Optimized Trandlation of XPath into Algebraic Expressions
Parameterized by Programs Containing Navigational Primitives

Sven Helmer Carl-Christian Kanne
helmer@informatik.uni-mannheim.de cc@informatik.uni-mannheim.de

Guido Moerkotte
moerkotte@informatik.uni-mannheim.de
University of Mannheim
Germany

Abstract

We propose a new approach for the efficient evaluation of XPath expressions. This is important, since
XPath is not only used as a simple, stand-alone query language, but is also an essential ingredient of
XQuery and XSLT.

The main idea of our approach is to translate XPath into algebraic expressions parameterized with
programs. These programs are mainly built from navigational primitives like accessing the first child or
the next sibling. The goals of the approach are 1) to enable pipelined evaluation, 2) to avoid producing
duplicate (intermediate) result nodes, 3) to visit as few document nodes as possible, and 4) to avoid
visiting nodes more than once. This improves the existing approaches, because our method is highly
efficient.

1 Introduction

XPath is an essential ingredient of mainstream XML applications like XSLT and XQuery. Moreover,
XPath is often used as a simple query language itself. This motivated us to take a close look at efficient
evaluation strategies for XPath and come up with a new approach.

Standard XPath evaluators like Xalan or XT, for example, perform an evaluation that processes the
location steps in an XPath expression from left to right, step by step. For n nodes this leads to n
intermediate results, which are then unioned. During unioning duplicate elimination is performed, the
result of which is fed into the next location step. Thereby, the result of every location step is materialized.

Besides other advantages, our approach allows a pipelined evaluation of XPath expressions. Pipelin-
ing, which avoids building intermediate results, is one of the major reasons why query evaluation in
relational database systems is highly efficient. Our goal was to realize pipelined evaluation of XPath
expressions. As we will see, several obstacles need to be overcome. The biggest one is that the results of

a location step applied to two different nodes are often not disjoint. Performing a duplicate elimination
operation after every location step, however, jeopardizes any attempt at pipelined processing.

1.1 Problem

Let us illustrate the problem by a simple example. As every location step results in a set of nodes, a
simple Unnest Map operation is the appropriate algebraic operator for representing a location step [10].
We use subscripts to denote the location step the operation refers to. Let [be a location step including a
node test and possible predicates. Then Unnest Mapg,,(-) produces for every input node a set of output
nodes that are reachable by [. The result nodes are successively bound to a variable or attribute named
$1. We assume that attributes of tuples handed from one algebraic operator to another may not only have
a basic type (like integer or string), but may also be of type node. More formally we can define

Unnest Mapg;,(e) := {zo[$i:y]|lz € e,y € z/l}

where $i is an attribute name, e a general XPath expression, and o denotes tuple concatenation. It is
important to note that this operator does not eliminate duplicates: as usual in standard relational algebra
implementations we assume a bag semantics for our algebraic operators.

We now take a look at a straightforward translation of the XPath expression/ / A/ / Aiinto a sequence
of Unnest Map operations:

Unnest Mapg, desc..4(Unnest Mapg; desc..a(*)-

If this expression is applied to the document root node of an XML document that is a binary tree of
elements of type A only, this expression clearly produces duplicates. Moreover, its runtime is quadratic
in the number of nodes of the input document. In general, a straightforward translation of an XPath ex-
pression results in a sequence of Unnest Map operations, where plenty of duplicates can occur. Since
the XPath specification demands set semantics, we need a final duplicate elimination in order to ensure
correctness. Still, a lot of duplicate work may be performed by Unnest Map operations following an
intermediate result that contains duplicates. Introducing a duplicate elimination operation after every
Unnest Map operation avoids the unnecessary work but jeopardizes pipelining, since duplicate elimi-
nation is a pipeline breaker.

1.2 Context

The above description of Unnest Map is given on a logical level. In a real implementation, algebraic
operators are typically implemented as iterators providing open, next , and cl ose methods [12]. The
context of this work is the native XML database system Natix [14]. In Natix, algebraic operators are
parameterized by programs written in an assembler-like language which are then interpreted by the Natix
Virtual Machine (NVM). XML-related primitives allow simple navigations like get Fi r st Chi | d,
get Next Si bl i ng and the like. This is similar to DOM, for example, which also provides navigational
primitives. Our approach carries over to all systems that support primitive navigations between nodes.

In Natix, an Unnest Map operator is parameterized by three programs. The first program (called
i ni t program) produces the first result tuple. One can think of this program as being called by the
open method. The second program (called st ep program) produces the next tuple of the output. It is
called by the next method. Another program (responsible for cleaning up), which is of no importance
for understanding this paper, is called by the cl ose method.

2

1.3 Contributionsand Approach

Our contribution is a translation mechanism from XPath expressions to programs for a sequence of
Unnest Map operations such that

1. pipelined evaluation becomes possible,

2. no duplicates are produced,

3. as few document nodes as possible are visited,

4. the number of visits per document node is minimized, and

5. the result nodes are returned in document or reverse document order.

In fact, we not only enable pipelined evaluation of XPath expressions, but are also often able to reduce
the size of an intermediate result to one node. Although, in principle we are able to treat all axes of
XPath, we have to apply some restrictions on the XPath expressions we treat in this paper. The reasons
are complexity and space limitations. Nevertheless, the subset of XPath we treat is much larger than the
subset containing only child and descendent axes typically treated in literature [2].

We achieve these ambitious goals in three steps. First we eliminate those axes by XPath rewrite that
will hamper a smooth translation process. Then we rewrite XPath expressions again by introducing
artificial step functions to enable further rewrites allowing uncomplicated code generation. In a last step,
we translate the rewritten, enhanced XPath expressions into efficient programs.

1.4 Restrictions

The first restriction is that we do not allow posi ti on() and | ast () function calls in our XPath
expressions. We do not elaborate on the nanespace axis either since it can be treated similar to
the at t ri but e axis. The other restrictions can be roughly described as follows. We do not treat
the pr ecedi ng- si bl i ngandf ol | ow ng- si bl i ng axes. Although our approach carries over to
XPath expressions embedded in predicates, we will not detail their treatment. Last, the prefix of an XPath
expression that precedes a f ol | owi ng or pr ecedi ng axis must — in the basic approach — adhere to
some restrictions concerning the order in which axes may occur (see Sec. 3 for details). Section 6 will
indicate how these restrictions can be lifted. However, we currently do not have an alternative solution to
handle the ancest or axis if it is not followed by af ol | owi ng or pr ecedi ng axis. In this case, we
must rely on its straightforward computation followed by duplicate elimination. Note that this fallback
to a straightforward evaluation with interspersed duplicate eliminations still remains an option for any
case we cannot handle more efficiently.

1.5 Related Work

We are not alone in searching for efficient evaluation techniques of XPath. Several authors have been
concerned with rewriting XPath expressions using only the chi | d and descendent axis. They mini-
mize these tree pattern queries [3, 17]. Work along this line can be used to preprocess XPath expressions
and it is beneficial to apply these minimizations prior to our translation process. Since backward axes
are impossible to evaluate on streaming XML, approaches exist to rewrite XPath expressions such that
only forward axes are used [5, 16]. Again, this work is orthogonal to ours. In fact, we will use some of
their rewrite rules to preprocess XPath expressions in our first step.

3

A standard evaluation procedure for XPath expressions that contain only chi | d and descendent
axes is to translate them into an automaton. This approach is described in [2, 6], for example. The focus
here is on selective information dissemination. A generalization to more axes is still missing.

Some optimizing rewrites can be applied to XPath expressions when the DTD of the queried docu-
ments is known [15]. Again, this work is orthogonal to ours and can be beneficially applied prior to our
translation process.

Gottlob et al. propose an evaluation strategy for general XPath expressions in [11]. The underlying
idea is the same as in our approach: avoid duplicate evaluation. Their approach is similar to our NVM
DupElim approach which pushes duplicate eliminations down the evaluation tree. However, the highest
performance gains and the enabling of pipelining is achieved by our rewrite phase. [11] lack such a
rewrite phase. Another advantage of our approach is that we produce results in document or reverse
document order.

Other evaluation strategies for XPath expressions build on relational representations of XML in con-
junction with numbering schemes. One specific approach is to translate XPath into SQL (the latest here
is [18]). Others are concerned with providing efficient join algorithms to evaluate a single location step
[1].

The functions first and last, which we will introduce later, resemble some algebraic operators found
in [8]. However, they do not consider translation of path expressions into their algebra but require the
user to use their algebra as a query language. Also, they do not allow nested objects in their GC-lists,
which are used for evaluating the algebra. Context sets in XPath may contain nested objects (e.g. nodes
that are descendants of others).

An orthogonal area of research considers the acceleration of XPath evaluation by using indexes [9, 13].

1.6 Organization

The remainder of the paper is organized as follows. In Section 2 we introduce some preliminaries and
the first simple rewrite steps to prepare XPath expressions for our purposes. The goal of the preliminary
rewrite is to eliminate the axes that are not relevant to our work since their computation does not pose
any problems, or the axes that disturb further rewrites. Section 3 introduces the notion of step functions
that generalize location steps. Using the introduced step functions, we rewrite XPath expressions until
they have a convenient form for code generation. The main goal here is to break down step functions in
such a way that they operate on single location steps. Section 4 describes how code generation proceeds
for the different location path functions. Section 5 presents some performance measurements. Section 6
shows how the restrictions mentioned above can be relaxed such that we are able to translate many more
XPath expressions into optimized plans. Section 7 concludes the paper.

2. Preliminaries and Preparatory Rewrites
2.1. Notation, Abbreviations, Assumptions

We use o and 3 to denote XPath expressions. Node tests are denoted by n or m. For predicates
we use p and ¢. In order to keep the XPath expressions in the paper short, we use desc, anc, pr s,
fos,fol, pre, and par as abbreviations for descendant , ancest or, pr ecedi ng- si bl i ng,
fol |l owi ng-si bling, foll ow ng, precedi ng, and par ent. We abbreviate - or - sel f by

34 5,6 9,10 11,12 15,16 17,18
Each node is assigned the pair dm n, dmax.

Figure 1. Depth-first numbering of document nodes

- 0s. Whenever we are not interested in the specific node test or predicates, we just omit them from the
path expression.

For the introduction of step functions we need a node numbering according to a depth-first traversal.
We will denote by dm n the number that is assigned to a document node at the time of its first visit
during a depth-first traversal. By drmax we denote the number that is assigned to a node upon the second
(and last) visit. For a simple example document these numbers are given in Fig. 1.

The traversal primitives implemented in the runtime system are assumed to support preorder traversal
and its reverse (by an iterator concept). A runtime system supporting postorder traversal will speed up
certain evaluation steps. Otherwise we have to emulate postorder traversal with preorder traversal.

2.2. Preparatory Rewrites

Since XPath contains 13 axes, we would like to cut down the number of axes considered in this paper.
We do so without loss of generality. There are two problems. The first problem is that some axes produce
duplicate nodes, even if the input set does not contain duplicates. This problem originates from the defi-
nition of XPath. The second problem has its origins in our approach. For some axes it is not easy to find
efficient rewrites. If an axis does not pose any of these two problems, we can safely omit it from further
considerations. The axes we can safely omitare sel f, nanespace,andattri but e. Thesel f axis
can be evaluated by applying a simple selection operation. The nanespace and att ri but e axes do
not generate duplicates if their input does not contain duplicates. Allowing these two axes to appear not
only at the end of an XPath expression is a controversial topic (see XPath 1.0 specification [7] vs. XPath
2.0 specification [4]). When allowing further location steps after at t ri but e and nanmespace axes,
we can rewrite the path expressions such that without loss of generality these axes occur only at the end
of XPath expressions, within a predicate or can be eliminated altogether (i.e., the answer set is emtpy).

For the at t r i but e axis the following cases can be handled very easily, since their answer set is
empty:

attribute:nfp]/desc ::mlg] =
attribute::np]/child:: mqg
attribute::nfp]/fol =ml[q =

I
SRS

5

attribute:n[p]/attribute:
attribute:: n[p]/namespace :

attribute :n[p|/f os :: m[q] 0
attribute::nfp]/pre: mlq 0
attribute :n[p/prs :: mlqg| 0
mlg] = 0
mlg] = 0

We can rewrite the remaining combinations of the at t r i but e axis with the other axes in the fol-

lowing way:

attribute:nlp/anc :

attribute: n[p]/anc-o0s ::m

attribute:: n[p]/desc-0s ::m

attribute:: nfp]/par :

= self :«[attribute:nlp]]/anc- o0s :: m[q]
= self :«[attribute :n[p]]/anc- 0s :: m[q] |

attribute:: nfp]/sel f :: m|q]

= attribute:nlp|/self ::m|q
= self ::mfg]lattri bute : np|]

We now turn to the namespace axis. Again, we have a lot of cases where the answer set is empty,

namely the following combinations:

nanespace : n[p|/desc :: mq] 0
nanmespace :: n[p|/chi | d :: m|q] 0
nanespace :: n[p]/f ol :: mlq] 0
nanespace :: n[p]/f os :: mq] 0
nanespace : n[p]/pr e :: m[q| 0
nanespace :: n[p]/prs :: mlq| 0
namespace :: n[p]/attri but e :: m[q] 0
namespace :: n[p|/nanespace : m[q| 0

We can rewrite the remaining combinations of the namespace axis with the other axes in the fol-

lowing way:

namespace : n[p|/anc :: m
namespace :: n[p]/anc-0s :: m

S

nanespace : n[p|/desc- 0s :: m[q]
namespace :: n[p]/par :: m[q]

namespace :: x[att ri but e :: n[p]]/anc- os :: m[q]
sel f :: x[nanmespace : n[p]]/anc- os :: m[q] |
namespace :: nlp|/sel f :: m[q]

namespace : n[p|/sel f :: m[q]

sel f :: m[g|][namespace : n[p]]

In the latter four cases of the at t ri but e and nanmespace axes, adding an Unnest Map operator
accessing attributes or namespaces to the plan is straightforward.

The next two axes that are somewhat troublesome are f ol | owi ng- si bl i ngand pr ecedi ng- si bl i ng.
These axes can produce duplicates even if their input does not contain duplicates. Although we are able
to treat them (see Sec. 6), their evaluation is slightly less efficient than that of other axes. Fortunately,
[16] provides rewrites to eliminate f ol | owi ng- si bl i ng and pr ecedi ng- si bl i ng if they are
preceded by a backward axis. We add the following rewrite rules to eliminate further top-level occur-
rences:

desc :n/fos::m = desc:mlprs :n
child:n/fos:m = child:m[prs:n]

Remaining occurrences are handled as indicated in Sec. 6.

Another axis that produces duplicates even if the input set does not contain them is par ent . Again,
occurrences of the par ent axis within path expressions are not always handled smoothly by our ap-
proach. Hence, we eliminate as many occurrences as possible by rewrites. We add to the par ent
elimination rules of [16]:

anc :: n[p|/par :m = par /anc :: m[g Achil d : n[p]]

] 4]
anc-os : nfp|/par ::mf[g] =anc :mf[gAchild:np|]
desc-o0s :: nlp|/par ::m[q] = par/desc-0s ::mlgAchild:: nfpl
a/prs :nfpl/par ::mlql = alprs : nlp]]/par :: miq]

Olteanu et al. also describe rules to eliminate anc axes in [16]. We add the following to these rules:

a/prs :nlp|/anc :: mlq] = afprs :: n[p]]/anc :: m[q]

These rules either eliminate occurrences from the top level or move them one step further to the front
of the XPath expression where they are possibly eliminated. Occurrences at the very beginning of an
XPath expression can be handled easily (as root nodes neither have parents nor ancestors).

