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Abstract

In multicast communication, it is often required that feed-
back is received from a potentially very large group of re-
sponders while at the same time a feedback implosion needs
to be prevented. To this end, a number of feedback control
mechanisms have been proposed, which rely either on tree-
based feedback aggregation or timer-based feedback sup-
pression. Usually, these mechanisms assume that it is not
necessary to discriminate between feedback from different
receivers. However, for many applications this is not the
case and feedback from receivers with certain response val-
ues is preferred (e.g., highest loss or largest delay).

In this paper, we present modifications to timer-based feed-
back suppression mechanisms that introduce such a prefer-
ence scheme to differentiate between receivers. The modifi-
cations preserve the desirable characteristic of reliably pre-
venting a feedback implosion.

Keywords: multicast feedback; extremum detection; feed-
back suppression; biased feedback

1 Introduction

Many multicast protocols require receiver feedback. Feed-
back can be used for negative acknowledgements in reliable
multicast [5], for control and identification functionality for
multicast transport protocols [12], for status reporting from
receivers for congestion control [11], and for the reporting
of allocation clashes in multicast address allocation mech-
anisms [8]. In such scenarios, the size of the receiver set is
potentially very large. Sessions with several million partic-
ipants may be common in the future and without an appro-
priate feedback control mechanism a severe feedback im-
plosion is possible.

Some multicast protocols arrange receivers in a tree hierar-
chy. This hierarchy can be used to aggregate receiver feed-
back at the inner nodes of the tree to effectively solve the
feedback implosion problem. However, in many cases such
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a tree will not be available (e.g., for satellite links) or cannot
be used for feedback aggregation (e.g., in networks without
router support). For this reason, we will focus on feedback
control using timer-based feedback suppression throughout
the remainder of the paper.

Pure end-to-end feedback suppression mechanisms do not
need any additional support except from the receivers them-
selves and can thus be used for arbitrary settings. The ba-
sic mechanism of feedback suppression is to use random
feedback timers at the receivers. Feedback is sent when the
timer expires unless it is suppressed by a notification that
another receiver (with a smaller timeout value for its feed-
back timer) already sent feedback.

Most of the mechanisms presented so far assume that there
is no preference as to which receivers send feedback. As we
will see, for many applications this is not sufficient. Those
applications require the feedback to reflect an extreme value
for some parameter within the group. Multicast congestion
control, for example, needs to get feedback from the re-
ceiver(s) experiencing the worst network conditions. Other
examples are the polling of a large number of sensors for
extreme values, online auctions where one is interested in
the highest bids, and the detection of resource availability
in very large distributed systems.

In this paper we propose several algorithms that favour feed-
back from receivers with certain characteristics while pre-
serving the feedback implosion avoidance of the original
feedback mechanism. Our algorithms can therefore be used
to report extrema from very large multicast groups.

Past work related to this paper is presented in section 2.
In section 3 we summarize basic properties of timer-based
feedback algorithms and give some definitions to be used
in our analysis. Depending on the amount of knowledge
about the distribution of the values to be reported we dis-
tinguish extremum detection and feedback bias. With the
former we just detect extreme values without forcing early
responses from receivers with extreme values. This variant
which requires no additional information about the distri-
bution of the values is studied in section 4. With the latter
we exploit knowledge about the value distribution by bias-
ing the timers of responders. Biased feedback is studied in
section 5. In both sections, we give a theoretical analysis
of the properties of our feedback mechanisms and present
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simulations that corroborate our findings. We conclude the
paper and give an outlook on future work in section 6.

2 Related work

Feedback suppression algorithms have already been widely
studied and employed. Good scalability to very large re-
ceiver sets can be achieved by exponentially distributing
the receivers’ feedback times. A method of round-based
polling of the receiver set with exponentially increasing re-
sponse probabilities was first proposed in [2] to be used as
a feedback control mechanism for multicast video distribu-
tion. It was later refined by Nonnenmacher and Biersack
[10], using a single feedback round with exponentially dis-
tributed random timers at the receivers. In [7], the authors
compare the properties of different methods of setting the
timer parameters with exponential feedback and give an-
alytical terms and simulation results for feedback latency
and response duplicates. However, none of these papers
consider preferential feedback.

A simple scheme to gradually improve the values reported
by the receivers is presented in [1]. Receivers continu-
ously give feedback to control the sending rate of a mul-
ticast transmission. Since the lowest rate of the previous
round is known, feedback can be limited to receivers with
as low a rate. The rate must be adjusted by the largest pos-
sible increase during one round to be able to react to im-
proved network conditions. After several rounds, the send-
ing rate will reflect the smallest feedback value of the re-
ceiver set. While not specifically addressed in the paper,
this scheme could be used in combination with exponential
feedback timers for suppression within the feedback rounds
to reliably prevent a feedback implosion. However, with
this scheme it may still take a number of rounds to obtain
the optimum feedback value.

