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Abstract - The wavelet transform has become the most interesting

new algorithm for still image compression. Yet there are many parameters

within a wavelet analysis and synthesis which govern the quality of a de-

coded image: decomposition strategy, image boundary policy, quantization

threshold, etc.

In this paper we discuss di�erent image boundary policies and their im-

plications for the decoded image. A focal point is the trade{o� between the

length of an orthogonal, compactly supported Daubechies{n wavelet �lter

bank and the decomposition depth of an image during analysis. An eval-

uation of the visual quality of images at di�erent parameter settings leads

to recommendations on the wavelet �lter parameters to be used in image

coding.

Keywords: Wavelet Analysis, Decomposition Depth, Visual Quality, Evalu-

ation.

INTRODUCTION

Due to its outstanding performance in compression, new image coding tech-

niques such as the new standard JPEG{2000 [1], focus on the wavelet transform

(WT). The orthogonal and separable wavelet �lters that Daubechies has devel-

oped belong to the group of wavelets used most often in image coding appli-

cations. They specify a number n0 of vanishing moments: If a wavelet has n0
vanishing moments, then the approximation order of the wavelet transform is

also n0. A fast approximation is mathematically desirable.

However, implementations of the WT on still images entail other aspects as

well: speed, decomposition depth and boundary problems. Long �lters require

more computing time than short ones. Furthermore, the WT is mathematically

only de�ned within a signal; image applications thus need to solve the boundary

problem. Finally, the WT incorporates the aspect of iteration: the low{pass

�lter de�nes an approximation of the original signal which contains only half as

many coeÆcients. This approximation successively builds the input for the next

approximation. For compression purposes, coeÆcients in the time{scale domain

are discarded and the synthesis quality improves with the number of iterations

on the approximation.

In this work, we investigate di�erent wavelet �lter banks in combination with

di�erent boundary policies. When circular convolution is chosen as the boundary



treatment, the level of iteration depends on the length of the selected �lter bank.

We evaluate the trade{o� between increasing coding quality by means of longer

�lters or increasing decomposition depth with shorter ones.

RELATED WORK

Villasenor's group researches wavelet �lters for image compression. In [2],

the focus is on biorthogonal �lters, and the evaluation is based on the infor-

mation preserved in the reference signal, while [3] focuses on a mathematically

optimal quantizer step size. In [4], the evaluation is based on lossless as well

as on subjective lossy compression performance, complexity and memory usage.

Interpretation on why the observations are made is nevertheless lacking.

THE WAVELET TRANSFORM

A wavelet is an (ideally) compact function, i.e., outside a certain interval it

vanishes. Implementations are based on the fast wavelet transform, where a given

wavelet (`mother wavelet') is shifted and dilated so as to provide a base in the

function space. In other words, a one{dimensional function is transformed into

a two{dimensional space, where it is approximated by coeÆcients that depend

on time (determined by the translation parameter) and on scale, i.e., frequency

(determined by the dilation parameter). | By convention, the notion of time

is used even for signals that depend on location rather than on time. Thus, a

wavelet{transformed image is also said to be located in the time{scale domain.

| The localization of a wavelet in time spread (�t) and frequency spread (�!)

has the property �t�! = const. However, the resolution in time and frequency

depends on the frequency. This is the so{called `zoom'{phenomenon of the WT:

it o�ers high temporal localization for high frequencies while o�ering good fre-

quency resolution for low frequencies.

Wavelet Transform and Filter Banks

By introducing multiresolution, Mallat [5] made an important contribution to

the application of wavelet theory to multimedia, the transition from mathemati-

cal theory to �lters. Multiresolution analysis is implemented via high{pass �lters,

resp. band{pass �lters (i.e., wavelets) and low{pass �lters (i.e., scaling functions).