There are several optimizing rewrites possible for XPath expressions. We can apply them beneficially
before proceeding with our optimized translation procedure. Minimization of occurring tree patterns is
one of them [3, 17]. Another example is to replace desc- os :: «/chi | d :: z[p| by desc :: z[p]. This
is an important rewrite, since the first form (abbreviated as //x[p] in XPath) occurs quite frequently.
Other techniques such as exploiting DTDs for rewrites (see [15]) should also be applied.

3. Step Function based Rewrite

In terms of the number of nodes visited, the axes desc, desc- os, fol , and pr e are the most
expensive ones. Further, for all input sets with a cardinality larger than one all these axes produce
duplicates with a high probability. Hence, we subsequently concentrate on these axes and try to make
their evaluation as efficient as possible.

Let us give a motivationg example. Suppose that we want to evaluate the expression «/f ol :: n[p].
Furthermore, assume that the set of context nodes defined by « consists of two nodes (pictured in Figure
2). Evaluating the above expression separately for each node results in a lot of extra work (which
increases even more for larger sets of context nodes). As the sets of following nodes overlap, it suffices
to only look at the nodes following the context node with the smallest dmax value.

7

. context node
nodes following node 1
nodes following node 2

Figure 2. Maotivating Example for Rewrite

3.1. Step Functions

By definition of XPath, the f ol | ow ng axis of a node n contains all nodes whose dni n value is
larger than the dmax value of n. Hence, it suffices to compute the f ol | owi ng nodes of the node whose
dmax value is minimal. A similar argument holds for computing all the pr ecedi ng nodes of a given
set of nodes: it suffices to compute all pr ecedi ng nodes of the node with the maximal dmi n value.

Let us formalize this idea. For a given set of nodes X and d € {dm n,dmax} we define

fist(X) = {olr € X, 2. = min({y.dly € X})}
lasty(X) = {z|z € X,z.d =max({y.dly € X})}

We call these functions step functions since we will treat them like “regular” steps within path expres-
sions.

The semantics of a step function occurring in an (extended) XPath expression is that for every context
node the argument of the step function (typically a path expression) is evaluated to a set of nodes. The
result of the location step is the result of applying the step function to the set of nodes derived by
evaluating the argument. More formally, we define the semantics of step function f occurring in a path
expression «/ f(3) as follows. Let « evaluate to the set X. Then

a/f(B) = U f/B)

zeX

where x /3 is the set of nodes reachable by the path expression 5 with z as the current node.
For an arbitrary path expression «, we can make the following two important observations:

a/fol = firsty,..(«)/f ol
a/pre = lasty,i,(a)/pre

Note that if we can compute first,,.., efficiently, no duplicates will be generated by computing the
subsequent f ol | owi ng axis. Moreover, instead of computing all result nodes for «, it suffices to

compute only one! Both savings can dramatically reduce the evaluation costs of an XPath expression
containingaf ol | owi ng or pr ecedi ng axis.

Let us now turn to the descendant and descendant - os axis. Their treatment in our ap-
proach is identical. The question we have to answer first is in which situations descendant or
descendant - os generate duplicates. This is the case whenever two nodes exist in the input set
such that one is the ancestor of the other. If there are no such nodes, we can be sure that we do not
produce duplicates. Exploiting this feature leads to the next step function called roots. For a given set of
nodes X, it is defined as follows:

roots(X) := {z|r € X, Ay € X yisanancestor of z}
3.2. Rewrite

We have replaced XPath expressions with expressions containing our step functions, which avoids the
generation of duplicates. We now rewrite these expressions such that code generation becomes feasible.

For this the following properties of step functions are very useful. Let s be a singleton location step,
i.e. a location step that produces for a single input node at most one output node. Then, the following
holds:

firsty(s/a) = s/firsty(«) (1)
last;(s/a) = s/lasty(a))
roots(s/a) = s/roots(«) (3)

Note that s can also be a step function that returns a single node such as firsty,,... Another possibility
is that s consists of an axis that produces a single node. Typical candidates are par ent and sel f. Yet
another possibility is to use DTD knowledge to infer that an axis can only return a single node. The
usefulness of these equations is that we are able to move some steps out of our step functions.

The rules above are a first step, but we need more complex rules to fully rewrite path expressions.
Therefore we introduce step functions where possibly large chunks of the original path expression be-
come arguments. Since these are difficult to handle during code generation, more rules are needed to
distribute step functions over complex path expressions such that their arguments become less complex
path expressions. In case of first and last, we rewrite until their arguments are single steps. For roots we
rewrite until the argument path starts with a descendant - os or descendant axis followed by an
arbitrary number of occurrences of chi | d.

Let us define the set of down-axesas D := {desc,desc- 0s,sel f ,chi | d} and the set of specially
processed axes as S := {f ol ,pre,desc,desc- os}. Consider a path expression of the form «/s/3
where s is the last location step that is a member of S. Then we introduce our step functions by applying
one of the following rewrite rules:

a/fol /8 = firstyne.(a)/fol /3 4)
a/pre/B = lastgn(a)/pre/s (5)
a/desc/f = roots(«)/desc/f (6)
a/desc-o0s/B = roots(a)/desc-0s/[3 (7

If 5 contains an axis not in D, special care is taken to eliminate duplicates as early as possible (e.g. for
the anc or par axis).

After introducing a step function, its argument is the possibly complex path expression «. Subse-
quently, we have to simplify « such that code generation becomes possible. We first rewrite the argu-
ment of a roots(«) expression. In doing so, occurrences of first and last may be introduced. We apply
the following rules:

roots(a/f ol /3) = firstyn..(a)/anc-os/fos/

roots(desc- 0s/(3) (8)
where 3 C D
roots(a/pre/5) = lastynn(a)/anc-os/prs/
roots(desc- 0s/(3) 9)
where 3 C D
roots(a/desc /) = roots(«)/roots(desc/[5) (10)
if 3 contains only child axes
(G may be empty
roots(chi I d/a) = chil d/roots(a) ifa C D (11)
roots(par ent /o) = parent /roots(«) (12)

Eqgn. 10 is also valid if desc- os is used instead of desc. After rewrite, we require that only paths
of the form desc/chi | d* or desc- os/chi | d« occur as arguments of roots. Note that this is not
always the case, for example, if f 0s occurs in « and is not followed by f ol or pre.

We now turn to simplifying the argument path of firstyngx (o) and lastypi n(«). The goal is to
distribute first; and last; occurrences over « such that each of their argument paths has a length of
exactly one (location step). In doing so it does not suffice to consider firstqgyx and lastyni - We also
exploit firsty i n and lastgngy . The rewrite rules are

(13)
(14)
(15)
(16)
17
(18)
firstgmae (a/desc) = firstg,in (a[desc]) /firstgmq (desc (19)

firstgmaz (/pr e) = firstgmaz (a[pr €]) /firstgna. (Pr e)
)
)
)
)
)
)

firstgin (a/desc) = firstg,in (a[desc]) /firstgmi, (desc) (20)
)
)
)
)
)
)
)

) () (
firstgmaz (a/pr €) = firstgmin (a[pr €]) /firstgmas (Pr e
firstgmaz (a/f Ol) = firstgqaz (aff Ol]) /firstgnq. (f Ol
first gman (a/f 01) (1) /first gmin (f Ol
firstgmin (/anc) = first gnaz (anc)) /firstgmn (@anc
first gmin (a/anc) = first g ([anc)) /first g (@anc

= firstgmae ([f Ol

firstgnin (a/anc- 0s) = firstg,q. (a[anc- os)) /firstg,., (anc- os (21)
firstgmin (a/anc- 0s) = firstg,., (a[anc- os]) /firstg,qn(anc- os (22)
firstymaz (a/desc- 0s) = firsty,in (a[desc- 0s)) /firsty,.. (desc- os (23)
firstymin(a/desc- 0s) = firsty,;, (a[desc- 0s]) /first g, (desc- os (24)
1aStama (@/Pr €) = 1astamin (A[PT €])/12Stdmas (P € (25)
) = lastgmin (a[pr €]) /1astgmin (Pr €
) = last gimaz ([f O])/1ast gmin (f Ol

last gmin (ce/pr e) = (26)
last gnin (r/f O (27)

10

(28)
(29)
(30)
(31)

last gin (/T Ol) = laStgmin ([f Ol]) /1St gmin (f OI)
last gmaz (ov/anc) = lastgmqz (a]anc]) /1ast .. (anc)
last gnaz (/anc) = last gin (a[anc]) /lastg,q. (anc)
last gnaz (/desc) = last gq. (a[desc])/last gmaq. (desc)

last gnin (a/desc) = lastynqa. (a[desc])/last g, (desc) (32)

last gae (v/anc- 08) = lastg,q. (a[anc- os]) /l1ast g,q. (@nc- 0S) (33)

last gnmae (ov/anc- 0s) = last g, (a[anc- os])/last gnq. (&NC- 0S) (34)

last gmqz (/desc- 0S) = lastgq. (a[desc- 0s])/lastg,q. (desc- 0s) (35)

) (36)

) (37)

) (38)

) (39)

) (40)

last gmin(c/desc- 0S) = last gnq. (a[desc- 0s])/last g, (desc- 0s
firstgmin (a/pr €) = lastgmin (a[pr e]) /firstgmin (Pr e
firstgmin (a/pr e) = lastgma. (a[pr €]) /firstgmin (P
last gmaz (a/F Ol) = firstgn (aff Ol |)/1aStgmaq (f
last s (o/f O) = (aff ol]) (f

re
ol
firstgmaz (aff 0l])/1ast gmax (f Ol

(The proofs of these rules can be found in Appendix A.)

Each application of one of the rules removes a single location step from the argument path. This is
repeated until the path length becomes one. The rules given above do not cover all cases, but are the
ones that can be easily described in terms of nondeterministic finite automata. (We will see in Section 6
how to treat the other cases.)

The rules indicate which transitions are possible (see Figure 3). The states of the automata are
firstgax: firstgmi n. 1astqpri n. and lastyngy. These are denoted by [f|/][dmax|dmi n]. The start
states are f dmax and | dm n. All states are final states. Consequently, the path that occurs as an
argument of first, or last; can be acceptably rewritten if its reverse is accepted by the automata in Fig. 3.

If the path expression is accepted by the automata, we have a simple way to rewrite the extended
path expression such that a first; or last, is applied only to a single location step. This eases code
generation since we only have to supply code fragments for every combination of these two functions,
their possible subscripts dm n and drmmax, and the XPath axes. Together with the code generation of
roots(desc/chi | d/.../chi | d), this is the subject of the next section.

3.3. Examplerewrite

We rewrite the sample path

/desc ::a/anc :: b/desc :: ¢/fol ::d/desc ::e/child: f/child:g.

First, we introduce the roots step function using Eqgn. 6, since the last interesting axis is desc. This
yields

roots(/desc :: a/anc :: b/desc :: ¢/fol ::d)/desc :e/child: f/child:g

The path in roots contains a f ol axis. Hence, we introduce a firstyngx Using Eqn 4:
roots(firstyypx (/desc :: a/anc :: b/desc :: ¢)/ fol ::d)/desc ze/child: f/child:g
The next step is to move firstq gy out of roots using Eqgn. 3:

firstyax (/desc :: a/anc :: b/desc :: ¢)/

roots(f ol ::d)/desc ::e/child: f/child:g

Next, we distribute first over the steps using Eqn. 19 which yields

11

anc
anc—os
pre desc
fol pre desc—os

O desc O

desc—0s

fol

desc

desc—o0s =
pre
O anc O
pre anc—os anc
fol anc-os
desc
desc—os

Figure 3. Automaton for first and last

firstgpi n(/desc :: a/anc :: bldesc :: ¢])/ firstgnq, (desc : c).
Then we apply Egn. 18
firstyj n(/desc :: alanc :: bldesc :: c]])/ firstg,.,(@anc :: bjdesc :: ¢|)/firstgmq. (desc :: c)
Call this expression «. We expand the f ol axis:
roots(anc :: x/f 0s :: x/desc-0s :: d)/desc ::e¢/child: f/child:g
which is equivalent to:
anc :: x/f os :: x/roots(desc- os :: d)/desc ::e/child: f/child:g
A sequence of interleaved first sequences recognized by the nested predicates (as in «) is translated into
a single Unnest Map. Its programs avoid duplicate evaluation of those paths that are contained in the
predicates as well as in the subsequent top-level path. The plan for our example path is shown in Fig. 4.
Note, that this plan is fully pipelined, . can be evaluated very efficiently and returns only a single node,
and no duplicates are produced in any step.

The next section will show how to translate the subscripts of the plan intoi ni t and st ep programs.
Note that the top three Unnest Map operations can be handled together to make the program more
efficient.

4. Code Generation

As we have seen in the last section, two important patterns emerged for which we want to be able to
generate efficient code. One is an Unnest Map with a sequence of interleaved first, (or last;) sequences.
The other is an Unnest Map for a root step operating on a descendant axis followed by several child

12

Unnest Map[$7: $6/chi | d :: g]

|
Unnest Map[$6 : $5/chi | d :: f]

|
Unnest Map[$5 : $4/desc :: ¢

|
Unnest Map[$4 : $3/roots(desc- 0s :: d)]

|
Unnest Map[$3 : $2/f 0s :: *]

|
Unnest Map[$2 : $1/anc :: x|

|
Unnest Map[$1 : $0/q]

Some Input Document[root = $0]

Figure 4. A Fully Pipelined Plan for the Sample Path

axes.

We generate code for the operations open (called i ni t in our case) and next (called st ep in our
case) of an iterator allowing pipelined processing. The program for i ni t initializes an iterator and
hands back the first qualifying node. Each call of next returns the next qualifying node.

We start with the code generation for a sequence of first, (last, steps are handled analogously). Then
we consider the example programs for handling a first,,,;, with a descendant axis. A complete list
of programs can be found in Appendix C.

Input to the code generation is the current context node cn[0] and a sequence of steps (with the
individual steps stored in an array st ep[] and the corresponding predicates in an array pr ed[]).

The steps of a sequence are processed from left to right, so we do not know yet for an intermediate
node, if, after applying the remaining steps, any qualifying nodes exist. That means, that during eval-
uation of a sequence we may have to backtrack. For this reason we use two subroutines in our code
generation algorithm: one to find the first node for a step, called m ni -i ni t and another one to find
subsequent nodes, called m ni - st ep.

The subroutine mi ni -i nit(cn, step, pred) hasas its output the first qualifying node for a
given context node, a first, step, and its predicates. The subroutine
m ni-step(cn.orig, cn_current, step, pred) navigatesto the nextqualifying node given
the original context node from m ni - i ni t, a (qualifying) starting node, a first, step and its predicates
(again excluding predicates concerning later steps).

