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Abstract

Many tasks in computer vision lead to combinatorial optimization problems.
Automatic image partitioning is one of the most important examples in this
context: whether based on some prior knowledge or completely unsupervised,
we wish to find coherent parts of the image. However, the inherent combinato-
rial complexity of such problems often prevents to find the global optimum in
polynomial time.

For this reason, various approaches have been proposed to find good approx-
imative solutions for image partitioning problems. As an important example,
we will first consider different spectral relaxation techniques: based on straight-
forward eigenvector calculations, these methods compute suboptimal solutions
in short time.

However, the main contribution of this thesis is to introduce a novel opti-
mization technique for discrete image partitioning problems which is based on
a semidefinite programming relaxation. In contrast to approximation methods
employing annealing algorithms, this approach involves solving a convex op-
timization problem, which does not suffer from possible local minima. Using
interior point techniques, the solution of the relaxation can be found in poly-
nomial time, and without elaborate parameter tuning. High quality solutions
to the original combinatorial problem are then obtained with a randomized
rounding technique. The only potential drawback of the semidefinite relax-
ation approach is that the number of variables of the optimization problem is
squared. Nevertheless, it can still be applied to problems with up to a few thou-
sand variables, as is demonstrated for various computer vision tasks including
unsupervised segmentation, perceptual grouping and image restoration.

Concerning problems of higher dimensionality, we study two different ap-
proaches to effectively reduce the number of variables. The first one is based on
probabilistic sampling: by considering only a small random fraction of the pixels
in the image, our semidefinite relaxation method can be applied in an efficient
way while maintaining a reliable quality of the resulting segmentations. The
second approach reduces the problem size by computing an over-segmentation
of the image in a preprocessing step. After that, the image is partitioned based
on the resulting “superpixels” instead of the original pixels. Since the real world
does not consist of pixels, it can even be argued that this is the more natural
image representation.

Initially, our semidefinite relaxation method is defined only for binary par-
titioning problems. To derive image segmentations into multiple parts, one
possibility is to apply the binary approach in a hierarchical way. Besides this
natural extension, we also discuss how multiclass partitioning problems can be
solved in a direct way based on semidefinite relaxation techniques.



Zusammenfassung

Viele Bildverarbeitungsaufgaben lassen sich auf kombinatorische Optimierungs-
probleme zurückführen. Eines der wichtigsten Beispiele in diesem Kontext ist
die automatische Zerlegung von Bildern in kohärente Bestandteile, sei es un-
ter Zuhilfenahme von Vorwissen oder völlig unüberwacht. Allerdings erlaubt es
die hohe Komplexität derartiger Probleme häufig nicht, optimale Lösungen in
polynomieller Zeit zu berechnen.

Aus diesem Grund wurden verschiedenartige Verfahren entwickelt, um gute
Näherungslösungen für Bildpartitionierungsprobleme zu bestimmen. Als wichti-
ges Beispiel vergleichen wir zunächst mehrere spektrale Relaxations-Methoden,
welche solche Approximationen mit Hilfe von speziellen Eigenvektor-Berech-
nungen ermitteln.

Der wesentliche Beitrag dieser Arbeit besteht jedoch darin, ein neuarti-
ges Optimierungsverfahren zur diskreten Bildpartitionierung vorzustellen. Wir
verwenden dazu einen Relaxationsansatz, der letztlich ein spezielles konve-
xes Optimierungsproblem liefert, welches mittels semidefiniter Programmierung
gelöst werden kann. Im Gegensatz zu anderen Näherungsverfahren, die bei-
spielsweise auf Annealing-Algorithmen beruhen, besteht somit keine Gefahr,
in einem lokalen Minimum zu landen. Außerdem kann die Lösung eines se-
midefiniten Programms ohne aufwändige Parameteroptimierung mit Interior-
Point-Methoden in polynomieller Zeit bestimmt werden. Qualitativ hochwerige
diskrete Lösungen des Originalproblems lassen sich anschließend mit Hilfe einer
probabilistischen Rundungstechnik ermitteln. Der einzige potenzielle Nachteil
der semidefiniten Relaxation besteht darin, dass eine Quadrierung der Varia-
blenanzahl notwendig ist. Nichtsdestotrotz lassen sich Probleme mit bis zu ei-
nigen tausend Variablen zufriedenstellend bearbeiten, wie wir anhand unter-
schiedlicher Bildverarbeitungsaufgaben aus der unüberwachten Segmentierung,
perzeptuellen Gruppierung oder Bildrekonstruktion demonstrieren werden.

Für Problemstellungen höherer Dimension untersuchen wir zwei verschiede-
ne Verfahren, welche die Variablenanzahl effektiv reduzieren. Zum einen han-
delt es sich dabei um einen Ansatz, der auf probabilistischem Sampling beruht:
Durch zufällige Auswahl eines kleinen Prozentsatzes der Bildpixel erhalten wir
ein Optimierungsproblem, auf das unser semidefinites Relaxationsverfahren ef-
fizient angewandt werden kann, und zwar unter Beibehaltung einer zufrieden-
stellenden Qualität der endgültigen Segmentierung. Das zweite Verfahren redu-
ziert die Problemgröße, indem zunächst in einem Vorverarbeitungsschritt eine
Übersegmentierung des Bildes berechnet wird. Anschließend werden anstelle der
Pixel die resultierenden ,,Superpixel” als Grundlage zur Zerlegung des Bildes
verwendet. Da die reale Welt nicht aus Pixeln besteht, erscheint dies sogar die
natürlichere Bild-Repräsentation zu sein.

Unser semidefinites Relaxationsverfahren ist ursprünglich nur für binäre
Problemstellungen definiert. Eine naheliegende Möglichkeit, um mehrteilige Zer-
legungen zu erhalten, besteht in der hierarchischen Anwendung der binären Me-
thode. Neben dieser Erweiterung untersuchen wir zudem, inwiefern Bildsegmen-
tierungen in mehrere Teile auf direkte Weise mittels semidefiniter Relaxation
bestimmt werden können.



Acknowledgements

First of all, I would like to thank Prof. C. Schnörr for supervising my dissertation
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In fact the great watershed in optimization isn’t between linearity and
nonlinearity, but convexity and nonconvexity.

(R.T. Rockafellar, SIAM Review 1993)
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Chapter 1

Introduction

1.1 Motivation and Overview

In this first part of the introduction, we motivate our work from two different
points of view: on the one hand, we propose a novel optimization approach in
the field of computer vision that has many favorable properties (Section 1.1.1),
while on the other hand, three different image partitioning tasks are presented
to which this approach can conveniently be applied (Section 1.1.2).

1.1.1 Optimization Approach: Semidefinite Programming Re-
laxation

Tasks that are formulated as optimization problems appear in almost all fields of
computer vision and pattern recognition. Concerning the design of appropriate
problem formulations, one of the most important issues is to find an adequate
compromise between a precise optimization criterion which correctly models
the given problem, and the difficulty to compute the corresponding solution.
On the one hand, an inappropriate optimization criterion will not describe the
application in the desired way, no matter how easy it can be solved. On the
other hand, a sophisticated mathematical model of the problem may be use-
less in practice unless a corresponding solution can be computed efficiently and
conveniently (i.e. without elaborate parameter tuning or the need to provide
exact a priori knowledge like good starting points, for example). Hence, an op-
timization approach is especially attractive if it represents an adequate tradeoff
between such competing forces as accuracy, precision, speed and flexibility.

Concerning the mathematical modeling of optimization tasks in computer
vision, or more specifically of image partitioning problems, we basically dis-
tinguish two different approaches: continuous methods are based on formu-
lating the optimization objective as a functional defined on a continuous do-
main, which means that the arguments of the functional are continuous-valued.
For example, such objective criteria emerge if an image (interpreted as a sam-
pled instance of a continuous function) is segmented by approximating it with
continuous-valued, piecewise smooth functions. This model allows using varia-
tional methods based on partial differential equations to define the correspond-
ing optimization problems, which then are viable to be solved by employing
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techniques from numerical analysis like e.g. gradient descent methods (cf. [186]).
In contrast to continuous methods, discrete approaches directly operate on

optimization problems involving discrete-valued decision variables. The inher-
ent combinatorial complexity of these problems in general prevents to find the
solution in polynomial time, especially if the objective functional is globally
defined. On the other hand, discrete approaches are more flexible than contin-
uous methods, since they can be applied to numerous tasks in computer vision,
including e.g. (un-)supervised segmentation, partitioning and perceptual group-
ing problems. For this reason, it is important to develop appropriate discrete
optimization techniques that are able to conveniently handle such problems.

The main purpose of this work is to make a step into this direction by in-
troducing a novel optimization technique to the field of computer vision, which
is mainly based on the mathematically appealing and well-understood class of
convex programming problems. To this end, we consider general minimization
problems that comprehend a quadratic objective functional which is defined
over binary decision variables and which may be subject to additional linear
constraints. In contrast to related work, no specific assumptions are made with
respect to the functional form apart from an unproblematic symmetry condi-
tion. As a consequence, our optimization approach can be utilized for a wide
range of applications from computer vision, like unsupervised and supervised
classification tasks, graph-based segmentation problems, or restoration based
on first-order Markov random field estimates.

Such quadratic functionals allow us to deal with the combinatorial complex-
ity of the optimization task by applying a general semidefinite programming
relaxation. To be more precise, this approach targets to find a good approxi-
mative solution in two steps: first, the decision variables are lifted into a higher-
dimensional space where the optimization problem can be tightly relaxed to a
convex optimization problem. Specifically, the resulting semidefinite program
comprises a linear objective function which is defined over a particular convex
set (a so-called cone) in a matrix space, and a number of application-dependent
linear constraints. After computing the global optimum of this relaxed problem,
the decision variables are recovered in the second step by using a randomized
rounding technique.

The fact that this approach involves solving a convex optimization problem
results in various advantageous properties:

+ Due to its convexity, the global optimum of the transformed problem can
be computed under mild conditions.

+ Interior-point algorithms are able to numerically determine an approxi-
mation of arbitrary precision to this global optimum in polynomial time.

+ In contrast to alternative optimization approaches, no tuning parameters
are involved that critically influence the quality of the solution.

However, there is also an obvious drawback:

− The number of variables of the optimization problem is squared by the
lifting step to a higher-dimensional space.
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Figure 1.1: Two real world images illustrating the unsupervised
segmentation problem. Based only on pairwise similarities between local
measurements of image features like color or texture, we wish to partition
these scenes into coherent groups.

Therefore, the semidefinite relaxation approach is limited to problems with at
most a few thousand variables. Yet for many image partitioning and perceptual
grouping tasks encountered in practice, this is already sufficient. Moreover, it
is inevitable to increase the problem dimension if the intricate combinatorial
constraints should be approximated closely by more comfortable convex sets
that are eligible for applying convenient numerical optimization methods.

Concerning the computation of corresponding discrete solutions of the orig-
inal optimization problem, we add the following favorable properties:

+ The randomized rounding procedure avoids the need to choose a suitable
threshold value, as it is essential e.g. in spectral relaxation methods.

+ Combinatorial solutions of high quality are obtained based on the result
of the semidefinite programming relaxation, i.e. the final solution is close
to the unknown global optimum, which is intractable to compute.

From the optimization point of view, the absence of any specific assump-
tions about the objective criterion as well as the many “+”-properties listed
above motivated our investigation of the semidefinite relaxation approach for
computer vision problems.

1.1.2 Application to Image Partitioning Tasks: Segmentation,
Grouping, Restoration

In the last section, we already presented the main motivation of our work: to
devise a novel, mathematically well founded technique to approach a group of
intricate combinatorial optimization problems. In this section, we motivate our
work from the application point of view by illustrating three important tasks
from early and mid-level computer vision which lead to different instances of
the considered problem class. Besides indicating the significance of the present
work in the context of computer vision, these tasks also serve as non-trivial
specific examples that will be used throughout this thesis to demonstrate the
performance of the semidefinite relaxation approach. Formal definitions of the
corresponding optimization problems are given in Section 2.
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Figure 1.2: Perceptual grouping and restoration problems. The key-
board probably attracts most attention of the observer (left). How to compute
this global figure-ground discrimination based on pairwise structural similar-
ities between locally extracted image primitives? The right image shows a
noisy binary image (map of Iceland) that should be restored.

Figure 1.1 shows two real world images taken from the VisTex database
[187]. Partitioning such images in an unsupervised way (i.e. without incorpo-
rating specific a-priori knowledge) is a common goal of many low-level computer
vision applications. Based on some locally computed features like color, texture,
or motion, we wish to split the image into coherent groups of “similar” looking
members. However, since no prototypes are given in advance to represent the
different groups, defining the “correct” segmentation is not straightforward.

In this context, the representation of images by graph structures has re-
cently attracted the interest of researchers [190, 168, 91, 62, 165, 60, 189].
More precisely, the resulting approaches partition an image by seeking minimal
cuts in the underlying graph. In this work, we mainly study binary unsu-
pervised image segmentation problems that are based on constrained minimal
cuts. Specifically, we will show that the semidefinite relaxation method pro-
vides a tighter approximation of the corresponding combinatorial problem than
techniques which are based on spectral graph theory. Concerning multiclass
partitioning problems, a hierarchical framework is considered as well as direct
extensions of the binary approach.

A different problem is depicted in the left image of Figure 1.2: for this sec-
tion of an office table, probably most human observers focus on the keyboard
as the most important object first. A typical task in mid-level computer vision
is to model such global decisions of perceptual grouping by solving an optimiza-
tion problem defined in terms of pairwise interactions between locally extracted
image primitives [163, 157, 84, 142, 192, 173]. To this end, the optimization cri-
terion considers a saliency measure with respect to decision variables indicating
which primitives belong to the foreground or background, respectively. We will
demonstrate that quadratic saliency measures which have been considered as
difficult [192] due to their combinatorial complexity can conveniently be dealt
with by using our semidefinite relaxation approach.

Finally, the right image in Figure 1.2 shows a binary image that has been
degraded by noise. The restoration of such images has a long history in com-
puter vision, in particular in the context of supervised segmentation tasks based
on Markov random fields [64, 63, 193, 20]. We will show that our semidefinite
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relaxation method allows us to model such labeling problems under less restric-
tive assumptions than those made by previous approaches [89, 24]. Moreover,
a convenient extension to multiclass image reconstruction problems will be pre-
sented.

1.2 Related Work

Concerning image partitioning and segmentation problems, there exists a vast
amount of literature considering various aspects of these computer vision tasks.
To survey the entire field is beyond the scope of this work. In this section, we
will therefore focus on some key publications that are directly related to our
approach in the field of discrete optimization problems. More references will be
given throughout this thesis when appropriate.

1.2.1 Optimization Approaches in Computer Vision

The examples presented in the previous section already indicate the importance
of optimization problems that involve global objective criteria over discrete
decision variables in the field of computer vision. Unfortunately, such problems
are usually NP-hard, and only a few special cases can be solved to optimality in
polynomial time [70, 5]. Accordingly, a lot of research has been done to develop
optimization methods that are able to efficiently compute good approximate
solutions.

An important class of optimization approaches that can deal with the com-
binatorial complexity involved in such problems is based on stochastic sam-
pling and simulated annealing. Introduced in the context of computer vision
in the seminal paper of Geman and Geman [64] on Bayesian image restora-
tion, many applications have since been suggested in connection with Markov
random fields [193, 20, 114]. Based on annealing schedules that are prescribed
by theory, the corresponding algorithms can be guaranteed to find the global
optimum of the combinatorial problem, yet at the cost of being impractically
slow for real world applications. Nevertheless, the interest in these methods
has still grown in recent years, especially in connection with interpretations of
perception as Bayesian inference [106, 53], and with complex statistical texture
models [207, 208].

In order to speed up the computations, various approaches to find subop-
timal Markov random field estimates have been developed, including the ICM
algorithm [16], the highest confidence first heuristic [30], the graduated non-
convexity strategy [17], flow-based local search heuristics [89, 24], or linear
programming relaxations [105]. Other approximation methods are based on
multi-scale approaches [77, 188, 148], biased importance sampling [180, 8], or
deterministic versions of the annealing procedure for applications like percep-
tual grouping [84], data clustering [154, 86], or graph matching [67].

