|H
1
2(e4π iω)|

j=3
−1/2 −2/6 −1/6 0 1/6 2/6 1/2

ω

|H
1
3(e8π iω)|

|B3(e2π iω)| = |A2(e2π iω) H
1
3(e8π iω)|

Figure 4: desired filter support properties at different levels j
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−1/2 −2/6 −1/6 0 1/6 2/6 1/2
ω

k=0: |B3(z−1)|
k=1
k=2

Figure 5: desired support of shifted high–pass filter B j(wk2j e
2πiω) at level j = 3

D1
a(z)

2 ↓

D1
b (z)

2 ↓

2 ↓

2 ↓

2 ↓

2 ↓

2 ↓

2 ↓

D2
a(z)

C3
a(z)

2 ↓

2 ↓

D2
b (z)

2 ↓

D3
a(z)

D3
b (z)

C3
b (z)

2 ↓

H1
0b(z)

H1
0a(z)

H1
1a(z)

H1
1b(z)

H2
0a(z)

H2
0b(z)

H2
1b(z)

H3
0a(z)

H3
1a(z)

H3
0b(z)

H3
1b(z)

S(z)

H2
1a(z)

Figure 6: dual-tree filter bank

for j ≥ 2. See Fig. 5 for an illustration. Hence the decomposition (6) can be rewritten as

S(z) = SJl (z) + S1
h(z) +

J∑

j=2

1

2j

2−δ2j∑

k=−2

S(wk2j z)B
j(wk2j z)B

j(z−1) . (10)

To remedy the drawback of the decomposition being not shift invariant, Kingsbury sug-
gested in [14, 16] to apply a ‘dual–tree’ of two parallel filter banks and combine their band–pass
outputs as in the non–cascaded case. The structure of a resulting analysis filter bank is sketched
in Fig.6, where we use again the index a for the original cascaded filter bank and the index b for
the additional one. Then the input signal is split as

S(z) =
1

2

(
SJla(z) + SJlb(z)

+

J∑

j=1

1

2j

2j−1∑

k=0

S(wk2jz)
(
Bj
a(w

k
2jz)B

j
a(z
−1) +Bj

b (w
k
2jz)B

j
b (z
−1)
))

,
(11)

where the inner sum can be restricted as in (10) if both H0a and H0b satisfy property (7).
For P j(z) =

∑
k∈Z p

j[k]z−k (pj [k] ∈ C), let P j(z)∗ =
∑

k∈Z p
j[k]zk. Note that then

suppP j(e2πiω) = I implies suppP j(e2πiω)∗ = −I . Let us assume that Bj
a(z) and Bj

b (z) have
further the property that

Bj
a(z) + iBj

b (z) = P j(z) , (12a)

Bj
a(z)− iBj

b (z) = P j(z)∗ , (12b)

7



where P j is only supported on the positive frequencies ω ∈
[
0, 1

2

]
. More precisely with respect

to (8) and (9b) we have

suppP j(e2πiω) ⊆
[

1

3 · 2j ,
4

3 · 2j
]
. (13)

Obviously, (12) implies

Bj
a(z) =

1

2
(P j(z) + P j(z)∗) ,

Bj
b (z) = −1

2
i(P j(z)− P j(z)∗) .

Using these relations, we obtain in (11) that

Bj
a(w

k
2jz)B

j
a(z
−1) +Bj

b (w
k
2jz)B

j
b (z
−1) =

1

2
(P j(wk2jz)P

j(z−1)∗ + P j(wk2jz)
∗P j(z−1)) .

Since suppP j(wk2j e
2πiω) ⊆

[
1+3k
3·2j ,

4+3k
3·2j

]
mod 1 and suppP j(e−2πiω)∗ = suppP j(e2πiω) ⊆[

1
3·2j ,

4
3·2j
]
, this expression vanishes for 1 ≤ |k| ≤ 2j − 1. If we further choose the filters H1

·a
and H1

·b as in the non–cascaded case to cancel the aliasing at the first level, (11) can be rewritten
as

S(z) =
1

2

(
SJla(z) + SJlb(z) +

J∑

j=1

1

2j
S(z)

(
Bj
a(z)B

j
a(z
−1) +Bj

b (z)B
j
b (z
−1)
))

. (14)

Of course, this band–pass decomposition is translation invariant. The complex filter P j from
(12a) implies that the wavelet coefficients are combined in the same manner D j(z) = Dj

a(z) +
iDj

b(z).
Similar ideas with the additional filter bank can be used for the alias cancellation of the low–

pass filter. In this case, because of property (7), only the translated product filters for k = ±1
may cause aliasing. But as it is not easily attainable that the low–pass product filters have a
property similar to (12), one cancels only the odd translates by letting the b product filters be the
a filters shifted by half a sample.

Unfortunately, there don’t exist real orthogonal FIR (finite impulse response) filters H j
·a

and Hj
·b such that Bj

a and Bj
b fulfil property (12). Therefore one can only construct FIR filters

satisfying (12) approximately. Some special biorthogonal and orthogonal filters of this kind
were constructed by Kingsbury [15, 16] and Selesnick et al. [23, 10].

3 Construction of Filter Pairs in the Frequency Domain

In this paper we propose to apply the cascaded filter banks in the frequency domain. This has
the advantage that it suffices to know H·(e2πiω) for some discrete values of ω, while the explicit
knowledge of the filter coefficients h·[k] is not necessary. Hence, we can start with known
orthogonal, but not necessarily FIR filters which approximately fulfil (7) and add an appropriate
second filter bank. In our numerical experiments we apply, e.g., Butterworth filters [20, 13] and
orthogonal B–spline filters (Battle–Lemarié filters [3, Sec. 6.4]) of different orders.