To our knowledge, the only work that is directly concerned
with altering a non-topology based feedback suppression
mechanism to solicit responses from receivers with spe-
cific metric values is presented in [3]. The authors discuss
two different mechanisms, Targeted Slotting and Damping
(TDS) and Targeted Probabilistic Iterative Polling (TIPP).
For TDS, response values are divided into classes and the
feedback mechanism is adjusted such that response times
for the classes do not overlap. Responders within a better
class always get to respond earlier than lower-class respon-
ders. Thus, the delay before feedback is received scales
linearly with the number of empty “high” classes. Fur-
thermore, it is not possible to obtain real values as feed-
back without the assignment of classes. To prevent im-
plosion when many receivers fall into the same class, the
response interval of a single class is divided into subinter-

vals and the receivers are randomly spread over these in-
tervals. It was shown in [10, 7] that a uniform distribu-
tion of response times scales very poorly to large receiver
sets. TIPP provides better scalability by using a polling
mechanism based on the scheme presented in [2], thus hav-
ing more favourable characteristics than uniform feedback
timers. However, separate feedback rounds are still used for
each possible feedback class. This results in very long feed-
back delays when the number of receivers is overestimated
and the number of feedback classes is large. Underestima-
tion will lead to a feedback implosion. As a solution, the
authors propose estimating the size of the receiver set be-
fore starting the actual feedback mechanism. Determining
the size of the receiver set requires one or more feedback
rounds. In contrast, the mechanisms discussed in this paper
only require a very rough upper bound on the number of re-
ceivers and will result in (close to) optimal feedback values
within a single round. A further assumption for TDS and
TIPP is that the distribution of the response values is known
by the receivers. In most real scenarios this distribution is at
best partially known or even completely unknown. If how-
ever the distribution is known, a feedback mechanism that
guarantees optimum response values and at the same time
prevents a feedback implosion can be built. Such a mecha-
nism is presented in section 5.

3 General considerations

Let us first summarize some general considerations about
feedback on which we will later base our analysis. For
feedback suppression with exponentially distributed timers,
each receiver gives feedback according to the following mech-
anism1:

Algorithm 1 Let N be an estimated upper bound on the
number of potential responders and T an upper bound on
the amount of time by which the sending of the feedback can
be delayed in order to avoid feedback implosion.

Upon receipt of a feedback request each receiver draws a
random variable x uniformly distributed in (0; 1] and sets
its feedback timer to

t = T max(0; 1 + logN x) (1)

When a receiver is notified that another receiver already
gave feedback, it cancels its timer. If the feedback timer
expires without the receiver having received such a notifi-
cation, the receiver sends the feedback message.

1See [7]. Extending the suggestions in [10] this algorithms sets the
parameter of the exponential distribution to its optimal value � = lnN

and additionally introduces an offset of N�1 at t = 0 into the distribution
that further improves the feedback latency.
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The set of potential responders is formed by the participants
that simultaneously want to give feedback. If no direct esti-
mate is possible, N can be set to an upper bound on the size
of the entire receiver set.

Time is divided into feedback rounds, which are either im-
plicitly or explicitly indicated to the receivers. In case con-
tinuous feedback is required, a new feedback round is started
at the end of the previous one (i.e., after the first receiver
gave feedback).

The choice of parameters is critical for the functioning of
the mechanism. While the mechanism is relatively insensi-
tive to overestimation of the size of the receiver set, under-
estimation will result in a feedback implosion. Thus, a suf-
ficiently large value for N should be chosen. Similarly, the
maximum feedback delay T should be significantly larger
than the network latency2 � among the receivers since for
T � � a feedback implosion is inevitable.

The expected delay until the first feedback message is sent
is

E[D] =
T

lnN

Z 1

1=N

(1� x)n

x
dx

' T (1� logN n) (2)

and the expected number of feedback messages is

E[M ] = N�=T

�
n

N
+

�
1�

1

N

�n
�

�
1�

1

N�=T

�n�
(3)

where n is the actual number of receivers. A proof of Equa-
tion (2) is given in Appendix A and a proof of Equation (3)
can be found in [7]. From the latter equation we learn that
E[M ] remains fairly constant over a large range of n (as
long as n . N ).

3.1 Unicast vs. multicast feedback channels

When receivers are able to multicast packets to all other re-
ceivers, feedback cancellation is immediate in that the feed-
back that ends the feedback round is received by other re-
ceivers at roughly the same time as by the sender.