Let us now present the init part of the algorithm for the code generation of first, steps:

init:
cn[1] = mni-init(cn[0], step[l],
pred[1]);
| abel 1:
if(cn[1l] == NULL) { return NULL; }

13

cn[2] = mni-init(cn[1l], step[?2],
pred[2]);
| abel 2:
if(cn[2] == NULL) {
cn[1l]] = mni-step(cn[0], cn[1],
step[1], pred[1]);

goto | abel 1;
}
cnfn] = mni-init(cn[n-1], step[n],
pred[n]);
| abel n:
if(cn[n] == NULL) {

cn[n-1] = mni-step(cn[n-2], cn[n-1],
step[n-1], pred[n-1]);
goto | abel n-1;

}

return cn[n];

The Unnest Map operator for a sequence of first, steps returns at most one qualifying node. So the
step program is very simple, it always returns NULL, as the lone potential node is already returned by
the init program.

In order to get a feel for the m ni -i ni t and m ni - st ep programs, we present the programs for a
firsty,.., Step with a descendant axis.

For the mi ni -i ni t program we just have to step through the descendants of the current context
node in preorder. The first node qualifying the predicates is returned.

mni-init(cn, first_dm n(desc), pred) {
mni-init: start = cn;
i f(nextpreorder(start) does
not exist) return NULL
next = nextpreorder(start);
| abel : i f(next is not descendant
of start) return NULL
i f(next satisfies pred)
return next;
i f (next preorder(next) does
not exist) return NULL
next = next preorder(next);
goto | abel;

The corresponding step program traverses the subsequent qualifying nodes in preorder.

14

m ni -step(cn_orig, cn_current,
first_dm n(desc), pred) {
mni-step: start = cn_current;
i f(nextpreorder(start) does
not exist) {
return NULL;
}
next = nextpreorder(start);
| abel : i f(next is not descendant
of cn_orig) {
return NULL;
}
i f(next satisfies pred) {
return next;
}
i f (next preorder(next) does
not exist) {
return NULL;

}
next = nextpreorder(next);
goto | abel;

}

Note that the two procedures for the init and step program are very similar. However, since our Unnest Map
operator takes these programs as different parameters, we don’t generalize these programs to a single
one.

5. Evaluation

In this section we present a first round of experiments, which were performed to validate the effec-
tiveness of our technique.

The experimental environment was an Intel Pentium Il with 400 MHz, running Linux 2.4. The tests
used Natix’ query execution engine, the Natix Virtual Machine (NVM), written in C++ and compiled
with optimizing gcc 3.1. As a reference, the same XPath expressions were also evaluated with the Xalan
XSLT processor, also compiled with optimizing gcc, and using a very simple stylesheet which only
selects the nodes reachable by the given XPath expression, doing nothing with them.

We evaluated four different XPath expressions, using the same three XML documents each time,
and starting from the document root node as context node. The documents were of a simple recursive
structure with a fixed fanout on each inner node, with a constant tree height of five. All the nodes carried
the same tag name, and the leaf nodes were empty tags with no text.

The results are shown in Figure 5. The measurements of evaluation times were averaged over a series
of program runs and do not include the overhead caused by program startup. These overhead times are
shown at the bottom of the table. For Xalan, they grow with the document size because the document
must be parsed first, while in Natix it is already stored as a tree structure.

15

Fanout
XPath Method 4 5 6
desc NVM 0.0104 0.0146 0.0654
Xalan 0.0036 0.0112 0.0232
desc/desc NVM DupElim | 0.0520 0.1146 0.3032
NVM Pipe 0.0076 0.0298 0.0868
Xalan 0.0196 0.0600 0.1424
desc/f ol NVM DupElim | 7.9492 53.0264 332.0924
NVM Pipe 0.0192 0.0438 0.1278
Xalan 29752 253396 155.3674
desc/f ol /desc | NVM DupElim | 27.3152 201.6034 1252.0924
NVM Push 8.0452 53.5834 353.9734
NVM Pipe 0.0192 0.0492 0.1332
Xalan 14.2622 130.0896 717.2614
Startup NVM 0.0848 0.0866 0.0866
Startup/Parsing Xalan 0.2278 0.4204 0.8386
| Document Size | 20K 58K 140K |

Figure 5. Experimental results (time in seconds)

The queries are shown in the table as a sequence of axes, using the abbreviations from Sec. 2. The
node test used for each location step is always the same tag name (the one from the document).

The first expression is only shown as a reference. It computes all descendant s of the document
root. No intermediate results are generated. Xalan is faster than a simple NVM Unnest Map because
NVM operates directly on the secondary storage structure while Xalan navigates using main memory
pointers, and the effort for parsing the document in Xalan is not included in the numbers.

The second expression consists of two descendant axes. The three evaluation methods shown
are NVM using a final duplicate elimination operator to eliminate duplicates (NVM DupElim), using a
pipelined plan as explained in sections 3 and 4 (NVM Pipe), and using Xalan. The pipelined execution
outperforms the other evaluation methods by factors up to 2.5.

The third expression combines a descendant with af ol | owi ng axis, resulting in the generation
of a large repeating node sequence from the f ol | owi ng step in the conventional methods (NVM
DupElim and Xalan), which is subject to duplicate elimination. The pipelined version (NVM Pipe) still
exhibits performance figures close to a single tree traversal.

In the last path expression, the third XPath expression was extended by another descendant axis.
We used two approaches without pipelining here, differing in the point of time when the duplicates are
eliminated. We can either use only a final duplicate elimination operator (NVM DupElim), or push
another duplicate elimination into the execution plan after the first two axes have been evaluated (NVM
Push). Pushing a second duplicate elimination is already an improvement, reducing the number of
intermediate nodes considerably. This brings the execution time of the last expression down close to the
execution time of the third expression with a single duplicate elimination. Xalan’s performance figures
indicate that it does not perform an intermediate duplicate elimination (as also pointed out in [11]).
The pipelined execution performance is still in the vicinity of a single tree traversal, making it several

16

thousand times faster than NVM DupElim, NVM Push and Xalan.

Summarizing, the first experimental evaluation of pipelined XPath is very promising. It is our inten-
tion to verify the robustness of our technique against different selectivities of node tests, and against
different classes of document structure.

6. Extensions

Let us reexamine the restrictions mentioned in the introduction. Out of our equivalences, only Eqgns. 4
to 7 pose any problems for occurrences of posi ti on() orl ast (). They do so, if the predicate of
the axis in S that is used as the anchor point contains one of these functions. It is easy to verify that any
other occurrence does not pose any problems.

The other restrictions have to do with the rewriting step functions. The automata in Fig. 3 do
not accept the full XPath language. We now show how additional transitions can be added to rec-
tify this situation. As an example let us consider the par axis. Assume that we want to compute
firstyna. (a/par). Unfortunately, this is neither equal to firsty,,...(a[par |) /firsty....(par) nor equal to
firstg i (a[par |) /firstg,...(par). However, we are able to show that

firstymaz (a/par) € firstgmaz (a[par]) /firstgnq. (par)/desc- os (42)
firstymaz (a/par) € firstg,in(a[par]) /firstgnq.. (par)/desc- os (42)

So, either we computed the correct node by computing firsty,,..(«[par])/firsty...(par) or
firstgmi (a[par |) /firsts,q.. (par), or we have to start over and search for the correct solution underneath
the computed node (i.e., among its descendants). We iterate this procedure until no further qualifying
nodes can be found in the descendants of the current solution. It is relatively easy to adapt the code
generation procedure to handle this case. Our goal is completing the automata to accept the full XPath
language (i.e., all axes). We give rules for all remaining axes in Appendix B, although not all rules will
be as simple as those for the par axis.

The only axis that still poses problems is the ancest or axis. Currently, we do not have an elegant
solution within our framework. Hence, we plan to implement a special algebraic operator that computes
all ancestors for a given set of nodes and concurrently performs duplicate elimination.

7. Conclusion

We presented an approach for the efficient evaluation of XPath expressions by pipelining the individ-
ual location steps. This is not straightforward, as several difficulties have to be overcome. Among these
are duplicate elimination and cutting down massively on the number of nodes visited. We reach our goal
via extensive transformations of the original XPath expression allowing uncomplicated code generation.

In addition to theoretical work, we implemented a prototype of our approach in our native XML
database system Natix. The conducted experiments demonstrate the dominance of our approach in terms
of performance. We were always faster than other methods, typically up to several orders of magnitude.

We are optimistic that the few points remaining open can be settled in a satisfying manner and that
pipelining is the right approach for efficiently processing XPath expressions.

17

Acknowledgment We thank Simone Seeger for her help in preparing the manuscript and the anony-
mous referees for their helpful comments.

References

[1]

2]
[3]
[4]
[5]
[6]
[7]
[8]
9]

[10]
[11]

[12]
[13]

[14]
[15]
[16]
[17]

[18]

S. Al-Khalifa, H. Jagadish, N. Koudas, J. Patel, D. Srivastava, and Y. Wu. Structural joins: A primitive for
efficient XML query pattern matching. In Proc. IEEE Conference on Data Engineering, pages 141-152,
2002.

M. Altinel and M. Franklin. Efficient filtering of XML documents for selective dissemination of information.
In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 53-64, 2000.

S. Amer-Yahia, S. Cho, L. Lakshmanan, and D. Srivastava. Efficient algorithms for minimizing tree pattern
queries. In Proc. of the ACM SSGMOD Conf. on Management of Data, pages 497-508, 2001.

A. Berglund, S. Boag, D. Chamberlin, M. Fernandez, M. Kay, J. Robie, and J. Siméon. XML path language
(XPath) version 2.0. Technical report, World Wide Web Consortium (W3C) Working Draft, 2002.

F. Bry, D. Olteanu, H. Meuss, and T. Furche. Symmetry in XPath. Technical Report PMS-FB-2001-16,
LMU, Miinchen, 2001.

C. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Efficient filtering of XML documents with XPath. In
Proc. IEEE Conference on Data Engineering, pages 235-244, 2002.

J. Clark and S. DeRose. XML path language (XPath) version 1.0. Technical report, World Wide Web
Consortium (W3C) Recommendation, 1999.

C. Clarke, G. Cormack, and F. Burkowski. An algebra for structured text search and a framework for its
implementation. The Computer Journal, 38(1):43-56, 1995.

T. Fiebig and G. Moerkotte. Evaluating Queries on Structure with eXtended Access Support Relations. In
D. Suciu and G. Vossen, editors, The World Wide Web and Databases, LNCS 1997, pages 125-136. Springer,
2001.

T. Fiebig and G. Moerkotte. Algebraic XML construction and its optimization in Natix. World Wide Web
Journal, 4(3):167-187, 2002.

G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing XPath queries. In Proc. Int. Conf.
on Very Large Data Bases (VLDB), pages 95-106, 2002.

G. Graefe. Query evaluation techniques for large databases. ACM Computing Surveys, 25(2), June 1993.

T. Grust. Accelerating XPath location steps. In Proc. of the ACM SGMOD Conf. on Management of Data,
pages 109-120, 2002.

C.-C. Kanne and G. Moerkotte. Efficient storage of XML data. In Proc. IEEE Conference on Data Engi-
neering, page 198, 2000.

A. Kwong and M. Gertz. Schema-based optimization of XPath expressions. Technical report, UC Davis,
2002.

D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: Looking forward. In Workshop on XML-Based Data
Management (XMLDM) in conjunction with EDBT, 2002.

P. Ramanan. Efficient algorithms for minimizing tree pattern queries. In Proc. of the ACM SGMOD Conf.
on Management of Data, pages 299-309, 2002.

I. Tatarinov, S. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita, and C. Zhang. Storing and querying
ordered XML using a relational database system. In Proc. of the ACM SGMOD Conf. on Management of
Data, pages 204-215, 2002.

18

A Proofsof Step Rewrite Rules

In this section we present the proofs for the rewrite rules from Section 3.2.

Proof of Equation (13)

Let z = firsty .. (/pre). Then surely, z = firsty,..(«[pre]/pre). Also, if we only look at the
predecessors with the minimal dmax value of each node, this will not hurt us either:

x = firstg e (a[pr el /firstyn.. (pre)).

y = firstgma. (a[pr e]) /firstg,q. (pre)
We now have to prove z = y:

Let us assume that = # y.

Let X = a[pr e]/firstg,q..(pre).

As firsty,q... (a[pr e]) € alpr e], obviously y € X. We also know that = = first 4. (X).
As x # y and x has smallest dmax in X, we have x.dmazx < y.dmazx (i)

With z, = firsty,q. (a[pr €]), y = 2, /firStyma. (pre).

y Is a predecessor of z,, S0 y.dmax < z,.dmin (ii)

Because of (i) and (ii), we also know z.dmaz < z,.dmin, S0 z € z,/pre.

Since y is the predecessor of z, with the smallest dmaz value, we have x.dmaz > y.dmaz.
This contradicts (i). So x = .

Proof of Equation (14)
x = firstg e (a[pr €] /firsty.. (pre)).

y = firstgi (a[pr e]) /firstg,q.. (pre)
We now have to prove z = y:

Let us assume that = # y.

Let X = a[pr e]/firstg,..(pre).

Again, y € X and = = firstg,,q. (X).

As x # y, we have z.dmax < y.dmazx (i)

With z,, = firstg,.,(a[pr e]), y = 2z, /firStymq.. (pre).

y Is a predecessor of z,, S0 y.dmax < z,.dmin (ii)

Because of (i) and (ii), we also know z.dmaz < z,.dmin, SO x € z,/pre.

Since y is the predecessor of z, with the smallest dmaz value, we have x.dmaz > y.dmaz.
This contradicts (i). So x = y.

Proof of Equation (15)
x = firstg e (aff Ol | /firsty..(f ol)).

y = firstgaz (aff ol]) /firstg,q.. (f ol)
We now have to prove = = y:

Let us assume that = # y.

Let X = aff ol | /firstg,..(f ol).

S0,y € X and x = firstg,,q.(X).

As x # y, we have z.dmax < y.dmazx (i)

19

Let z, be any node in «ff ol |, such that z = z, /firstg,...(f ol).

Let z, = firstyq, (a[f Ol]), i.e., y = 2, /firstgq. (f ol).

Because z, has smallest dmaz in aff ol |, we know

zy.dmaz < zg.dmazx Vz, (ii)

Asz € z,/f ol , z,.dmazx < x.dmin (iii)

From (ii) and (iii) we can deduce z,.dmaz < x.dmin, S0 z € z,/f ol .
However, y has smallest dmax in z,/(f ol), so y.dmax < z.dmaz.
This contradicts (i). So x = y.

Proof of Equation (16)

x = firstgin (aff 0l] /firsty,:, (f ol))
y = firstgqz (aff ol) /firstg,.(f ol)
We now have to prove z = y:

Let us assume that = # y.

Let X = aff ol | /firstg,...(f ol).

So, y € X and x = firstg,, (X).

As x # y, we have z.dmin < y.dmin (i)

Let z, be any node in «ff ol |, such that z = z, /firstg,,.,(f ol).
Let z, = firsty,q. (a[f ol]), i.e., y = 2, /firstgm, (f ol).