Concerning the filter design, Kingsbury [14, 16] claims that the filters H j
0a and Hj

0b at levels
j = 2, . . . , J should have a delay difference of half a sample: Suppose that we are given an
orthogonal filter pair H0(z) and H1(z) = z−1H0(−z−1) (z := e2πiω). Then we will see that
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cascaded filter banks a and b such that (12) is fulfilled can be constructed in the following way:
At level j = 1, as proposed in the beginning of the previous section, we use the shifted filters

H1
0a(z) := H0(z) , H1

1a(z) := H1(z) = z−1H0(−z−1) , (15a)

H1
0b(z) := z−1H0(z) , H1

1b(z) := z−1H1(z) = z−2H0(−z−1) . (15b)

By the previous section, this guarantees that the combined band–pass component S 1
h(z) is com-

pletely shift invariant.
At all higher levels j = 2, . . . , J we use the filters

Hj
0a(z) := H0(z) , Hj

1a(z) := H1(z) = z−1H0(−z−1) . (16)

The filters in bank b should differ from these filters by a shift of half a sample, i.e.

Hj
0b(e

2πiω) = e−πiωH0(e2πiω) ω ∈
[
−1

2
,
1

2

)
.

This equals z−
1
2H0(z), but only for z = e2πiω and ω ∈

[
−1

2 ,
1
2

)
since the right hand side is not

1–periodic in ω. Therefore we actually use its 1–periodic extension

Hj
0b(e

2πiω) := e−πi(ω mod 1)H0(e2πiω) ω ∈ R . (17)

In other words, the filter coefficients of H j
0b are the Fourier coefficients of the 1–periodic func-

tion on the right hand side of (17). This function is not in C∞, but in Cm−1 if H0(z) =
(1 + z)mF (z).

As for H0(z) and H1(z), we define the high–pass filter by

Hj
1b(e

2πiω) = e−2πiωHj
0b(e

−2πi(ω+ 1
2

))

(17)
= e−2πiωeπi((ω+ 1

2
) mod 1)H0(e−2πi(ω+ 1

2
))

= eπi((ω+ 1
2

) mod 1)H1(e2πiω) ω ∈ R . (18)

For ω ∈
[
−1

2 ,
1
2

)
this leads in particular to

Hj
1b(e

2πiω) =

{
ieπiωH1(e2πiω) ω ∈

[
−1

2 , 0
)
,

−ieπiωH1(e2πiω) ω ∈
[
0, 1

2

)
.

Note that H0b and H1b are supported as H0 and H1, respectively. In order to prove that our
parallel filter banks satisfy (12), we need the following lemma:

Lemma 1. For j ∈ N and ω ∈
[
−1

2 ,
1
2

)
, the function

fj(ω) := ((2jω +
1

2
) mod 1)− 2ω − (2ω mod 1)− · · · − (2j−1ω mod 1)

fulfils

fj(ω) =

{
1
2 ω ∈

[
−1

2 , 0
)
,

−1
2 ω ∈

[
0, 1

2

)
.
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Proof. We will prove the relation by induction on j.
For j = 1 we distinguish between two cases: For ω ∈

[
0, 1

2

)
we conclude that 2ω + 1

2 ∈[
1
2 ,

3
2

)
so that

(2ω +
1

2
) mod 1− 2ω = 2ω − 1

2
− 2ω = −1

2
.

For ω ∈
[
−1

2 , 0
)

we obtain 2ω + 1
2 ∈

[
−1

2 ,
1
2

)
so that

(2ω +
1

2
) mod 1− 2ω = 2ω +

1

2
− 2ω =

1

2
.

If the assumption holds true for k ≤ j, then we obtain

fj+1(ω)

= fj(ω) + ((2j+1ω +
1

2
) mod 1)− ((2jω +

1

2
) mod 1)− (2jω mod 1)

= ((2j+1ω +
1

2
) mod 1)− ((2jω +

1

2
) mod 1)− (2jω mod 1) +

{
1
2 ω ∈

[
−1

2 , 0
)
,

−1
2 ω ∈

[
0, 1

2

)
.

It remains to show that ((2j+1ω + 1
2) mod 1)− ((2jω + 1

2) mod 1)− (2jω mod 1) = 0.
Every ω ∈ R can be written as ω = k · 2−(j+1) +ω0 for k ∈ Z and ω0 ∈

[
0, 2−(j+1)

)
. Then

it follows

(2j+1ω +
1

2
) mod 1 = (k + 2j+1ω0 +

1

2
) mod 1 = 2j+1ω0 −

1

2
.

Concerning the remaining expressions, we consider again two cases:

(2jω +
1

2
) mod 1 = (

k

2
+ 2jω0 +

1

2
) mod 1 =

{
2jω0 − 1

2 2 | k ,

2jω0 2 - k ,

2jω mod 1 = (
k

2
+ 2jω0) mod 1 =

{
2jω0 2 | k ,

2jω0 − 1
2 2 - k

so that

((2j+1ω+
1

2
) mod 1)−((2jω+

1

2
) mod 1)−(2jω mod 1) = 2j+1ω0−

1

2
−2jω0+

1

2
−2jω0 = 0 .

By the following theorem, we will see that our filter banks fulfil indeed (12):

Theorem 2. Let the filters for two cascaded filter banks a and b be given by (15), (16), (17)
and (18). For j = 2, . . . , J , let the corresponding product filters B j

· be defined by (3b). Then it
holds

Bj
b (e

2πiω) =

{
iBj

a(e2πiω) ω ∈
[
−1

2 , 0
)
,

−iBj
a(e2πiω) ω ∈

[
0, 1

2

)
.