However, the mechanism described in the previous section
also works in environments where only the sender has mul-
ticast capabilities, such as in many satellite networks or net-
works where source-specific multicast [4] is deployed. In
that case, feedback is first unicast back to the sender which
then multicasts a feedback cancellation message to all re-
ceivers. This incurs an additional delay of half a round-trip

2With network latency we denote the average time between the sending
of a feedback response by any one of the receivers and the receipt (of a
notification) of this response by other receivers.

time, thus roughly doubling the feedback latency of the sys-
tem (in the case of symmetric transmission delays between
the sender and the receivers.)

In order to safeguard against loss of feedback cancellation
messages with unicast feedback channels, we note that it
may be necessary to let the sender send multiple cancella-
tion messages in case multiple responses arrive at the sender
and/or to repeat the previous cancellation message after a
certain time interval. Loss of cancellation messages is crit-
ical since a delayed feedback cancellation is very likely to
provoke a feedback implosion.

3.2 Message Piggybacking

The feedback requests and the cancellation messages from
the sender can both be piggybacked on data packets to min-
imize network overhead. In case a unicast feedback channel
is used, piggybacking has to be done with great care since
at low sending rates the delayed cancellation messages may
provoke a feedback implosion. This undesired behavior is
likely to occur when the inter-packet spacing between data
packets gets close to the maximum feedback delay.

The problem can be prevented by not piggybacking but send-
ing a separate cancellation message at low data rates (i.e.,
introducing an upper bound on the amount of time by which
a cancellation message can be delayed). If separate cancel-
lation messages are undesirable, it is necessary to increasing
the maximum feedback delay T in proportion to the time
interval between data packets.

3.3 Removing latency bias

Plain exponential feedback favours low-latency receivers
since they get the feedback request earlier and are thus more
likely to suppress other feedback with an early response. In
case all (or some) of the receivers know their own latency
� as well as an upper bound on the latency for all receivers
�max, it is possible to (partially) remove this bias. Receivers
simply schedule the sending of the feedback message for
time t+ (�max � �) instead of t.

In fact, this unbiasing itself introduces a slight bias against
low-latency receivers in case unicast feedback channels are
used. While the first feedback message is unaffected, subse-
quent duplicates are more likely to come from high-latency
receivers, since they will receive the feedback suppression
notification from the sender later in time.

If it is not necessary to remove the latency bias, the ad-
ditional receiver heterogeneity generally improves the sup-
pression characteristics of the feedback mechanism, as dem-
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onstrated in [10]. Similar considerations hold for the sup-
pression mechanisms discussed in the following sections.

4 Extremum detection

Let us now consider the case where not only an arbitrary
response from the group is required but an extreme value
for some parameter from within a group. Depending on the
purpose the required extremum can be either a maximum or
a minimum. Without loss of generality we will formulate all
algorithms as maximum detection algorithms.

4.1 Basic Extremum Detection

An obvious approach to introduce a feedback preference
scheme is to extend the normal exponential feedback mech-
anism with the following algorithm:

Algorithm 2 Let v1 > v2 > : : : > vk > 0 be the set of
response values of the receivers.

Upon receipt of a feedback request each receiver sets a
feedback timer according to Algorithm 1. When a receiver
with value v is notified that another receiver already gave
feedback with v0 � v, it cancels its timer. If the feedback
timer expires without having received such notification (i.e.,
for all notifications v 0 < v or no notifications were received
at all), the receiver sends a feedback message with value v.

With this mechanism the sender will always obtain feed-
back from the receiver with the largest response value within
one feedback round.

Let us now analyse the algorithm in detail: Following Equa-
tion (3) we use n for the actual number of potential respon-
ders and denote the expected number of feedback messages
in Algorithm 1 with R(n) := E[M ]. Let pi be the fraction
of responders with value vi. For k = 1 the problem reduces
to Algorithm 1 and we expectR(n) feedback messages. For
k = 2 we can reduce the problem to the previous case by
assuming that every v1 responder responds with both a v1
and a v2 message. Hereby, we can treat both groups inde-
pendently from each other while preserving the fact that v 1
responders also stop further (unnecessary) responses from
v2 responders. Summing up both expected values we have
R(p1n) +R(n) messages. However p1 of the v2 messages
were sent by v1 responders and are thus duplicates. Sub-
tracting these duplicates we obtain R(p1n) + p2R(n) for
the expected number of responses.

This argument can be extended to the general case

E[M ] = R(p1n) +
p2

p1 + p2
R(p1n+ p2n)

+
p3

p1 + p2 + p3
R(p1n+ p2n+ p3n)

+ � � �+ pkR(n)

=
kX
i=1

pi

Pi
R(Pin) (4)

wherePi := p1+p2+:::+pi and thusPk = 1. According to
[7], R(n) remains approximately constant over wide ranges
of n. Assuming R(n) ' R, pi ' 1

k
, and k � 1 we have

E[M ] '

�
1 +

1

2
+

1

3
+ � � �+

1

k

�
R

' (ln k + C)R (5)

where C = 0:577: : : denotes the Euler constant.