Because z, has smallest dmaz in «ff ol], we know

zy.dmaz < zz.dmaz Vz, (ii)

Aszx € z,/fol |, z,.dmazx < x.dmin (iii)

From (ii) and (iii) we can deduce z,.dmaz < x.dmin, S0 z € z,/f ol .
However, y has smallest dmin in z,/(f ol), so y.dmin < z.dmin.
This contradicts (i). So x = .

Proof of Equation (17)

x = firstg,i, (a[anc] /firsty,i, (anc))
y = firstymq. (a[anc)) /firstg,»(anc)
We now have to prove z = y:

Let us assume that = # y.

Let X = afanc]/firsty,.,(anc).

So, y € X and x = firstg,, (X).

As x # y, we have z.dmin < y.dmin (i)

Let z, be any node in a[anc], such that 2 = z, /firsty,,.,(anc).
Let z, = firsty,q. (a[anc)), i.e., y = z, /firstgm,(anc).
Because z, has smallest dmaz in ajanc], we know

zy.dmax < zg.dmax Yz, (ii)

Because z € z,/anc and y € z,/anc, we have

z.dmin < z,.dmin < z;.dmax < r.dmax and y.dmin < z,.dmin < z,.dmax < y.dmax (iii)
Putting (i), (i), and (iii) together we get:

20

r.dmin < zpdmin < zZpdmaxr < z.dmazx
A\ VI
y.dmin < zydmin < z,dmar < y.dmaz
It follows that = € z,/anc, since x.dmin < z,.dmin < z,.dmaz < z.dmax
However, y has smallest dmin in z,/(anc), so y.dmin < z.dmin.
This contradicts (i). So x = .

Proof of Equation (18)

x = firstg,i, (a[anc] /firsty,i, (anc))
y = firstg, (a[anc)) /firstg,»(anc)
We now have to prove z = y:

Let us assume that = # y.
Let X = afanc]/firstg,:,(anc).
So, y € X and x = firstg,, (X).
As x # y, we have z.dmin < y.dmin (i)
Let z, be any node in a[anc], such that 2 = z, /firsty,,..,(anc).
Let z, = firsty..n(a[anc)), i.e., y = z, /firstgm:, (anc).
Because z, has smallest dmin in a[anc], we know
zy.dmin < z;.dmin Yz, (i)
Because x € z,/anc and y € z,/anc, we have
z.dmin < z,.dmin < z;.dmax < r.dmax and y.dmin < z,.dmin < z,.dmax < y.dmax (iii)
Putting (i), (i), and (iii) together we get:

r.dmin < zp.dmin < zi,dmar < z.dmaz

A VI

y.dmin < zydmin < z,dmar < y.dmax
It follows that « € z,/anc, since z.dmin < z,.dmin < z.dmax
However, y has smallest dmin in z,/(anc), so y.dmin < z.dmin.
This contradicts (i). So x = y.

Proof of Equation (19)

x = firstyna. (a[desc] /firsty,.. (desc))
y = firsty,., (a[desc]) /firsty,..(desc)
We now have to prove = = y:

Let us assume that = # y.

Let X = a[desc]/firsty,..(desc).

S0,y € X and x = firstg,,..(X).

As x # y, we have z.dmax < y.dmazx (i)

Let z, be any node in a[desc], such that z = z, /firsty,..(desc).

Let z, = firsty,.,(a[desc)), i.e., y = z,/firstg,., (desc).

Because z, has smallest dmin in a[desc], we know

zy.dmin < z.dmin Vz, (ii)

Because z € z,/desc and y € z,/desc, we have

Zg.dmin < x.dmin < z.dmax < zy.dmaz and z,.dmin < y.dmin < y.dmax < z,.dmaz (iii)

21

Putting (i), (i), and (iii) together we get:
Zg.dmin < x.dmin < x.dmaxr < z;.dmax
Vi AN
zy.dmin < y.dmin < y.dmaer < z,dmax
It follows that = € z,/desc, since z,.dmin < z.dmin < z.dmazr < z,.dmax
However, y has smallest dmax in z,/(desc), so y.dmaxr < z.dmaz.
This contradicts (i). So x = y.

Proof of Equation (20)

x = firsty,i, (a[desc] /firsty,.,(desc))
y = firsty,., (a[desc]) /firsty,:,(desc)
We now have to prove z = y:

Let us assume that = # y.
Let X = a[desc]/firsty,i,(desc).
So, y € X and x = firstg,, (X).
As x # y, we have z.dmin < y.dmin (i)
Let z, be any node in a[desc], such that z = z, /first,;,(desc).
Let z, = firsty..n(a[desc)), i.e., y = z,/firstym:,(desc).
Because z, has smallest dmin in a[desc], we know
zy.dmin < z;.dmin Yz, (i)
Because z € z,/desc and y € z,/desc, we have
Zg.dmin < x.dmin < z.dmax < zy.dmax and z,.dmin < y.dmin < y.dmax < z,.dmaz (iii)
Putting (i), (ii), and (iii) together we get:

Zg.dmin < z.dmin < x.dmaxr < zz.dmax

VI A\

zy.dmin < y.dmin < y.dmar < z,dmaz
It follows that = € z,/desc, since z,.dmin < z.dmin < z,.dmax
However, y has smallest dmin in z,/(desc), so y.dmin < z.dmin.
This contradicts (i). So x = .

Proof of Equation (21)

x = firstg,in (a[anc- os]/firstg,,.,(anc- 0s))
y = firstymq. (afanc- os]) /firsty,.,(anc- 0s)
We now have to prove = = y:

Let us assume that = # y.

Let X = a[anc- os]/firsty.,(anc- 0s).

S0,y € X and x = firstg,,;, (X).

As x # y, we have z.dmin < y.dmin (i)

Let z, be any node in a[anc- os], such that x = z, /firsty,.;,(anc- 0s).
Let z, = firstyq, (a[anc- 0s)), i.e., y = z, /firsty,:,(anc- os).
Because z, has smallest dmaz in ajanc- os], we know

zy.dmaz < zz.dmazx Vz, (ii)

Because = € z,/anc- os and y € z,/anc- 0s, we have

22

z.dmin < z;.dmin < zy.dmax < x.dmaz and y.dmin < z,.dmin < z,.dmazx < y.dmaz (iii)
Putting (i), (i), and (iii) together we get:

z.dmin < zpdmin < zpdmar < z.dmax

A\ VI

ydmin < z,dmin < z,dmaer < y.dmaz
It follows that = € z,/anc- os, since z.dmin < z,.dmin < z,.dmax < x.dmaz
However, y has smallest dmin in z,/(anc- 0s), so y.dmin < z.dmin.
This contradicts (i). So x = .

Proof of Equation (22)

x = firsty,in (a[anc- os]/firsty,.,(anc- 0s))
y = firsty, (a[anc- os]) /firsty,i,(anc- 0s)
We now have to prove z = y:

Let us assume that = # y.
Let X = a[anc- os]/firsty,.,(anc- 0s).
So, y € X and x = firstg,, (X).
As x # y, we have z.dmin < y.dmin (i)
Let z, be any node in a[anc- os], such that x = z, /firsty,.;,(anc- 0s).
Let z, = firsty,.n(a[anc- 0s]), i.e., y = z, /firsty,:,(anc- os).
Because z, has smallest dmin in a[anc- os], we know
zy.dmin < z,.dmin Yz, (i)
Because x € z,/anc-o0s and y € z,/anc- os, we have
z.dmin < z;.dmin < z;.dmazr < z.dmaz and y.dmin < z,.dmin < z,.dmaz < y.dmaz (iii)
Putting (i), (i), and (iii) together we get:

r.dmin < zgdmin < zpdmar < x.dmax

A Y

y.dmin < zydmin < zydmar < y.dmax
It follows that » € z,/anc- 0s, since z.dmin < z,.dmin < x.dmazx
However, y has smallest dmin in z,/(anc- 0s), so y.dmin < z.dmin.
This contradicts (i). So x = y.

Proof of Equation (23)

x = firstyna. (a[desc- 0s]/firsty,..(desc- 0s))
y = firsty,.,(a[desc- 0s]) /firsty,..(desc- 0s)
We now have to prove = = y:

Let us assume that = £ y.

Let X = a[desc- os]/firsty,..(desc- 0s).

S0,y € X and x = firstg,,..(X).

As x # y, we have z.dmax < y.dmazx (i)

Let z, be any node in a[desc- o0s], such that x = z, /firsty,,..(desc- 0s).
Let z, = firsty,.»,(a[desc- 0s]), i.e., y = z, /firsty,.,(desc- 0s).
Because z, has smallest dmin in a[desc- 0s], we know

zy.dmin < z.dmin Vz, (ii)

23

Because z € z,/desc-o0s and y € z,/desc- 0s, we have
Zg.dmin < x.dmin < z.dmazr < z,.dmaz and z,.dmin < y.dmin < y.dmazr < z,.dmax (iii)
Putting (i), (i), and (iii) together we get:

Ze.dmin < xz.dmin < x.dmaxr < zp.dmazx

VI A\

zy.dmin < ydmin < y.dmaer < z,dmaz
It follows that = € z,/desc- 0s, since z,.dmin < z.dmin < z.dmaz < z,.dmaz
However, y has smallest dmax in z,/(desc- 0S), S0 y.dmazr < x.dmaz.
This contradicts (i). So x = .

Proof of Equation (24)

x = firsty,in (a[desc- os]/firsty,:,(desc- 0s))
y = firsty,(a[desc- os]) /firsty,.,(desc- os)
We now have to prove z = y:

Let us assume that = # y.
Let X = a[desc- os]/firsty,;,(desc- 0s).
So, y € X and x = firstg,, (X).
As x # y, we have z.dmin < y.dmin (i)
Let z, be any node in a[desc- 0s], such that x = z, /firsty,,;,(desc- 0s).
Let z, = firsty,.»,(a[desc- 0s]), i.e., y = z,/firsty,:,(desc- 0s).
Because z, has smallest dmin in a[desc- os], we know
zy.dmin < z;.dmin Yz, (i)
Because z € z,/desc-os and y € z,/desc- 0s, we have
Zg.dmin < z.dmin < z.dmazr < zy.dmaz and z,.dmin < y.dmin < y.dmazx < z,.dmaz (iii)
Putting (i), (i), and (iii) together we get:

zg.dmin < z.dmin < xz.dmaxr < zp.dmazx

VI A

zy.dmin < ydmin < y.dmaer < z,.dmav
It follows that = € z,/desc- 0s, since z,.dmin < z.dmin < z,.dmax
However, y has smallest dmin in z,/(desc- 0s), S0 y.dmin < z.dmin.
This contradicts (i). So x = y.

Proof of Equation (25)

x = last ez (a[pr e]/1astgmq. (P €)).

y = lastgmm (a[pr €])/1astymq. (Pr e)
We now have to prove = = y:

Let us assume that = # y.

Let X = a[pr e]/lastyn..(pre).

S0,y € X and x = last g4 (X).

As x # y, we have z.dmax > y.dmazx (i)

Let z, be any node in a[pr e], such that z = z, /1aSty,...(pr e).
Let z, = lastyi,(a[pre]), i.e., y = z,/1aStgmq. (Pr €).
Because z, has largest dmin in a[pr e], we know

24

Zy.dmin > z,.dmin Yz, (i)

Aszx € z,/pre, z,.dmin > z.dmazx (iii)

From (ii) and (iii) we can deduce z,.dmin > z.dmaz, SO z € z,/pr e.
However, y has largest dmax in z,/(pr e), so y.dmaz > z.dmaz.
This contradicts (i). So x = .

Proof of Equation (26)
x = last gin (a[pr e]/1ast g, (Pr e)).

y = lastgin (a[pr €])/1ast g, (pre)
We now have to prove z = y:

Let us assume that = £ y.

Let X = a[pr e]/lastgi..(pr e).

S0,y € X and x = last i (X).

As x # y, we have z.dmin > y.dmin (i)

Let z, be any node in o[pr €], such that © = z, /lasty,.i.(pr €).
Let z, = lastyi,(a[pr e]), i.e., y = z,/laSty,i (Pr e).

Because z, has largest dmin in a[pr e], we know

Zy.dmin > z;.dmin Yz, (i)

Asz € z,/pre, z,.dmin > z.dmax (iii)

From (ii) and (iii) we can deduce z,.dmin > z.dmax, SO x € z,/pr €.
However, y has largest dmin in z,/(pr €), S0 y.dmin > x.dmin.
This contradicts (i). So x = y.

Proof of Equation (27)
x = last gpin ([f Ol]/18St g (f O1).

y = lastgmae (aff Ol |)/1ast g, (f Ol)
We now have to prove = = y:

Let us assume that = # y.

Let X = aff ol |/lastg.q,(f ol).

S0,y € X and x = lasty,in (X).

As x # y, we have z.dmin > y.dmin (i)

With z,, = laStgq. (aff ol]), y = 2z, /&Sty (f ol).

y is a follower of z,, S0 y.dmin > z,.dmax (ii)

Because of (i) and (ii), we also know z.dmin > z,.dmaz, S0 x € 2,/ fol.

Since y is the follower of z, with the largest dmin value, we have y.dmin > x.dmin.
This contradicts (i). So x = .

Proof of Equation (28)
x = last gin ([f Ol]/18St g (f O1).

y = lastgin (aff Ol])/laSt g, (f Ol)
We now have to prove = = y:

Let us assume that = # y.

25

Let X = «[f ol |/laStgm,(f ol).

So, y € X and x = last i (X).

As x # y, we have z.dmin > y.dmin (i)

With z, = laStgi, (a[f ol]), y = z,/1aSt g (f Ol).

y is a follower of z,, s0 y.dmin > z,.dmax (ii)

Because of (i) and (ii), we also know z.dmin > z,.dmaz, S0 z € z,/ fol.

Since y is the follower of z, with the largest dmin value, we have y.dmin > z.dmin.
This contradicts (i). So x = y.

Proof of Equation (29)

x = last gqe (a[anc]/lastg,q.. (anc))
y = lastgnae (a[anc])/last g (anc)
We now have to prove z = y:

Let us assume that = # y.
Let X = afanc]/lasty..(anc).
S0,y € X and = = last 4. (X).
As x # y, we have z.dmax > y.dmazx (i)
Let z, be any node in a[anc], such that z = z, /lasty,...(anc).
Let z, = lasty,q..(a[anc)), i.e., y = z,/lasty,q..(anc).
Because z, has largest dmax in a[anc], we know
zy.dmazx > zy.dmazx Vz, (ii)
Because x € z,/anc and y € z,/anc, we have
x.dmin < z,.dmin < z;.dmaz < z.dmaz and y.dmin < z,.dmin < z,.dmaz < y.dmaz (iii)
Putting (i), (i), and (iii) together we get:

r.dmin < zp.dmin < zi,dmar < z.dmaz

N V

y.dmin < zydmin < z,dmar < y.dmaz
It follows that = € z,/anc, since z.dmin < z,.dmax < x.dmazx
However, y has largest dmaz in z,/(anc), so y.dmaz > z.dmaz.
This contradicts (i). So x = .

Proof of Equation (30)

x = last gmqe ([anc]/lastg,q...(anc))
y = lastgin (a[anc])/lasty,q...(anc)
We now have to prove z = y:

Let us assume that = £ y.