However, the accelerated computations take their toll: the above-mentioned
methods can no longer guarantee to find the global optimum. In fact, this goal
is illusive, considering the combinatorial complexity of the underlying optimiza-
tion problems. Consequently, the following important question concerning the
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performance of these approaches arises: is it possible to derive bounds on the
approximation quality of the obtained solution in relation to the unknown global
optimum, independent of the current problem instance? Although with respect
to restricted problem classes, some of the mentioned approaches provide such
performance bounds [17, 24, 105], none of the methods (apart from the original
simulated annealing) seems to be immune in general against getting trapped
in some poor local optimum, and hence meets this criterion.

A different problem concerns the algorithmic properties of this class of opti-
mization approaches: apart from simple greedy strategies [16, 30], many meth-
ods imply some (sometimes hidden) parameters on which the computed local
optimum critically depends. A typical example is given by the artificial temper-
ature parameter in annealing approaches which governs the iterative annealing
schedule. It is well known that without exact tuning mechanisms, the corre-
sponding algorithms exhibit complex bifurcation phenomena [160], and may
tend to oscillate in a parallel update mode [84, 143].

As we will see in Section 1.3, our semidefinite relaxation approach addresses
both of the problems discussed above.

1.2.2 Semidefinite Programming

Optimization based on semidefinite programming still is a relatively novel field:
first applications appeared around 1990 in control theory [21, 183] and com-
binatorial optimization [116, 3]. Since then, however, the interest has grown
tremendously, motivated by the development of efficient algorithms [132, 199]
as well as the discovery of new applications in diverse areas [196, 40]. As a
special type of convex optimization [22], the corresponding duality theory is
mathematically well-understood and established; for a detailed discussion of
many aspects of semidefinite programming, we refer to [3, 183, 196, 179].

The method presented in this work is based on a semidefinite relaxation of
combinatorial optimization problems. In fact, this technique to approximate
intractable integer constraints is currently the main application of semidefinite
programming. Initiated by the seminal work of Lovász and Schrijver [116] on
0-1 optimization, various applications in this context have been presented in the
literature, like approximations for the max-cut problem [66], the independent
set problem [71], graph coloring [95] and partitioning [153, 96], or the quadratic
assignment problem [206, 26]. For 0-1 quadratic programming problems, Poljak
et al. [145] present a general recipe to obtain semidefinite programming relax-
ations that is based on Lagrangian duality; a similar approach is pursued in
this work. An overview of related recent developments is given in numerous
surveys [65, 152, 78, 195, 115, 112].

While most of the afore-mentioned papers focus on deriving tight bounds on
the objective value of combinatorial problems, Goemans and Williamson [66]
were the first to present an algorithm that really computes a suboptimal solu-
tion as an approximation to the optimal combinatorial solution. Moreover, they
were able to prove a performance guarantee for their randomized hyperplane
technique: for the classical max-cut problem, the obtained suboptimal solutions
cannot be worse (concerning the objective value) than 87.8% in relation to the
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Figure 1.3: Representing image partitionings by graph cuts: the
weights of all cut edges provide a measure for the (dis-)similarity of the result-
ing sets.

unknown global optimum. This fact has motivated us to adopt this approx-
imation technique as the second step of our semidefinite relaxation approach
to recover a combinatorial solution. Concerning possible modifications of the
randomized approximation technique for different combinatorial problems, we
refer to [55, 76].

1.2.3 Image Partitioning Tasks

As already indicated in Section 1.1.2, there is a wide range of applications in
computer vision to which our semidefinite relaxation method can be applied.
While it is beyond the scope of this thesis to give an in-depth discussion of all
possible applications, we next focus on work related to the image partitioning
tasks used here to illustrate our approach.

Unsupervised Image Segmentation and Clustering

Many recent approaches for unsupervised image segmentation are based on
graph partitioning methods; see e.g. [168, 62, 173] and references therein. In
this context, an image is naturally represented as a graph by considering lo-
cally extracted image elements (e.g. pixels) as vertices which are connected by
weighted edges defined through pairwise (dis-)similarity values. The objective
then consists in partitioning the vertices into disjoint sets according to some
coherency criterion.

A popular criterion for such partitions is based on extremal cuts through
the graph (cf. Figure 1.3). In computer vision, this idea was introduced by
Wu and Leahy [198]. However, their min-cut criterion favors the separation of
small sets, which brings up the important issue of appropriate cluster normal-
ization to avoid too unbalanced partitionings. Initiated by the early work of
Fiedler [51], a classical technique in this context employs spectral decomposi-
tion of the Laplacian matrix of the graph to efficiently compute balanced cuts.
Later, this approach was also suggested as relaxation of a constrained graph
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partitioning problem [129, 39]. Since then, this idea has been the subject of
extensive research [74, 174, 73], and has found applications in many different
fields [146, 38, 159]. In this work, we use the same basic idea of computing im-
age partitionings based on constrained minimal cuts of the underlying graph,
but pursue a different convex relaxation approach to find better suboptimal
combinatorial solutions.

An alternative technique is proposed by Shi and Malik [168]: their “nor-
malized cut” criterion prevents unbalanced cuts by directly normalizing the
objective function. Again, an approximate solution of the resulting combi-
natorial problem is found by reverting to methods from spectral graph the-
ory. For further developments and applications of the normalized cut, see e.g.
[190, 125, 204, 54].

More segmentation approaches related to extremal graph cuts were recently
presented in the literature, based on such different ideas as defining contour-
based ratio regions [36], seeking minimal cost separations of each pixel from an
artificial point outside the image [185], or normalizing the cut objective func-
tion by the length of the boundary between the segments [189]. In contrast to
the afore-mentioned methods, these approaches lead to optimization problems
that can no longer be solved by spectral techniques. Further interesting graph
cut methods include calculating “typical average” cuts based on a stochastic
sampling method [62, 165], or employing “Swendsen-Wang cuts” to obtain big
candidate moves between partition stages [8]. However, as these methods con-
sider probability distributions over the set of possible segmentations, they are
not directly related to combinatorial optimization problems. Other segmen-
tation methods based on graph partitioning techniques include e.g. recursive
multiscale algorithms [164, 60] or the dominant set approach of Pavan and
Pelillo [141, 140].

Supervised Image Partitioning and Labeling

Approaches to supervised image partitioning (or labeling) are often based on
Markov random field models [193, 114] and therefore can be handled by applying
the techniques mentioned in Section 1.2.1. Recent investigations of the corre-
sponding optimization problems in the context of graph partitioning include
[89, 24] and references therein. These authors derive a graph representation
of the labeling problem by defining edges based on the neighborhood structure
given by the Markov random field, and introducing additional connections to
artificial terminal vertices that represent the given labels. It can be shown
that for special pairwise interaction functions (e.g. semi-metrics), the optimal
solution of the optimization problem can be found by graph cut techniques
[107].

In contrast to this special result, our semidefinite relaxation approach is
more general: we do not make any assumptions with respect to the pairwise
interactions between the labels, which in fact can be negative or may not vanish
for equal labels.
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Perceptual Grouping

There is a vast literature on perceptual grouping in computer vision; see e.g.
[122, 157, 90, 6] and references therein. In this work, we focus on the quadratic
energy function proposed by Hérault and Horaud [84] for figure-ground discrim-
ination. From an optimization point of view, the application of this saliency
measure has been considered as difficult due to the computational cost resulting
from its combinatorial complexity [192]. We will demonstrate that nevertheless,
this grouping criterion can conveniently be optimized by applying our semidefi-
nite relaxation approach.

1.3 Contribution and Organization

As has already been indicated, the main contribution of this work is to intro-
duce a novel optimization technique to the field of computer vision, which is
based on the mathematically appealing class of semidefinite programming prob-
lems. The corresponding convex relaxation approach can be applied to a wide
range of combinatorial optimization problems, like unsupervised segmentation,
perceptual grouping or restoration tasks. In this section, we give a more de-
tailed overview by summarizing the most important contributions for each of
the following chapters of this thesis separately.

In Chapter 2, we provide formal definitions of the optimization problems
corresponding to the computer vision tasks considered in this work. As has
already been illustrated in Section 1.1.2, these tasks comprise unsupervised
segmentation based on graph partitioning, perceptual grouping (figure-ground
discrimination), and image restoration as a special case of supervised classifi-
cation. Focusing on binary versions of the corresponding combinatorial opti-
mization problems, we show that all these tasks can conveniently be formulated
as minimization problems which involve a quadratic objective functional over
binary (−1,+1)-decision variables which may additionally be subject to a linear
constraint. Apart from a symmetry condition, no specific assumptions are made
with respect to the objective functional. Hence, our problem formulation is less
restrictive than the ones used in related work [89, 24], and therefore potentially
covers many other vision tasks.

Possible extensions to non-binary problems are discussed in later chapters,
considering both a hierarchical approach for unsupervised segmentation (Sec-
tion 5.1), and direct multiclass extensions for unsupervised and supervised im-
age partitioning (Chapter 6).

In Chapter 3, we study different (un-)supervised segmentation methods
which are related to our approach, and have already been applied successfully
to various image partitioning problems. Especially, we closely investigate spec-
tral techniques that have been proposed in the literature for graph-based image
segmentation [168, 159, 158, 142]. All these methods have in common that
they use certain extremal eigenvectors of the similarity matrix of the graph or
of the corresponding Laplacian (either directly or normalized) to derive binary
partitionings. In contrast to other comparing works [190, 168, 173, 162], we
consider these techniques in a unifying framework as approximations to spe-
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cial instances of a general “scaled cut” cost function. In this way, the relation
between the average and normalized cut measures is clearly identified. Further-
more, this point of view enables the definition of an average association criterion
which directly corresponds to the normalized association from [168]. The ap-
propriate relaxation of this criterion leads to the calculation of eigenvectors of
a centered similarity matrix, which also sheds some light on a related approach
in the context of unsupervised learning [38]. Moreover, we provide different
interpretations of spectral methods as approximations to other graph-related
optimization criteria, and clarify the special meaning of the Fiedler vector.

Besides, this chapter also briefly recapitulates the mean shift algorithm [33]
as an alternative unsupervised clustering technique that works directly in the
(Euclidean) feature space of the extracted image elements. In particular, this
method will later be used to reduce the size of image segmentation problems
arising in practice.

Finally, we consider the iterated conditional modes (ICM) algorithm, which
was proposed by Besag [16] in the context of supervised segmentation problems.
Specifically, it is shown that this fast, local greedy technique approximates the
global optimum of the energy functional used for image restoration in this work
by calculating a local minimum. In contrast to that, our semidefinite relaxation
approach yields a much tighter approximation of the underlying combinatorial
problem, and hence most likely finds a better suboptimal solution.

Chapter 4 covers the main contribution of this thesis: the semidefinite
relaxation approach can be applied to the general class of combinatorial op-
timization problems arising in computer vision that are presented in Chapter
2. Most details of this method have already been published in various confer-
ence proceedings [161, 100, 102] and in a journal article [103]. Here, we extend
the corresponding results by considering a slightly more general balancing con-
straint, that also allows specifying the proportion of each part for unsupervised
segmentation tasks.

The emerging convex optimization problems belong to the special class of
semidefinite programs. For this reason, we first provide a concise introduction
to this topic (Section 4.1) by discussing the main aspects of the correspond-
ing duality theory, the geometry of the cone of positive semidefinite matrices,
and related algorithms. On this mathematical basis, our semidefinite relax-
ation approach is explained in Section 4.2. Specifically, we perform Lagrangian
relaxation [113] to derive a semidefinite program for the general class of com-
binatorial optimization problems studied here. By considering geometry and
feasibility issues, it is shown that under mild assumptions, a globally optimal
solution exists for this convex optimization problem, which can be computed in
polynomial time with clear numerical algorithms. Abstracting from the com-
putational process, due to the lack of local optima we can simply think of a
mapping taking the data to this solution. Thus, evidently, no hidden parame-
ters are involved.

Moreover, we discuss the randomized hyperplane technique [66] as approxi-
mation procedure to calculate suboptimal solutions of the original combinatorial
problem. In this context, we also present bounds with respect to the quality of
these solutions that under certain conditions can be derived from bounds given
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in the literature for other optimization problems [66, 131, 200]. As is revealed
by statistical results for ground-truth experiments, these theoretical bounds
are not tight in practice, where a much better performance can be measured.
Yet note that for most alternative optimization methods, similar results and a
corresponding route of research seem to be missing.

In comparison to certain spectral techniques for unsupervised partitioning
tasks, we show that our semidefinite relaxation approach is superior from the
approximation point of view, as it yields a tighter relaxation of the underlying
combinatorial problem (Section 4.3). This theoretical result is also confirmed
in practical applications, where spectral relaxation may produce unsatisfactory
solutions when no appropriate threshold value is chosen or can be found. In
contrast to this, our approach does not depend on tuning such a parameter.

In this context, it has also been criticized that methods based on spectral
graph theory are not able to partition highly skewed data distributions or non-
compact clusters [62]. We will demonstrate that a straightforward remedy in
this case is to base the similarity measure on a suitable path metric, as is also
advocated in related work (e.g. [52]). However, the derivation of new similarity
measures is not the topic of this work — although we are aware that successful
similarity-based clustering always depends on the choice of a suitable similarity
measure. Rather, the focus of this thesis is on the application of a convenient
optimization technique for computer vision problems.

Finally, a thorough experimental investigation on real scenes demonstrates
the versatility of the semidefinite relaxation approach in practice (Section 4.4).
For a broad range of difficult combinatorial problems obtained from different
image partitioning tasks, meaningful solutions can be obtained in a convenient
way. Instead of having to worry about technical details of the optimization
procedure, the user can focus on choosing appropriate constraints according
to the desired application. Although the computational effort increases, the
results reveal that for problems with up to 10,000 variables, the solution can
still be found efficiently.

Chapter 5 is devoted to methods that enable the application of our semi-
definite relaxation approach to larger problem instances as they arise for real
world unsupervised partitioning tasks. In general, graph partitioning techniques
become computationally demanding (or even intractable) with increasing size
of the images, since for example the corresponding similarity matrices do no
longer fit into memory completely. A common idea in this case is to revert to
sparse graph representations by connecting pixels only within a certain neigh-
borhood [168, 62, 204]. However, this is of no avail for our approach, as other
matrices involved in the solution process still are usually dense.

We therefore propose two other methods which immensely reduce the prob-
lem size by preprocessing the image appropriately. The basic idea of the first
method resembles the perceptual grouping task: abandoning pixels as the basic
image elements, we instead use small image patches of coherent structure to de-
fine the corresponding graph representation. It can be argued that this is even
a more natural image representation, since the pixels are merely the result of
the digital image discretization process. To obtain such an over-segmentation,
we apply the mean shift technique [33] at a small spatial scale. Based on other
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preprocessing methods, this “superpixel”-idea has also been advocated in recent
related work [198, 118, 189, 8, 151].

The second method (which first was presented in a workshop paper [101])
is based on a completely different idea: following mathematical approximation
techniques, we probabilistically sample the entries of the similarity matrix to
obtain a good low-rank approximation to the complete matrix. In connection
to image segmentation, this amounts in randomly picking a small number of
pixels to obtain an optimization problem of smaller scale, the solution of which
can afterwards be generalized well to a solution of the original, large prob-
lem. Similar ideas have already been applied successfully for spectral graph cut
techniques [54] and in a different clustering context [48].

To obtain more meaningful results, the binary semidefinite relaxation ap-
proach is extended in this chapter: by computing partitions consecutively
in a hierarchical way, we derive image segmentations into multiple parts (cf.
[98, 198, 118]).