Thus, if Bj
a(e2πiω) and Bj

b (e
2πiω) are nearly supported as in (9b), Bj

a(e2πiω)± iBj
b (e

2πiω)
have the same support but only on the right or left hand side of the real axis, respectively.
Together with the results of the previous section for the first level j = 1, this means that if the
filters are well localised, then the transform is approximately free of aliasing.
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Proof. First we obtain by (3b), (15a) and (16) that

Bj
a(e

2πiω) = H0(e2πiω)H0(e2·2πiω) · · ·H0(e2j−2 ·2πiω)H1(e2j−1 ·2πiω)

= U j(e2πiω)H1(e2j−1 ·2πiω) ,

where U j(e2πiω) =
∏j−2
k=0H0(e2k ·2πiω). On the other hand, we get by (3b), (15b), (17) and (18)

that

Bj
b (e

2πiω) = e−2πiωH0(e2πiω)

e−πi(2ω mod 1)H0(e2·2πiω) · · · e−πi(2j−2ω mod 1)H0(e2j−2 ·2πiω)Hj
1b(e

2j−1·2πiω)

= e−πi(2ω+(2ω mod 1)+···+(2j−2ω mod 1))U j(e2πiω)

·eπi((2j−1ω+ 1
2

) mod 1)H1(e2j−1 ·2πiω)

= eπi(((2
j−1ω+ 1

2
) mod 1)−2ω−(2ω mod 1)−···−(2j−2ω mod 1))Bj

a(e
2πiω)

and further by Lemma 1 that

Bj
b (e

2πiω) = Bj
a(e

2πiω)

{
eπi/2 ω ∈

[
−1

2 , 0
)
,

e−πi/2 ω ∈
[
0, 1

2

)
,

= Bj
a(e

2πiω)

{
i ω ∈

[
−1

2 , 0
)
,

−i ω ∈
[
0, 1

2

)
.

This completes the proof.

One of the main ideas of our proof, namely the careful handling of the 1–periodicity of the
filters we have later also found in Selesnick’s paper [23]. However, Selesnick considered infinite
filter iterations related to wavelets, i.e., in our notation B j

· (z21−j
) for j →∞, where the b filter

bank including the first step has to be shifted by half a sample. In contrast, we address exactly
the Kingsbury approach with a finite number of filter iterations and a special design of the first
filter bank pair.

Besides the combined filter’s strong orientation, another implication of the theorem is that
the product filter Bj

b is also real: If our basis filter H0 is real, we obtain by (3b), (15a), (16) that
the product filter Bj

a is real. A filter is real if and only if its negative frequency response is the
complex conjugate of its positive frequency response. Hence, Theorem 2 implies that B j

b is real
if Bj

a is real. Consequently, the wavelet coefficients of both trees Dj
a and Dj

b are real as well.
Finally, let us also have a look at the low–pass filters. If we also combine the low–pass filters

as in (12a), the resulting filter still responds to negative frequencies. By (3a), (15), (16) and (17)
we obtain that

Aja(e
2πiω) + iAjb(e

2πiω)

= H0(e2πiω) · · ·H0(e2j−1 ·2πiω)

+ie−2πiωe−πi(2ω mod 1) · · · e−πi(2j−1ω mod 1)H0(e2πiω) · · ·H0(e2j−1 ·2πiω)

= Aja(e
2πiω)

(
1 + ie−πi(2ω+(2ω mod 1)+···+(2j−1ω mod 1))

)
.

For ω in the desired support
[
− 1

3·2j−1 ,
1

3·2j−1

]
of the filters given in (9a), this simplifies to

Aja(e
2πiω) + iAjb(e

2πiω) = Aja(e
2πiω)

(
1 + ie−2jπiω

)

11
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Figure 7: frequency response magnitude of complex filters A3
a(z) + iA3

b(z) and P j(z) for
j = 3, 2, 1

so that
|Aja(e2πiω) + iAjb(e

2πiω)| = |Aja(e2πiω)|(2 + 2 sin 2jπω)
1
2 . (19)

The second factor on the right hand side takes its minimum 0 at ω = − 1
2j+1 and its maximum

2 at ω = 1
2j+1 . As a consequence, the frequency response of the combined low–pass filter also

suppresses negative frequencies to some extent and leans to the right compared to |Aj
a(e2πiω)|.

By a similar derivation, this second factor on the right hand side in (19) is also responsible for
the negative frequency suppression of the first level high–pass filter B1

a(e2πiω) + iB1
b (e2πiω).

By Theorem 2 we have an explicit construction method for cascaded filters with vanishing
negative frequency parts. Their near shift invariance should improve the better condition (7) is
fulfilled. In the next sections we will test filter banks based on the following standard filters H0:

filter orthonormal basis filter H0

H Haar filter
D3 Daubechies filter with 3 vanishing moments

BWm Butterworth filter of order m [20, 13]
BLm Battle–Lemarié filter of order m [3, Sec. 6.4]

The Haar filter and the Daubechies filter are FIR filters of length two and six, respectively.
The Butterworth and Battle–Lemarié orthogonal spline filters have infinite impulse response.
Further, BWm has m vanishing moments and BLm has m+ 1. For other properties see [20, 3].

The frequency responses of the combined product filters for these basis filters are plotted
in Fig. 7. As it was to expect, we observe that all complex filters P j(z) for j ≥ 2 are only
supported on the right half of the ω–axis, whereas the low–pass and the first level filter P 1(z)
also respond to negative frequencies. Further, in agreement with (19), the low–pass filters’
frequency responses all ’lean’ to the right. The suppression of the sidelobes improves as the
order m of the filter increases and it fulfils property (7) more closely. But then, the filters
become less concentrated in the time domain.
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4 Fast Wavelet Transform in the Frequency Domain

In the previous section we proposed a general construction method to obtain nearly shift in-
variant filter banks defined in the frequency domain and designed some exemplary filter banks.
One possibility to apply these filter banks is to calculate the filter coefficients h[k] from their
Fourier coefficients H(e2πiω) and then perform the usual filtering in the time domain. But as
these filters will not have FIR due to their degraded regularity, the runtime of a time domain
transform step becomes quadratic. Hence we have to make the decomposition in the frequency
domain as also proposed in [11]. Note that this procedure imposes periodic boundary conditions
which are very popular anyway. Moreover, we need FFTs for which there exist very efficient
implementations, e.g., [12].