Let X = afanc]/lastg,...(anc).

S0,y € X and x = last g4 (X).

As x # y, we have z.dmax > y.dmazx (i)

Let z, be any node in a[anc], such that 2 = z, /lasty,...(anc).
Let z, = lasty.,(a[anc)), i.e., y = z,/lasty,q..(anc).
Because z, has largest dmin in afanc], we know

26

Zy.dmin > z,.dmin Yz, (i)
Because z € z,/anc and y € z,/anc, we have
z.dmin < z,.dmin < z;.dmazr < z.dmaz and y.dmin < z,.dmin < z,.dmaz < y.dmaz (iii)
Putting (i), (ii), and (iii) together we get:

r.dmin < zp.dmin < zi,dmar < z.dmaz

Al V

y.dmin < zydmin < zydmar < y.dmaz
It follows that = € z,/anc, since z.dmin < z,.dmin < z,.dmaxr < x.dmaz
However, y has largest dmaz in z,/(anc), so y.dmaz > x.dmaz.
This contradicts (i). So x = y.

Proof of Equation (31)

x = last gnqq ([desc]/lasty,.. (desc))
y = lastgq. (a[desc])/lasty,.. (desc)
We now have to prove = = y:

Let us assume that = £ y.
Let X = a[desc]/last ... (desc).
S0,y € X and x = last g4 (X).
As x # y, we have z.dmax > y.dmazx (i)
Let z, be any node in o[desc], such that z = z, /lasty,,..(desc).
Let z, = lasty,q..(a[desc)), i.e., y = z,/laSty,q.. (desc).
Because z, has largest dmax in a[desc], we know
zy.dmazx > zz.dmazx Vz, (ii)
Because z € z,/desc and y € z,/desc, we have
Zg.dmin < z.dmin < z.dmaz < z,.dmax and z,.dmin < y.dmin < y.dmaz < z,.dmaz (iii)
Putting (i), (i), and (iii) together we get:

Zg.dmin < x.dmin < x.dmaxr < z;.dmax

vV A\

zy.dmin < y.dmin < y.dmaer < z,dmaz
It follows that = € z,/desc, since z,.dmin < z.dmaz < z,.dmax
However, y has the largest dmax in z,/(desc), so y.dmaz > x.dmaz.
This contradicts (i). So x = .

Proof of Equation (32)

x = lastgin (a]desc]/lasty,., (desc))
y = lastgq. (a[desc])/lasty,.,(desc)
We now have to prove z = y:

Let us assume that = # y.

Let X = a[desc]/lasty;,(desc).

S0,y € X and x = last g, (X).

As x # y, we have z.dmin > y.dmin (i)

Let z, be any node in o[desc], such that z = 2, /lasty,.;,(desc).
Let z, = lasty..(a[desc)), i.e., y = z,/laSty,i,(desc).

27

Because z, has largest dmax in a[desc], we know
zy.dmax > zz.dmax Yz, (ii)
Because z € z,/desc and y € z,/desc, we have
Zg.dmin < z.dmin < z.dmazr < z,.dmax and z,.dmin < y.dmin < y.dmaz < z,.dmaz (iii)
Putting (i), (ii), and (iii) together we get:

Zg.dmin < z.dmin < x.dmaxr < zi.dmax

V Al

zy.dmin < y.dmin < y.dmar < z,.dmaz
It follows that = € z,/desc, since z,.dmin < z.dmin < z.dmax < z,.dmaz
However, y has the largest dmin in z,/(desc), so y.dmin > x.dmin.
This contradicts (i). So x = y.

Proof of Equation (33)

x = last gnqe ([@anc- os]/lasty,.. (&anc- 0s))
y = lastga: (@[anc- 0s))/lasty,q..(anc- 0s)
We now have to prove = = y:

Let us assume that = # y.
Let X = a[anc- os]/lasty,..(anc- 0s).
S0,y € X and x = last g4 (X).
As x # y, we have z.dmax > y.dmazx (i)
Let z, be any node in a[anc- os], such that x = z, /lastg,.. (@anc- os).
Let z, = lasty,q..(a[anc- 0s)), i.e., y = z,/lasty,q..(anc- os).
Because z, has largest dmazx in a[anc- os], we know
zy.dmazx > zy.dmazx Vz, (ii)
Because = € z,/anc- os and y € z,/anc- 0s, we have
z.dmin < z;.dmin < zy.dmax < x.dmaz and y.dmin < z,.dmin < z,.dmazx < y.dmaz (iii)
Putting (i), (i), and (iii) together we get:

z.dmin < zpdmin < zpdmar < z.dmax

N V

ydmin < z,dmin < zy,dmaer < y.dmax
It follows that = € z,/anc- 0s, since z.dmin < z,.dmax < z.dmax
However, y has largest dmaz in z,/(anc- 0s), so y.dmaz > z.dmaz.
This contradicts (i). So x = .

Proof of Equation (34)

x = last e (a[@anc- os]/lasty,..(anc- 0s))
y = lastg,in (a[anc- 0s])/lasty,q..(anc- 0s)
We now have to prove z = y:

Let us assume that = # y.

Let X = a[anc- os]/lasty,..(anc- os).

S0,y € X and = = last 4. (X).

As x # y, we have z.dmax > y.dmazx (i)

Let z, be any node in a[anc- o0s], such that x = z, /lasty,..(@nc- o0s).

28

Let z, = lasty,i,(a[anc- 0s)), i.e., y = z,/lasty,q.. (anc- os).
Because z, has largest dmin in ajanc- os], we know
Zy.dmin > z,.dmin Yz, (i)
Because = € z,/anc- os and y € z,/anc- 0s, we have
z.dmin < z,.dmin < z;.dmazr < z.dmaz and y.dmin < z,.dmin < z,.dmaz < y.dmaz (iii)
Putting (i), (i), and (iii) together we get:

z.dmin < zpdmin < zpdmar < z.dmax

N V

y.dmin < zydmin < zydmar < y.dmax
It follows that = € z,/anc- os, since z.dmin < z,.dmin < z,.dmax < x.dmaz
However, y has largest dmaz in z,/(anc- 0s), so y.dmaz > z.dmax.
This contradicts (i). So x = y.

Proof of Equation (35)

x = last e (a[desc- 0s]/lasty,..(desc- 0s))
y = lastga. (a[desc- 0s])/lasty,q.. (desc- 0s)
We now have to prove z = y:

Let us assume that = # y.
Let X = a[desc- 0s]/lasty,..(desc- 0s).
S0,y € X and = = last 4. (X).
As x # y, we have z.dmax > y.dmazx (i)
Let z, be any node in o[desc- 0s], such that x = z, /lasts,..(desc- 0s).
Let z, = lasty,..(a[desc- 0s]), i.e., y = z,/lasty,q.. (desc- 0s).
Because z, has largest dmazx in a[desc- 0s], we know
zy.dmazx > zz.dmazx Vz, (ii)
Because z € z,/desc-o0s and y € z,/desc- 0s, we have
Zg.dmin < x.dmin < z.dmazr < z,.dmaz and z,.dmin < y.dmin < y.dmazr < z,.dmax (iii)
Putting (i), (i), and (iii) together we get:

Ze.dmin < xz.dmin < x.dmaxr < zz.dmazx

V N

zy.dmin < ydmin < y.dmaer < z,.dmav
It follows that = € z,/desc- 0s, since z,.dmin < z.dmazr < z,.dmax
However, y has the largest dmax in z,/(desc- 0s), so y.dmaz > z.dmax.
This contradicts (i). So x = .

Proof of Equation (36)

x = last g, (a]desc- os]/lasty,,(desc- 0s))
y = lastgq. (a[desc- 0s])/lasty,q,(desc- 0s)
We now have to prove = = y:

Let us assume that = # y.

Let X = a[desc- os]/lasty,.,(desc- 0s).
S0,y € X and x = lasty,in (X).

As x # y, we have z.dmin > y.dmin (i)

29

Let z, be any node in a[desc- o0s], such that x = z, /lastg,,.,(desc- 0s).
Let z, = lasty,..(a[desc- 0s)), i.e., y = z,/lasty,.,(desc- 0s).
Because z, has largest dmax in a[desc- 0s], we know
zy.dmazx > zz.dmazx Vz, (ii)
Because z € z,/desc-os and y € z,/desc- 0s, we have
Zg.dmin < x.dmin < z.dmazr < z,.dmaz and z,.dmin < y.dmin < y.dmaz < z,.dmax (iii)
Putting (i), (ii), and (iii) together we get:

zz.dmin < z.dmin < xz.dmaxr < zp.dmazx

V Al

zy.dmin < ydmin < y.dmaer < z,dmaz
It follows that = € z,/desc- 0s, since z,.dmin < z.dmin < z.dmaz < z,.dmaz
However, y has the largest dmin in z,/(desc- 0s), so y.dmin > x.dmin.
This contradicts (i). So x = .

Proof of Equation (37)

x = firstynin (a[pr e] /firstgnin (pre)).
y = lastgim (a[pr €]) /firstg,...(pre)
We now have to prove z = y:

Let us assume that = # y.
Let X = a[pr e]/firstg,..(pre).
So, y € X and x = firstg,, (X).
As x # y, we have z.dmin < y.dmin (i)
Let z, be any node in o[pr €], such that 2 = z, /firstg,...(pr).
Let z, = lasty.i.(a[pr €]), i.e., y = z,/firstg (pre).
Because z, has largest dmin in a[pr e], we know
Zy.dmin > z,.dmin Yz, (i)
Because x € z,/preandy € z,/pr e, we have
z.dmin < z.dmazr < z,.dmin < z;.dmaz and y.dmin < y.dmaz < z,.dmin < z,.dmaz (iii)
Putting (i), (ii), and (iii) together we get:

r.dmin < xz.dmaxr < zZgdmin < zp.dmaz

AN N

y.dmin < y.dmar < zydmin < z,.dmax
It follows that = € z,/pr e, since z.dmax < z,.dmin.
Since y is the predecessor of z, with the smallest dmin value, we have z.dmin > y.dmin.
This contradicts (i). So x = y.

Proof of Equation (38)

x = firstynin (a[pr e] /firstg, (pre)).
y = 188t ynas (@[T €]) /firStyuin(pr €)
We now have to prove = = y:

Let us assume that = # y.
Let X = a[pr e]/firstg...(pr e).
S0, y € X and x = firstg,,;, (X).

30

As x # y, we have z.dmin < y.dmin (i)
Let z, be any node in o[pr e], such that z = z, /firstg,.. (pr e).
Let z, = laStyq. (a[pr e)), i.e., y = z,/firstg, (pre).
Because z, has largest dmax in a[pr e], we know
zy.dmazx > zy.dmazx Vz, (ii)
Because x € z,/preandy € z,/pr e, we have
z.dmin < z.dmax < z;.dmin < z;.dmaz and y.dmin < y.dmax < z,.dmin < z,.dmaz (iii)
Putting (i), (i), and (iii) together we get:

r.dmin < z.dmax < zZgdmin < zg,.dmazx

AN N

y.dmin < ydmaer < z,dmin < z,dmaz
It follows that x.dmin < z,.dmin and x.dmax < z,.dmaz.
Additionally, z.dmax < z,.dmin, because x.dmax > z,.dmin results in a malformed XML document.
Therefore, z € z,/pr e.
Since y is the predecessor of z, with the smallest dmin value, we have z.dmin > y.dmin.
This contradicts (i). So x = y.

Proof of Equation (39)
@ = last gqz (ff Ol |/18Stga. (f O1).

y = firstgi (aff ol])/lastg,q. (f ol)
We now have to prove z = y:

Let us assume that = # y.
Let X = aff ol |/lasty..(f ol).
S0,y € X and = = last g4 (X).
As x # y, we have z.dmax > y.dmazx (i)
Let z, be any node in «ff ol |, such that z = z, /laSt ... (f ol).
Let z, = firstg,in(a[f Ol]), i.e., y = 2, /laStgma. (f OI).
Because z, has smallest dmin in off ol |, we know
zy.dmin < z,.dmin Vz, (ii)
Because x € z,/f ol andy € z,/f ol , we have
Zg.dmin < zz.dmaz < z.dmin < z.dmax and z,.dmin < z,.dmax < y.dmin < y.dmaz (iii)
Putting (i), (i), and (iii) together we get:

Zg.dmin < zp.dmar < z.dmin < x.dmax

VI V

zy.dmin < zy,dmar < y.dmin < y.dmazx
It follows that x.dmax > z,.dmaz and z.dmin > z,.dmin.
Additionally, z.dmin > z,.dmazx, because x.dmin < z,.dmax results in a malformed XML document.
Therefore, z € z,/f ol .
However, y has the largest dmax in z,/f ol , s0 y.dmax > z.dmaz.
This contradicts (i). So x = .

Proof of Equation (40)
x = last gqz (ff Ol |/18Stga. (f O1).

31

y = firstgmq. (aff ol])/lastg,q. (f ol)
We now have to prove z = y:

Let us assume that = # y.
Let X = «[f ol |/laStgmq.(f Ol).
S0,y € X and xz = last 4. (X).
As x # y, we have z.dmax > y.dmazx (i)
Let z, be any node in «ff ol |, such that 2 = z, /last ... (f ol).
Let z, = firstya. (a[f Ol]), i.e., y = 2, /18Stgma (f OI).
Because z, has smallest dmaz in aff ol |, we know
zy.dmax < zz.dmax Yz, (ii)
Because x € z,/f ol andy € z,/f ol , we have
Zg.dmin < z;.dmaxr < z.dmin < x.dmazx and z,.dmin < z,.dmaz < y.dmin < y.dmaz (iii)
Putting (i), (i), and (iii) together we get:

Zg.dmin < zp.dmar < z.dmin < x.dmax

Vi vV

zy.dmin < zy,dmar < y.dmin < y.dmazx
It follows that = € z,/f ol , since x.dmin > z,.dmax. However, y has the largest dmaz in z, /f ol , so
y.dmax > z.dmaz.
This contradicts (i). So x = y.

B Proofsof Extensions

In this section we present the proofs for the extensions from Section 6. We start with the par axis
and then treat the remaining axes.

B.1 Parent Axis

B.1.1 firstyax

Proof of Equation (41)
x = firstg e (a[par | /firsty.. (par))

y = firstymq. (a[par]) /firstg,.. (par)
We now have to prove x = y or z € y/desc:

Let us assume that = # y and = ¢ y/desc.

Let X = afpar |/firstg,..(par).

S0,y € X and x = firstg,a. (X).

As x # y, we have z.dmax < y.dmazx (i)

Let z, be any node in o[par |, such that 2 = z, /firsty,...(par).
Let z, = firsty,q. (a[par)), i.e., y = z, /firstgmaqz (par).
Because z, has smallest dmaz in a[par |, we know

zy.dmax < zz.dmax Yz, (ii)

Because x € z,/par and y € z,/par , we have

z.dmin < z,.dmin < z;.dmax < r.dmax and y.dmin < z,.dmin < z,.dmax < y.dmax (i)
Putting (i), (ii), and (iii) together we get:

32

r.dmin < zpdmin < zZpdmaxr < z.dmazx
VI A
y.dmin < zydmin < z,dmar < y.dmaz
It follows that « € y/desc, since y.dmin < z.dmax < y.dmax
This contradicts the very first assumption. So z = y or z € y/desc.