In Chapter 6, we analyze how multiclass image partitioning problems can
be solved by semidefinite relaxation approaches in a direct way — in contrast
to a hierarchical application of the binary method. To this end, we assume that
the number of parts the image should be decomposed into is always known in
advance; we do not investigate how this number can be found automatically. In
this case, the binary formulations of both the unsupervised segmentation and
the restoration problem can be naturally extended to appropriate combinatorial
multiclass optimization problems, which however do no longer fit into a com-
mon framework. Nevertheless, we derive suitable convex relaxations for both
problems, which are mainly based on recent investigations concerning semidefi-
nite relaxations of the quadratic assignment problem [206] and the multiclass
partitioning problem [55, 96, 197], respectively.

Since the corresponding research is still in progress, the results presented in
this chapter should be considered as preliminary. However, first experiments
indicate that although the computational burden increases even faster than for
binary problems, semidefinite relaxation is promising for non-binary problems,
too.

Finally, Chapter 7 briefly summarizes the main results of the present work,
and prospects directions for future research. In the Appendix A, we state
some important mathematical facts that arise in connection with symmetric
and positive semidefinite matrices which are needed throughout this thesis,
and note where the corresponding proofs can be found.

1.4 Notation

The following table lists the basic notation that is used throughout this thesis.
In this context, we remark that with slight abuse of mathematical accuracy, we
always use the notation of min/max for the considered optimization problems,
although the optimum sometimes may not be attained (which strictly would
require the notation of inf/sup). In this way, we would like to emphasize that
we are interested in finding an optimal solution and not just the optimal value
of the objective function.
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Numbers and Vectors

R real numbers
R

+
0 positive real numbers, including 0

|a| absolute value of a ∈ R

sgn a sign of a ∈ R
(

n
k

)

binomial coefficient:
(

n
k

)

= n!
(n−k)!k!

R
n space of n-dimensional real vectors

x> transpose of x
‖x‖ Euclidean norm of the vector x: ‖x‖2 = x>x
e vector of all ones: e = (1, . . . , 1)>

ek vector of all ones of dimension k: ek ∈ R
k

ei i-th unit vector: ei = (0, . . . , 0, 1, 0, . . . , 0)>

Matrices

R
n×k space of n× k-dimensional matrices

Sn space of symmetric n× n matrices
Sn

+ space of symmetric, positive semidefinite n× n matrices
A � 0 matrix A is positive semidefinite
I identity matrix
E matrix of all ones E = ee>

Ek, En×k matrix of all ones of dimension k × k or n× k, respectively
λi(A) i-th eigenvalue of A, with λ1(A) ≤ · · · ≤ λn(A)
rank(A) rank of the matrix A
Tr(A) trace of the matrix A: Tr(A) =

∑

iAii

‖A‖F Frobenius norm of the matrix A: ‖A‖F =
√

∑

i,j A
2
ij

A •B standard matrix inner product: A • B = Tr(A>B)
A ◦B Hadamard product of A and B: (A ◦B)ij = AijBij ∀ i, j
A⊗B Kronecker product of A and B
vec(A) vector containing the stacked columns of A
Diag(x) diagonal matrix with vector x on its main diagonal
diag(A) diagonal of the matrix A as a column vector
ker(A) null space (kernel) of A: ker(A) = {x ∈ R

n |Ax = 0}

Graphs

G(V,E) undirected graph with vertex set V = {1, . . . , n} and edges
E ⊆ V × V

W weighted symmetric adjacency matrix with entries wij , i, j ∈ V

L Laplacian matrix of the graph: L = Diag(We) −W

S complement of the vertex subset S: S = V \ S
ω(S) general sum of the vertex weights ωi for i ∈ S: ω(S) =

∑

i∈S ωi

|S| number of vertices contained in the subset S
d(S) degree of the subset S: d(S) =

∑

i∈S,j∈V wij

cut(S, S) weight of the cut separating S and S: cut(S, S) =
∑

i∈S,j∈S wij

assoc(S) inner association of the subset S: assoc(S) =
∑

i,j∈S wij
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Miscellaneous

vol(T ) volume of the hypersphere T
Pr[x] probability of x
Pr(x | g) conditional probability of x, given g

E[x] expectation of x
δi set of neighbors of a pixel i



Chapter 2

Binary Optimization
Problems in Computer Vision

In this thesis, we mainly consider combinatorial optimization problems of the
following general form:

min
x

x>Qx+ 2d>x+ const

s.t. x ∈ {−1,+1}n

c>x = β ,

with Q ∈ Sn, c, d ∈ R
n, β ∈ R ,

(2.1)

where Sn denotes the space of symmetric n× n-matrices. Thus, the objective
is to minimize a quadratic functional over binary decision variables subject to
a linear constraint.

In computer vision, global optimization problems of the form (2.1) arise in
various contexts, including e.g. grouping tasks, Markov random field estimates
or graph-optimization problems. In the following sections, we will give formal
definitions of three different partitioning and segmentation problems which can
be cast in this form, and briefly present methods of how they are handled in
the literature.

Note that apart from symmetry, no further constraints are imposed on the
matrix Q in (2.1). Hence, the objective function does not need to be convex
in general. This property along with the integer constraint xi ∈ {−1,+1}, i =
1, . . . , n makes the minimization problem intrinsically difficult (which usually
means NP-hard). In Chapter 4, we will present a semidefinite relaxation ap-
proach for problems of this type, which computes suboptimal solutions of high
quality in polynomial time by closely approximating the binary problem (2.1).

2.1 Unsupervised Partitioning via Graph Cuts

Segmenting an image into its main parts in an unsupervised way is an important
task in computer vision. To this end, the image is often represented by feature
vectors comprising e.g. position, brightness, color, or texture information for
each basic image element (usually the pixels). A segmentation then corresponds
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Figure 2.1: A typical image to be segmented. For the small patch
marked in the image (top), a corresponding unweighted graph is constructed
by connecting only neighboring pixels by an edge (bottom left). Representing
the color differences of the pixels (in the perceptually uniform L*u*v* space)
as distances in R

2 results in the weighted graph depicted on the bottom right:
a certain cluster structure is clearly visible.

to finding groups of similar image elements. However, since no prototypes for
the different groups are given in advance, it is difficult to define the “correct”
partitioning. Therefore, many partitioning methods directly try to cluster the
feature vectors in the corresponding Euclidean space. One example of such a
clustering method is the mean shift algorithm [33], which we will briefly present
in Section 3.2.

An alternative to define “good” segmentations is based on a different rep-
resentation of the image which uses pairwise (dis-)similarity relations between
the image elements. Although such relations of course can be obtained from
feature vectors by computing (Euclidean) distances between them, signal vari-
ability may be captured in a better way by calculating (dis-)similarities between
image elements directly (i.e. without using feature vectors) [181]. In either case,
the (dis-)similarity relations lead to the following graph representation of an im-
age: consider the locally extracted image elements as vertices V of the weighted
graph G(V,E), and connect two vertices i, j ∈ V by an edge (i, j) ∈ E weighted
with the corresponding (dis-)similarity value wij ∈ R

+
0 . If no edge is present

between two vertices, this is expressed by an edge-weight of wij = 0 (or wij = ∞
for dissimilarities). Figure 2.1 shows an example of such a graph for a small
patch of an image.

The binary unsupervised segmentation problem is now equivalent to par-
titioning the set V into two disjoint groups S and S = V \ S. To measure



2.1. Unsupervised Partitioning via Graph Cuts 17

the quality of a segmentation, a common idea is to define a cost function f(S)
which depends on the weight of the corresponding cut in the graph:

cut(S, S) =
∑

i∈S,j∈S

wij . (2.2)

If the weights wij encode a similarity measure between image elements (i.e.
small values for wij correspond to low similarity), a good segmentation into
coherent groups leads to low cut-values.

Using f(S) = cut(S, S) directly as the cost function as was suggested in
[198] yields a minimization problem which can be solved in polynomial time.
However, this method has the disadvantage that it favors unbalanced segmen-
tations: since separating a single vertex from the rest of the graph cuts the
fewest edges, f usually grows with the number of vertices contained in either
S or S (cf. Figure 2.1). To avoid this problem, several more suitable optimiza-
tion criteria have been suggested in the literature. In this context, a popular
approach to obtain balanced partitions is to scale the cost function with factors
related to the areas of the segments [74, 168, 45]:

f(S) =
cut(S, S)

ω(S)
+

cut(S, S)

ω(S)
, (2.3)

where ω(S) denotes a (positive) weight of the subset S (e.g. the number of
vertices |S|). Minimizing (2.3) then leads to segments of similar (high) weight
which are separated by a small cut. Cost functions of this form yield NP-hard
minimization problems, but they can be solved approximately with spectral
relaxation methods [74, 4, 168, 159]. In Section 3.1, we will investigate several
of these approaches in more detail.

An alternative technique to avoid unbalanced partitions originates from the
classical equipartition approach from spectral graph theory (cf. [129]): instead
of scaling the cut-value, an additional linear constraint is used to find favorable
partitions. To formulate the corresponding optimization problem mathemat-
ically, let n = |V | and represent a partitioning into S and S by an indica-
tor vector x ∈ {−1,+1}n. Denoting by D the diagonal degree matrix with
Dii =

∑

j∈V wij and using the Laplacian matrix L = D −W of the graph, the
weight of a cut is given by

cut(S, S) =
1

8

∑

i,j∈V

wij(xi − xj)
2 =

1

4
x>Lx . (2.4)

The equipartition problem now consists in determining a cut with minimal
weight subject to the constraint that the number of vertices in both groups is
equal:

min
x∈{−1,+1}n

x>Lx

s.t. e>x = 0 .
(2.5)

Here, e = (1, . . . , 1)> denotes the vector of all ones.
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A natural relaxation of the NP-hard problem (2.5) is to drop the integer
constraint on x. As e is the eigenvector corresponding to the smallest eigenvalue
0 of the Laplacian matrix L, this results in computing the second smallest
eigenvector of L (the so-called Fiedler vector) and thus in a method which is of
the same type as the spectral techniques used to approximate the scaled cost
function (2.3) — see Section 3.1.3.

The main topic of this work, however, is to present an alternative approach
to spectral relaxation. It is motivated by some questions that arise naturally in
this context: for image segmentation, the equipartition constraint in (2.5) may
be too strict; which other constraints are useful replacements? How can the
integer constraint with respect to xi, i = 1, . . . , n, be better taken into account
to derive an appropriate relaxation of the combinatorial optimization problem
(as opposed to just dropping it and thresholding x afterwards like the spectral
relaxation methods do)? To investigate these topics, we define the following
generalized (graph-bisection) criterion for unsupervised image partitioning:

min
x∈{−1,+1}n

x>Lx

s.t. c>x = β .

(2.6)

The vector c ∈ R
n and the value β ∈ R in the linear constraint can be

set application-dependent and define our notion of a “balanced cut”. Note
that this generalization of the partitioning criterion renders spectral relaxation
approaches inappropriate, because those require special fixed balancing con-
straints. In Chapter 4 we will therefore focus on a more advanced method to
relax and solve the problem (2.6) which not only is able to handle the gener-
alized linear constraint, but also takes the integer constraint on x into account
in a more adequate way.

If the linear constraint variables c and β are chosen inappropriately, the
combinatorial problem (2.6) may have no feasible solution (a simple example is
the case c = e, β = 0 with n being an odd number). In this case, an additional
variable x0 ∈ R can be incorporated to close the gap in the balancing constraint:
c>x + x0 = β. In order to find a solution which is as feasible as possible to
(2.6), the variable x0 is minimized by including it into the objective function.
Hence we arrive at the following problem formulation:

min
x0∈R, x∈{−1,+1}n

(

x0

x

)>(
α 0
0 L

)(

x0

x

)

s.t.

(

1
c

)>(
x0

x

)

= β ,

(2.7)

where α is a sufficiently large number. However, as we will show in Section
4.2.2, an infeasible instance of problem (2.6) not necessarily prevents that the
relaxation works: under specific conditions for c and β, which are usually sat-
isfied in practice, the relaxation will be feasible even when the corresponding
instance of (2.6) is not. In this case, meaningful combinatorial solutions which
approximately satisfy the balancing constraint can be obtained from the relax-
ation without using extension (2.7). For this reason, we will not consider it any
further here.
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Figure 2.2: Perceptual grouping. Using a line finder, the edges shown
in the right image are extracted from the left image. The keyboard as the
object which probably attracts most attention from the observer consists of
very regular configurations of image features, namely mostly orthogonal and
parallel edges.

Finally, note that the binary unsupervised partitioning approach can easily
be extended to segment an image into multiple parts by applying it in a hierar-
chical way (e.g. [198, 118]): based on certain decision rules, we continue to split
segments into two parts until a stopping criterion (e.g. a pre-specified number of
segments) is met. We will closer investigate the combination of our semidefinite
relaxation method with this hierarchical approach to multiway partitioning in
Section 5.1. Moreover, an extension to direct multiclass segmentation will be
introduced in Section 6.2.

2.2 Perceptual Grouping

Another central problem connected to image partitioning is based on figure-
ground discrimination: taking locally extracted low-level image features like
edges or corners as input, the objective is to separate them into shape and
noise [84], or into foreground and background. Phrased differently, this means
to group together features which for human perception are likely to be similar
(as they belong to the same object), while eliminating less important elements.
This idea is motivated by the so-called “principle of good form”: as ordered
geometric arrangements of image features are unlikely to arise accidentally,
emerging objects in an image are closely related to a mostly regular, stable,
balanced configuration of the features [157]. Figure 2.2 shows an example:
based on the edges extracted from the image, we wish to separate regular con-
figurations (which in this case most probably belong to the keyboard) from the
background clutter.

One possibility to find structure in the image is to apply the well-known
Hough transform, which maps the image elements into a parameter space as-
sociated with a pre-defined curve type [147]. Standard clustering techniques
can then be used to find groups of elements in accordance to this curve type.
However, this method has one important drawback: the perceptual grouping
problem is usually posed at an early stage of the visual system, where it is
required to decide whether some features may form a shape or not, without



20 Chapter 2. Binary Optimization Problems in Computer Vision

special knowledge about the curves the shape is generated of.
To model perceptual grouping mechanisms on an early level of the visual

process, a basic definition is necessary of what is meant by shape and noise,
respectively. To this end, interactions between pairs of image elements are
usually measured based on Gestalt associations like cocircularity, continuity,
proximity, or parallelism/perpendicularity [84, 158, 142]. These interactions
can be combined to yield a pairwise similarity measure wij ≥ 0 for image
primitives i and j. Based on this measure, numerous energy minimization
criteria have been proposed in the literature to find salient configurations [163,
138, 122, 84, 158, 142, 6, 192]. These methods differ in several aspects, e.g. by
assuming prior distributions of the image elements or by using local or global
optimization techniques.

In this work, we investigate the figure-ground discrimination problem from
a combinatorial optimization perspective based on an energy function proposed
by Hérault and Horaud [84]. For perceptually grouping n primitives, they
consider the problem of minimizing the following functional in terms of binary
labels p ∈ {0, 1}n:

EHH(p) := Esaliency(p) + λEconstraint(p) , (2.8)

where a label pi = 1 indicates a figure element i, while a label pi = 0 corresponds
to background or noise. The interaction energy in (2.8) is defined as

Esaliency(p) = −
∑

i,j

wijpipj .