We will now explain the algorithm. Consider a given signal s = (s0, s1, . . . , sN−1) of
length N in the time domain. In order to express or actually circumvent the down–sampling
operation in the frequency domain, we rely on the polyphase representation [25, Sec. 4.2] of
our quantities. After a z–transform, our signal reads

S(z) =
N−1∑

j=0

sjz
−j = S0(z2) + z−1S1(z2) ,

where S0 comprises the even z–powers and S1 the odd ones by

S0(z2) =
S(z) + S(−z)

2
, (20a)

S1(z2) =
S(z)− S(−z)

2
z . (20b)

Similarly, we represent the filters for i = 0, 1 as

Hi(z) =

N−1∑

j=0

hi[j]z
−j = Hi0(z2) + zHi1(z2)

with

Hi0(z2) =
Hi(z) +Hi(−z)

2
, (21a)

Hi1(z2) =
Hi(z)−Hi(−z)

2
z−1 . (21b)

Concerning the filter bank analysis depicted in the left part of Fig. 2, we obtain for i = 0, 1 that

S(z)Hi(z) = [S0(z2) + z−1S1(z2)][Hi0(z2) + zHi1(z2)] ,

S(−z)Hi(−z) = [S0(z2)− z−1S1(z2)][Hi0(z2)− zHi1(z2)]

and further in (1)

C1(z2) = S0(z2)H00(z2) + S1(z2)H01(z2) ,

D1(z2) = S0(z2)H10(z2) + S1(z2)H11(z2)

so that (
C1(z2)
D1(z2)

)
=

(
H00(z2) H01(z2)
H10(z2) H11(z2)

)(
S0(z2)
S1(z2)

)
, (22)

13



where the matrix on the right hand side of the equation is called polyphase matrix of the analysis
filter bank.

Now that we have an explicit decomposition formula in terms of the signals’ polyphase
components S0 and S1, we want to apply the decomposition on our discrete signal. We therefore
calculate its discrete Fourier transform. Let x̂ denote the Fourier transform of a signal x, then
this reads with z := e2πik/N = w−kN

ŝk := S(e2πik/N ) =

N−1∑

j=0

sje
−2πijk/N k = 0, . . . , N − 1 (23)

which requires a real FFT of length N . For the polyphase components, it holds

S0(z2) = S0(e2πik/(N/2)) = ŝ0k
(20a)
=

1

2
(S(e2πik/N ) + S(e2πi(k+N

2
)/N ) ,

analogously for S1. Thus they may be calculated in the frequency domain by

ŝ0k =
1

2
(ŝk + ŝk+N

2
) , ŝ1k =

1

2
e2πik/N (ŝk − ŝk+N

2
) k = 0, . . . ,

N

2
− 1 (24)

which requires N additions and N
2 multiplications of complex numbers. Finally, according to

(22) the first decomposition step reads
(
C1(e2πik/(N/2))

D1(e2πik/(N/2))

)
=

(
H00(e2πik/(N/2)) H01(e2πik/(N/2))

H10(e2πik/(N/2)) H11(e2πik/(N/2))

)(
S0(e2πik/(N/2))

S1(e2πik/(N/2))

)

k = 0, . . . ,
N

2
− 1

(25)

which requires 4N2 multiplications and 2N2 additions of complex numbers. For reconstructing
the coefficients in the time domain, an inverse FFT of length N

2 is necessary for both the low–
pass and the high–pass coefficients, respectively.

The polyphase components of the filters which appear in the polyphase matrix in (25) may
be precomputed similar to S0 and S1: From (21) it follows for i = 0 for example

H00(e2πik/(N/2)) =
1

2
[H0(e2πik/N ) +H0(e2πi(k+N

2
)/N )] k = 0, . . . ,

N

2
− 1 ,

H01(e2πik/(N/2)) =
1

2
e−2πik/N [H0(e2πik/N )−H0(e2πi(k+N

2
)/N )] k = 0, . . . ,

N

2
− 1

and further

ĥ00[k] =
1

2
(ĥ0[k] + ĥ0[k +

N

2
]) k = 0, . . . ,

N

2
− 1 ,

ĥ01[k] =
1

2
e−2πik/N (ĥ0[k]− ĥ0[k +

N

2
]) k = 0, . . . ,

N

2
− 1 .

Thereby, one has to take into account the N–periodisation of the shifted filters (17), (18) origi-
nally defined in the frequency range

[
−1

2 ,
1
2

)
which for j = 2, . . . , J read

Hj
0b(e

2πik/N ) =

{
e−πik/NH0(e2πik/N ) k = 0, . . . , N2 − 1 ,

e−πi(k−N)/NH0(e2πik/N ) k = N
2 , . . . , N − 1 ,

Hj
1b(e

2πik/N ) =

{
−ieπik/NH1(e2πik/N ) k = 0, . . . , N2 − 1 ,

ieπi(k−N)/NH1(e2πik/N ) k = N
2 , . . . , N − 1

= −ieπik/NH1(e2πik/N ) k = 0, . . . , N − 1 .
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The further steps j = 2, . . . , J are applied on the low–pass components C j−1 whereat the
signal lengths halve at each step as
(
Cj(e2πik/(N/2j ))

Dj(e2πik/(N/2j ))

)
=

(
H00(e2πik/(N/2j )) H01(e2πik/(N/2j ))

H10(e2πik/(N/2j )) H11(e2πik/(N/2j ))

)(
Cj−1

0 (e2πik/(N/2j ))

Cj−1
1 (e2πik/(N/2j ))

)

k = 0, . . . ,
N

2j
− 1 .

(26)

Note that the polyphase components H00(e2πik/(N/2j )) = ĥ00[2j−1k] are already known from
the previous steps. One can precompute the polyphase components or polyphase matrices. Once
such precomputation for length N was done the matrix values can be utilised for all signals of
length N

2k
where k ∈ N0.