Proof of Equation (42)
x = firstg e (a[par | /firsty. (par))

y = firstgi (a[par]) /firsty,.. (par)
We now have to prove x = y or z € y/desc:

Let us assume that = # y and = ¢ y/desc.
Let X = a[par |/firstg,..(par).
S0,y € X and & = firsty4. (X).
As x # y, we have z.dmax < y.dmazx (i)
Let z, be any node in o[par |, such that 2 = z, /firsty,...(par).
Let z, = firsty.n(a]par]), i.e., y = z, /firstgmq. (par).
Because z, has smallest dmin in a[par |, we know
zy.dmin < z,.dmin Yz, (ii)
Because x € z,/par and y € z,/par , we have
x.dmin < z,.dmin < z;.dmaz < z.dmax and y.dmin < z,.dmin < z,.dmaz < y.dmaz (iii)
Putting (i), (i), and (iii) together we get:

r.dmin < zp.dmin < zi,dmar < z.dmaz

VI A

y.dmin < zydmin < zydmar < y.dmaz
It follows that = € y/desc, since y.dmin < x.dmazx < y.dmax
This contradicts the very first assumption. So z = y or z € y/desc.

As we have already indicated, not all axes behave as nicely as the par axis (to be honest, we have
not told the whole truth for the par axis, either). In many of the cases we are about to investigate
the relationships between the different nodes are somewhat awkward to describe in terms of XPath
axes. So, as a first step let us introduce some terminology. When looking at expressions of the form
x = firsty, («l] /firsty, (1)) and y = firsty, («[l]) /firsty, (1) (where [is an arbitrary location step), we
define z, to be an arbitrary node taken from «fl], such that z, /first,, ({) is equal to z, while z, is equal
to firsty, (a[l]). (This is done in a fashion identical to that in the proofs in Appendix A.) Rather than
describing the relationships of these nodes with XPath axes, we correlate them using their dmin and
dmazx values. We also visualize the relationships, so that they can be realized at a glance.

We describe the first couple of proofs in detail, and cut back on the details in later proofs, because all
proofs follow a similar scheme. We start with the par axis and supply some additional information to
the proofs of Equation (41) and (42).

Supplements to Equation (41)
x = firstya. (a[par | /firsty.. (par))
y = firstyq. (a[par]) /firstg,.. (par)

33

We now prove that either x = y or
y.dmin < zy.dmin < z,.dmazr < x.dmin < z;.dmin < z;.dmazr < x.dmazr < y.dmazx.
Graphically, this means that we have the following relationship besides = = y:

child . desc

child

Proof: Let us assume that x # y and
—(y.dmin < z,.dmin < z,.dmax < x.dmin < z,.dmin < zy.dmax < x.dmazr < y.dmazx).
From the proof of Equation (41) we know that

r.dmin < zpdmin < zZpdmaxr < z.dmazx

VI AN

y.dmin < zydmin < z,dmar < y.dmaz
We also know that z, # z,, as z, = z, implies z = y (which is a contradiction).
Additionally, z # z, (because z,.dmazr < z.dmaz) and y # z, (because z,.dmazr < y.dmax).
But this is still a partial ordering, we want to have a look at all possible complete orderings. There are
(at most) 7 different positions where we can insert z,.dmin and z.dmin, respectively.

Zg.dmin
Y 1(1) Y 1) Y Y Y
y.dmin < zydmin < zgdmar < zg.dmar < z.dmar < y.dmazx
14 1(a) 4 T(b) 14 14 14
r.dmin

The positions marked with }/and 7 are impossible, as they will result in a malformed XML document.

Let us now look at the remaining cases in turn:

1. (a) y.dmin < z.dmin < z;.dmin < z,.dmin < z,.dmax < z;.dmaxr < x.dmazr < y.dmax
(z.dmin has to be smaller than z,.dmin, else we would have a malformed XML document.)
This case leads to a contradiction, as it implies y € z,/anc/anc/anc, but we know that
y € z,/par.
(b) y.dmin < z,.dmin < z,.dmin < z,.dmazr < z.dmin < z;.dmaer < r.dmazr < y.dmaz
Contradiction, z,.dmin cannot be smaller than x.dmin.

2. (a) y.dmin < z.dmin < zy.dmin < z,.dmazr < z;.dmin < z;.dmar < z.dmazr < y.dmax
This case leads to a contradiction, as it implies y € z,/anc/anc, but we know that y €
zy/par .
(b) y.dmin < z,.dmin < z,.dmaz < x.dmin < z,.dmin < z;.dmazr < r.dmazr < y.dmax
(z.dmin has to be smaller than z,.dmin, else we would have a malformed XML document.)
This is a contradiction to our assumption.

Therefore, x = y or
y.dmin < z,.dmin < z,.dmazr < x.dmin < z;.dmin < z;.dmazr < x.dmazr < y.dmazx.

34

Supplements to Equation (42)

x = firstyna. (a[par | /firsty.. (par))

y = firstgm (a[par]) /firstg,.. (par)

We now prove that either x = y or

y.dmin < zy.dmin < z.dmin < zy.dmin < zy.dmazr < z.dmax < z,.dmazr < y.dmax or
y.dmin < (z,.dmin =)z.dmin < z,.dmin < zy.dmaz < r.dmax(= z,.dmax) < y.dmax or
y.dmin < zy.dmin < z,.dmazr < x.dmin < z.dmin < z;.dmazr < x.dmazr < y.dmazx.
Graphically, this means that we have the following relationships besides = = y:

child
' desc child child desc
child child child

Proof: Let us assume that x # y and

—(y.dmin < z,.dmin < z.dmin < z,.dmin < z;.dmazr < z.dmax < z,.dmaz < y.dmaz) and
—(y.dmin < z.dmin < z,.dmin < z,.dmazr < x.dmax < y.dmazx) and

—(y.dmin < z,.dmin < z,.dmazr < z.dmin < z,.dmin < z;.dmazr < x.dmax < y.dmax).

From the proof of Equation (42) we know that
r.dmin < zp.dmin < zi,dmar < z.dmaz
VI A

y.dmin < zydmin < z,dmar < y.dmaz
We also know that z, # z,, as z, = z, implies x = y (which is a contradiction).
Additionally, y # z, (because z,.dmax < y.dmaz).
But this is still a partial ordering, we want to have a look at all possible complete orderings. There are
(at most) 7 different positions where we can insert z.dmin and z,.dmazx, respectively.

x.dmin
Y 1) 1) Y Y Y Y
ydmin < zydmin < zpdmin < zpdmaxr < z.dmer < y.dmazx
14 14 1(a) 14 T(b) 1(c) 14
zy-.dmax

The positions marked with [/and J/are impossible, as they will result in a malformed XML document.

Let us now look at the remaining cases in turn:

1. (a) y.dmin < z.dmin < z,.dmin < z,.dmaz < z,.dmin < z;.dmax < x.dmazr < y.dmax
This case leads to a contradiction, as it implies y € z,/anc/anc, but we know that y €

z,/par .
(b) Here we have either
y.dmin < x.dmin < z,.dmin < zz.dmin < zz.dmaz < z,.dmaezr < r.dmaezr < y.dmax

35

or
y.dmin < x.dmin = z,.dmin < zg.dmin < zg.dmazr < z,.dmar = r.dmar < y.dmazx

The former is a contradiction, as it implies y € z,/anc /anc, but we know thaty € z,/par .
The latter contradicts our assumptions.

(€) y.dmin < x.dmin < z,.dmin < z,.dmin < z,.dmax < z.dmazr < z,.dmazx < y.dmaz
Contradiction (malformed XML document, as z.dmin < z,.dmin and z.dmax < z,.dmax).

2. (8) y.dmin < z,.dmin < zy,.dmax < x.dmin < z;.dmin < z;.dmazr < r.dmazr < y.dmaz
(zy-dmax has to be smaller than z.dmin, else we would have a malformed XML document.)

This contradicts our assumptions.

(b) y.dmin < z,.dmin < z.dmin < zy.dmin < z;.dmaz < z,.dmar < r.dmazr < y.dmax
Contradiction (malformed XML document, as z,.dmin < z.dmin and z,.dmax < x.dmax).

(€) y.dmin < z,.dmin < x.dmin < z,.dmin < z,.dmax < z.dmazr < z,.dmaz < y.dmaz
This contradicts our assumptions.

Therefore, z = y or

y.dmin < zy.dmin < z.dmin < zz.dmin < zz.dmaxr < r.dmax < z,.dmazr < y.dmax or
y.dmin < (z,.dmin =)z.dmin < z,.dmin < zy.dmaz < r.dmax(= z,.dmax) < y.dmax or
y.dmin < zy.dmin < z,.dmazr < x.dmin < z.dmin < z;.dmazr < x.dmazr < y.dmax.

B.1.2 Mapping firsty,,i, to firsty,ez.

x = firstg,i, (a[par | /firsty,q, (par))

y = firstyq. (a[par]) /firstg,.(par)

We now prove that either x = y or

z.dmin < zg.dmin < y.dmin < zy.dmin < zy.dmazx < y.dmazr < zz.dmax < z.dmax or
z.dmin < (z,.dmin =)y.dmin < z,.dmin < z,.dmazr < y.dmaz(= z;.dmaz) < x.dmax or
z.dmin < y.dmin < zy.dmin < zy.dmaxr < y.dmaz < zy.dmin < zy.dmaxr < r.dmax.
Graphically, this means that we have the following relationships besides = = y:

child

' desc child desc child

@ g
child child child
(=)

Proof: Let us assume that x # y and
—(z.dmin < z,.dmin < y.dmin < z,.dmin < z,.dmaz < y.dmaz < z;.dmazr < x.dmaz) and

—(z.dmin < y.dmin < z,.dmin < z,.dmax < y.dmaxr < x.dmaz) and
—(z.dmin < y.dmin < z,.dmin < z,.dmax < y.dmazr < z,.dmin < z,.dmaz < x.dmax).

36

As x # y, we have z.dmin < y.dmin (i)
Because z, has smallest dmaz in a[par | (and z, # z,), we know
zy.dmax < zy.dmax Yz, (ii)
Because = € z,/par and y € z,/par, we have
z.dmin < z,.dmin < z;.dmax < r.dmax and y.dmin < z,.dmin < z,.dmax < y.dmax (iii)
Putting (i), (i), and (iii) together we get:

r.dmin < zpdmin < zZpdmaxr < xz.dmazx

A v

y.dmin < zydmin < zydmar < y.dmaz
Additionally, z # z, (because z,.dmazr < z.dmazx).
Again we have a look at all possible complete orderings. There are (at most) 7 different positions where
we can insert z,.dmin and y.dmazx, respectively.

2. dmin
Y 1(1) 1(2) Y 1(3) Y Y
r.dmin < ydmin < zydmin < zgdmar < zg.dmar < x.dmax
14 14 14 14 1(a) T(b) 14
y.dmax

The positions marked with [/and /are impossible, as they will result in a malformed XML document.

Let us now look at the remaining cases in turn:

1. (@) We have either
z.dmin < zz.dmin < y.dmin < zy.dmin < zy.dmaxr < y.dmaxr < z;.dmar < r.dmax
or
z.dmin < zg.dmin = y.dmin < z,.dmin < zy.dmaxr < y.dmar = zy.dmax < r.dmax.
Both cases contradict our assumptions.

(b) Either we have
z.dmin < zz.dmin < y.dmin < z,.dmin < z,.dmaxr < zz.dmaxr < y.dmazr < r.dmax
or
z.dmin < zz.dmin = y.dmin < z,.dmin < z,.dmax < z;.dmazr = y.dmax < z.dmax.
The former is a contradiction (malformed XML document, as z,.dmin < z.dmin and
zy.dmaz < x.dmazx).
The latter contradicts our assumptions.

2. (8) xz.dmin <y.dmin < z;.dmin < z,.dmin < y.dmaz < z,.dmazr < z;.dmazr < r.dmaz
Contradiction (malformed XML document, as y.dmin < z,.dmin and y.dmazx < z,.dmax).
(b) We have either
z.dmin < y.dmin < zz.dmin < zy.dmin < zy.dmaxr < zz.dmaxr < y.dmar < r.dmax
or
z.dmin < y.dmin = z,.dmin < z,.dmin < z,.dmaxr < z;.dmazr = y.dmax < z.dmax.
In the first case, we have a contradiction, as it implies y € z,/anc/anc, but we know that

y € z,/par.
The latter contradicts our assumptions.

3. (a) z.dmin < y.dmin < z,.dmin < z,.dmazr < y.dmazr < z,.dmin < z,.dmax < r.dmax

37

(y.dmax has to be smaller than z,.dmin, else we would have a malformed XML document.)
Contradiction to our assumptions.

(b) z.dmin < y.dmin < z,.dmin < z,.dmax < z,.dmin < z,.dmazr < y.dmazr < x.dmaz
Contradiction, as it implies z € z,/anc /anc, but we know that = € z, /par .

Therefore, x = y or

z.dmin < zg.dmin < y.dmin < zy.dmin < zy.dmazx < y.dmazr < zz.dmax < x.dmax or
z.dmin < (z,.dmin =)y.dmin < z,.dmin < z,.dmax < y.dmax(= z,.dmazx) < z.dmax or
z.dmin < y.dmin < z,.dmin < z,.dmaz < y.dmazr < zy.dmin < zy.dmaxr < z.dmax.

B.1.3 Mapping firsty,,, to firsty,.

x = firstg,i, (a[par | /firsty,i, (par))

y = firstyi (a[par]) /firstg,.(par)

We now prove that either x = y or

z.dmin < y.dmin < zy.dmin < z,.dmar < y.dmazr < zy.dmin < zy.dmaxr < r.dmax.
Graphically, this means that we have the following relationship besides = = y:

desc child

chil(g
Proof: Let us assume that x # y and
—(z.dmin < y.dmin < z,.dmin < z,.dmax < y.dmaz < z,.dmin < z,.dmax < x.dmazx).
As x # y, we have z.dmin < y.dmin (i)
Because z, has smallest dmin in ofpar | (and z, # z,), we know
zy.dmin < z,.dmin Vz, (ii)
Because x € z,/par and y € z,/par , we have
z.dmin < z,.dmin < z;.dmax < r.dmaz and y.dmin < z,.dmin < z,.dmax < y.dmax (iii)
Putting (i), (ii), and (iii) together we get:
r.dmin < zp.dmin < zi,dmar < z.dmaz
A v
y.dmin < zydmin < z,dmar < y.dmaz
Additionally, z # z, (because x.dmin < z,.dmaz) and y # z, (because y.dmin < z,.dmin.
Again we have a look at all possible complete orderings. There are (at most) 7 different positions where
we can insert z,.dmax and y.dmax, respectively.

y.dmax
Y Y Y (1) Y 1(2) Y
r.dmin < ydmin < z,dmin < zpdmin < zpdmaxr < z.dmax
4 /4 4 () 4 T(b) 4
zy.dmazx

38

The positions marked with [/and J/are impossible, as they will result in a malformed XML document.