This quadratic function measures the mutual reinforcement between the image
elements labeled as figure, and is obviously minimized when all labels are equal
to 1. This trivial solution is avoided by adding the constraint term

Econstraint(p) =

(

∑

i

pi

)2

,

which encourages small numbers of figure elements. In this way, noise is elimi-
nated because primitives are penalized if they do not receive much “feedback”
from other primitives, which indicates that they do not belong to some salient
group. The parameter λ ∈ R

+
0 in (2.8) can be interpreted as serving the purpose

to adjust the signal-to-noise ratio [84].
In order to find good minimizers of (2.8), Hérault and Horaud investigated

various annealing approaches [84]. In contrast to local minimization techniques
[163, 138], which strongly depend on good initializations, these optimization
methods are able to cope with the large number of local minima of the energy
function and thus to find (a good approximation to) the global optimum [64].
However, the corresponding annealing schedules usually are impractically slow
for real world applications, and require exact tuning of the artificial temperature
parameter. Accordingly, in a recent comparison [192], the combinatorial com-
plexity and the resulting computational cost have been considered as decisive
disadvantages of using (2.8) as a saliency measure.
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In Chapter 4, we will demonstrate that a good minimizer for (2.8) can yet be
conveniently computed with our semidefinite relaxation approach. To this end,
we derive a formulation of the energy (2.8) in terms of ±1-variables by using
the transformation x = 2p−e, which finally leads to the following minimization
problem (up to constant terms):

min
x∈{−1,+1}n

1

4
x>(λE −W )x+

1

2
e>(λE −W )x , (2.9)

with E = ee> denoting the matrix of all ones. This formulation makes more
explicit the role of the signal-to-noise ratio parameter λ which acts as a threshold
value in a twofold way: two primitives i and j reinforce each other if their
similarity value wij is larger than λ (first term), whereas a single primitive i

is (additionally) favored if its average similarity (We)i

n
is larger than λ (second

term). The combination of both terms results in a meaningful global measure
of “saliency” based on pairwise comparisons of locally computed primitives.

A closer look at (2.9) reveals a connection of this perceptual grouping ap-
proach to the graph cut problems presented in the last section: consider the
graph with the primitives as vertices, and define edge-weights w̃ij := wij − λ

(which leads to both positive and negative edge-weights). Minimizing the cut
in this graph then is equivalent to minimizing the first term in (2.9), since
1
4x

>(λE −W )x = − 1
4x

>W̃x = 1
4x

>L̃x− const. In contrast to the partitioning
problems presented in the last section, the trivial solution is now prevented by
adding a weighted linear term c>x with c = 1

2(λE−W )e to the objective func-
tion instead of scaling by oppositional terms as in (2.3) or using an additional
linear constraint as in (2.6). The additional minimization of the term c>x now
balances the number of foreground elements against the amount of background:
as already stated above, negative values ci = 1

2(nλ − (We)i) = 1
2

∑

j(λ − wij)
favor the corresponding primitive to belong to the foreground, and vice versa.
Through this perspective the interpretation of λ as a signal-to-noise ratio also
becomes more obvious: larger values of λ correspond to higher percentages of
noise, and thus allow fewer foreground primitives.

In fact, a direct interpretation of (2.9) as a graph cut measure is possible
if besides the vertices corresponding to the primitives one additional terminal
vertex is defined which corresponds to the label +1. This terminal is connected
to each vertex i with an edge weight of ci. Finding a minimal cut in this graph
then is equivalent to the problem (2.9). In [70, 24] a similar graph representation
with two terminals is used to find exact minima for special energy functions.1

However, as (2.9) does not conform with the assumptions made there (since
the corresponding graph contains negative edge-weights), it cannot be solved
by applying those techniques.

1Their graph representation contains two terminal vertices t1 and t2 corresponding to the
labels +1 and −1, respectively. A vertex i is connected to t1 if ci > 0 and to t2 if ci ≤ 0, in
either case with an edge weight of |ci| [70]. Obviously, this leads to the same minimum cut
problem as the one-terminal representation.
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Figure 2.3: Binary Restoration Problem. A black and white map of
Iceland has been degraded by adding binary salt and pepper noise.

2.3 Restoration and Supervised Classification

A fundamental issue in computer vision is image restoration (reconstruction),
which is a special case of the broader problem of supervised classification (image
labeling). In contrast to the unsupervised partitioning problem presented in
Section 2.1, in this case some prototypical data is given which represents the
groups to which the image elements should be assigned. This prototypical data
is either known in advance (leading to a restoration problem, i.e. the image
features are noisy measurements of a number of known prototypes), or can be
estimated from training data. In the latter case, it is a common approach to
assume a certain probability distribution of the image features for each group,
and to calculate the corresponding parameters (e.g. mean value and covariance)
from the training data to find a prototypical representation of each group.

As an illustrating example consider the restoration problem given in Figure
2.3: the original binary image (a map of Iceland) has been degraded by noise.
Based on the observed values, we want to determine the true intensity for each
pixel. To this end, a compromise between two competing forces should be found:
on the one hand, we seek for classifications that best conform to the observed
intensities, while on the other hand — assuming that natural images are mostly
smooth, except for occasional region boundaries — spatially neighboring pixels
should receive similar labels.

In order to find a labeling which captures this trade-off, we seek to mini-
mize a global energy function which involves pairwise relationships among the
objects. This kind of problem has a long history in the literature, in particu-
lar as it arises naturally from the well-studied theory of Markov random fields
[64, 63, 193, 20], a statistical framework that builds the core of many image
processing applications [16, 49, 114, 104].

Using the integer variables xi to indicate the label of each image element i,
this amounts in minimizing an energy functional of the following general form
[105]:

E(x) =
∑

i

Ci(xi) +
∑

〈i,j〉
PijD(xi, xj) , (2.10)

where the second term sums over all pairwise adjacent image elements. The en-
ergy (2.10) comprises two terms familiar from many regularization approaches
[13]: a data-fitting term and a smoothness term modeling spatial context. In
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more detail, the data-fitting term measures the assignment costs Ci(xi) of label-
ing elements i as xi, while in the smoothness term, the separation costs consist
of two factors for each related pair i, j of objects: the weight Pij indicating the
strength of the relation and the distance D(xi, xj) of the two labels xi and xj.

Due to the integer constraint on x the optimization problem obtained from
(2.10) is much more difficult than standard regularization problems. In fact,
apart from a few special cases, it is in general NP-hard [24]. Different methods
have been proposed to find good minimizers of (special instances of) the energy
(2.10) efficiently, like the ICM-algorithm [16], the graduated non-convexity ap-
proach [17], flow-based local search heuristics [89, 24], or linear programming
relaxations [105]. Of these approaches, we will present the ICM-algorithm as
an exemplary local greedy technique in more detail in Section 3.3.

In this thesis, we will show how semidefinite relaxations can be used to ap-
proximate the minimal solution of the energy (2.10). To begin with, we first fo-
cus on a binary version that can be cast in the general form (2.1); the multiclass
case will be considered in Section 6.1. To this end, assume that feature vectors
gi (comprising e.g. gray-values, color-values, or texture measures) were locally
computed for each pixel i within the image plane. Furthermore, we suppose that
gi is known to originate from either of two given prototypical vectors u1 or u2.
In practice, of course, gi contains perturbed values due to measurement errors
and noise. Using the integer variable x ∈ {−1,+1}n as class indicator in con-
nection with defining assignment costs Ci(xi) = 1

4‖xi(u2 −u1)+u2 +u1 − 2gi‖2

and separation costs PijD(xi, xj) = λ1
2(xi−xj)

2, we obtain the following energy
functional:2

ER(x) =
1

4

∑

i

‖xi(u2 − u1) + u2 + u1 − 2gi‖2 +
λ

2

∑

〈i,j〉
(xi − xj)

2 . (2.11)

In this case, the pairwise adjacent image elements correspond to horizontally
and vertically neighboring pixels on the regular image grid. Like in (2.8), the
parameter λ balances the trade-off between data similarity and smoothness of
the result.

Up to constant terms, (2.11) leads to the following optimization problem:

min
x∈{−1,+1}n

1

4
x>Lx+

1

2
d>x , (2.12)

with di = (u2 − u1)
>(u2 + u1 − 2gi), and matrix entries Lij = −2λ for adja-

cent pixels i, j and Lij = 0 otherwise. Note that in contrast to the problems
introduced in the previous sections, in this case the problem matrix L is very
sparse, which is advantageous from the computational point of view.

We are well aware that the special instance (2.12) of the restoration problem
can be solved to optimality using the methods presented in [70, 89, 23], as the
separation costs yield a metric Potts interaction penalty [23]. In fact, (2.12)

2Note that the assignment costs Ci(xi) are naturally obtained from the distance measure
‖z>

i (u1, u2) − gi‖
2, with zi ∈

˘`

1
0

´

,
`

0
1

´¯

indicating the class membership of i, by substituting
zi1 = 1

2
(1 − xi) and zi2 = 1

2
(1 + xi).
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can be interpreted as a graph cut problem in the same manner as the percep-
tual grouping problem (cf. end of the last section): the corresponding graph for
which a minimum cut is sought has edges weighted with 2λ for adjacent pixels
and edges with the weight di from each pixel vertex to the terminal vertex.
However, depending on the application considered, it might be useful to mod-
ify the terms in (2.11) to model properties of the imaging device (data-fitting
term) or to take into consideration a priori knowledge about spatial regulari-
ties (smoothness term; see, e.g., [20, 193]). These modifications would lead to
other entries for L and d, which could violate the assumptions on the energy
functional made in [70, 89, 23], but would not affect the applicability of our
semidefinite relaxation approach.



Chapter 3

Established Segmentation
Methods

In this chapter we summarize (un-)supervised segmentation methods that have
been applied successfully to various image partitioning tasks, and that will
later be used for comparison with our semidefinite relaxation approach. We
start with closely investigating different spectral relaxation techniques which
can be applied to graph-based unsupervised partitioning problems (Section 3.1).
These methods are based on computing certain extremal eigenvectors either of
the similarity matrix of the graph or of another matrix derived from it. We
will show how these methods are related by considering them in a common
framework based on scaled cut-cost functions.

Moreover, Section 3.2 briefly recapitulates the most important facts about
the mean shift algorithm, which is an alternative unsupervised clustering tech-
nique that works directly in the (Euclidean) feature space of the extracted
image elements. We will later apply this method to reduce the size of image
segmentation problems arising in practice. Section 3.3 is devoted to an es-
tablished technique in the context of supervised segmentation problems: the
iterated conditional modes (ICM) algorithm is a local greedy technique that
is basically motivated in the framework of probabilistic estimation based on
Markov random fields. In particular, we will show how the underlying idea is
related to the energy functional proposed in Section 2.3 for image restoration
problems.

3.1 Spectral Techniques for Unsupervised Partition-
ing

As already stated in Section 2.1, unsupervised image segmentation can be re-
formulated as a graph partitioning problem: if the image is represented by a
graph G(V,E) with locally extracted image elements as vertices V and pairwise
similarity values as edge weights wij ∈ R

+
0 , segmenting the image is equivalent

to finding “good” cuts (of low weight) through the graph. Since many of the op-
timization problems that arise in this context are NP-hard, different approaches
for efficiently computing suboptimal solutions have been proposed in the litera-
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ture. In this section, we will compare some of these methods which are based on
spectral decompositions of matrices connected with the graph. In particular, we
will show how the corresponding eigenvector computations can be interpreted
as relaxations of partitioning problems related to different cut measures.

To this end, we first introduce a general framework to define suitable mea-
sures for the quality of a segmentation that is based on graph cuts (Section
3.1.1). A general spectral relaxation for these measures is presented in Sec-
tion 3.1.2, from which the Fiedler vector (Section 3.1.3) and the normalized
cut (Section 3.1.4) relaxations can be directly derived. Moreover, we consider
the relation to an average association measure (Section 3.1.5), and give a brief
experimental comparison of the different relaxations (Section 3.1.6).

In the following, the same notation as in Section 2.1 is used: W ∈ Sn

denotes the symmetric similarity matrix, D = Diag(We) the corresponding
diagonal degree matrix, and L = D −W the Laplacian matrix of the graph G.
A partition S, S is indicated by the vector x ∈ {−1,+1}n with xi = 1 for i ∈ S

and xi = −1 for i ∈ S. The weight of a cut then is given by (2.2) and (2.4):
cut(S, S) = 1

4x
>Lx.

3.1.1 Cut Measures

In order to identify a “good” binary partitioning based on the corresponding cut,
we first have to define a suitable quality measure. The simplest idea certainly
is to use the weight of the corresponding cut directly. This yields the following
equivalent formulations of the minimum cut optimization problem:

min
S⊂V

cut(S, S) = min
x∈{−1,+1}n

1

4
x>Lx = d(V ) − max

x∈{−1,+1}n

1

4
x>Wx , (3.1)

where d(V ) = x>Dx = e>We denotes the sum of all edge weights. Since we
assume the edge weights to be positive, finding the minimizer for (3.1) is easy:
S = V or equivalently x = e will give a cut of weight 0. To derive more
meaningful solutions, this trivial cut (or rather non-cut) is usually prohibited
in practice, which leads to an optimization problem that can still be solved in
polynomial time (see, e.g., [31] for an efficient algorithm).

A clustering method based on computing subsequent minimum cuts (3.1)
is proposed in [198]. However, as the authors already notice in their work,
the minimum cut criterion favors separating small sets of isolated vertices from
the rest of the graph, which results in very unbalanced partitionings. The
simple explanation for this fact is that for larger subsets S, the number of
edges connecting S and S usually also increases (at least for regular graphs
as they appear for image segmentation problems), which leads to higher cut-
values. Figure 3.1 gives an illustrating example: assuming that all points are
connected to each other with a weight inversely proportional to their Euclidean
distance, cutting one point on the left from the rest of the points results in the
best value for (3.1), whereas separating the points into a left and a right half
gives a more reasonable clustering.

To avoid such unbalanced partitions, more suitable cut measures have been
suggested in the literature. A popular approach is based on scaling the cut
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Figure 3.1: Example where the minimum cut criterion gives a bad
partition: one point on the left is separated from the rest of the points,
yielding a very unbalanced clustering. The average and normalized cut criteria
produce a more reasonable clustering.

value: generally defining a positive weight ωi > 0 for each vertex i, the minimum
of the following “scaled cut” objective function corresponds to a partition that
simultaneously yields a small cut and gives large cluster weights for each part,
which results in a balanced allocation of the vertices [45]:

fGcut(S) :=
cut(S, S)

ω(S)
+

cut(S, S)

ω(S)
= ω(V )

cut(S, S)

ω(S) ω(S)
, (3.2)

where ω(S) :=
∑

i∈S ωi denotes the sum of the vertex weights in S.

Depending on the choice of these vertex weights ωi, we can distinguish two
important cut measures that have attracted the interest of researchers:

• Using equal weights ωi = 1 for all vertices results in an objective function
that favors similar cluster sizes |S|. The corresponding cut measure is
called the average cut [159, 168] or the ratio cut [74, 29]:

fAcut(S) :=
cut(S, S)

|S| +
cut(S, S)

|S| . (3.3)

• Shi and Malik [168] suggest to use the degree di of a vertex as its weight,
ωi = di :=

∑

j∈V wij, which leads to the normalized cut criterion:

fNcut(S) :=
cut(S, S)

d(S)
+

cut(S, S)

d(S)
, (3.4)

where d(S) :=
∑

i∈S di denotes the sum of the vertex degrees in S.

Hence, in comparison to the average cut, the normalized cut measure takes
the edge weights within the subsets into account for balancing, instead of just
the number of points contained in each part. The advantage of this idea becomes
obvious when regarding the connection to the inner association assoc(S) :=
∑

i,j∈S wij of the clusters, which measures the strength of the connections within
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the subset S. As cut(S, S) = d(S)−assoc(S), the normalized cut becomes [168]

fNcut(S) =
d(S) − assoc(S)

d(S)
+
d(S) − assoc(S)

d(S)

= 2 −
(

assoc(S)

d(S)
+

assoc(S)

d(S)

)

=: 2 − fNassoc(S) .

(3.5)

Thus minimizing the normalized cut is equivalent to maximizing the normal-
ized association fNassoc(S), so that in fact two quality criteria are optimized
simultaneously: on the one hand, the similarity between the two groups of the
binary partition should be low, while on the other hand, the elements within
each group should have strong associations on average.

In contrast to that, a relation like (3.5) does not hold (exactly) for the
average cut criterion: defining the average association [168] analogously to the
normalized association as

fAassoc(S) :=
assoc(S)

|S| +
assoc(S)

|S|
, (3.6)

we only get

fAcut(S) =
d(S)

|S| +
d(S)

|S| − fAassoc(S) .