From this analysis we see that the number of possible feed-
back values has an impact on the expected number of feed-
back messages. For a responder set with a real-valued feed-
back parameter this results in E[M ] ' ln(n)R.

4.2 Class-based Extremum Detection

Although this logarithmic increase is well acceptable for
a number of applications, the algorithm’s properties can
easily be further improved by the introduction of feedback
classes. Within those classes no differentiation is made be-
tween different feedback values. Note that it is not neces-
sary to choose a fixed size for all classes. The class size
can be adapted to the required granularity for certain value
ranges. In case a fixed number of classes is used, the ex-
pected number of feedback messages increases only by a
constant factor over normal exponential feedback. This in-
crease is expectedly observed in the simulation results shown
in Figure 1. As the number of classes approaches the num-
ber of receivers, the increase in feedback messages follows
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more and more the logarithmic increase for real-valued feed-
back as stated in Equation (5). For all simulations in this pa-
per we use the parameters N = 100; 000 and T = 4� and
average the results over 200 simulation runs, unless stated
otherwise.

By adjusting the classes’ positions depending on the ac-
tual value distribution, the number of classes required to
cover the range of possible feedback values can be reduced
without increasing the intervals’ actual size. Thereby, the
granularity of the feedback suppression (i.e., to what extent
less optimal values can suppress better values) remains un-
changed while the number of feedback messages is reduced.

Figure 2 gives a schematic overview of this mechanism.
The first diagram shows the classless version of the feed-
back algorithm. Here, each time a feedback message v i is
sent the suppressed value range (shaded area) increases to
[0; vi]. A total of four feedback messages is sent in this
example. The second diagram shows the same distribution
of feedback for the case of static classes. Without loss of
generality we assume equally sized classes of size Æ and
v1 2 [0; Æ] for this example. After receipt of the first feed-
back message v1 the entire range [0; Æ] of the lowest feed-
back class is suppressed. Only when a value outside this
class is to be reported another message is sent, resulting in
three feedback messages in total. The third diagram shows
the case of dynamically adjusted classes. Upon receipt of
the first feedback message v1 the suppression limit is imme-
diately raised to v1+Æ and thus the value range [0; v1+Æ] is
now being suppressed. Through this mechanism feedback
is reduced to only two messages.

With the above considerations, an elegant way to introduce
feedback classes is the modification of Algorithm 2 to sup-
press feedback not only upon receipt of values strictly larger
than the own value v but also upon receiving values v 0 �
(1 � q)v, resulting in an adaptive feedback granularity de-
pendent on the absolute value of the optimum.

Algorithm 3 Let q be a tolerance factor with q 2 [0; 1].
Modify Algorithm 2 such that a responder with value v can-
cels its timer if another responder has already sent feedback
for value v0 with v0 � (1� q)v.

For q = 0 the algorithm is equivalent to Algorithm 2, whereas
for q = 1 we obtain Algorithm 1.

Assuming the values vi to be evenly distributed between
rvmax and vmax (0 < r < 1) we have approximately k

feedback classes3, where k < ln r
ln 1�q

. For a value range

0 < vi < 1 we can assume k < � lnn
ln 1�q

, thus setting r

inversely proportional to the number of receivers since the
3We assume the parameter range (r; 1) to be fully covered by the feed-

back classes which is not strictly the case for this algorithm. This approx-
imation thus overestimates the expected number of feedback messages.

receiver set is too small to cover the whole range of possible
values.

Approximating further with

pi =
(1� q)i�1 � (1� q)i

1� r
= q

(1� q)i�1

1� r

and

Pi =
1� (1� q)i

1� r

we have

Emax[M ] < qR

kX
i=1

(1� q)i�1

1� (1� q)i
(6)

The mechanism strongly benefits from the feedback classes
being more densely populated near the maximum than the
classes near the minimum, resulting in a much lower ex-
pected number of feedback messages than the previous al-
gorithm. Note that for small r the number of members
with v < (1 � q)�1r can be very small. Eventually, these
feedback classes will contain only a single member and we
therefore loose the desired suppression effect that leads to
a sub-logarithmic increase of feedback messages. In maxi-
mum search this effect cannot be observed since already a
single response in the larger feedback classes near the max-
imum will suppress all feedback from the potentially large
number of small classes.

To demonstrate the effect we will calculate the expected
number of feedback messages for a minimum search sce-
nario: The feedback values vi are again evenly distributed
between rvmax and vmax, but in contrast to Algorithm 3 a
responder cancels its timer if a response with v 0 � (1� q)v
was received. The algorithm produces the minimal value
of the group within a factor of q. Note that as far as the
expected number of feedback messages is concerned, this
mechanism is equivalent to a maximum search with small
class sizes for classes close to the optimum.