In this context, the wavelet transform of a signal can be realized with a �lter

bank via successive application of a 2{channel �lter bank consisting of high{pass

and low{pass �lters: the detail coeÆcients (resulting from the application of the

high{pass, resp. band{pass �lter) of every iteration step are kept apart, and the

iteration starts again with the remaining approximation coeÆcients (from ap-

plication of the low{pass �lter) of the transform. This multiresolution theory is

`per se' de�ned only for one{dimensional wavelets on one{dimensional signals.

As still images are two{dimensional discrete signals and two{dimensional wavelet

�lter design remains an active �eld of research [6], current implementations are



restricted to separable �lters. The successive convolution of �lter and signal in

both dimensions opens two potential iterations: standard decomposition (i.e., all

approximations, even in mixed terms, are iterated) and non{standard decompo-

sition (i.e., only the purely low{pass �ltered parts of every approximation enter

the iteration). In this work, we concentrate on the non{standard decomposition.

Image Boundary

A digital �lter is applied to a signal by convolution. Convolution, however,

is de�ned only within a signal. In order to result in a reversible wavelet trans-

form, each signal coeÆcient must enter into filter length/2 calculations of

convolution (here, the subsampling process by factor 2 is already incorporated).

Consequently, every �lter longer than two entries, i.e., every �lter except Haar,

requires a solution for the boundary. Furthermore, images are signals of a rela-

tively short length (in rows and columns), thus the boundary treatment is even

more important than e.g. in audio coding. Two common boundary policies are

padding and circular convolution.

Padding Policies. With padding, the pixels of the signal on either border are

padded with filter length-2 coeÆcients. Consequently, each signal coeÆcient

enters into filter length/2 calculations of convolution, and the transform is

reversible. Many padding policies exist: constant padding, where the signal's

boundary coeÆcient is padded; mirror padding, where the signal is mirrored

at the boundary; spline padding, where the border coeÆcients are extended by

spline interpolation, etc. All padding policies have in common that storage space

in the wavelet domain is physically increased at each iteration step.

Circular Convolution. The idea of circular convolution is to `wrap' the end

of a signal to the beginning or vice versa. In so doing, circular convolution is the

only boundary treatment to maintain the number of coeÆcients for a WT, thus

simplifying storage management. However, the time information contained in the

time{scale domain of the wavelet{transformed coeÆcients `blurs': the coeÆcients

in the time{scale domain that are next to the right border (resp. left border) also

a�ect signal coeÆcients that are located on the left (resp. right).

Iteration Behavior. Convolving the signal with a �lter is only reasonable

for a signal length greater than the �lter length, and each iteration step reduces

the size of the approximating signal by a factor of 2. This does not a�ect the

iteration behavior of padding policies. With circular convolution, however, the

decomposition depth varies with the �lter length: the longer the �lter, the fewer

decomposition iterations are possible. For example, for an image of 256 � 256

pixels, the Daubechies{2 �lter bank with 4 taps allows a decomposition depth

of 7, while the Daubechies{20 �lter bank with 40 taps has reached signal length

after only 3 decomposition levels.



EMPIRICAL EVALUATION

Our empirical evaluation was set up on a number of grayscale images of size

256�256 in order to �nd the best parameter settings on the choice of the wavelet

�lter bank and on the image boundary policy to implement. The compression

rate was simulated by a simple quantization threshold: the higher the threshold,

the more coeÆcients in the time{scale domain are discarded, the higher is the

compression rate. The quality was rated based on the peak signal{to{noise ratio

(PSNR)1. We have focused on the question whether the circular convolution

with its ease of implementation and its drawback on the number of iteration

levels provokes any loss of quality in the decoded image compared to padding.