Hence, due to the non-constant first two terms, the optimization of both cri-
teria is not equivalent. However, in case of similar vertex degrees (di ≈ d̄ for
all i), minimizing the average cut closely approximates the maximum of the

average association, as d(S)
|S| + d(S)

|S| ≈ 2d̄ becomes nearly constant. Therefore,

the average and normalized cut criteria can be expected to yield similar results
unless the vertex degrees di vary considerably from each other. In this case, it
can be argued in favor of the normalized cut measure that it better reflects the
importance of the vertices by taking the corresponding degrees into account (cf.
also [94]).1

Unfortunately, minimizing the scaled cut value (3.2) exactly is an NP-hard
problem [61, 168]. However, approximate solutions can be found efficiently by
reverting to eigenvector computations, as we will show in the next sections.

Finally, we note that other measures related to graph cuts were proposed in
the literature recently, including a different ratio cut or mean cut, which scales
the cut by the length of the boundary between the segments [189], contour-based
ratio regions for object extraction [36], or typical cuts based on probability
distributions over the set of possible segmentations [62, 165]. Since all these
approaches result in optimization criteria which cannot be solved by spectral
techniques, they are not considered here.

1Actually, the similarity measures used in image segmentation often yield varying degrees,
which at least partly explains the recent success of the normalized cut criterion for applications
in this field.
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3.1.2 A General Relaxation

The following lemma provides a problem formulation which is equivalent to
the minimization of the general scaled cut objective function fGcut from (3.2).
This results in an optimization problem that can be solved approximately in
an obvious way by calculating specific eigenvectors.

Lemma 3.1. Assume that S 6= ∅, S 6= ∅, and define β :=
√

ω(S)

ω(S)
. Moreover, let

Ω = Diag(ω) denote the diagonal matrix with the vertex weights ωi on the diag-
onal. Minimizing the scaled cut (3.2) is equivalent to the following optimization
problems:

min
x

x>Lx
x>Ωx

g(β)

s.t. x ∈ {−1,+1}n

(3.7)

with g(β) := 1
4 (β2 + 1

β2 + 2), and

min
y

y>Ly
y>Ωy

s.t. y ∈ {−β, 1
β
}n

y>Ωe = 0

(3.8)

with y>Ωy = ω(V ).2

Proof. Let x ∈ {−1,+1}n denote the indicator vector for the partition S, S.
Using the fact that x>Ωx = ω(V ) = ω(S) + ω(S), the scaled cut objective
function (3.2) becomes

fGcut(S) =
cut(S, S)

ω(S)
+

cut(S, S)

ω(S)
= (ω(S) + ω(S))

1
4x

>Lx

ω(S) ω(S)

=
(ω(S) + ω(S))2

4ω(S) ω(S)

x>Lx
x>Ωx

=
x>Lx
x>Ωx

g(β) ,

which proves the equivalence to (3.7). Observing that e>Lv = v>Le = 0 for
each v ∈ R

n, we get (by expanding with 1
ω(S)2

)

fGcut(S) =

(

ω(V )

2ω(S)
x
)>

L
(

ω(V )

2ω(S)
x
)

ω(S)

ω(S)
x>Ωx

+ 0

=

(

1
2(1 + β2)x

)>
L
(

1
2 (1 + β2)x

)

β2x>Ωx
+

1
4(1 − β2)2e>Le+ 1

2 (1 − β4)e>Lx

β2x>Ωx

=

(

1
2β

(

(1 + β2)x+ (1 − β2)e
)

)>
L
(

1
2β

(

(1 + β2)x+ (1 − β2)e
)

)

x>Ωx
,

2Note that Shi and Malik [168] obtain a slightly different problem formulation for the
normalized cut: instead of y ∈ {−β, 1

β
}n they have y ∈ {−β2, 1}n. However, this is equivalent

to (3.8), as can be seen easily by replacing y with βy.
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which corresponds to the objective function y>Ly
y>Ωy

in (3.8) by defining the gen-
eralized partition vector

y :=
1

2

(

( 1
β

+ β)x+ ( 1
β
− β)e

)

. (3.9)

The equality of the denominators is derived by employing the facts that e>Ωx =
ω(S) − ω(S) and x>Ωx = e>Ωe = ω(S) + ω(S):

y>Ωy = 1
4( 1

β
+ β)2x>Ωx+ 1

2 ( 1
β

+ β)( 1
β
− β)e>Ωx+ 1

4( 1
β
− β)2e>Ωe

= 1
2( 1

β2 + β2)(ω(S) + ω(S)) + 1
2( 1

β2 − β2)(ω(S) − ω(S))

=
1

β2
ω(S) + β2ω(S)

= ω(S) + ω(S)

= x>Ωx .

The definition (3.9) of y now directly implies yi ∈ {−β, 1
β
}. Finally observe

that

y>Ωe = 1
2

(

( 1
β

+ β)x>Ωe+ ( 1
β
− β)e>Ωe

)

= 1
2

(

2 1
β
ω(S) − 2βω(S)

)

= β

(

ω(S)

ω(S)
ω(S) − ω(S)

)

= 0 ,

which proves the equivalence to (3.8).

As the weight quotient β is not known in advance, the optimization problem
(3.8) still is intractable. However, the objective function now equals a Rayleigh
quotient [69] of the generalized indicator vector y, which is related to the calcu-
lation of generalized eigenvectors for the matrix pair L and Ω. This observation
suggests to relax (3.8) by dropping the intractable constraint on the entries of
y. The resulting optimization problem can then be solved (in polynomial time)
by using the following standard result from linear algebra (which is just another
way of expressing the Courant-Fisher eigenvalue characterization, see Theorem
A.3):

Theorem 3.2. For a symmetric matrix L and a symmetric positive definite
matrix Ω, finding the k-th smallest eigenvalue λk and a corresponding eigen-
vector vk of the generalized eigenvalue problem

Lv = λΩv (3.10)

is equivalent to solving the problem

λk = min
v 6=0

v>Lv
v>Ωv

s.t. v>Ωvj = 0 for j = 1, . . . , k − 1 .

(3.11)
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In our case, Ω is positive definite as it corresponds to a diagonal matrix
with positive entries only. Moreover, since Le = 0, e is an eigenvector of the
generalized eigenvalue problem (3.10) corresponding to the eigenvalue λ1 = 0.
There are also no smaller eigenvalues: as the Laplacian L is positive semidefinite
(because v>Lv = 1

2

∑

i,j∈V wij(vi − vj)
2 ≥ 0 for each v ∈ R

n, cf. (2.4)), the
Rayleigh quotient in (3.11) is always positive.

Hence, by virtue of Theorem 3.2, the relaxation of (3.8) becomes to compute
the eigenvector v2 corresponding to the second smallest eigenvalue λ2 of the
generalized eigenvalue problem (3.10). This results in the following bound on
the scaled cut cost function:

λ2 =
v>2 Lv2
v2>Ωv2

≤ min
S⊂V

fGcut(S) . (3.12)

In the next sections, we will study this relaxation in more detail for the
special cases of the average and the normalized cut measure, respectively. Be-
forehand however, we answer the important question of how a good binary
solution can be obtained from the continuous eigenvector v2 ∈ R

n. The idea is
quite simple: as the entries of the solution vector y of the unrelaxed problem
formulation (3.8) take on either of two discrete values (which correspond to the
±1-entries of the indicator vector x, but are not known beforehand), we get an
integer solution x from v2 by thresholding the eigenvector using some suitable
splitting value t. The final partitioning thus is specified by the indicator vector
x with entries xi = 1 for v2,i > t and xi = −1 for v2,i ≤ t, which induces the
sets S = {i ∈ V | v2,i > t} and S = {i ∈ V | v2,i ≤ t}. Several popular choices
for the threshold value t arise naturally [174]:

• Set t = 0, which results in splitting according to the sign of the eigenvector
entries. This criterion is motivated by the fact that before the relaxation,
the entries of the generalized indicator vector y in (3.8) are either positive
or negative.

• Set t equal to the median of the eigenvector entries v2,i. This criterion
results in an equipartition of the vertices (|S| = |S| or |S| = |S| − 1).

• Set t to any value in the largest gap in the sorted list of eigenvector entries.
This criterion is motivated by the interpretation that the eigenvector en-
tries are noisy measurements of two different discrete values.

• Set t so that the corresponding indicator vector x gives the best value for
the original objective function (3.2).

While the last choice obviously achieves the best value for the original parti-
tioning criterion, it also is the most expensive threshold value to compute, as it
requires sorting the entries of v2 and calculating n objective function values. For
large problems, a variation is therefore often used in practice: instead of testing
each possible threshold, only a certain number of equally spaced splitting points
is evaluated.
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3.1.3 The Fiedler Vector

For the average cut measure (3.3), the vertex weights ωi = 1 result in the weight
matrix Ω = I. In this case, (3.8) yields the relaxation

λ2(L) = min
z∈Rn

z>Lz
z>z

s.t. z>e = 0 ,

(3.13)

which can be solved by computing the eigenvector v2 corresponding to the
second smallest eigenvalue λ2(L) of the Laplacian of the graph. This directly
leads to the following lower bound on the optimal average cut (3.3):

λ2(L) ≤ min
S⊂V

fAcut(S) . (3.14)

A corresponding suboptimal indicator vector x is finally obtained from v2 by
applying any of the thresholding methods mentioned at the end of the previous
section.

Fiedler [51] was probably the first to analyze the properties of this special
eigenvector in connection with graph partitionings by considering the compo-
nents of v2 as characteristic valuations of the corresponding vertices of the
graph G. Therefore, the second smallest eigenvalue λ2(L) and the correspond-
ing eigenvector v2 are usually called the Fiedler value and the Fiedler vector of
the Laplacian, respectively. Since this early work, the Fiedler vector has been
the subject of extensive research, especially in connection with graph partition-
ing [47, 19, 146, 74, 29, 174, 73]. Concerning image segmentation, a success-
ful application of the Fiedler vector approximation for perceptual organization
problems was recently presented in [159].

Only in some of the mentioned literature, however, the Fiedler vector was
considered in the way we derived it, namely as a relaxation to the average cut
objective function (e.g. in [74, 29]). In fact, it was mainly used to approxi-
mate other optimization criteria. Accordingly, two further interpretations of
the Fiedler vector are meaningful:

Equipartitioning. As already mentioned in Section 2.1, an alternative
to scaling the cut value to prevent unbalanced solutions is to introduce an
additional linear constraint e>x = 0 to get equally sized parts.3 This results
in the classical equipartition (or bisection) problem (2.5) [129]. Dropping the
integer constraint on the indicator vector x, and instead using the fact that its
norm is equal to n, we obtain the relaxation

min
z∈Rn

z>Lz

s.t. z>z = n

z>e = 0 ,

3If the number n of vertices of the graph is not even, this constraint results in an infeasible
problem. However, this case can be circumvented by adding an artificial, unconnected vertex
n + 1 if necessary: this increases the problem size by one, without changing the objective
function value.
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which obviously is equivalent to (3.13) up to the constant factor
√
n on z.

Thus, a lower bound on the weight of the optimal equipartition (the so-called
“bisection width”) is given by nλ2(L). In Section 4.3, we will see how this
bound can be improved by using a semidefinite relaxation approach.

In this sense, the Fiedler vector was successfully applied e.g. to find good
orderings for the parallel factorization of matrices [146], to load balancing prob-
lems in parallel computation [9, 83], and for unsupervised learning [38]. Other
eigenvalue-based lower bounds for equipartitioning were presented in [47].

Isoperimetric number. Closely related to the average cut criterion is the
isoperimetric number iG of a graph G (see, e.g., [129]), which is also NP-hard
to determine [127]. If we define the expansion ψ(S) of a cut as the quotient of
the cut and the smaller of the two emerging parts,

ψ(S) :=
cut(S, S)

min{|S|, |S|} ,

the isoperimetric number measures the minimal possible relative cut size for a
graph in terms of the expansion:

iG := min
S⊂V

ψ(S)

= min
S⊂V, 0<|S|≤n

2

cut(S, S)

|S| .
(3.15)

Hence, iG minimizes only the larger of the two summands of the average cut
(3.3). A direct connection between the two measures is easy to derive, since for
each S ⊂ V , we have

fAcut(S) ≤ 2max

{

cut(S, S)

|S| ,
cut(S, S)

|S|

}

= 2ψ(S) ,

which results in minS⊂V fAcut(S) ≤ 2iG. This shows that the Fiedler value can
also be interpreted as an approximation to the isoperimetric number iG.

The inequality (3.14) then directly yields the lower bound on the isoperi-
metric number given in the following theorem; the upper bound is proven in
[127]:

Theorem 3.3. Let G be a graph with n ≥ 3, and denote by δ = maxi di the
maximal vertex degree in G. Then

1
2λ2(L) ≤ iG ≤

√

(2δ − λ2(L))λ2(L) .

It can be shown [128, 73] that these inequalities also hold for the best
approximation ψ(S∗) to iG that can be obtained by thresholding the eigenvector
v2; therefore, Theorem 3.3 also yields the following upper bound on the average
cut value of the best partitioning S∗, S∗ acquired from the Fiedler vector via
thresholding:

λ2(L) ≤ fAcut(S
∗) ≤ 2

√

(2δ − λ2(L))λ2(L) .
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However, these bounds do not provide any information on how close to the real
optimal value minS⊂V fAcut(S) this partitioning is.

While more theoretical results concerning the quality of partitionings ob-
tained from the Fiedler vector seem to be missing for the average cut criterion,
this topic has been studied in connection with the isoperimetric number iG.
The corresponding results indicate that the approximation quality depends on
the underlying graph: on the one hand, Spielman and Teng [174] prove that for
special graphs which often arise in practice (bounded degree planar graphs and
finite element meshes), partitioning based on the Fiedler vector indeed gives
good approximations to iG. On the other hand, it can also be shown that for
other graph types (which are less common in practice), spectral partitioning as
approximation to iG may perform poorly [73].

For more information on properties and applications of the Fiedler value
and the Fiedler vector, we refer to [129, 39, 128].

3.1.4 Normalized Cut Relaxation

For the normalized cut measure (3.4), the vertex weights ωi = di result in the
weight matrix being equal to the degree matrix Ω = D. Hence from (3.8) we
obtain the relaxation

λ2(L,D) = min
z∈Rn

z>Lz
z>Dz

s.t. z>De = 0 ,

(3.16)

which is solved by computing the second smallest eigenvalue λ2(L,D) and the
corresponding eigenvector v2 of the generalized eigenvalue problem

Lz = λDz . (3.17)

This special eigenvalue problem is equivalent to several other eigenvalue
problems [190, 168, 125]. To derive the corresponding connections, define the
normalized Laplacian L′ of the graph G as

L′ := D− 1
2LD− 1

2 = I −D− 1
2WD− 1

2 = I −W ′ (3.18)

with the corresponding normalized similarity matrix W ′, and the (asymmetric)
stochastic similarity matrix P as

P := D−1W . (3.19)

In this context, we assume that D is positive definite, so that the inverse D−1

and its square root D− 1
2 are well defined.

The following normalization lemma now summarizes how these matrices are
linked to each other:

Lemma 3.4. (a) If v denotes an eigenvector of the generalized eigenvalue
problem (3.17) with the corresponding eigenvalue λ, then

• u := D
1
2 v is an eigenvector of L′ with corresponding eigenvalue λ,
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• u is an eigenvector of W ′ with corresponding eigenvalue 1 − λ,

• v is a (right) eigenvector of P with corresponding eigenvalue 1 − λ.

(b) The matrix L′ is positive semidefinite, and its eigenvalues lie in the in-
terval [0, 2]. The eigenvalues of W ′ and P lie in the interval [−1, 1], and
the largest eigenvalue is λn(W ′) = λn(P ) = 1.

Proof. (a) Using v = D− 1
2u, the propositions are shown by the following equiv-

alence transformations:

Lv = λDv

⇔ LD− 1
2u = λDD− 1

2u

⇔ L′u = D− 1
2LD− 1

2u = λu

⇔ Iu−D− 1
2WD− 1

2u = λu

⇔ W ′u = (1 − λ)u

⇔ D− 1
2W ′D

1
2 v = (1 − λ)D− 1

2D
1
2 v

⇔ Pv = D−1Wv = (1 − λ)v .