The feedback classes are in the opposite order as compared
to our previous calculation.

pi =
(1� q)k�i � (1� q)k�i+1

1� r
= q

(1� q)k�i

1� r

and

Pi =
(1� q)k�i � (1� q)k

1� r

Thus

Emin[M ] < qR

kX
i=1

1

1� (1� q)i
(7)

� (1� q)Emax[M ] + kqR
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Figure 2: Class-based suppression with variable class position
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Figure 3: Number of feedback messages for maximum search (left) and minimum search (right)

Hence, for small r (large k) the sum is significantly larger
than in the previous case.

Both scenarios have been simulated with various values for
q. The sub-logarithmic increase of feedback messages is
seen in both plots shown in Figure 3. But only in the maxi-
mum search case where the feedback-classes near the search
goal are densely populated the strong class-induced sup-
pression dominates the ln(n) scale-effect.

Numeric values for the upper limits on the expected num-
ber of feedback messages in both scenarios can be obtained
from Equations (6) and (7). Some example values are shown
in Table 1. These limits match well with the results of our
simulations.

q 0.05 0.10 0.25 0.50 1.00

Maximum search 3.64 3.00 2.19 1.59 1.00
Minimum search 7.91 7.00 5.64 3.80 1.00

Table 1: Upper limits (as factor of R) for the expected num-
ber of feedback messages (r = 10�2)

As mentioned before, Algorithm 3 guarantees a maximum
deviation from the true optimum of a factor of q. It is worth-
while to note that this factor really is an upper bound on the
deviation. Almost always the reported values will be much
closer to optimal since the sender can choose the best one of
all the responses given. The deviation of the best reported
value from the optimum for different tolerance factors q is
depicted in Figure 4. On average, with normal exponen-
tial suppression (i.e., q = 100%) the best reported value
lies within 10% of the optimum, for q = 50% the devia-
tion drops to less than 0.15%, for q = 10% we obtain less
than 0.02% deviation, etc. Thus, even for relatively high q
with consequently only a moderate increase in the number
of feedback messages, the best feedback values have only a
marginal deviation from the optimum.

5 Biased Feedback

The previously described algorithms yield considerable re-
sults for various cases of extremum detection. However,
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they will not affect the expected value of the first feed-
back message but only result in improved expected values
for subsequent messages. In certain cases, the algorithms
can be further improved by biasing the feedback timers. In-
creasing the probability that t1 < t2 if v1 > v2 results
in better feedback behaviour but we must carefully avoid a
feedback implosion for cases where many large values are
present in the responder group.

If we know the probability distribution of the values v we
can achieve our goal of minimizing the number of responses
by the following algorithm:

Algorithm 4 Let P (v) = P (v0 < v) be the probability
distribution function of the values v within the group of re-
sponders. We follow Algorithm 1, but instead of drawing a
random number we set the feedback time directly to

t = T max(0; 1 + logN (1� P (v)))

Clearly, duplicate feedback responses are now only due to
network latency effects since the maximal responder is guar-
anteed to have the earliest response time. However, the
feedback latency is strongly coupled to the actual set of
feedback values. Moreover, if the probability distribution of
this specific set does not match the distribution used in the
algorithm’s calculation, feedback implosion is inevitable.
For this reason, Algorithm 4 should only be used if the dis-
tribution of feedback values is well known for each individ-
ual set of values.

The latter condition is crucial. In general, it does not hold
for values from causally connected responders. Consider
for example the loss rate for multicast receivers: if conges-
tion occurs near the sending site, all receivers will experi-
ence a high rate of packet loss simultaneously. Since the
time-average distribution does not show this coherence ef-
fect the algorithm presented above will produce feedback
implosion, if used to solicit responses from high-loss re-
ceivers. Due to this effect, the application of this simple

mechanism is quite limited. It can be used, for example,
with application level values where no coherence is gener-
ated within the network.

A simple way to adopt the key idea of value-based feed-
back bias is to mix value-based response times with a ran-
dom component. This mechanism can be applied in various
cases where coherence effects prohibit the application of al-
gorithm 4. Let us study an example:

Algorithm 5 Apply Algorithm 1 but modify the feedback
time to

t = T max(0; (1� v) + v(1 + logN x))

= T max(0; (1 + logN xv)) (8)

Here, the feedback time consists of a component linearly
dependent on the feedback value and a component for the
exponential feedback suppression. The feedback time t is
increased in proportion to decreasing feedback values v and
a smaller fraction of T is used for the actual suppression.
As long as at least one responder has a sufficiently early
feedback time to suppress the majority of other feedback
this distribution of timer values greatly decreases the num-
ber of duplicate responses while at the same time increas-
ing the quality of the feedback (i.e., the best reported value
with respect to the actual optimum value of the receiver
set). Furthermore, in contrast to pure extremum detection
algorithms this mechanism improves the expected feedback
value of the first response as well as subsequent responses.