As a thorough analysis of the results reveals that most phenomena are signal{

dependent, we have decided not to average the results on all our test images,

but to interpret the results based on the speci�c image. A general statement is

possible, however. Table 1 shows the results of the three test images `Baboon',

`Brain' and `Lena' which are presented in Figure 1. The wavelet �lter banks with

the best results at a given parameter set of image, boundary policy and threshold

are marked with �. The following observations are made from Table 1:

1. The PSNR for `Brain' is generally higher than for `Baboon' and `Lena'.

2. `Baboon' has a larger PSNR range than `Lena': in good quality, the PSNR

of `Baboon' is higher, while `Lena' wins this competition with regard to

worse quality.

3. For `Baboon' and `Brain', the PSNR for circular convolution is generally

slightly higher than for the other two policies; for `Lena', mirror padding

reaches the highest PSNR.

4. Most often, the PSNR is highest for a medium{length wavelet �lter.

The explanations for these observations are as follows:

ad 1. The uniform black background of `Brain' causes many coeÆcients in the

time{scale domain to be small. This allows a high thresholding without

deterioration.

ad 2. `Baboon' contains a higher than average amount of details; they deteriorate

the quality with high thresholding.

ad 3. The �rst two test images are (nearly) symmetric at the boundary, thus

circular convolution is a suitable policy to concentrate the image's energy

in a few high coeÆcients. Whereas `Lena' is not symmetric.

ad 4. All wavelet �lter banks have in common that the `locality in
uence' of a co-

eÆcient in the time{scale domain corresponds to their length. The shorter

�lters are thus too irregular: they show strong block artifacts. The very

long �lters, however, `blur' the locality information too much, intermixing

di�erent regions.

1When org(x; y) depicts the pixel value of the original image at position (x; y), and dec(x; y)

denotes the pixel value of the decoded image at position (x; y), then

PSNR = 10 � log

� P
xy

2552P
xy

(org(x;y)�dec(x;y))2

�
:



Astonishingly enough, the number of possible iterations with circular convolution

does not signi�cantly in
uence the quality of the decoded image. Even with the

non{symmetric `Lena', the quality of circular convolution is suÆciently high. Its

ease of implementation makes it especially suited to image coding. Contrarily to

JPEG{2000, where mirror padding is proposed, the overall evaluation of quality

and cost of implementation thus suggests to implement circular convolution.

Concerning the choice of wavelet �lter, we recommend �lters of medium length

(10 to 20 taps), as their overall coding quality is superior to both shorter and

longer �lter banks.

CONCLUSION

We have discussed the strengths and weaknesses of di�erent boundary poli-

cies in relation to di�erent orthogonal wavelet �lter banks. Circular convolution

performs superior in the overall combination of ease of implementation and qual-

ity performance. The decreasing number of iterations that circular convolution

implicates for increasing �lter length can be disregarded in practical applica-

tions, as the recommendation is to implement orthogonal �lters of medium length

(Daubechies{5 to Daubechies{10).

References

[1] A. N. Skodras, C. A. Christopoulos, and T. Ebrahimi. JPEG2000: The

Upcoming Still Image Compression Standard. In 11th Portuguese Conference

on Pattern Recognition (RECPA00D), pages 359{366, Porto, Portugal, May

2000.

[2] John D. Villasenor, Benjamin Belzer, and Judy Liao. Wavelet Filter Eval-

uation for Image Compression. IEEE Transactions on Image Processing,

2:1053{1060, August 1995.

[3] Javier Garcia-Frias, Dan Benyamin, and John D. Villasenor. Rate Distortion

Optimal Parameter Choice in a Wavelet Image Communication System. In

Proc. International Conference on Image Processing (ICIP), pages 25{28,

Santa Barbara, CA, October 1997.

[4] Michael D. Adams and Faouzi Kossentini. Performance Evaluation of Re-

versible Integer{to{Integer Wavelet Transforms for Image Compression. In

Proc. IEEE Data Compression Conference, page 514 �, Snowbird, Utah,

March 1999.

[5] St�ephane Mallat. A Wavelet Tour of Signal Processing. Academic Press, San

Diego, CA, USA, 1998. ISBN 0-12-466605-1.