(b) As the smallest eigenvalue of the generalized eigenvalue problem (3.17) is 0
(see Section 3.1.2), L′ must be positive semidefinite. Furthermore, using (2.4)
and the fact that (vi −vj)

2 ≤ 2(v2
i +v2

j ), we get for each eigenvalue λ of L′ with

the corresponding eigenvector u = D
1
2 v:

λ =
v>Lv
v>Dv

=
1
2

∑

ij wij(vi − vj)
2

∑

i div
2
i

≤
∑

ij wij(v
2
i + v2

j )
∑

i div
2
i

=

∑

i div
2
i +

∑

j djv
2
j

∑

i div
2
i

= 2 .

The propositions on the eigenvalues of W ′ and P now directly follow from
(a).

This lemma shows that approximations to the normalized cut can conve-
niently be found by computing the eigenvector corresponding to the second
smallest eigenvalue of L′, or to the second largest eigenvalue of W ′ or P , re-
spectively. If the normalized Laplacian L′ or the similarity matrix W ′ are used,
this eigenvector u2 additionally has to be transformed by v2 = D− 1

2u2 to get
the correct solution v2 for the relaxation (3.16).4 Thresholding v2 with any of
the methods mentioned at the end of Section 3.1.2 finally yields an approximate

4Weiss [190] points out that the vector v2 can also be interpreted as component-wise ratio

of the eigenvectors u1 = D
1

2 e and u2 corresponding to the two largest eigenvalues of W ′:
v2,i =

u2,i

u1,i
.
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integer solution to the normalized cut criterion (3.4). As for the average cut,
we directly obtain λ2(L

′) as a lower bound on the optimal normalized cut:

λ2(L
′) ≤ min

S⊂V
fNcut(S) . (3.20)

Via the stochastic matrix P , there is a strong relationship between the
normalized cut and the theory of Markov random walks [125]: as each matrix
entry Pij can be interpreted as representing the probability of moving from
vertex i to vertex j in one step, it follows that the normalized cut (3.4) measures
the total probability of a random walk to transition from any vertex in S to any
vertex in S or vice versa in one step. Thus, a small normalized cut corresponds
to a partition such that a random walk tends to remain in each of the parts
once it is in it [125].

In this context — similar to the connection between the average cut and the
isoperimetric number — there are also strong analogies of the normalized cut
with the (generalized) Cheeger constant hG of a graph G [32, 94], which can
be used to bound the mixing time of a Markov random walk [170]. In order to
define hG, consider the conductance φ(S) of a cut,

φ(S) :=
cut(S, S)

min{d(S), d(S)} ,

which is a direct generalization of the expansion ψ(S) introduced in the previous
section. Analogously to the isoperimetric number, the Cheeger constant is then
defined as

hG = min
S⊂V

φ(S) , (3.21)

and thus measures the minimal possible relative cut size by scaling with the
smaller degree of the corresponding parts.

As in the previous section, we easily get minS⊂V fNcut(S) ≤ 2hG, which by
virtue of (3.20) results in a lower bound on the Cheeger constant and indicates
that the relaxation (3.16) can also be interpreted as approximation to hG. The
corresponding upper bound given in the following theorem is proven in [18] as
a generalization of the proof in [32]:

Theorem 3.5. For any connected graph G we have

1
2λ2(L

′) ≤ hG ≤
√

(2 − λ2(L′))λ2(L′) .

In contrast to Theorem 3.3, however, it is not clear if this theorem also yields
bounds on the partitioning obtained by optimally thresholding v2 based on the
conductance φ or the normalized cut measure [32]. Nevertheless, by analogy
we reckon that similar bounds as in the previous section can be established, at
least if the edge weights are known to be smaller than one.5

Since the pioneering work of Shi and Malik [168], who successfully applied
the normalized cut criterion to image segmentation problems, there has been

5This assumption is motivated by Corollary 2.4 in [32], from which such a bound can be
derived in this case.
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great interest among researchers in this method: besides several variants that
have been proposed [94, 118, 134, 54], cases where the relaxation works optimal
in theory were presented in [125, 134]. Moreover, the normalized cut has been
applied to such diverse fields as motion segmentation and tracking [167], object
recognition [203], document clustering [45], analyzing and visualizing networks
[162], and transductive learning [92]. For more information on the theory of
the normalized Laplacian, we refer to [32].

3.1.5 Average Association Approximation

Lemma 3.4 shows that the relaxation of the normalized cut criterion can equiv-
alently be solved by computing the eigenvector corresponding either to the sec-
ond smallest eigenvalue of the normalized Laplacian L′ or to the second largest
eigenvalue of the normalized similarity matrix W ′. This connection was already
indicated by the relation (3.5), which comprises that minimizing the normal-
ized cut measure fNcut is equivalent to maximizing the normalized association
fNassoc. In fact, by virtue of Lemma 3.1 and (3.18), we get

fNassoc(S) = 2 − y>L′y
y>y

=
y>W ′y
y>y

+ 1

(with y defined as in (3.9)), which reveals the direct connection between W ′

and the normalized association measure.

Unfortunately, a direct relation like (3.5) does not hold between the aver-
age cut measure fAcut and the average association fAassoc (see Section 3.1.1),
which opens up the question for an appropriate relaxation for the problem of
maximizing the average association measure (3.6). Using a similar derivation
as in Lemma 3.1, the following lemma establishes that this analogously to the
normalized association fNassoc can be realized by resorting to the original weight
matrix W .

Lemma 3.6. Assume that S 6= ∅, S 6= ∅, and define β :=
√

|S|
|S| . Maximizing

the average association fAassoc(S) is equivalent to the following optimization
problem:

max
y

y>Wy

y>y

s.t. y ∈ {−β, 1
β
}n

y>e = 0

(3.22)

with y>y = n. The objective functions are related by

fAassoc(S) =
y>Wy

y>y
+
d(V )

n
.

Proof. Let x ∈ {−1,+1}n denote the indicator vector for the partition S, S,
and define y = 1

2 (( 1
β

+ β)x + ( 1
β
− β)e) as in (3.9). By substituting Ω = I in
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Lemma 3.1, we see that yi ∈ {−β, 1
β
}, y>e = 0 and y>y = n. Using the fact

that |S| + |S| = n, the average association (3.6) becomes

fAassoc(S) =
assoc(S)

|S| +
assoc(S)

|S|

=
1

4

(

1

|S| (x+ e)>W (x+ e) +
1

|S|(x− e)>W (x− e)

)

=
1

4n

(

(1 + 1
β2 )(x+ e)>W (x+ e) + (1 + β2)(x− e)>W (x− e)

)

=
1

4n

(

( 1
β

+ β)2(x>Wx+ e>We) + 2( 1
β2 − β2)e>Wx

)

=
y>Wy

y>y
+

1

4n

(

( 1
β

+ β)2e>We− ( 1
β
− β)2e>We

)

=
y>Wy

y>y
+

4e>We

4n

=
y>Wy

y>y
+
d(V )

n
.

Since d(V )
n

is constant, this proves the statement of the lemma.

As for the average cut problem (3.13), the objective function in (3.22) equals
a Rayleigh quotient of y, but this time for the matrix W . Hence, we can think of
approximating the solution by neglecting the constraints on y, and computing
the eigenvector vn belonging to the largest eigenvalue of W . A corresponding
partitioning is again obtained by applying any of the thresholding techniques
described at the end of Section 3.1.2. However, in contrast to the relaxation
(3.13) of the average cut problem, this relaxation does not automatically take
into account the balancing constraint y>e = 0, as e is no eigenvector ofW . Thus
fewer original constraints than in (3.13) are adhered, which obviously leads to
a weaker relaxation in terms of the quality of the corresponding solutions.

Nevertheless, the largest eigenvector vn of W has been used for solving
partitioning problems (though differently motivated), especially in the context
of perceptual grouping [158, 142]. For instance, Sarkar and Boyer [158] define
a measure of “cluster-cohesiveness” as y>Wy for real vectors y from the unit
sphere (i.e. with y>y = 1). To find maximally coherent clusters according
to this measure, they compute the eigenvectors corresponding to the largest
eigenvalues of W . Interpreting the entries of y to capture the participation of
each graph vertex in a cluster, a so-called “eigencluster” is then derived from
the dominant (largest magnitude) entries in these eigenvectors.

Perona and Freeman [142] follow a different idea: they compute the largest
eigenvector vn of the similarity matrix W to obtain the best rank one approxi-
mation to W in Frobenius norm: W ≈ vnv

>
n . Similar to [158], this eigenvector

is used as a saliency function of the vertices by observing that the entries of
vn which are larger than a certain threshold value (close to 0) usually belong
to “foreground” objects. By comparing their approach with the normalized
cut technique [168], they claim that vn also approximates the minimum of an
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asymmetric version of fNcut(S), namely the so-called “foreground cut” cut(S,S)
assoc(S) .

However, this interpretation is not correct.6 Instead, vn rather approximates
the maximum average foreground association assoc(S)

|S| [168], because

max
S⊂V

assoc(S)

|S| = max
x∈{0,1}n

x>Wx

x>x
(3.23)

can be relaxed by taking x ∈ R
n. This idea explains the success of using the

eigenvector vn for the perceptual grouping task: as only the foreground objects
need to satisfy some coherency criterion (large association), the second term in
the average association measure fAassoc(S) may be abandoned, thus rendering
the balancing constraint y>e = 0 in (3.22) unnecessary.

However, to find partitionings with both parts being coherent according to
the average association criterion (3.6), we have to find a way to incorporate
the balancing constraint y>e = 0 from (3.22) into the relaxation appropriately.
The following lemma shows that this can be done by centering the similarity
matrix W :

Lemma 3.7. Let Q := I− 1
n
E denote the projection matrix onto the orthogonal

complement of e, and define the centered similarity matrix W̃ := QWQ. Fur-

thermore, as in Lemma 3.6 assume that S 6= ∅, S 6= ∅, and define β :=
√

|S|
|S| .

Then maximizing the average association (3.6) resp. (3.22) is equivalent to:

max
y

y>W̃y

y>y

s.t. y ∈ {−β, 1
β
}n

(3.24)

with y>y = n.

Proof. Observing that Qe = (I − 1
n
E)e = e − 1

n
ne = 0, we get for y = 1

2(( 1
β

+

β)x+ ( 1
β
− β)e) as in (3.9):

Qy =
1

2

(

( 1
β

+ β)Qx+ ( 1
β
− β)Qe

)

=
1

2

(

( 1
β

+ β)x− ( 1
β

+ β) 1
n
Ex
)

=
1

2

(

( 1
β

+ β)x− ( 1
β

+ β)
|S| − |S|

n
e

)

=
1

2

(

( 1
β

+ β)x− β
|S| + |S|

|S|
|S| − |S|
|S| + |S|e

)

=
1

2

(

( 1
β

+ β)x− β(1 − 1
β2 )e

)

= y .

6In their derivation, Perona and Freeman claim that z>u subject to ‖z‖ = 1 is minimized
by the vector z = ±(0, . . . , 0, 1, 0, . . . , 0)> with the 1 indicating the position of the largest
entry of u. This is not true in general: as ‖u‖ ≤ maxi|ui|, the vector z = − u

‖u‖ gives a smaller
value. In fact, one can verify that the foreground cut criterion leads to the problem of finding
the maximum eigenvector of the normalized similarity matrix W ′, which is equal to e and
thus useless for partitioning.
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Hence, without loss of generality we can replace y with Qy in (3.22). As now
(Qy)>e = y>Qe = 0, the second constraint in (3.22) is automatically satisfied,
and thus can be dropped from the optimization problem.

This lemma shows that we can appropriately relax the problem of maximiz-
ing the average association (3.6) by computing the eigenvector vn corresponding
to the largest eigenvalue λn(W̃ ) of the centered similarity matrix W̃ . Thus we
get the upper bound:

λn(W̃ ) ≥ max
S⊂V

fAassoc(S) . (3.25)

A corresponding binary solution is again obtained by applying one of the thresh-
olding techniques described at the end of Section 3.1.2. In fact, with a different
notion of the objective function, the bound (3.25) was already given in [129],
based on a proof for unweighted graphs from [93].

The idea to compute clusterings based on the eigenvector corresponding to
the largest eigenvalue of the centered similarity matrix W̃ also appears in the
context of unsupervised learning [38], where the alignment of a fixed kernel
(which is represented by W in our notation) with a set of labels (corresponding
to the ±1-entries of the indicator vector x in our notation) is approximately
maximized in this way. Actually, the alignment measures how good a rank
one matrix approximates the given kernel matrix, and is thus equivalent to the
approach used in [142] for perceptual grouping. This explains why the use of
the centered kernel matrix has become very popular in the learning commu-
nity [124]: it results in better clusterings by effectively including a balancing
constraint on the labels.

3.1.6 Experimental Results

All the relaxations presented in the previous sections result in the calculation
of extremal eigenvectors of different matrices: either one corresponding to the
largest (or second largest) eigenvalue of the (potentially centered or normalized)
similarity matrix, or one corresponding to the second smallest eigenvalue of the
(potentially normalized) Laplacian matrix (see Table 3.1). Such eigenvectors
can be computed efficiently for large matrices with iterative techniques like the
Lanczos method [69]. In particular, this numerical algorithm is able to exploit
any kind of sparsity structure, a property that is often encountered for image
partitioning problems (e.g. if only spatially neighboring pixels are connected).
Moreover, the eigenvector entries are not required to be calculated with high
accuracy, as they are subject to be thresholded afterwards. Putting all this to-
gether, the final approximative solution based on any of the measures presented
can be obtained in running time O(n

3
2 ) for typical image segmentation prob-

lems [168], if we only test a fixed number of possible threshold values. Hence,
even for larger images with a few thousand pixels, the solution is calculated in
less than one minute.7

7Unless stated otherwise, all the computation times stated in this work were measured on
currently available 2 or 3 GHz Pentium IV Linux PCs.
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Original criterion Relaxation Solution

Average cut fAcut(S) (3.3)

min cut(S,S)
|S| + cut(S,S)

|S| min
z>e=0

z>Lz
z>z

(3.13) λ2(L)

Normalized cut fNcut(S) resp. normalized association fNassoc(S) (3.4)

min cut(S,S)
d(S) + cut(S,S)

d(S)
min

z>De=0

z>Lz
z>Dz

= min
z>D

1
2 e=0

z>L′z
z>z

λ2(L,D) = λ2(L
′)

= 2 − max assoc(S)
d(S) + assoc(S)

d(S)
= 1 − max

z>D
1
2 e=0

z>W ′z
z>z

(3.16) = 1 − λn−1(W
′)

Average association fAassoc(S) (3.6)

max assoc(S)
|S| + assoc(S)

|S| max
z

z>W̃z
z>z

(3.24) λn(W̃ )

Average foreground association (3.23)

max assoc(S)
|S| max

z

z>Wz
z>z

(3.22) λn(W )

Table 3.1: Overview of the spectral partitioning techniques presented
in this section. While normalized cut and normalized association are equiva-
lent, average cut and average association yield different relaxations.

Comparisons of spectral relaxation methods were presented by several au-
thors, both in theory and concerning the application to image segmentation
[190, 168, 173, 162]. In this work, we therefore provide only a few results which
especially demonstrate the differences of the spectral techniques. Since the fol-
lowing examples are quite small, we always search for the threshold value on
the eigenvector which results in the best value of the corresponding objective
function.

Concerning the similarity measure, we compute the entries of W for a given
problem from normalized distances d(i, j) ∈ [0, 1] between the extracted image
features i and j as

wij = e
−

“

d(i,j)
σ

”2

,

where σ is usually set to a value between 5% and 30% of the maximal distance
encountered in the problem [168]. More intricate similarity measures can of
course be conceived [149]; see also Section 4.4.2. However, since the focus of
this work is on analyzing different relaxations of hard problems from the opti-
mization point of view, we do not elaborate on the issue of similarity measures
here.