However, the feedback suppression characteristics of the
above mechanism still depend at least to some extent on the
value distribution at the receivers. Some extreme cases such
as v = 0 for all receivers will always result in a feedback
implosion. A more conservative approach is to not combine
bias and suppression but use a purely additive bias.

Algorithm 6 Apply Algorithm 1 but modify the feedback
time to

t = T max (0; (1� v) + (1� )(1 + logN x)) (9)

with  2 [0; 1].

To retain the same upper bound on the maximum feedback
delay, it is necessary to split up T and use a fraction of T to
spread out the feedback with respect to the response values
and the other fraction for the exponential timer component.
As long as (1 � )T is sufficiently large compared to the
network latency � , an implosion as in the above example is
no longer possible.

To better demonstrate the characteristics of these modifica-
tions, Figures 5 to 7 show how the feedback time changes
with respect to response values compared to normal unbi-
ased feedback according to Algorithm 1. A single set of
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Figure 5: Feedback time and value (uniform distribution of values)
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Figure 6: Feedback time and value (exponential distribution of values)
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Figure 7: Feedback time and value (truncated uniform distribution of values)
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random variables was used for all the simulations to allow
a direct comparison of the results. For the simulations, the
parameters N and n were set to 10; 000 and 2; 000 respec-
tively.4 In these simulations we do not consider maximum
search but only how feedback biasing affects the distribu-
tion of feedback timers. Thus, to isolate the effect of feed-
back biasing, only a single feedback class was used such
that the first cancellation notification suppresses all sub-
sequent feedback. All simulations were carried out with
T = 4� as well as T = 8� to demonstrate the impact of
the feedback delay on the number of feedback responses.
Each graph shows the feedback times in � of the receiver
set along the x-axis and the corresponding response values
on the y-axis for each of the three feedback mechanisms no
bias (Algorithm 1), combined bias (Algorithm 5), and addi-
tive bias (Algorithm 6) with  = 1=4. Suppressed feedback
messages are marked with a dot, feedback that is sent is
marked with a cross, and the black square indicates which
of these feedback messages had a value closest to the actual
optimum of the receiver set.

In the graphs in Figure 5, the response values of the re-
ceivers are uniformly distributed. When no feedback bias is
used, the first response that suppresses the other responses
is random in value. In contrast, both feedback biasing meth-
ods result in the best reported feedback value being very
close to the actual optimum. The number of sent feed-
back messages is higher with the two biasing methods since
a smaller fraction of T is used for feedback suppression.
Naturally, the number of feedback messages also increases
when T is smaller (as depicted in the right graph).

In Figure 6, the same simulations were carried out for an ex-
ponential distribution of response values with a high prob-
ability of being close to the optimum. (When a reversed
exponential distribution with most values far from the opti-
mum is used, the few good values suppress all other feed-
back and again a feedback implosion is always prevented.)
As can be seen from the graph, feedback suppression works
well even when the actual distribution of response values is
no longer uniform. For a uniform as well as an exponen-
tial distribution of response values, the combined bias sup-
pression method results in fewer feedback messages while
maintaining the same feedback quality.

However, as mentioned before, combining bias and sup-
pression permits a feedback implosion when the range of
feedback values is smaller than anticipated. In this case, the
bias results in an unnecessary delaying of feedback mes-
sages, thus reducing the time that can be used for feedback
suppression. In Figure 7, the response values are distributed
uniformly in [0; 0:25] instead of [0; 1]. For T = 4� , the

4Note that using n = N = 10; 000 instead of n = 2; 000 would
reduce the probability of an implosion since the probability that one early
responder suppresses all others increases.

Feedback Time No Bias Additive Combined

T=4, Uniform 5 19 15
T=4, Exponential 5 14 12
T=4, Truncated 5 14 2000

T=8, Uniform 2 6 4
T=8, Exponential 2 2 2
T=8, Truncated 2 2 334

Table 2: Number of responses with the different biasing
methods
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Figure 8: Number of responses with feedback biasing

time left for feedback suppression is � , resulting in a sce-
nario where no suppression is possible and each receiver
will send feedback. Even when T = 8� and thus a time
of 2� can be used for the feedback suppression, the number
of feedback messages is considerably larger than in simu-
lations with an additive bias. The exact numbers for the
feedback responses of the three methods are given in Ta-
ble 2.

For suppression to be effective, the amount of time reserved
for the exponential distribution of the feedback timers should
not be smaller than 2� . Thus, the feedback implosion with
Algorithm 5 can be prevented by bounding v such that vT >

2� (i.e., using v0 = max(v; 2�=T ) instead of v in Equa-
tion (8)).