If N = 2J and we make a full decomposition in the frequency domain, the cost of the
algorithm to obtain Fourier transformed wavelet coefficients in terms of number of complex
multiplications reads

s
(23)−→ S(z)

(24),(25)−→ C1(z), D1(z)
(24),(26)−→ C2(z), D2(z) . . .

(24),(26)−→ CJ(z), DJ (z)

N

2
log2 N +

N

2
+ 4

N

2
+
N

4
+ 4

N

4
+ · · · + 1 + 4

︸ ︷︷ ︸
5(N

2
+N

4
+···+1)=5N−1

,

i.e. N
2 log2N + 5N − 1 total. As the signal’s polyphase components S0, S1 are nothing else

than the sequence of even and odd numbered coefficients, respectively, one can also perform
two FFTs of length N

2 on these two sequences which reduces the complexity further.
If the wavelet coefficients in the time domain are wanted, one additionally needs real IFFTs

of lengths N
2 ,

N
4 , . . . , 2 requiring altogether 2J−2 log2 2J−1 + 2J−3 log2 2J−2 + · · ·+ log2 2 =∑J−1

j=1 2j−1j = 2J−1(J − 2) + 1 = N
2 (log2N − 2) + 1 multiplications. Note that in particular

in our application in Sec. 7 this back transform is not necessary.
Concerning the filter bank reconstruction depicted in the right part of Fig. 2, we obtain by

(20) and (21) that

S0(z2) =
S(z) + S(−z)

2

=
1

2
[C1(z2)H0(z−1) +D1(z2)H1(z−1) +C1(z2)H0(−z−1) +D1(z2)H1(−z−1)]

=
1

2
C1(z2)[H0(z−1) +H0(−z−1)] +

1

2
D1(z2)[H1(z−1) +H1(−z−1)]

= C1(z2)H00(z−2) +D1(z2)H10(z−2) ,

S1(z2) =
S(z)− S(−z)

2
z

=
1

2
zC1(z2)[H0(z−1)−H0(−z−1)] +

1

2
zD1(z2)[H1(z−1)−H1(−z−1)]

= C1(z2)H01(z−2) +D1(z2)H11(z−2) .

Consequently, the final reconstruction is simply
(
S0(z2)
S1(z2)

)
=

(
H00(z−2) H10(z−2)
H01(z−2) H11(z−2)

)(
C1(z2)
D1(z2)

)

where further steps follow the same rule.

15



5 Complex Wavelet Transform in Higher Dimensions

In order to extend the transform to higher–dimensional signals, a filter bank is usually applied
separably in all dimensions. But for the complex filters, a further extension is necessary as also
indicated in [17]:
If we apply the Fourier transform to a real signal, we obtain that the negative frequency part is
just the complex conjugate of the positive frequency part, so that the signal may be recovered
from just one half of its spectrum. Hence the signal is recoverable from the filter output of our
complex filter banks with just positive frequency response filters. But in higher dimensions,
only the opposite quadrant Fourier coefficients are redundant being complex conjugates. With
the separably applied complex product filter having only frequency response in the positive
quadrant, the signal hence cannot be recovered. In m dimensions, the frequency response of
2m−1 non-opposite quadrants is necessary to recover the signal. All necessary quadrants are,
e.g., covered by constructing all positive/negative frequency tensor products of the filters in
m− 1 dimensions and leaving the filter in the remaining dimension fixed. At level j, the filter
bank for m = 2 should then produce the outputs

Cja/b(z1, z2) = (2j ↓)
(

(Aja(z1)± iAjb(z1))(Aja(z2) + iAjb(z2))S(z1, z2)
)
,

Dj
1a/b(z1, z2) = (2j ↓)

(
(Aja(z1)± iAjb(z1))(Bj

a(z2) + iBj
b (z2))S(z1, z2)

)
,

Dj
2a/b(z1, z2) = (2j ↓)

(
(Bj

a(z1)± iBj
b (z1))(Aja(z2) + iAjb(z2))S(z1, z2)

)
,

Dj
3a/b(z1, z2) = (2j ↓)

(
(Bj

a(z1)± iBj
b (z1))(Bj

a(z2) + iBj
b (z2))S(z1, z2)

)
,

where (2j ↓) denotes down–sampling by 2j and the subscript a/b is related to the ± in the first
factor, see also Fig. 8. Hence, the filter bank has six complex high–pass subbands at each level
and two complex low–pass subbands in contrast to three real high–pass and one real low–pass
subband for the real two–dimensional transform. This shows that the complex transform has a
coefficient redundancy of 4:1 or 2m : 1 in m dimensions.

Due to the special filter construction and the dual–tree implementation in our case, the re-
quired product filters may be constructed easily [15]. For our filter pair subsumed in Theo-
rem 2, we obtain a filter supported on the other half of the ω–axis by just toggling the sign in
Bj
a(e2πiω) ± iBj

b (e
2πiω) or combining the filter outputs of the separate filters B j

a and Bj
b with

a different sign, respectively. Fig. 8 shows two levels of the resulting dual-tree filter bank for
a two–dimensional input signal S without subsampling operations. The markers indicate real
coefficient parts r and row or column imaginary parts i1 and i2, respectively. The output of each
subband in the filter bank is a 4-tuple (r, t, s, u) =̂ r + si1 + ti2 + ui1i2. To obtain the usual
filters, one sets i1 = i2 = i and obtains (r − u) + i(s + t) for the a coefficients, for example
D1

1a. For the conjugate row filter, one sets −i1 = i2 = i and obtains (r+u) + i(−s+ t) for the
b coefficients. This operation is indicated by the Σ,∆ blocks at the end of each subband. For
further decomposition steps, the row and column filtering blocks in the second level can be iter-
ated for the low–pass channel, i.e. they replace the uppermost Σ,∆ block. One can see in Fig.
8 that the real coefficients marked by r then are transformed step by step by themselves without
interleaving with the other coefficient bands. The same occurs for the other three components.
Hence, in two dimensions, from level two on we have four parallel trees that are only combined
in the end to build the complex coefficients.