Let us now look at the remaining cases in turn:

1. (a) z.dmin < y.dmin < z,.dmin < z,.dmaz < y.dmaz < z,.dmin < z;.dmax < x.dmax
(zy.dmaz has to be smaller than y.dmaz, else we would have a malformed XML document.)
This is a contradiction to our assumptions.

(b) z.dmin < y.dmin < z,.dmin < y.dmazr < z,.dmin < z,.dmazr < z,.dmazr < r.dmaz
Contradiction (malformed XML document, as y.dmin < z,.dmin and y.dmaz < z,.dmax).
2. () z.dmin < y.dmin < z,.dmin < z,.dmax < z;.dmin < z;.dmazr < y.dmazr < x.dmaz
Contradiction, as it implies z € z,/anc /anc, but we know that x € z, /par .

b) z.dmin < y.dmin < z,.dmin < z,.dmin < z,.dmax < z,.dmax < y.dmaxr < r.dmax
Y y y Y
(zy-dmax has to be smaller than y.dmax, else we would have a malformed XML document.)
Contradiction, as it implies z € z,/anc /anc/anc, but we know that z € z,/par .

Therefore, z = y or
z.dmin < y.dmin < z,.dmin < z,.dmazr < y.dmazr < zy.dmin < zy.dmaxr < z.dmax.
B.1.4 Mapping lasty,,.. to lasty,,q.

From here on we omit the proofs and just show the relationships between the nodes. The proofs follow
the same scheme as those already shown.

x = last gz (a[par | /1astg,q. (par))
y = lastga. (a[par |)/1astgmq. (par)

Either z = y holds or
z.dmin < zg.dmin < zz.dmazr < y.dmin < z,.dmin < z,.dmazr < y.dmax < z.dmaz.
Graphically, this means that we have the following relationship besides x = y:

child desc

child

B.1.5 Mapping lasty,.. to lasty,.i,

x = last gqe (a[par | /1astg,q.. (par))
y = lastgm (a[par |)/1asty,q.. (par)

Either x = y or

z.dmin < zg.dmin < y.dmin < zy.dmin < zy.dmazx < y.dmazr < zz.dmax < x.dmax or
z.dmin < (z,.dmin =)y.dmin < z,.dmin < z,.dmax < y.dmax(= z,.dmazx) < z.dmax or

39

r.dmin < zg.dmin < zz.dmazr < y.dmin < z,.dmin < z,.dmazr < y.dmaxr < v.dmax.
Graphically, this means that we have the following relationships besides =z = y:

child
i desc %(>Child
child child

B.1.6 Mapping last,,;, to lasty,,..

x = last g (a[par] /1astg,.. (par))
y = lastgna. (a[par |)/1astg,.. (par)

Eitherz =y or

child . desc

child

y.dmin < zy.dmin < z.dmin < zy.dmin < zy.dmazr < z.dmax < z,.dmazr < y.dmax or
y.dmin < (z,.dmin =)r.dmin < z;.dmin < z,.dmazr < r.dmaz(= z,.dmaz) < y.dmax or
y.dmin < x.dmin < zz.dmin < zz.dmazr < x.dmazr < z,.dmin < z,.dmar < y.dmaz.
Graphically, this means that we have the following relationships besides = = y:

child
i desc child
child child

B.1.7 Mapping lasty,,;, to lasty,.i,

x = last g, (a[par] /1astg,.. (par))
y = lastgin (a[par])/lastgq, (par)

Eitherz =y or

desc child

child

y.dmin < x.dmin < z.dmin < z;.dmazr < x.dmazr < z,.dmin < z,.dmaer < y.dmaz.
Graphically, this means that we have the following relationships besides =z = y:

desc child

child

B.2 Child Axis

B.2.1 Mapping firsty,.q. to firsty,ez

x = firstgnae (a[chi | d]/firstg,q..(chi | d))
y = firstyq. (a[chi | d]) /firsty,..(chi | d)

Either z = y holds or
Zz.dmin < x.dmin < x.dmazr < z,.dmin < y.dmin < y.dmax < zy,.dmax < z.dmax.
Graphically, this means that we have the following relationship besides = = y:

child /" desc

O,

child

B.2.2 Mapping firsty,,q. to firsty,,»,

x = firstgnae (a[chi | d]/firstg,q..(chi | d))
y = firstgm (afchi | d]) /firsty,..(chi | d)

Either z = y holds or
zy.dmin < y.dmin < z.dmin < z.dmin < z.dmax < z;.dmazxr < y.dmazr < z,.dmazx or
Zy.dmin < y.dmin(= z,.dmin) < z.dmin < z.dmax < (z;.dmazr =)y.dmax < z,.dmax oOr
Zz.dmin < x.dmin < x.dmazr < z,.dmin < y.dmin < y.dmax < zy,.dmaxr < z.dmaz.
Graphically, this means that we have the following relationship besides = = y:

child

| desc child desc . child

child child child
®

O, ®

41

B.2.3 Mapping firsty,,, to firsty,q.

x = firstgni, (a[chi | d]/firstg,.,(chi | d))
y = firstgma. (afchi | d])/firsty,q,(chi | d)

Either x = y holds or
Zz.dmin < z.dmin < z,.dmin < y.dmin < y.dmaz < z,.dmaxr < z.dmax < z;.dmaz or
Zg.dmin < x.dmin(= z,.dmin) < y.dmin < y.dmaz < (z,.dmazr =)z.dmax < z,.dmax or
zy.dmin < zg.dmin < z.dmin < x.dmaxr < z;.dmax < y.dmin < y.dmazr < z,.dmaxz.
Graphically, this means that we have the following relationships besides = = y:

child
' desc %Qch”d child / desc

ey O,

child child child

B.2.4 Mapping firsty,,, to firsty,»,
x = firstgni, (a[chi | d]/firstg,.,(chi | d))
y = firstgm (afchi | d]) /firsty,q,(chi | d)

Either z = y holds or
zy.dmin < zz.dmin < z.dmin < z.dmazr < zz.dmazr < y.dmin < y.dmazr < z,.dmaz.
Graphically, this means that we have the following relationship besides x = y:

@@%d

child

B.2.5 Mapping lasty,,.. t0 lastyqe
x = last gqe (a[chi | d]/last .. (chi | d))
y = lastga. (a[chi | d])/lastg,..(chi | d)

Either z = y holds or
zy.dmin < y.dmin < y.dmazr < zy.dmin < x.dmin < z.dmaz < z,.dmaz < z,.dmaz.
Graphically, this means that we have the following relationship besides = = y:

42

child

B.2.6 Mapping lasty,... to lasty,.i,

x = last gqe (a[chi | d]/last .. (chi | d))
y = lastgm (a[chi | d])/lasty,q.(chi | d)

Either x = y holds or

Zz.dmin < x.dmin < z,.dmin < y.dmin < y.dmazxr < zy,.dmaxr < x.dmax < z.dmazx Or
Zg.dmin < x.dmin(= z,.dmin) < y.dmin < y.dmaz < (z,.dmazr =)z.dmax < z,.dmax or
Zz.dmin < z,.dmin < y.dmin < y.dmazr < zy.dmaz < z.dmin < z.dmax < z;.dmaz.
Graphically, this means that we have the following relationship besides x = y:

child
3 desc child
child child

B.2.7 Mapping lasty,,:, to lasty qx

x = last gin (afchi | d]/lasty,:,(chi | d))
y = lastgmae (a[chi | d])/lastg,,(chi | d)

Either z = y holds or

desc child

child

zy.dmin < y.dmin < zz.dmin < z.dmin < r.dmax < z;.dmaxr < y.dmaz < z,.dmazx or
Zy.dmin < y.dmin(= z,.dmin) < z.dmin < z.dmaz < (z;.dmazr =)y.dmax < z,.dmax oOr
zy.dmin < y.dmin < y.dmazr < zy.dmin < x.dmin < z.dmaz < z,.dmazr < z,.dmaz.
Graphically, this means that we have the following relationships besides = = y:

child
3 desc child
child child

Co7 @)

child . desc

child

O,

B.2.8 Mapping lasty,,;, to lasty,.i,

x = lastgin (afchi | d]/lasty,:.(chi | d))
y = lastgin (a[chi | d])/lastg,(chi | d)

Either x = y holds or

Zz.dmin < z,.dmin < y.dmin < y.dmazr < z,.dmazr < z.dmin < z.dmax < z;.dmaz.
Graphically, this means that we have the following relationship besides x = y:

desc child

child

B.3 Preceding Sibling Axis

B.3.1 Mapping firsty,,q. to firsty,q.

x = firstgnae (a[pr s /firstyme (Prs))
y = firstgmaz ([pr s)) /firstgma. (Prs)

Either x = y holds or
z.dmin < z.dmaz < y.dmin < y.dmazr < z,.dmin < z,.dmazr < zy.dmin < z;.dmax or

z.dmin < z.dmaz < z,.dmin < y.dmin < y.dmazr < z,.dmin < z,.dmazr < z;.dmax.
Graphically, this means that we have the following relationships besides =z = y:

fos
fol fos —. fol @_@
®—@ fos

fos

B.3.2 Mapping firsty,,q. to firsty,»,

xr = firstdmaz(a[pr S]/ﬁrStdmaz<pr S))
Yy = ﬁl’Stdmm<Oé[pr S])/ﬁrStdmaz<pr S)

Either z = y holds or
z.dmin < z.dmazx < y.dmin < y.dmazr < zy.dmin < z,.dmar < zy.dmin < z,.dmax.
Graphically, this means that we have the following relationships besides = = y:

fos

B.3.3 Mapping firstg,,, to firsty,q.

x = firstgin (a[pr s]/firstymin (Prs))
y = firstgmaz (a[pr s]) /firstgmm (prs)

Either x = y holds or

z.dmin < z.dmaz < y.dmin < y.dmazr < z,.dmin < z,.dmazr < zy.dmin < z;.dmax or
z.dmin < z.dmaz < zz.dmin < y.dmin < y.dmazr < z,.dmin < z,.dmazr < z;.dmax or
z.dmin < y.dmin < y.dmazr < z,.dmin < z,.dmar < x.dmazr < zy.dmin < zy.dmazx.

Graphically, this means that we have the following relationships besides = = y:

fos
fol C fos ://fol

fos

B.3.4 Mapping firsty,,, to firsty,.

x = firstgin (a[pr s /firstgmin (prs))
y = firstymin (a[pr s]) /firstynin (Prs)

Either x = y holds or
z.dmin < r.dmazx < y.dmin < y.dmazr < zy.dmin < z,.dmazr < zy.dmin < z,.dmax or

z.dmin < y.dmin < y.dmazr < z,.dmin < z,.dmazr < x.dmazr < zy.dmin < zy.dmazx.
Graphically, this means that we have the following relationships besides = = y:

fos
O)
fol -, fos . fol @_@
() C) fos

B.3.5 Mapping lasty,,.. t0 lastyq.

fos

x = last gz (a[pr s]/1aStgmas (Prs))
y = lastgmaz (a[pr s])/1astgmaz (P S)

Either x = y holds or
y.dmin < y.dmax < z.dmin < x.dmazr < zz.dmin < zz.dmax < z,.dmin < z,.dmax or
y.dmin < y.dmax < z,.dmin < r.dmin < z.dmax < z;.dmin < z;.dmaz < z,.dmax.
Graphically, this means that we have the following relationships besides =z = y:

@ fos @ @fo—s@

desc ./ . desc

fol fos " fol : C
i) C fos

45

B.3.6 Mapping lasty,,.. to lasty,.i,

x = last gaz (a[pr s]/1aStgma: (Prs))
y = lastgmin (a[pr s])/1aStimae. (Pr'S)

Either x = y holds or

y.dmin < y.dmaxr < z.dmin < x.dmazr < zz.dmin < zz.dmax < z,.dmin < z,.dmax.
Graphically, this means that we have the following relationships besides = = y:

@\\ fos @
fc;l\\\z: fos :fol

B.3.7 Mapping lasty,,i, to lasty qx

x = last gin (a[pr s]/1astg i, (Prs))
y = lastgmae (a[pr s])/1astgmin (PrS)

Either x = y holds or
y.dmin < y.dmax < v.dmin < x.dmazr < zz.dmin < zz.dmaxr < z,.dmin < z,.dmax or
y.dmin < y.dmax < z,.dmin < z.dmin < z.dmax < z;.dmin < z;.dmazx < z,.dmax or
y.dmin < x.dmin < z.dmaz < z,.dmin < z;.dmazr < y.dmax < z,.dmin < z,.dmax.
Graphically, this means that we have the following relationships besides =z = y:

fos fos fos
fol fos . fol : C C C
i) C fos fos

B.3.8 Mapping lasty,,;, to lasty,.i,

x = last gin (a[pr s]/1astgmin (Prs))
y = lastgin (a[pr s])/1astgmin (Prs)

Either z = y holds or
y.dmin < y.dmax < z.dmin < x.dmazr < zz.dmin < zy.dmax < z,.dmin < z,.dmax or
y.dmin < x.dmin < z.dmazx < zz.dmin < zz.dmazr < y.dmax < z,.dmin < z,.dmazx.
Graphically, this means that we have the following relationships besides = = y:

fos fos

46

B.4 Following Sibling Axis

B.4.1 Mapping firsty,,q. tofirsty,q.

x = firstgnae (aff 0S]/firstyn.. (f 0s))
y = firstgma. (aff 08]) /firsty,q. (f 0S)

Either z = y holds or
zy.dmin < zy.dmazr < z;.dmin < zz.dmazr < r.dmin < x.dmax < y.dmin < y.dmax or

zy.dmin < zy.dmax < y.dmin < z;.dmin < z;.dmazr < z.dmin < z.dmax < y.dmaz.
Graphically, this means that we have the following relationships besides =z = y:

fos
desc - . desc
fol fos " ol C C
@—® fos

B.4.2 Mapping firsty,,q. to firsty,»,

fos

x = firstgnae (aff 0S]/firstyn.. (f 0s))
y = firstgn (aff 08]) /firsty,q.. (f 0S)

Either x = y holds or
zy.dmin < zy.dmazr < z;.dmin < zz.dmazr < r.dmin < x.dmax < y.dmin < y.dmax or
zy.dmin < zy,.dmazr < y.dmin < z;.dmin < z;.dmazr < r.dmin < x.dmax < y.dmax or
zy.dmin < zg.dmin < zz.dmazr < x.dmin < v.dmazx < zy.dmaxr < y.dmin < y.dmaz.
Graphically, this means that we have the following relationships besides = = y:

fos fos fos
fol fos .- fol C C C C
C () fos fos

B.4.3 Mapping firsty,,:, to firsty,qa.

x = firstgin (a[f 0S]/firstyi, (f 0S))
y = firstga. (aff 0S]) /firstg,(f 0s)

Either x = y holds or
zy.dmin < zy.dmaxr < z;.dmin < z;.dmazr < r.dmin < z.dmax < y.dmin < y.dmaz.
Graphically, this means that we have the following relationships besides = = y:

@\\ fos @

B.4.4 Mapping firsty,,, to firsty,»,

x = firstgin (a[f 0S]/firsty,i, (f 0S))
y = firstgn (aff 08])/firstg,(f 0s)