As a first result, Figure 3.2 shows the eigenvectors obtained for each of the
spectral relaxation methods for the clustering problem depicted in Figure 3.1. In
this case, the similarity matrix is calculated based on the normalized Euclidean
distances between all the points, with σ = 0.1. While the approximating eigen-
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Figure 3.2: Eigenvectors used for clustering the point set from Fig-
ure 3.1, for similarities calculated with σ = 0.1. While the average and
normalized cut relaxations result in eigenvectors that definitely yield the op-
timal clustering (left), the eigenvector corresponding to the largest eigenvalue
of W does not give a clear result (bottom right). However, centering the simi-
larity matrix completely fails in this case (top right), as only very close points
get high similarity values.
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Figure 3.3: Segmentation obtained from the eigenvector vn(W̃ ), given
in Figure 3.2, top right. The average association criterion is not able to find
the desired clusters.

vectors for the average and the normalized cut measures very clearly produce the
desired segmentation given in Figure 3.1, right, the situation is more problem-
atic for the average association measure: while the eigenvector corresponding
to the largest eigenvalue of the original similarity matrix W does not give an
obvious threshold value, the centered similarity matrix W̃ yields an eigenvector
that is even worse. However, in this case the clustering obtained from vn(W̃ ),
which is depicted in Figure 3.3, really has a higher average association value
(fAassoc(S) = 6.37) than the segmentation from Figure 3.1 (fAassoc(S) = 5.87)
— apparently, the average association is not a suitable measure for the given
clusters. Nevertheless, when we calculate the similarity matrix with σ = 0.3,
all the eigenvectors produce the desired clustering (cf. Figure 3.4). This shows
that the average (foreground) association criterion is more susceptible to differ-
ent calculation of the similarity values than the cut criteria: if only very close
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Figure 3.4: Eigenvectors used for clustering the point set from Fig-
ure 3.1, for similarities calculated with σ = 0.3. With this value for
σ, the similarity values decrease, which results in all eigenvectors yielding the
optimal clustering.

points have high similarity, it focuses on finding one small, very dense cluster
as the associations between the other points are too small. We refer to [168]
for further investigations on this topic of robustness to the similarity measure.

A different problem is given in Figure 3.5: this point set comprises a dense
cluster in the middle and equally distributed background clutter, both contain-
ing 80 points. The similarity values are again computed based on normalized
Euclidean distances, with σ = 0.1. For this example, only the eigenvector cor-
responding to the largest eigenvalue of W is able to separate the dense cluster
from the background, which indicates that the average foreground association
criterion is more appropriate in this case. The desired segmentation neither
consists of two parts of similar inner association nor has a small cut value, and
thus is not optimal for the other criteria. However, by resorting to a different
distance measure (e.g. based on the point-density observed in the neighborhood
of each point), this problem can possibly be solved.

Finally, Figure 3.6 depicts the results obtained for a small patch from a
larger color image. In this case, the corresponding graph is locally connected
by defining edges only between horizontally and vertically neighboring pixels.
As distance measure d(i, j) we compute the normalized color difference of two
pixels in the perceptually uniform L*u*v* space, and use σ = 0.3 to derive the
corresponding similarity values. As can be seen, both cut measures result in
very similar segmentations, in which the hand is clearly separated from the ball.
For this example, the likewise behavior of both measures may be attributed to
the sparsity of the similarity matrix, which results in a degree vector d that
is almost constant and hence in nearly equivalent optimization problems (cf.
Section 3.1.1). As will be demonstrated in Section 4.4.3, however, the results
may differ considerably if we revert to a dense similarity matrix. Note that for
this example, the average association criterion once again separates a smaller
patch of mostly consistent points from the rest of the image.
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Figure 3.5: Eigenvectors and corresponding clusterings for a dot
density problem. In this case, only the eigenvector corresponding to the
largest eigenvalue of W yields the desired result (bottom right): the aver-
age foreground association criterion is more appropriate here, as it does not
balance the parts of the segmentation.

As a first conclusion, these experiments indicate that in practice, the aver-
age and the normalized cut criteria may perform quite similarly. On the other
hand, the average association is a much weaker measure of the perceptual im-
pression of the scene, at least for the similarity values we used. Nevertheless,
the example in Figure 3.4 demonstrates that reverting to similarity values of
higher fluctuation (by using larger σ-values and/or smaller neighborhoods) may
yield optimization problems where the average association measure is more ap-
propriate. More experimental results for spectral partitioning techniques will
be given throughout this thesis, when we compare them with our semidefinite
relaxation approach.
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Original

Average cut

Normalized cut

Average association

Figure 3.6: Segmentations for a color image of 36×36 pixels, obtained
as a small patch of a larger image. While both cut measures yield satisfactory
segmentations, the average association criterion does not give a valuable result.

3.2 Unsupervised Clustering in Euclidean Spaces:
Mean Shift

For unsupervised partitioning tasks, clustering approaches that work directly in
the feature space of the given image elements present an alternative to graph-
theoretical approaches like the spectral techniques presented in Section 3.1.
Representing each image element by a feature vector in Euclidean space, such
methods form clusters efficiently by grouping together similar vectors based on
(a variant of) a Euclidean distance measure. Hence, in contrast to graph-based
methods, it is not necessary to compute the (dis-)similarity relations between
all image elements in advance. This results in a clear advantage in terms of
storage requirements and therefore allows dealing with much larger problem
instances.

However, a common argument in favor of using (dis-)similarity relations is
that they better capture signal variability in low-level vision [181]: in contrast
to feature vector representations, they are not restricted to be calculated from
Euclidean distances. Hence, (dis-)similarity relations may yield a more ade-
quate description of the image in general situations. For this reason, they are
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probably more suited for unsupervised segmentation, a claim that also appears
to be supported by research on human perception [75].

Nevertheless, as an important representative method for unsupervised fea-
ture space partitioning we will briefly review the mean shift technique [33] in
this section. In particular, since graph-based approaches are limited to smaller
images due to the size of the similarity matrix, we will use this method later to
reduce the number of variables for large images (cf. Sections 4.4.3 and 5.2).

Generally speaking, the mean shift technique is a nonparametric cluster-
ing approach based on density gradient estimation in a feature space that is
equipped with a Euclidean metric. The associated procedure of iteratively
seeking modes (i.e. local maxima) in the density distribution has already been
developed by Fukunaga and Hostetler [59], but was only recently applied to
unsupervised image segmentation [33]. The basic idea is to consider image pix-
els in the combined spatial-range domain, find the modes of the corresponding
density distribution with the mean shift procedure and finally delineate the
clusters associated with these modes by assigning the pixels appropriately.

In more detail, assuming that n points xi ∈ R
d are given, the estimate of the

density gradient for a point x ∈ R
d is obtained as the gradient of a multivariate

kernel density estimation in x,

f(x) =
1

nσd

n
∑

i=1

K(x−xi

σ
) ,

by using the Epanechnikov kernel for K, which minimizes the asymptotic mean
integrated square error of the density approximation [33]. This results in the
density gradient estimate

∇f(x) =
(d+ 2)|Tσ(x)|
nσ2 vol(Tσ(x))

1

|Tσ(x)|
∑

xi∈Tσ(x)

(xi − x) , (3.26)

where Tσ(x) denotes the hypersphere of radius σ around the center x, containing
|Tσ(x)| data points and having the volume vol(Tσ(x)). Note that the only
parameter needed in this estimation is the bandwidth σ > 0, which specifies
the radius of the sphere the density is estimated in. Since in (3.26), the direction
of the largest increase of the density is indicated by the mean shift vector

mσ(x) =
1

|Tσ(x)|
∑

xi∈Tσ(x)

(xi − x) ,

a local density maximum (a mode) is found by iteratively following the path
defined by the mean shift vectors. This leads to the mean shift procedure which
computes a series of points

yk = yk−1 +mσ(yk−1) =
1

|Tσ(yk−1)|
∑

xi∈Tσ(yk−1)

xi for k = 1, 2, . . . , (3.27)

and which is guaranteed to converge in a finite number of steps for discrete data
sets [33].

Based on this procedure, the following algorithm computes a complete clus-
tering of the given set of points xi, i = 1, . . . , n:
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(a)

(b)

(c)

(d)

Original Cluster borders Segmentation

Figure 3.7: Clusterings obtained with mean shift. The bandwidth
parameters and the minimum cluster size were adjusted to result in 200 – 500
clusters. The right column displays the resulting segmentations by replacing
the color of each pixel with the average color of the corresponding cluster.

1. Apply the mean shift procedure (3.27) successively to each given point xi

by initializing y1
i = xi, and find the corresponding convergence point zi

(which is a mode of the data distribution).

2. Delineate the clusters Sk, k = 1, . . . ,m, by grouping together all data
points xi which converged to similar modes: if for two points xi and xj

the distance of the corresponding convergence points zi and zj in feature
space is less than σ, ‖zi − zj‖ < σ, then both points are assigned to the
same cluster Sk.

3. Optionally, eliminate small clusters containing less than M points by fus-
ing them with the (spatially) closest larger cluster.

The final number m of clusters obtained with this algorithm besides by M is
controlled by the bandwidth parameter σ: smaller values yield small hyper-
spheres as basis for the density estimation, which results in a higher number of
clusters.

For image segmentation problems, the data points xi are feature vectors
comprising the position and the color in the perceptually uniform L*u*v* space
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Image Size σs σr M # Segments

(a) 298 × 141 4.0 8.0 20 211
(b) 512 × 404 5.0 8.0 25 404
(c) 481 × 321 5.0 3.5 50 460
(d) 481 × 321 5.0 9.0 50 366

Table 3.2: Size of the original image, parameter settings and number of
segments obtained with the mean shift for the examples from Figure 3.7.

(or any other Euclidean feature data) of the corresponding pixel in the image.
As each xi thus originates from two different domains (the spatial and the
range domain), its entries may vary considerably. Therefore, in practice two
bandwidth parameters, σs (spatial domain) and σr (range domain), are used to
scale the entries of the feature vectors appropriately. The mean shift procedure
in the joint domain can then be executed very efficiently, since the search for
the points in the hypersphere Tσ(yk) can be limited to a quadratic window of
size σs × σs in the image.

Figure 3.7 shows some results obtained with the mean shift technique for
diverse color images from the VisTex database [187] and the Berkeley segmenta-
tion dataset [121]. For these examples, we adjusted the bandwidth parameters
σs and σr and the minimum cluster size M manually or semi-automatically,
so that the final segmentation contains between 200 and 500 clusters. Since
we will use the mean shift algorithm mainly as a preprocessing step, this num-
ber is adequate to obtain optimization problems of reasonable size (cf. Section
5.2). The semi-automatic adjustment affects the range bandwidth parameter
σr, which is calculated by randomly picking a fixed number of pixels from the
image, computing their maximum distance dmax in the L*u*v* color space,
and setting σr to a certain fraction of dmax. The parameter settings used for
the images in Figure 3.7 can be found in Table 3.2. For these examples, the
segmentations are then obtained in less than 10 seconds.

3.3 Supervised Segmentation with Markov Random
Fields: Iterated Conditional Modes (ICM)

In Section 2.3, we stated that supervised segmentation problems can be ap-
proached by minimizing a global energy function E(x) of the general form
(2.10), which seeks a compromise between local agreement with the measured
data and global smoothness of the labeling. Due to the integer constraint on
x, however, this optimization problem is usually NP-hard. In this section, we
will therefore briefly present Besag’s ICM-algorithm [16] as an approximation
method that greedily finds local minima of E(x), and which has become quite
popular because of its fast convergence properties and its general applicability.

Since the ICM-algorithm is basically motivated in the framework of proba-
bilistic estimation based on Markov random fields [193, 114], we will start with
explaining how the energy (2.10) arises in this context. To this end, the feature
vectors gi computed for the pixels i are assumed to depend on the ‘true’ image
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x as realizations of some random variable Y , which is given by the conditional
density function f(g |x). Moreover, a prior distribution P (x) on the space of
images is assumed, which (independently of the given data) models prior expec-
tations of the ‘true’ scene like smoothness constraints or regularity conditions.
On this basis, the task of supervised segmentation can be defined as estimating
the ‘true’ scene by seeking the labeling x that has maximum probability, given
the observed feature vectors gi. Using the Bayes theorem [193], this results in
maximizing

Pr(x | g) ∝ f(g |x)P (x) , (3.28)

which corresponds to finding the maximum a posteriori (MAP) estimate or the
mode of the posterior distribution of the image.

If the prior distribution is represented in Gibbsian form

P (x) = exp (−H(x)) , (3.29)

with some real valued energy function H(x), finding the MAP estimate is equiv-
alent to minimizing the posterior energy function

EMAP(x | g) := − ln f(g |x) +H(x) . (3.30)

Besag [16] now makes two main assumptions:

1. The random variable Y is defined by conditionally independent random
variables Yi for each pixel i with identical density functions pxi

(gi) that
only depend on the label xi. This results in the joint conditional density

f(g |x) =
∏

i

pxi
(gi) . (3.31)

Modifications of this assumption for cases where it is not applicable are
discussed in [16, 123].

2. The labeling x is a realization of a locally dependent Markov random field,
i.e. the prior distribution P (x) is defined through the local conditional
probabilities

Pr(xi |xV \{i}) = Pi(xi |xδi) ,

where δi ⊂ V \ {i} denotes the set of neighbors of the pixel i. This means
that the label of each point i only depends on the labels of its neighbors δi,
and thus provides a way to formalize the idea that nearby pixels are likely
to belong to the same class [123]. Most commonly used neighborhood sys-
tems in computer vision result from the symmetric lattice structure of an
image: connecting each pixel to its four horizontal and vertical neighbors
yields a first-order Markov random field, while additionally including the
diagonally adjacent pixels defines a second-order field [16].

Furthermore, Besag [16] suggests to use a pairwise interaction Markov ran-
dom field, which is described by (3.29) through the energy function

H(x) =
∑

i

Hi(xi) +
∑

〈i,j〉
Hij(xi, xj)
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with arbitrary functions Hi and Hij. Based on this prior distribution of the
image, and using the assumption (3.31), the posterior energy (3.30) becomes

EMAP(x | g) = −
∑

i

ln pxi
(gi) +

∑

i

Hi(xi) +
∑

〈i,j〉
Hij(xi, xj) .

If we now define the point-wise conditional densities through the assignment
costs C ′

i(xi) as
pxi

(gi) ∝ exp
(

−C ′
i(xi)

)

,

finding the MAP estimate becomes equivalent to minimizing the energy

EMAP(x | g) =
∑

i

(

C ′
i(xi) +Hi(xi)

)

+
∑

〈i,j〉
Hij(xi, xj) .

Obviously, this equals the energy functional (2.10) by setting Ci(xi) = C ′
i(xi)+

Hi(xi) and defining Hij(xi, xj) = PijD(xi, xj).
As the exact computation of the MAP estimate is generally intractable,8

Besag [16] proposes the iterated conditional modes (ICM) algorithm, which
seeks an approximative solution by individually maximizing the local condi-
tional probabilities

Pr(xi | gi, xV \{i}) ∝ pxi
(gi)Pi(xi |xδi) (3.32)

iteratively for each pixel i. As a first step, an initial estimate x̂ of the classi-
fication needs to be calculated: ignoring the spatial relationships between the
image pixels, this can be achieved by reverting to the maximum likelihood clas-
sifier, which simply chooses x̂i to maximize pxi

(gi) for each pixel i. Afterwards,
in a single iteration the label x̂i is updated for each pixel in turn by maximizing
(3.32) based on the current labeling x̂δi of its neighboring pixels. In terms of
the energy functional (2.10), the ICM algorithm thus minimizes

E(xi) = Ci(xi) +
1

2

∑

j∈δi

PijD(xi, x̂j) (3.33)

with respect to xi individually for each i. This procedure is applied until con-
vergence or, in practice, for a predefined number of iterations to find the final
classification x. In fact, convergence cannot be guaranteed for synchronous up-
dating, i.e. when the new estimate x̂i for each pixel is based on the labeling of
the previous iteration, but only for serial updating [16].

