
Reihe Informatik
04 / 2002

Compiling Away Set Containment

and Intersection Joins

Sven Helmer Guido Moerkotte

Compiling Away Set Containment and Intersection

Joins

Sven Helmer and Guido Moerkotte

April 22, 2002

Abstract

We investigate the effect of query rewriting on joins involving set-valued at-
tributes in object-relational database management systems. We show that by
unnesting set-valued attributes (that are stored in an internal nested representa-
tion) prior to the actual set containment or intersection join we can improve the
performance of query evaluation by an order of magnitude. By giving example query
evaluation plans we show the increased possibilities for the query optimizer.

1 Introduction

The growing importance of object-relational database systems (ORDBMS) [8] has kindled
a renewed interest in the efficient processing of set-valued attributes. One particular
problem in this area is the joining of two relations on set-valued attributes [4, 5, 7]. Recent
studies have shown that finding optimal join algorithms with set-containment predicates
is very hard [1]. Nevertheless, a certain level of efficiency for joins on set-valued attributes
is indispensable in practice.

Obviously, brute force evaluation via a nested-loop join is not going to be very efficient.
An alternative is the introduction of special operators on the physical level of a DBMS [5,
7]. Integration of new algorithms and data structures on the physical level is problematic,
however. On one hand this approach will surely result in tremendous speed-ups, but on
the other hand this efficiency is purchased dearly. It is very costly to implement and
integrate new algorithms robustly and reliably.

We consider an alternative approach to support set-containment and non-empty inter-
section join queries by compiling these join predicates away. The main idea is to unnest
the set-valued attributes prior to the join. Thereby, we assume a nested internal repre-
sentation [6]. This is also the underlying representation for the specific join algorithms
proposed so far [5, 7]. Whereas [7] concentrates on set-containment joins, we also consider
joins based on non-empty intersections. Ramasamy et al. also present a query rewrite for
containment queries in [7], but on an unnested external representation, which (as shown
there) exhibits very poor performance. Further, the special case of empty sets was not
dealt with.

The goal of our paper is to show that by rewriting queries we can compile away the
original set-containment or intersection join. As our experiments with DB2 show, our

1

rewrite results in speed-up factors that grow linearly in the size of the input relations as
compared to quadratic growth for brute-force nested-loop evaluation. The advantage of
this approach—as compared to [5, 7]—is that no new join algorithms have to be added
to the database system.

The paper is organized as follows. In Section 2 we briefly describe some preliminaries.
We list the treated query types along with their respective rewrites in Section 3. In Section
4 we give a description of the environment in which the experiments took place. After
that we present the results of the experiments in Section 5. Finally, Section 6 concludes
our paper.

2 Preliminaries

In this section we give an overview of the definition of the set type. Due to the deferral of
set types to SQL-4 [3], we use a syntax similar to that of Informix 1. A possible example
declaration of a table with a set-valued attribute is:

create table ngrams (

setID integer not null primary key,

content set<char(3)>

);

setID is the key of the relation, whereas content stores the actual set. The components
of a set can be any built-in or user-defined type. In our case we used set<char(3)>,
because we wanted to store 3-grams (see also Section 4). We further assume that on
set-valued attributes the standard set operations and comparison operators are available.

Our rewriting method is based on unnesting the internal nested representation. The
following view defining the unnested version of the above table keeps our representation
more concise:

create view view_ngrams(setID, d, card) as (

(select ngrams.setID, d.value, count(ngrams.content)

from ngrams, table(unnest<char(3)>(ngrams.content)) d)

union all

(select ngrams.setID, NULL, 0)

from ngrams

where count(ngrams.content) = 0)

);

where setID identifies the corresponding set, d takes on the different values in content

and card is the cardinality of the set. We also need unnest<char(3)>, a table function
that returns a set in the form of a relation. As unnest<char(3)> returns an empty
relation for an empty set, we have to consider this special case in the second subquery of
the union statement, inserting a tuple containing a dummy value.

1http://www.informix.com/documentation/

2

3 The Queries

We are now ready to describe the queries we used to compare the nested and unnested
approach. We concentrate on joins based on subset-equal and non-empty intersection
predicates, because these are the difficult cases as shown in [1]. We have skipped joins
involving predicates based on equality, because the efficient evaluation of these predicates
is much simpler and can be done in a straightforward fashion (see [5]).