The outcome of a single experiment is not very represen-
tative since the number of feedback messages is extremely
dependent on the feedback values of the early responders.
As for the previously discussed feedback mechanisms, we
depict the number of feedback messages for combined and
additive bias averaged over 200 simulations in Figure 8.

The main advantage of the feedback bias is that the ex-
pected response value for early responses is improved. This
not only reduces the time until close to optimal feedback
is received (with unbiased feedback and class-based sup-
pression, close to optimal feedback is likely to arrive at the
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Figure 9: Deviation of best responses value from optimum
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Figure 10: Deviation of first response value from optimum

end of a feedback round) but also reduces the number of
responses with less optimal feedback.

Figure 9 shows how the feedback quality improves com-
pared to the normal exponential feedback suppression when
biasing the feedback timer. The maximum deviation is re-
duced from about 15% to 6% for additive bias and to less
than 2% for combined bias.

While a similar increase in feedback quality can be achieved
by using feedback classes (at the expense of an increased
number of feedback messages) only with a feedback bias
is it possible to improve the quality of the first feedback
message. In case a close to optimal value is needed very
quickly, using either Algorithm 5 or Algorithm 6 can be
beneficial. Figure 10 depicts the average deviation of the
value of the first feedback message from the optimum. Here,
the increase in quality is much more obvious than in the
previous case. With all unbiased feedback mechanisms, the
first reported value is random and thus the average devia-
tion is 50% (for large enough n) whereas the combined and
the additive biased feedback mechanisms achieve average
deviation values around 10% and 30% respectively.
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Figure 11: Average feedback delay

Lastly, the expected delay until the first feedback message is
received is of concern. While all mechanisms adhere to the
upper bound of T , feedback can be expected earlier in most
cases. In Figure 11 we show the average feedback delay for
biased and unbiased feedback mechanisms. For all algo-
rithms the feedback delay decreases logarithmically for an
increasing number of receivers. The exact run of the feed-
back curve depends on the amount of time used for suppres-
sion. For this reason, unbiased feedback delay drops faster
than biased feedback, since a bias can only delay feedback
messages compared to unbias feedback. In case the number
of receivers is estimated correctly (i.e., n = N ), the feed-
back delay for unbiased feedback drops to � , the minimum
delay possible for such a feedback system. Biased feedback
delay is slightly higher with approximately 1:5� .

6 Conclusions

In this paper we presented mechanisms that improve upon
the well-known concept of exponential feedback suppres-
sion in case feedback of some extreme value of the group is
needed. We discuss two orthogonal methods to improve the
quality of the feedback given. If no information is avail-
able about the distribution of the values at the receivers,
a safe method to obtain better feedback is to modify the
suppression mechanism to allow the sending of high val-
ued feedback even after a receiver is notified that a different
receiver already gave feedback. We give exact bounds for
the expected increase in feedback messages for a given im-
provement in feedback quality. If more information about
the distribution of feedback values is available or certain
worst-case distributions are very unlikely, it is furthermore
possible to bias the feedback timer. The better the feedback
value the earlier the feedback is sent, thus suppressing later
feedback with less optimal values. The modified suppres-
sion mechanism and the feedback biasing can be used in

10



combination to further improve the feedback process.

The mechanisms discussed in this paper have been included
in the TCP-friendly Multicast Congestion Control Protocol
(TFMCC) [13]. It uses class-based feedback cancellation
as well as feedback biasing to determine the current limiting
receiver (i.e., the receiver with the lowest expected through-
put of the multicast group). The protocol depends on short
feedback delays in order to quickly respond to congestion.
Selecting the correct receiver as current limiting receiver
is critical for the functioning of the protocol since a wrong
choice may compromise the TCP-friendly characteristics of
TFMCC. In that sense, the feedback mechanism is an im-
portant part of the TFMCC protocol.

Extremum feedback is not yet included in any other appli-
cation, but we believe a number of applications can benefit
from it.

6.1 Future Work

In the future we would like to continue this work in several
directions.

Most applications need to consider only one type of feed-
back value. Nevertheless, it may sometimes be useful to get
multivalued feedback, for example to monitor some critical
parameters of a large network, where changes in each of
the parameters are equally important. It may not always
be possible to aggregate different types of values to one
single “ranking” value. In this case, a multivalued feed-
back mechanism clearly has better suppression character-
istics than separate feedback mechanisms for each of the
relevant values.

Another important step will be the combination of knowl-
edge about the value distribution within the responder group
with implosion avoidance features. Several mechanisms
to estimate the size of the receiver set from the feedback
time and the number of feedback messages with exponen-
tial feedback timers have been proposed [9, 6]. Combining
such estimation methods with extremum feedback, it should
be possible to estimate the distribution of response values
at the receivers in case this distribution is not known. For
continuous feedback, this knowledge can then be used to
generate feedback mechanisms based on Algorithm 4.