In the case of real two–dimensional filter banks, the three high–pass filters have orientations
of 0 ◦, 45 ◦ and 90 ◦, respectively. For the complex filters, Kingsbury [14, 16] claims that his six
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Figure 8: dual-tree filter bank for a 2D signal S without subsampling operations
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Figure 9: real 2D impulse response of complex (row – column) filters at level 5

subband filters are oriented at ±15 ◦,±45 ◦,±75 ◦. Indeed, if we approximate the filter orienta-
tion by the angle of the maximal frequency response magnitude, by max |Frow(z1)Fcol(z2)| =
(max |Frow(z1)|)(max |Fcol(z2)|) the orientation is roughly given by

arctan
arg maxω |Fcol(e

2πiω)|
arg maxω |Frow(e2πiω)|

so that we have to examine the maxima of |Aja + iAjb| and |Bj
a + iBj

b |. By Theorem 2 and
(19), we see that they depend on the maxima of the single filters B j

a and Aja. As can already be
guessed from Fig. 7, these depend on the basis filter and even on the level j. For example for
the Haar filter H we have

Aja(e
2πiω) =

(
1 + e−2πiω

√
2

)
· · ·
(

1 + e−2j−12πiω

√
2

)

⇒ |Aja(e2πiω)| = 2
j
2 | cos πω · · · cos 2j−1πω| [7,p.211]

= 2−
j
2

∣∣∣∣
sin 2jπω

sinπω

∣∣∣∣ .

With (19), one can easily check that arg maxω |Aja(e2πiω) + iAjb(e
2πiω)| 6= 2−j · const, nor

is the total orientation angle constant during the levels. The actual orientations for all our row
high–pass and the column low–pass filters (corresponding to coefficients D3a) vary roughly
from 15 ◦ to 30 ◦. Of course, not only the maximum frequency response is important for the
filter’s orientation, but the filter may be a superposition of differently oriented components as
it can be seen in Fig. 9, where the real parts of some filter impulse responses are plotted. The
corresponding complex parts look very similar and the other orientations are roughly conjugated
mirrors.

Even if the complex transform does not have fixed filter orientations, we expect it to be more
robust against two–dimensional disturbances because of the six differently oriented subbands.

6 Invariance Performance

In this section we examine the behaviour of the dual–tree wavelet transform based on the stan-
dard wavelets proposed at the end of Sec. 3 with respect to translation and rotation invariance.
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 10: shift sensitivity of the complex transform in the frequency domain: (a) original
signal, (b)–(d) magnitude of subband coefficients, (e) signal from (a) shifted by one sample,
(f)–(h) magnitude of new subband coefficients

First we give an illustration of the shift invariance properties. Fig. 1 in Sec. 1 illustrates the
shift dependence of the common discrete wavelet transform considering the D3 wavelet as an
example. For the same basis filter D3, the dual–tree complex transform yields the results shown
in Fig. 10. To reconstruct the coefficients in the time domain, we had to apply an inverse FFT as
described in Sec. 4. Anyway, we are only able to plot the magnitude of the complex coefficients
here. In contrast to the real transform, in this example the distribution of the coefficient energy
across the subbands is almost equal for both signals. Even the shape of the coefficients mainly
stays the same; they provide interpolability as required in [24]. As expected, the coefficient
magnitudes at the first level come closest to shift invariance.

This illustration already indicates that the complex wavelet transform behaves more sta-
ble on signal shifts. To assess the influence of signal shifts more methodically, we com-
pute the variance of the channel energies ‖Dj(z)‖2 with respect to all signal shifts zkS(z)
(k = 1, . . . , N ) for a step signal s of length N = 256. As the coefficients are real, the energy is

‖Dj
a(z) + iDj

b(z)‖2 =
(
‖Dj

a(z)‖22 + ‖Dj
b(z)‖22

) 1
2 . For this, no FFT back transform from the

frequency domain is necessary since, by the Parseval identity, the 2–norms of the wavelet coeffi-
cients in the time and the frequency domain coincide. Table 1 shows the results for real (subsam-
pled) transforms, our complex sample filters and Kingsbury’s time domain dual–tree transform
with 14–tap orthonormal filter and (9,7)–tap biorthogonal filters in the first step [16]. The coeffi-
cients for the complex and real transforms have the same magnitude as all filtersH0a(z),H1a(z)
are normalised as well. Hence the variances are comparable. Evidently, the constructed complex
filter banks are all less sensitive to signal shifts than the real transforms. The variance even gets
relatively close to zero which is the energy variance for the non–subsampled transform. At level
one of the complex transform, the variance always has to be zero because effectively, no sub-
sampling is done due to the delayed filters from (15b). The shift invariance improves with the
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level 1 2 3 4 5 6 7 8
filter

H real 2.5e-01 2.5e-01 3.8e-01 6.9e-01 1.3e+00 2.7e+00 5.3e+00 5.3e+00
D3 real 1.2e-02 4.1e-02 9.4e-02 1.8e-01 3.6e-01 6.1e-01 4.1e+00 4.1e+00

Kingsbury
(9,7)/14-tap 1.6e-30 6.3e-04 5.3e-04 4.2e-04 1.0e-03 9.2e-04 4.0e-03 4.0e-03

H 1.1e-31 4.1e-02 5.5e-02 9.6e-02 1.8e-01 3.2e-01 3.2e-01 3.2e-01
D3 2.2e-29 2.7e-03 4.4e-03 7.8e-03 1.5e-02 7.2e-02 6.4e-02 6.4e-02