3.1 Checking Subset Equal Relation

Here is a query template for a join based on a subset-equal predicate:

select n_1.setID, n_2.setID

from ngrams n_1, ngrams n_2

where is_subseteq(n_1.content, n_2.content) <> 0;

(The comparison with 0 is only needed for DB2, which does not understand the type
bool.)

This query can be rewritten as follows. The basic idea is to join the unnested version
of the table based on the set elements, group the tuples by their set identifiers, count the
number of elements for every set identifier and compare this number with the original
counts. The filter predicate vn1.card <= vn2.card discards some sets that cannot be
in the result of the set-containment join. We also consider the case of empty sets in the
second part of the query. Summarizing the rewritten query we get

(select vn1.setID, vn2.setID

from view_ngrams vn1, view_ngrams vn2

where vn1.d = vn2.d

and vn1.card <= vn2.card

group by vn1.setID, vn1.card, vn2.setID, vn2.card

having count(*) = vn1.card)

union all

(select vn1.setID, vn2.setID

from view_ngrams vn1, view_ngrams vn2

where vn1.card = 0);

3.2 Checking Non-empty Intersection

Our query template for joins based on non-empty intersections looks as follows.

select n_1.setID, n_2.setID

from ngrams n_1, ngrams n_2

where intersects(n_1.content, n_2.content) <> 0;

The formulation of the unnested query is much simpler than the unnested query in
Section 3.1. Due to our view definition, not much rewriting is necessary. We just have to
take care of empty sets again, although this time in a different, simpler way.

3

select distinct vn1.setID, vn2.setID

from view_ngrams vn1, view_ngrams vn2

where vn1.d = vn2.d

and vn1.card > 0;

4 Experimental Environment

The experiments were run on a lightly loaded Sun Enterprise Server E450 under Solaris
2.6 with two 300 MHz Ultra Sparc processors and 512 MByte of main memory. For the
database we used UDB version 6.1 from IBM. The user-defined type and functions were
implemented in C++ using the GNU C++ Compiler 2.95.2. For performance reasons all
user-defined functions were run unfenced.

We used real data to load the tables by storing words taken from a dictionary con-
taining all different words from the King James Bible. However, we did not insert the
words directly into sets, but generated a set of 3-grams for each word (e.g., “along” has
the set {alo, lon, ong}) and assigned to each set the set of 3-grams of that word. N-grams
are usually used for queries with partially specified terms [9]. After loading the tables we
updated the statistics of the database systems by running a runstat command in order to
improve the results of the query optimizer. The level of the optimizer was set to 5 (which
is the default value). Raising it to higher levels did not improve the query plan, it only
resulted in a longer total running time, because the optimizer needed more time.

5 Results

0

20

40

60

80

100

120

140

200 300 400 500 600 700 800 900 1000

tim
e

in
 s

ec

size of tables

running times for nested and unnesting queries

nsub=
usub=
ninter
uinter

0

5

10

15

20

25

30

35

40

45

50

200 300 400 500 600 700 800 900 1000

sp
ee

d-
up

 fa
ct

or

size of tables

speed-up

nsub=/usub=
ninter/uinter

(a) Running times (b) Speed-up gained by rewriting

Figure 1: Results of experiments

In Figure 1(a) the results of our experiments are depicted (n stands for nested, u for
unnesting queries). We measured the query performance in terms of running time (the
unit of measurement on all y-axes is in seconds). The resulting tuples of the queries were
not sent to output, as we started all queries with the command db2batch -o r 0. For
each point in Figure 1 we averaged the evaluation times of ten different executions of a
particular query. The rewritten queries perform much better (up to 40 times better for

4

intersection predicates and still up to 20 times better for subset equal predicates). The
observed performance improvement factors are similar to those achieved applying special
join algorithms in the main memory case [5].

The performance gap between the nested and unnested version increases steadily as
can be seen in Figure 1(b), where the ratio between the running times of nested and
unnested queries is plotted. While the nested queries have a running time quadratic in
|ngrams| (where |ngrams| is the cardinality of the relation ngrams), due to the nested-loop
algorithm, the rewritten queries have a sub-quadratic running time.