Taking these considerations one step further, in some cases
the maximum change of the relevant state during one feed-
back round is bounded. For example, in the case of TFMCC,
the measurements to determine round-trip time and loss event
rate are subject to smoothing, thus limiting the maximum
rate increase and decrease per round-trip time. In case (par-
tial) information about the current distribution of feedback
values is known (e.g., from the previous feedback round),

it is possible to infer the worst case distribution of the next
feedback round. This allows to further improve the feed-
back algorithm by tailoring it to the specific distribution.
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A Proof of Equation (2)
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This result is approximated from below by lnn+ C where
C = 0:577 : : : is the Euler constant.
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For a proof of Equation (3) we refer the reader to [7].

B Additional Simulation Graphs

On the following pages we present a more comprehensive
overview of the graphs created from the simulations. How-
ever, we will not discuss each graph in detail.

In Figures 12-14, we show the results of simulations similar
to the ones depicted in Figures 5-7. with tolerance value
of q = 0:0 instead of q = 1:0. Again, we also include
Table 3 for the exact numbers of feedback messages in the
experiments.

Feedback Time No Bias Additive Combined

T=4, Uniform 56 65 41
T=4, Exponential 56 85 52
T=4, Truncated 56 78 2000

T=8, Uniform 22 21 14
T=8, Exponential 22 28 21
T=8, Truncated 22 28 416

Table 3: Number of responses (q = 0:0)

All other figures consist of four graphs each, depicting the
average number of feedback messages, the feedback time,
the feedback quality of the best feedback obtained, and the
feedback quality of the first feedback message. Only for the
first minimum search and maximum search graphs do we
plot curves for intermediate values of q. All other graphs
only show curves for q = 0 and q = 1. The following
algorithms were simulated:

� uniformly sized feedback classes (Figure 15)

� unbiased feedback suppression for minimum search
(Figure 16)

� unbiased feedback suppression for maximum search
(Figure 17)

� feedback suppression for minimum search with com-
bined bias (Figure 18)

� feedback suppression for minimum search with addi-
tive bias and  = 0:25 (Figure 19)

� feedback suppression for minimum search with addi-
tive bias and  = 0:5 (Figure 20)

� unbiased feedback suppression for minimum search
with a twice as large T (Figure 21)

� feedback suppression for minimum search with addi-
tive bias,  = 0:5 and a twice as large T (Figure 22)
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Figure 15: Uniformly sized feedback classes
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Figure 16: No bias, minimum search

14



0

50

100

150

200

1 10 100 1000 10000 100000

N
um

be
r 

of
 F

ee
db

ac
k 

M
es

sa
ge

s

Number of Receivers (n)

q=0.00
q=0.05
q=0.10
q=0.25
q=0.50
q=1.00

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 10 100 1000 10000 100000

F
ee

db
ac

k 
D

el
ay

Number of Receivers (n)

q=0.00
q=0.05
q=0.10
q=0.25
q=0.50
q=1.00

0.0001

0.001

0.01

0.1

1

10

100

1 10 100 1000 10000 100000

D
ev

ia
tio

n 
fr

om
 O

pt
im

um
 in

 %
 (

B
es

t)

Number of Receivers (n)

q=0.00
q=0.05
q=0.10
q=0.25
q=0.50
q=1.00

0.1

1

10

100

1 10 100 1000 10000 100000

D
ev

ia
tio

n 
fr

om
 O

pt
im

um
 in

 %
 (

F
irs

t)
Number of Receivers (n)

q=0.00
q=0.05
q=0.10
q=0.25
q=0.50
q=1.00

Figure 17: No bias, maximum search

0

50

100

150

200

1 10 100 1000 10000 100000

N
um

be
r 

of
 F

ee
db

ac
k 

M
es

sa
ge

s

Number of Receivers (n)

q=0.00
q=1.00

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 10 100 1000 10000 100000

F
ee

db
ac

k 
D

el
ay

Number of Receivers (n)

q=0.00
q=1.00

0.0001

0.001

0.01

0.1

1

10

100

1 10 100 1000 10000 100000

D
ev

ia
tio

n 
fr

om
 O

pt
im

um
 in

 %
 (

B
es

t)

Number of Receivers (n)

q=0.00
q=1.00

0.1

1

10

100

1 10 100 1000 10000 100000

D
ev

ia
tio

n 
fr

om
 O

pt
im

um
 in

 %
 (

F
irs

t)

Number of Receivers (n)

q=0.00
q=1.00

Figure 18: Combined bias, minimum search
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Figure 19: Additive bias, minimum search ( = 0.25)
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Figure 20: Additive bias, minimum search ( = 0.5)
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Figure 21: No bias, minimum search (T = 8� )
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Figure 22: Additive bias, minimum search ( = 0:5; T = 8� )
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