BW3 1.6e-29 4.3e-04 7.5e-04 1.4e-03 2.7e-03 8.4e-03 1.4e-02 1.4e-02
BW11 5.1e-30 3.5e-11 7.0e-11 1.1e-10 1.6e-10 7.3e-11 1.1e-08 1.1e-08
BL1 1.0e-29 1.7e-03 2.9e-03 5.3e-03 1.1e-02 3.1e-02 3.7e-02 3.7e-02
BL3 6.6e-30 5.7e-06 1.1e-05 2.0e-05 3.7e-05 6.2e-05 4.4e-04 4.4e-04

Table 1: energy variance on shifts of the step signal

low–pass high–pass
level 1 2 3 4 5 1 2 3 4 5

filter
H real -4.77 - 1.96 - 0.89 - 0.43 - 0.21 -4.77 0.00 2.29 3.23 3.63
D3 real -7.64 - 5.53 - 7.49 - 9.60 - 8.09 -7.64 - 2.41 1.44 - 2.10 - 3.21

Kingsbury
(9,7)/14-tap
[16, Table 3] −∞ -23.19 -29.33 -28.56 -28.57 −∞ -21.81 -18.96 -24.85 -24.15

H −∞ - 9.80 - 5.72 - 3.20 - 1.29 −∞ - 7.84 - 5.08 - 2.34 - 0.19
D3 −∞ -18.83 -19.32 -18.57 -18.44 −∞ -17.23 -12.30 -13.81 -13.22

BW3 −∞ -27.16 -26.78 -26.10 -25.61 −∞ -26.08 -21.68 -21.50 -21.11
BW11 −∞ -92.81 -92.84 -92.90 -92.34 −∞ -92.95 -87.77 -87.79 -87.52
BL1 −∞ -22.35 -21.14 -20.34 -19.64 −∞ -21.05 -16.92 -16.23 -15.74
BL3 −∞ -44.16 -44.29 -43.85 -43.59 −∞ -43.55 -38.90 -38.99 -38.70

Table 2: aliasing energy ratio 10 log10 Ralias in dB at levels 1 to 5

order, and, therewith, the number of vanishing moments of the Butterworth and Battle–Lemarié
wavelets because property (7) is better fulfilled. Both wavelet filters of order three are at least
comparable to the large Kingsbury filter with respect to shift invariance. Note that the channel
energies will be computed in our signal classification application so that it is important that they
do not heavily depend on the signal alignment.

To quantify the effect of the aliasing causing the shift dependence more generally, we de-
termine the aliasing energy ratio as done by Kingsbury in [16]. Considering equation (11), we
already observed that the aliasing terms are the terms with S(wk2j z) for k 6= 0. Hence we
determine the aliasing energy ratio for a subband at level j as

Ralias =

∑2j−1
k=1 ‖B

j
a(wk2jz)B

j
a(z−1) +Bj

b (w
k
2jz)B

j
b (z
−1)‖2

‖Bj
a(z)B

j
a(z−1) +Bj

b (z)B
j
b (z
−1)‖2

,

where a filter H(z) is regarded as a function ω 7→ H(e2πiω) ∈ L2

(
[−1

2 ,
1
2 ]
)
. Table 2 sum-

marises the aliasing energy ratios up to level five for our sample filters. The ratio is significantly
lower for all combined complex transforms shown in the lower part of the table; it is especially
zero at level one. The Haar filter and its dual–tree version exhibit a high aliasing because it is
badly localised and does not fulfil condition (7). On the other hand, again the filters BWm and
BLm get of course less shift dependent as their order m increases. We can conclude that all
constructed filters with appropriate support property perform well so that we derived a general
design method for shift invariant complex filters with perfect reconstruction.
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D3

BL3

Figure 11: subband information of the real and complex transforms: contribution of low–pass
and high-pass from level four to one

To illustrate the behaviour for the two–dimensional transform with respect to rotation invari-
ance, we show the synthesis contributions of the different levels S4

l , S
4
h, . . . , S

1
h for a rotationally

symmetric image in Fig. 11. For each component, only the coefficients of the appropriate two
resp. six directional subbands are passed to the respective inverse transform. As a result, the
fully decimated real wavelet transform in the second row shows heavy blocky artifacts and alias-
ing. The complex transforms in the further rows look a lot better, especially for the same basis
filter D3, but still the resulting reconstruction components are not rotationally invariant, see e.g.
the high-pass at levels two and three. But according to [16], this may result from the two di-
agonal subbands having higher centre frequencies than the other four. The level four high–pass
components in the second column rather show a diamond shape than a circle.

7 Application to Signal Classification

We intend to classify two different types of data, namely physiological heart patient data as in
[26] and texture image rows as described in [19]. The problems ’heart5’, ’heart6’ and ’heart7’
stand for the detection of ventricular tachycardia with real patient data for three different pa-
tients. Typical examples of curves from the two classes we want to distinguish are shown in Fig.
12.
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SR

VT

Figure 12: two–class problem (heart beats: sinus rhythm (SR) and ventricular tachycardia(VT))

class 1

class -1

Figure 13: texture sample: linearly rescaled images and exemplary rows

Our problem ’misc2 – misc3’ is a texture line classification problem. In contrast to the heart
data, the typical curves depicted in Fig. 13 have a bad localisation in the time domain. As the
previous signals they consist of 512 values.

The classification setup is illustrated in Fig. 14: As usual it includes a feature extraction
step which reduces the number of features of each signal to prevent the curse of dimensionality
and a subsequent classifier applied to the extracted features. For the feature extraction we use a
wavelet transform (likewise critically sampled, non–subsampled or as dual–tree complex trans-
form) in the filtering step and compute the 2–norm (energy) of the wavelet coefficients at each of
the d decomposition levels. These d energy values represent our features. Note that the 2–norm
has, by the Parseval identity, the advantage that no back transform of the Fourier coefficients
from the frequency to the time domain is necessary. Other norms may be used as well, but for
our classification problem the influence of the norm was marginal. For the feature extraction,
we also examine the ideal filter with support property suppH0(e2πiω) =

[
−1

4 ,
1
4

]
which can be

implemented by the Fourier transform. As our classifier serves a hard margin Support Vector
Machine (SVM), see [28].