Return

NLJoin

TbScanTbScan

ngrams ngrams

Figure 2: Execution plan for nested query

What are the reasons for this behavior? We took a closer look at the query plans
generated by the optimizer via Visual Explain provided by the Control Center of DB2.
The plan generated for the nested queries looks very simple. A schematic version is shown
in Figure 2. As the join predicate involves a user-defined function, DB2 is forced to use
a nested-loop join operator. This is very expensive in terms of evaluation costs, because
the set comparison operator has to be called |ngrams|2 times.

The query plans for the unnested queries look much more complex (see Figure 3 for
a schematic version of the plan for the query u⊆). In the lower part of the plan the view
definition is resolved. We have two major branches from here on. In the branch on the
right hand side we handle the special case for empty sets and in the branch on the left
hand side we evaluate the comparison of all other sets. The results of both branches
are then combined by a union operator. During the evaluation of this query a faster
sort-merge join algorithm can be used.

For the query u∩ the lower part of the plan is identical to that of Figure 3. Only one
branch containing a simple sort-merge join and a filter is needed after resolving the view,
i.e., we have no separate branch to handle empty sets.

5

Filter

Return

Union

GrpBy

TbScan

TbScan TbScan

Sort

TbScan TbScan

Temp

NLJoin

SortMrgJoin

Union

NLJoin TbScan

TbScan TbScan

Sort

ngrams

ngrams

unnest

Figure 3: Execution plan for unnested query (u⊆)

6

6 Conclusion

We compared the execution of queries involving joins on set-valued attributes, all of which
were stored in a nested representation. We tested two different variants of each query: a
nested version, in which most of the join predicate was evaluated in a user-defined function
and a version where the set-valued attributes were unnested before the actual join took
place. Additionally, in the unnested version the whole join predicate was formulated in
plain SQL. In our experiments the unnested evaluation of the queries was the obvious
winner. For relation sizes of 1000 tuples the unnested variants of the queries were 20 to
40 times faster than their nested counterparts. For larger relations we expect the gap to
widen even more, because of the asymptotic running times of the different algorithms.
The reason for this behavior is clearly the inability of the query optimizer to deal with
complex (user-defined) types and functions efficiently.

Existing ORDBMS only support access to and indexing of complex (user-defined)
objects in a rather primitive way. There are efforts to improve this situation, e.g. by
allowing user-defined access methods and tightly coupling these with the database engine
[2, 8]. This approach, however, is not an option as long as it is still in its infancy and
not widely available in commercial DBMS. The consequence for joins of relations on set-
valued attributes (and also probably for many other user-defined types and functions)
must be to grant the query optimizer access to the functionality of the complex objects
instead of hiding it in user-defined functions. Only by this means can we attain acceptable
performance without having to modify the database engine itself.

References

[1] J.-Y. Cai, V.T. Chakaravarthy, R. Kaushik, and J.F. Naughton. On the complexity of
join predicates. In Proceedings of the Twenteenth ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems, May 21-23, 2001, Santa Barbara,

California, USA. ACM, 2001.

[2] W. Chen, J.-H. Chow, J. Grandbois Y.-C. Fuh, M. Jou, N. Mattos, B. Tran, and
Y. Wang. High level indexing of user-defined types. In Proc. of the 25th VLDB

Conference, pages 554–564, Edinburgh,Scotland, 1999.

[3] P. Fortier. SQL-3, Implementing the SQL Foundation Standard. McGraw-Hill, 1999.

[4] G. Garani and R. Johnson. Joining nested relations and subrelations. Information

Systems, 25(4):287–307, 2000.

[5] S. Helmer and G. Moerkotte. Evaluation of main memory join algorithms for joins
with subset join predicates. In Proc. of the 23rd VLDB Conference, pages 386–395,
Athens, August 1997.

[6] K. Ramasamy, J. Naughton, and D.Maier. High performance implementation tech-
niques for set valued attributes. Technical report, Computer Sciences Department,
University of Wisconsin, Madison, 2000.

7

[7] K. Ramasamy, J.M. Patel, J.F. Naughton, and R.Kaushik. Set containment joins: The
good, the bad, and the ugly. In Proc. of the 26th VLDB Conference, Cairo, Egypt,
August 2000.

[8] M. Stonebraker and P. Brown. Object-Relational DBMSs, Tracking the Next Great

Wave. Morgan Kaufmann Publishers, San Francisco, California, 1999.

[9] I.H. Witten, A. Moffat, and T.C. Bell. Managing Gigabytes. Morgan Kaufmann, San
Francisco, 1999.

8