Either x = y holds or
zy.dmin < zy.dmaxr < z;.dmin < z;.dmazr < r.dmin < z.dmax < y.dmin < y.dmaz.

zy.dmin < zz.dmin < z;.dmazr < x.dmin < z.dmaz < zy,.dmazr < y.dmin < y.dmaz.
Graphically, this means that we have the following relationships besides =z = y:

fos fos
fol fos .- fol C :
C C) fos

B.45 Mapping lasty,,.. to lastyq.

x = last gz (aff 0S]/1aStgq. (f 0S))
y = lastgma. (aff 0S])/laStgma. (f 0S)

Either z = y holds or
Zz.dmin < zz.dmazx < zy.dmin < z,.dmazx < y.dmin < y.dmazr < x.dmin < z.dmazx or
Zp.dmin < zz.dmazx < x.dmin < z,.dmin < z,.dmazr < y.dmin < y.dmax < z.dmaz.
Graphically, this means that we have the following relationships besides = = y:

fos fos

: O
fol fos — - fol @_@
() fos

B.4.6 Mapping lasty,,.. tolasty,i,

x = last gae (aff 0S]/18Stgmq. (f 0S))
y = lastgm (a[f 0S])/1aStymq. (f 0S)

Either x = y holds or
Zz.dmin < zz.dmazx < zy.dmin < z,.dmax < y.dmin < y.dmazr < x.dmin < z.dmazx or
2z.dmin < zz.dmaz < z.dmin < z,.dmin < z,.dmazr < y.dmin < y.dmax < z.dmaz or
Zz.dmin < z,.dmin < zy.dmazr < y.dmin < y.dmaz < zz.dmazr < x.dmin < z.dmaz.
Graphically, this means that we have the following relationships besides =z = y:

fos fos fos
(2, () E— (Z—®
@—® fos fos

B.4.7 Mapping lasty,,;, tolasty,,..

x = last g, ([f 0S]/1aSt g (f 0S))
y = lastgnae (aff 0S])/1aSt g (f 0S)

Either x = y holds or

Zz.dmin < zz.dmaz < z,.dmin < z,.dmazr < y.dmin < y.dmazr < x.dmin < z.dmaz.
Graphically, this means that we have the following relationships besides = = y:

fos
fol\‘\i: fos ://fol

B.4.8 Mapping lasty,,;, to lasty,.i,

x = last g, ([f 0S]/1aSt g (f 0S))
y = lastgin (a[f 0S])/last g (f 0S)

Either x = y holds or
Zz.dmin < zz.dmaz < z,.dmin < z,.dmazr < y.dmin < y.dmazr < x.dmin < z.dmaz.
Zz.dmin < z,.dmin < zy.dmazr < y.dmin < y.dmaz < zz.dmazr < x.dmin < r.dmaz.
Graphically, this means that we have the following relationships besides =z = y:

fos fos
X

B.5 Preceding Axis

B.5.1 Mapping firsty,,q. tofirsty,..
See Equation (13).

B.5.2 Mapping firsty,,q. to firsty,»,
See Equation (14).

B.5.3 Mapping firsty,,i, to firsty,az

x = firstg,i, (a[pr] /firsty,i, (pre))
y = firstgq. (a[pr e]) /firstg,(pre)

Either x = y holds or

z.dmin < y.dmin < y.dmazr < z,.dmin < z,.dmazr < x.dmazr < zy.dmin < z;.dmax.
Graphically, this means that we have the following relationships besides = = y:

49

B.5.4 Mapping firsty,,, to firsty,.

x = firstg,i, (a[pr €] /firsty,i, (pre))
y = firstgi (a[pr e]) /firstg,(pre)

Either x = y holds or
z.dmin < y.dmin < y.dmazr < z,.dmin < z,.dmazr < x.dmazr < zy.dmin < z,.dmazx.
Graphically, this means that we have the following relationships besides = = y:

B.5.5 Mapping lasty,,.. t0 lastyq.

x = last ez (a[pr e]/1astgmq. (Pr €))
y = lastgmaz (a[pr e])/1astgma (Pr €)

Either x = y holds or
y.dmin < y.dmax < z,.dmin < r.dmin < z.dmax < z;.dmin < z;.dmaz < z,.dmax.
Graphically, this means that we have the following relationships besides = = y:

B.5.6 Mapping lasty,,.. to lasty,.i,
See Equation (25).

B.5.7 Mapping lasty,,;, tolasty,,..

x = last g (a[pr e]/1astg.i. (pr e))
y = lastgmas (a[pr €])/1ast g, (pr e)

Either x = y holds or

y.dmin < y.dmax < z,.dmin < z.dmin < z.dmax < z;.dmin < z;.dmaz < z,.dmax.
Graphically, this means that we have the following relationships besides =z = y:

50

B.5.8 Mapping lasty,;, to lasty,i,
See Equation (26).

B.6 Following Axis

B.6.1 Mapping firsty,.q. to firsty,az
See Equation (15).

B.6.2 Mapping firsty,,q. to firsty,.in
x = firstgnae (aff Ol] /firstyn..(f ol))
y = firstgin (aff ol) /firstg,q.. (f ol)

Either x = y holds or
zy.dmin < zg.dmin < zz.dmazr < x.dmin < v.dmazx < zy.dmaxr < y.dmin < y.dmaz.
Graphically, this means that we have the following relationships besides = = y:

B.6.3 Mapping firsty,,i, to firsty,qz.
See Equation (16).

B.6.4 Mapping firsty,,, to firsty,

x = firstgin (aff 0l] /firstg,i, (f ol))
y = firstgin (aff ol |) /firstg,.(f ol)

Either x = y holds or
zy.dmin < zg.dmin < zz.dmazr < x.dmin < v.dmax < zy.dmaxr < y.dmin < y.dmaz.
Graphically, this means that we have the following relationships besides = = y:

B.6.5 Mapping lasty,,.. t0 lastyq.

x = last gae (ff Ol |/1aStgmq. (f O1))
y = lastgmaz (aff Ol])/laStgma. (f Ol)

Either x = y holds or
Zz.dmin < zz.dmaz < v.dmin < z,.dmin < z,.dmazr < y.dmin < y.dmax < z.dmaz.
Graphically, this means that we have the following relationships besides = = y:

B.6.6 Mapping lasty,,.. to lasty,.i,

x = last gz (ff Ol |/1aStgq.(f O1)
y = lastgmin (aff 0l |)/1aStgq. (f Ol)

Either z = y holds or
Zz.dmin < zz.dmaz < z.dmin < z,.dmin < z,.dmazr < y.dmin < y.dmax < z.dmaz.
Graphically, this means that we have the following relationships besides =z = y:

B.6.7 Mapping last,,;, to lasty,,..
See Equation (27).

B.6.8 Mapping lasty,,;, to lasty,.i,
See Equation (28).
B.7 Ancestor Axis

B.7.1 Mapping firsty,,q. to firsty,q.

x = firstynq. (a[anc] /firstyq..(anc))
y = firstymq. (a[anc)) /firstg,.. (anc)

Either z = y holds or
y.dmin < zy.dmin < z,.dmazr < x.dmin < z.dmin < z;.dmazr < x.dmazr < y.dmazx.
Graphically, this means that we have the following relationship besides = = y:

52

desc -~ T\ dex

desc

B.7.2 Mapping firsty,,.. to firsty,,»,

x = firstynq. (a[anc] /firstyq...(anc))
y = firstg, (afanc)) /firsty,.. (anc)

Either z = y holds or
y.dmin < zy.dmin < z.dmin < zy.dmin < zy.dmax < z.dmax < z,.dmazr < y.dmax or
y.dmin < (z,.dmin =)z.dmin < z,.dmin < zy.dmaz < r.dmax(= z,.dmax) < y.dmax or
y.dmin < zy.dmin < z,.dmazr < x.dmin < z.dmin < z;.dmazr < x.dmazr < y.dmazx.
Graphically, this means that we have the following relationships besides = = y:

5 @@
O -} ® O
(2 (2 (2

B.7.3 Mapping firstg,,, to firsty,q.
See Equation (17).

B.7.4 Mapping firsty,,, to firsty,,»,
See Equation (18).

B.7.5 Mapping lasty,,.. t0 lastyq.
See Equation (29).

B.7.6 Mapping lasty,,.. to lasty,.i,
See Equation (30).

53

B.7.7 Mapping lasty,,;, tolasty,..

x = last g, (a[anc]/lasty,..(anc))
y = lastgq. (a[anc])/lastg,.,(anc)

Either x = y or
y.dmin < zy.dmin < z.dmin < zy.dmin < zy.dmax < z.dmax < z,.dmazr < y.dmax or
y.dmin < (z,.dmin =)r.dmin < z;.dmin < z;.dmazr < r.dmaz(= z,.dmaz) < y.dmax or
y.dmin < x.dmin < zz.dmin < zz.dmazr < x.dmazr < z,.dmin < z,.dmar < y.dmaz.
Graphically, this means that we have the following relationships besides = = y:

Y

3 desc
CZDd&ec Q>desc desc desc
. desc | desc desc |

(2 (2 (2
B.7.8 Mapping lasty,,;, to lasty,.i,

x = last g, (a[anc]/lastg,.,(anc))
y = lastgin (a[anc])/lastg,,(anc)

Either x = y or

y.dmin < x.dmin < z.dmin < z;.dmazr < x.dmazr < z,.dmin < z,.dmar < y.dmaz.
Graphically, this means that we have the following relationships besides = = y:

desc ., . desc
@
desc 3
(%
B.8 Descendant Axis

B.8.1 Mapping firsty,q. to firsty,ex

x = firsty e (a[desc] /firsty,q.. (desc))
y = firsty,q. (a[desc]) /firsty,..(desc)

Either x = y holds or
Zz.dmin < z.dmin < x.dmazr < z,.dmin < y.dmin < y.dmax < z,.dmaxr < z;.dmaz.
Graphically, this means that we have the following relationship besides x = y:

54

desc -~ T\ dex

desc

B.8.2 Mapping firsty,,q. to firsty,.in
See Equation (19).

B.8.3 Mapping firsty,,, to firsty,q.

x = firsty,i, (a[desc] /firsty,.,(desc))
y = firsty,q. (a[desc]) /firsty,., (desc)

Either z = y holds or
Zz.dmin < z.dmin < z,.dmin < y.dmin < y.dmaz < z,.dmax < z.dmax < z.dmazx or
Zp.dmin < x.dmin(= z,.dmin) < y.dmin < y.dmaz < (z,.dmax =)z.dmaz < z;.dmax oOr
zy.dmin < zg.dmin < z.dmin < x.dmaxr < z;.dmax < y.dmin < y.dmazr < z,.dmaxz.
Graphically, this means that we have the following relationships besides =z = y:

QDd&ec Q%eg: desc @ desc
. 8. © 6
0 0 0

B.8.4 Mapping firsty,,, to firsty,,
See Equation (20).

B.8.5 Mapping lasty,,.. to lasty,.q.
See Equation (31).

B.8.6 Mapping lasty,,.. to lasty,.i,

x = last e ([desc]/lasty .. (desc))
y = lastgn (a[desc])/last .. (desc)

Either z = y holds or
Zz.dmin < z.dmin < z,.dmin < y.dmin < y.dmaz < z,.dmaxr < z.dmax < z;.dmazx or

55

Zg.dmin < x.dmin(= z,.dmin) < y.dmin < y.dmaz < (z,.dmax =)z.dmaz < z;.dmax oOr
Zz.dmin < z,.dmin < y.dmin < y.dmazr < zy.dmar < z.dmin < z.dmax < z.dmax.
Graphically, this means that we have the following relationship besides = = y:

@

3 desc
' desc ' desc desc desc
| desc . desc . desc

) 9 9
B.8.7 Mapping lasty,,;, tolasty,,..

See Equation (32).

B.8.8 Mapping lasty,,;, to lasty,.i,

x = lastgin (a]desc]/lasty,:, (desc))
y = lastg,n (a[desc])/lasty,,(desc)

(2

desc ., . desc
desc |

C. Remaining first; Steps
In this section we present the rest of the code generation programs for the first, steps.

C.1.first .. Steps

C.1.1 Parent Axis

mni-init: if(cn/parent exists) {
i f(cn/parent satisfies pred) {
return cn/ parent;
}

}
return NULL;

mni-step: return NULL;

56

C.1.2 Following Axis

mni-init: start = cn;
whil e(start/sibling does not exist) {
if(start/parent exists) {
start = start/parent;
}
el se {
return NULL;

}
}

start = start/sibling;
whil e(start does not satisfy pred) {
i f (nextpreorder(start) does not exist) {
return NULL;
}

start = nextpreorder(start);
}
/'l found first node satisfying predicate
/1 now find small est dnmax (can only be
/'l descendant of start)
i f(nextpreorder(start) does not exist) {
return start;
}
next = nextpreorder(start);
| abel : i f(next is not descendant of start) {
return start;
}
el se {
i f(next satisfies pred) {
start = next;
}
i f (next preorder(next) does not exist) {
return start;
}
next = nextpreorder(next);
goto | abel;

}

mni-step: start = |last qualifying node;
i f (next postorder(start) does not exist) {
return NULL;

}
next = nextpostorder(start);
whi |l e(next not in cnorig/following || next does not satisfy pred

57

i f (next postorder(next) does not exist) {
return NULL;
}

next = nextpostorder(next);

}

return next;

C.1.3 Preceding Axis

mni-init: start = root;
while(start_dmn < cn_dmn) {
if(start == cn/pre & start satisfies pred) {
br eak;
}

i f (nextpreorder(start) does not exist) {
return NULL;
}

start = nextpreorder(start);
}
if(start _dmin >= cn_dnmn) {
return NULL;
}
/'l found first node satisfying predicate
/1 now find small est dmax (can only be
/| descendant of start)
i f(nextpreorder(start) does not exist) {
return start;
}
next = nextpreorder(start);
| abel : i f(next is not descendant of start) {
return start;
}
el se {
i f(next satisfies pred) {
start = next;
}
i f (next preorder(next) does not exist) {
return start;
}
next = nextpreorder(next);
goto | abel;

}

mni-step: start = |ast qualifying node;
i f (next postorder(start) does not exist) {

58

return NULL;
}
next = nextpostorder(start);
whi | e(next not in cnorig/preceding || next does not satisfy pred
i f (next postorder(next) does not exist) {
return NULL;
}

i f(next == cnorig) {
return NULL,;
}

next = nextpostorder(next);
}
i f(next == cnorig) {

return NULL;
}

return next;
C.2. firsty,.;» Steps

C.21 Following Axis

mni-init: start = cn;
whil e(start/sibling does not exist) {
if(start/parent exists) {
start = start/parent;
}
el se {
return NULL;
}

}

start = start/sibling;
whil e(start does not satisfy pred) {
i f(nextpreorder(start) does not exist) {
return NULL;
}

start = nextpreorder(start);

}

return start;

mni-step: start = last qualifying node;
i f(nextpreorder(start) does not exist) {
return NULL;
}
start = nextpreorder(start);
whil e(start does not satisfy pred) {

59

i f(nextpreorder(start) does not exist) {
return NULL;

}

start = nextpreorder(start);

}

return start;

60