The classification results are given in Table 3. The data are separated into a training and
a test set to evaluate the classification performance. In the ’trn shifted’ problem versions, the
test data instead consists of all distinct shifts of all training signals to evaluate shift invariance
or all shifts of all test signals for ’tst shifted’ to combine both issues. For ’trn shifted’ and the
transform without subsampling, no results are given because the feature vectors to classify are
just the same as the training vectors. Consequently, the test error has to be zero.
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SVM Classifier

Class label f(x)

Training signals s1, . . . , sn

(linear)

Filtering

(nonlinear)

Energy computation

Coefficients

(linear)

Filtering

(nonlinear)

Energy computation

Coefficients

Test signal s

Feature vectors x1, . . . ,xn Feature vector x

Figure 14: classification setup
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filter
critically H 44 45 50 19 38 42 0 40 42 3 42 47
sampled D3 49 34 36 9 41 36 6 55 54 13 23 30

no H 24 - 24 0 - 0 38 - 38 22 - 22
subsampling D3 24 - 24 0 - 0 6 - 6 16 - 16

(5,3)/6-tap 23 0 25 0 3 1 25 16 26 19 0 18Kingsbury [16]
(9,7)/14-tap 31 0 32 0 0 0 13 11 19 19 0 19

H 52 26 40 0 30 20 6 38 44 6 15 30
D3 21 3 25 0 11 6 44 28 40 16 0 18

complex BW3 25 0 26 0 0 0 19 15 21 19 0 22
(frequency domain) BW11 16 0 16 0 0 0 13 0 13 25 0 25

BL1 24 0 26 0 2 1 34 26 30 16 0 17
BL3 22 0 22 0 0 0 13 0 13 25 0 25

Fourier 0 - 0 0 - 0 13 - 13 50 - 50

Table 3: classification error of a hybrid signal classifier for different filters in percent
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As a result, expectedly, the fully decimated wavelet transform is not able to well discriminate
between the signal classes, particularly for the translated heart signals. But the most important
observation is that the complex transform really succeeds in achieving approximate shift in-
variance. The classification error for the ’shifted’ problems is definitely lower than that of the
critically sampled real transform. Moreover, the results for the complex filters are comparable
with the computationally expensive totally translation invariant transform without subsampling.

As the data for problem ’misc2 – misc3’ show a highly periodic structure, the classifica-
tion error decreases with the filter size and translation invariance is an important issue. Here
the Fourier features perform best. For ’heart5’, evidently, classification performance is highly
dependent on the shift sensitivity so that all shift insensitive transforms perform well. The two
further ’heart’ problems are more complicated: Different filters, here, e.g. H and BL, are most
successful whereas the Fourier features fail completely for ’heart7’.

8 Conclusion

We have worked out and applied Kingsbury’s idea of dual–tree filter banks in the frequency
domain where it can be based on standard wavelets. Concerning translation and rotation invari-
ance these complex transforms behave much better than their critically sampled counterparts
and show a performance at least as good as Kingsbury’s specially designed filters. Of course
our computation in the frequency domain involves (real) FFTs such that with respect to the arith-
metic complexity it can only compete with real filter banks in the time domain involving filters
of moderate length. We have applied the dual–tree filter banks in the feature extraction step for
a classification problem. The feature extraction process and the subsequent classification benefit
from an appropriate adaptation of the wavelet to the problem at hand. This votes for a whole
library of dual–tree complex wavelet filter banks which is available based on the known wavelet
filters if we work in the frequency domain.

In view of these properties, an extension to the classification application would be to adapt
the complex filters to the classification problem, which means to the data and the classifier at
hand.
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[4] R. R. Coifman and D. L. Donoho. Translation–invariant de–noising. In A. Antoniadis and
G. Oppenheim, editors, Wavelets and Statistics, volume 103 of Lecture Notes in Statistics,
pages 125–150. Springer, New York, 1995.

[5] R. R. Coifman and M. V. Wickerhauser. Entropy-based algorithms for best basis selection.
IEEE Transactions on Information Theory, 32:712–718, March 1992.
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[19] J. Neumann, C. Schnörr, and G. Steidl. Feasible adaptation criteria for hybrid wavelet –
large margin classifiers. Technical Report TR-02-015, Dept. of Mathematics and Computer
Science, University of Mannheim, December 2002.

[20] A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal Processing. Signal Processing
Series. Prentice Hall, Englewood Cliffs, NJ, USA, 1989.

[21] J. Portilla and E. P. Simoncelli. A parametric texture model based on joint statistics of
complex wavelet coefficients. International Journal of Computer Vision, 40(1):49–70,
2000.

[22] N. Saito. Local Feature Extraction and Its Application Using a Library of Bases. PhD
thesis, Department of Mathematics, Yale University, December 1994.

[23] I. W. Selesnick. Hilbert transform pairs of wavelet bases. IEEE Signal Processing Letters,
8(6):170–173, June 2001.

[24] E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger. Shiftable multiscale
transforms. IEEE Transactions on Information Theory, 38(2):587–607, March 1992. MIT
Media Laboratory Vision and Modeling Technical Report No.161.

[25] G. Strang and T. Nguyen. Wavelets and Filter Banks. Wellesley-Cambridge Press, Welles-
ley, 1996.

[26] D. Strauß and G. Steidl. Hybrid wavelet-support vector classification of waveforms. Jour-
nal of Computational and Applied Mathematics, 148:375–400, 2002.

[27] M. Unser. Texture classification and segmentation using wavelet frames. IEEE Transac-
tions on Image Processing, 4(11):1549–1560, 1995.

[28] V. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, 1995.

[29] M. V. Wickerhauser. Adapted Wavelet Analysis from Theory to Software. A. K. Peters,
Ltd., Wellesley, MA, 1994.

26