[6] Jelena Kova�cevi�c and Martin Vetterli. Nonseparable Two{ and Three{

Dimensional Wavelets. IEEE Transactions on Signal Processing, 43(5):1269{

1273, May 1995.



(a) Baboon. (b) Brain. (c) Lena.

Figure 1: Test images for Table 1.

Quality of visual perception | PSNR

Baboon Brain Lena

zero mirror circular zero mirror circular zero mirror circular

Wavelet padding padding convol. padding padding convol. padding padding convol.

Threshold: 10 | Excellent overall quality

Daub{2 18.012 17.996 18.238� 18.141 18.151 18.197 16.392 16.288 16.380

Daub{3 18.157 18.187 18.221 18.429 18.434 18.433 16.391 16.402 16.350

Daub{4 18.169 18.208� 17.963 18.353 18.340 18.248 16.294 16.355 16.260

Daub{5 18.173� 18.167 18.186 18.279 18.280 18.259 16.543� 16.561� 16.527�

Daub{10 17.977 17.959 18.009 18.291 18.300 18.479 16.249 16.278 16.214

Daub{15 17.938 17.934 18.022 18.553
�

18.543
�

18.523
�

16.267 16.304 16.288

Daub{20 17.721 17.831 18.026 18.375 18.357 18.466 16.252 16.470 16.238

Threshold: 20 | Good overall quality

Daub{2 14.298 14.350 14.403 16.610 16.611 16.577 14.775 14.765 14.730

Daub{3 14.414� 14.469� 14.424� 16.743 16.755 16.721 14.758 14.817 14.687

Daub{4 14.231 14.239 14.276 16.637 16.628 16.734 14.862� 14.918 14.735

Daub{5 14.257 14.216 14.269 16.747 16.751 16.854 14.739 14.946� 14.815�

Daub{10 14.268 14.274 14.360 16.801 16.803 16.878� 14.624 14.840 14.699

Daub{15 14.246 14.258 14.300 16.822 16.810 16.852 14.395 14.631 14.477

Daub{20 14.046 14.065 14.227 16.953� 16.980� 16.769 14.252 14.597 14.353

Threshold: 45 | Medium overall quality

Daub{2 10.905 10.885 10.910 14.815 14.816 14.747 13.010� 13.052 12.832

Daub{3 10.988� 10.970� 10.948 15.187� 15.150� 15.052 12.766 13.138 12.903

Daub{4 10.845 10.839 10.885 15.014 15.029 15.056 12.820 13.132 12.818

Daub{5 10.918 10.969 10.949� 15.036 15.031 14.999 12.913 13.301� 12.983�

Daub{10 10.907 10.929 10.913 14.989 15.013 15.212� 12.447 13.066 12.795

Daub{15 10.845 10.819 10.815 15.093 15.133 15.064 12.577 12.954 12.686

Daub{20 10.784 10.872 10.843 14.975 14.934 14.882 12.299 12.877 12.640

Threshold: 85 | Bad overall quality

Daub{2 9.095 9.121 9.135 13.615 13.621 13.783 11.587 11.902� 11.577

Daub{3 9.206 9.184 9.124 13.787 13.784 13.759 11.437 11.793 11.516

Daub{4 9.160 9.152 9.168 13.792 13.815 13.808 11.539 11.806 11.636

Daub{5 9.171 9.208� 9.203 13.837 13.850 13.705 11.692� 11.790 11.872�

Daub{10 9.207� 9.193 9.206� 13.870� 13.922� 14.042� 11.128 11.430 11.555

Daub{15 9.083 9.161 9.126 13.731 13.795 13.917 11.128 11.610 11.475

Daub{20 9.071 9.142 9.204 13.852 13.800 13.974 11.142 11.694 11.597

Table 1: Results of measurements of the images `Baboon', `Brain' and `Lena'. The

PSNR (in dB) presents the quality of the visual perception.