Since the update of each pixel only requires the comparison of k different
values (where k is the number of predefined classes), the ICM algorithm ter-
minates very fast. In comparison to simulated annealing [64], which usually
requires long computation times, ICM is equivalent to instantaneous freezing
[16]. However, the final solution obviously merely corresponds to a local mini-
mum of the posterior distribution of the image. As it critically depends on the

8One exception was already mentioned in Section 2.3: in case of binary labels and sep-
aration costs of Ising type (i.e. Hij(xi, xj) = Pijxixj with xi ∈ {−1, +1}), the exact MAP
solution can be computed by adopting the Ford-Fulkerson algorithm [70, 193].
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initial estimate and the visiting scheme, the quality of this local minimum (in
comparison to the MAP estimate as the global optimum) is difficult to analyze
in general [193]. In fact, Besag [16] does not consider ICM as an approximation
to the MAP estimator, but rather as an alternative estimator in its own right
which has the advantage to ignore the large scale deficiencies of a Markov ran-
dom field. Since for image restoration problems with low signal-to-noise ratio,
the MAP estimator tends toward over-smoothing the image, this motivation is
indeed justified; actually, it does not seem to be clear in which situations the
MAP estimator is intrinsically desired for such problems (cf. [119]).

Several modifications of the ICM algorithm are proposed in [16, 123] which
are useful in practice, like:

• The parameters Pij in (3.33) indicating the strength of the pairwise re-
lations can be increased during the iterations. This imposes a weaker
random field for the first steps, which prevents that pixel labels are fixed
too early.

• Instead of updating only one pixel in each step, the local conditional
probabilities (3.32) can be maximized for small sets of pixels in parallel.

• Potentially unknown or uncertain parameter values in the assignment
costs Ci(xi) could be (re-)estimated during the algorithm. This may be
especially beneficial when only few training data is available initially.

• Instead of hard classification of each pixel, probabilistic labelings can be
used during the iterations, which allow a pixel to have partial class mem-
bership. In that way, the influence of incorrectly labeled pixels becomes
less critical.

Due to its low complexity, the ICM algorithm has found various applications,
especially for segmentation tasks in the context of remote sensing (in which it
also was originally proposed) [172, 34, 85, 88, 99]. For established classification
methods in this field that are based on maximum likelihood estimation, it is
a natural extension to incorporate spatial context. Moreover, it is capable to
handle the enormous amounts of data emerging in remote sensing applications,
and to compute corresponding segmentations in short time.

We finish this section by giving a few exemplary results for binary restora-
tion problems as they were introduced in Section 2.3. Using a general notation
that also includes multiclass restoration problems (cf. Section 6.1), we obtain
for the local energy (3.33) that is iteratively minimized:

E(xi) = ‖Uxi − gi‖2 +
1

2
λ
∑

j∈δi

‖xi − x̂j‖2

= ‖Uxi − gi‖2 − λv̂δi(xi) + const ,

(3.34)

where U ∈ R
m×k contains the group prototypes as columns, gi ∈ R

m is the
measurement at point i, the indicator vectors xi ∈ {e1, . . . , ek} take unit vectors
from R

k as values, and v̂δi(xi) denotes the number of neighbors of i for which the
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Original ICM solution with
λ = 0.2

ICM solution with
λ = 0.6

Figure 3.8: Restorations computed with the ICM algorithm. While
the first image is difficult to restore due to its high noise level, better recon-
structions are obtained for the other two images. The value of the parameter
λ for which the best result is achieved depends on the spatial scales present in
the image.

current label is xi. Note that in this case, the probability distribution P (x) of
the corresponding Markov random field is equivalent to the Potts model, while
the assignment costs can be interpreted as modeling Gaussian white noise with
zero mean.

Figure 3.8 shows some noisy gray-value images and the corresponding resto-
rations obtained with the ICM algorithm based on the energy function (3.34),
for two different values for the smoothness parameter λ (the pixel values range
between 0 and 1). The initial classification is calculated as the maximum likeli-
hood estimate without spatial context, while in subsequent iterations, a second-
order Markov random field is used. For the small images in Figure 3.8, the final
segmentations were obtained after maximally 10 iterations in less than one sec-
ond. The results reveal that ICM may find good reconstructions (first image
with λ = 0.6), but also may fail to restore strongly degraded images in a smooth
way (second image). In Section 4.4.5, we will see that a stronger relaxation of
the MAP estimate will produce much better restorations.



Chapter 4

Semidefinite Relaxation of
Binary Optimization Problems

One of the most important classes in mathematical optimization is given by
convex optimization problems (e.g. [22]), which have the attractive property
that due to the convexity of both the objective function and the feasible set,
every local optimum is also a global one. This fact allows solving such problems
reliably and efficiently, as there is no danger of getting trapped in undesirable
local optima. Moreover, an elegant accompanying theory yields conceptual
advantages that make convex optimization approaches convenient for many
applications.

In this work, we pursue the concept of convex relaxation to deal with the
combinatorial complexity of optimization problems. More specifically, this ap-
proach leads to semidefinite programming (SDP) problems, which are a special
type of convex optimization problems. For this reason, we first give a general
introduction to semidefinite programming in Section 4.1, which includes the
main aspects of the corresponding duality theory, the geometry of the set of
positive semidefinite matrices, and a brief overview of different methods that
can be used to solve SDP problems.

In Section 4.2, we explain our SDP relaxation approach by performing La-
grangian relaxation, discuss geometry and feasibility issues of the obtained semi-
definite program, present a randomized approximation method for obtaining a
suboptimal solution of the original problem, and investigate the topic of per-
formance bounds. The relation to spectral relaxation approaches is studied in
Section 4.3. To this end, we provide a formulation of the SDP relaxation as
an eigenvalue optimization problem, and compare it with spectral techniques.
Finally, numerous application results are given in Section 4.4, including ground-
truth experiments on binary restoration problems, and partitionings of real
scenes for the different problem classes presented in Chapter 2. In this context,
we also briefly discuss the issue of similarity measures and the computational
complexity of the SDP relaxation method in practice.
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4.1 Semidefinite Programming (SDP)

Semidefinite programs are a special type of convex optimization problems. In
fact, SDP problems can be interpreted as a generalization of the established
and thoroughly analyzed class of linear programming (LP) problems to the
case of positive semidefinite matrix variables X � 0. As we will see, most of
the mathematically appealing properties of LP are inherited by SDP problems.
With increasing computational capabilities, the interest in SDP is steadily grow-
ing. Besides approaching combinatorial optimization problems as in this work,
applications to such diverse fields as signal processing [117], communication
theory [178], or finance [68] have been presented recently. For a survey of more
applications, we refer to [196, 40].

We consider the following standard formulation of a semidefinite program
over symmetric matrix variables X ∈ Sn:

f∗p := min
X

C •X

s.t. Ai •X = bi for i = 1, . . . ,m

X � 0 ,

(4.1)

with arbitrary symmetric matrices C,Ai ∈ Sn, any vector b = (b1, . . . , bm)> ∈
R

m, and the ‘•’-operation denoting the standard matrix inner product C •
X = Tr(C>X) =

∑

i,j CijXij. Note that the assumption of symmetry for C
and the matrices Ai is no restriction: if e.g. C is not symmetric, we easily
obtain an equivalent SDP instance by replacing it with 1

2(C> +C) ∈ Sn, since
C> • X = C • X [3]. Moreover, note that SDP problems with several matrix
variables Xj can also be modeled in the standard form (4.1) by reverting to the
matrix Diag(X1, . . . , Xk) with the matrices Xj on its diagonal, since Xj � 0
for j = 1, . . . , k is equivalent to Diag(X1, . . . , Xk) � 0 [78].

It is easy to see that SDP problems cover both linear programming and
quadratic programming problems. For example, the linear program

min
x

c>x

s.t. a>i x = bi for i = 1, . . . ,m

x ≥ 0

is equivalent to the SDP problem (4.1) by setting C = Diag(c), Ai = Diag(ai)
and restricting (4.1) to diagonal matrices X = Diag(x). The connection to
quadratic programming can be established similarly (see [132, 78]).

4.1.1 Duality Theory

Analogous to linear programming, the (primal) SDP problem (4.1) is closely
related to a corresponding dual problem, which can be obtained by a Lagrangian
approach (e.g. [14]). To this end, we choose a vector of Lagrangian multipliers
y ∈ R

m to lift the equality constraints of the primal problem (4.1) into the
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objective function. This results in the following minimax-problem:

f∗p = min
X�0

max
y∈Rm

C •X +

m
∑

i=1

yi (bi −Ai •X)

= min
X�0

max
y∈Rm

(

C −
m
∑

i=1

yiAi

)

•X + b>y

≥ max
y∈Rm

min
X�0

(

C −
m
∑

i=1

yiAi

)

•X + b>y =: f∗d . (4.2)

The interchange of min and max in the last step (4.2) corresponds to the so-
called “minimax inequality” [152] and yields the dual of (4.1).1 The inner
minimization over X � 0 in (4.2) now only becomes finite (which is implied by
assuming that f ∗p <∞) if the matrix C −∑m

i=1 yiAi is positive semidefinite, in
which case X = 0 is optimal. Extracting this hidden semidefinite constraint,
we obtain the following standard formulation of the dual semidefinite program:

f∗d = max
y

b>y

s.t. C −
m
∑

i=1

yiAi � 0

y ∈ R
m .

(4.3)

Sometimes, the dual SDP is given in a slightly different way by introducing the
slack variable Z ∈ Sn

+ and replacing the first constraint in (4.3) by
∑m

i=1 yiAi +
Z = C and Z � 0.

From the Lagrangian approach used above, we directly obtain the following
weak duality property, which is identical to LP weak duality [199]:

Theorem 4.1 (Weak duality for SDP). Let X and y denote feasible solu-
tions of the primal SDP (4.1) and the dual SDP (4.3), respectively. Then the
gap between the solutions is

C •X − b>y = Z •X ≥ 0 . (4.4)

However, unlike for LP, optimal solutions X∗ and y∗ may result in a nonzero
duality gap (4.4) for SDP problems, as can be illustrated by simple examples
provided e.g. in [183, 78, 179].

Nevertheless, a strong duality result for SDP can be derived if at least one
of the problems (4.1) and (4.3) has a strictly interior point, which means that
either a feasible, positive definite matrix X � 0 exists for (4.1), or a feasible
y exists for (4.3) that yields a positive definite matrix C − ∑m

i=1 yiAi � 0.
In general convex programming, this constraint is usually referred to as Slater
condition [3, 14]. The corresponding theorem is provided e.g. in [3, 199]:

1In terms of linear operators, A> : R
m → Sn with A>y :=

P

i
yiAi is the adjoint operator

of A : Sn → R
m with AX := (A1 • X, . . . , Am • X)>, as the corresponding inner products

coincide: (AX)>y = X • A>y [78, 179].
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Figure 4.1: The cone of positive semidefinite matrices for n = 2
(the forth coordinate x21 is equal to x12). In this case, the cone is rotational
(“ice-cream cone”) with vertex 0.

Theorem 4.2 (Strong duality for SDP). If (4.1) and (4.3) both are feasible
and there is a strictly interior point for the dual problem (4.3) (resp. for the
primal problem (4.1)), then an optimal primal solution X ∗ (resp. an optimal
dual solution y∗) exists and the corresponding duality gap is zero:

f∗p − f∗d = 0 .

If only one of the two problems is known to be feasible, then the existence
of a strictly interior point in connection with a finite optimal value already
guarantees the feasibility of the other problem and a zero duality gap. Yet, if
one problem is unbounded, the other is automatically infeasible [199, 78]. More
about the elegant duality theory for semidefinite programming can be found
e.g. in [3, 196].

4.1.2 Geometry of SDP

The set of positive semidefinite matrices Sn
+ over which is optimized in SDP is

a special convex set, namely a closed pointed cone 2 in R
(n+1

2 ). Moreover, this
cone is self-dual, i.e. it coincides with its dual (or polar) cone (Sn

+)∗ = {Y :
X • Y ≥ 0, X ∈ Sn

+} [132]. Figure 4.1 illustrates the geometry of this pointed
cone for the case n = 2.

The geometry of the semidefinite cone Sn
+ has been studied extensively,

especially in connection with semidefinite programming [110, 150, 139]. An
important role in this context plays the facial structure of this cone. A face
F ⊂ Sn

+ is defined as a subset for whichX,Y ∈ F implies Z = αX+(1−α)Y ∈ F

for all 0 < α < 1. In general, the set of optimal solutions of an SDP problem
always corresponds to a small face of the feasible set.

2A convex cone K is defined as a set that is closed under addition, x+ y ∈ K for x, y ∈ K,
and multiplication with positive scalars, cx ∈ K for x ∈ K, c ≥ 0.
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More specifically, consider the feasible set

K = {X ∈ Sn
+ |Ai •X = bi for i = 1, . . . ,m}

of the SDP problem (4.1), which is called spectrahedron in [150]. As K is the
intersection of an affine subspace with the semidefinite cone, the faces of K
are given by the intersections of the faces of these two convex sets. Since for
A,B ∈ Sn

+, B is contained in the smallest face of Sn
+ containing A if and only

if ker(A) ⊆ ker(B) [110], the minimal face containing an optimal solution X ∗

of the SDP problem (4.1) is given by

FK(X∗) := {X ∈ K | ker(X∗) ⊆ ker(X)} .

The following lemma from [10, 139] shows that an optimal solution X ∗ of (4.1)
is likely to have small rank:

Lemma 4.3. (a) Let F be a face of dimension d of the feasible set K. Then
r = rank(X) for X ∈ F is bounded by

1

2
(r + 1)r ≤ m+ d .

(b) If K contains extreme points (faces of dimension zero), then there exists an
optimal solution X∗ of (4.1) with rank r∗ for which

1

2
(r∗ + 1)r∗ ≤ m .

The second statement of this lemma immediately follows from the fact that
the optimum of an SDP problem is always attained at an extreme point, since
a linear function is minimized over a convex set.

For a detailed treatment of the geometry of SDP problems we refer to [196,
Chapter 3].

4.1.3 SDP Solvers

To compute optimal primal and dual solutions X ∗, y∗ for the SDP problems
(4.1) and (4.3), respectively, a wide range of different SDP algorithms can be
used. In fact, the development of such solvers currently is one of the most
active areas of research in optimization, and the number of reliable software
to handle SDP is steadily growing. However, the underlying methods of these
SDP algorithms are rather sophisticated, and it is beyond the scope of this
work to present the details. Therefore, we will only briefly summarize the
main ideas here; more information on this topic can be found in several books
[132, 199, 196].

In general, each SDP can be solved as convex minimization problem almost
exactly in polynomial time [132]. More precisely, an ε-approximation to the
global optimum can be numerically determined for any fixed precision ε, e.g.
by using the ellipsoid method [71]. However, since the running time of this
method is prohibitively high in practice, other more efficient algorithms are
usually used.
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Most SDP solvers are based on iterative interior point methods, which origi-
nally have been developed for LP. The basic idea of such methods is to do a line
search through the interior of the feasible set which converges to the solution.
To this end, a weighted barrier term is added to the objective function which
prevents the algorithm from leaving the interior of the feasible set. To be able
to reach an optimal solution (which is usually located on the boundary), the
weight of the barrier term, represented by a parameter µ > 0, is successively
reduced. For this modified objective, a corresponding sequence of minimizers
{Xµ, yµ} depending on the parameter µ is computed, until the duality gap falls
below some given threshold ε. This sequence defines a smooth curve, called
the central path, which is guaranteed to converge to the global optimum. Typi-
cally, it is sufficient to approximate the minimizers {Xµ, yµ} by applying a few
Newton steps. A remarkable result in [132] asserts that for the family of self-
concordant3 barrier functions, such methods converge in polynomial time, with
the complexity depending on the number of variables n and the value of ε.

Various variants of interior point algorithms have been developed in recent
years, like pure primal or dual methods [132, 3], combined primal-dual methods
[80, 130, 133], or potential-reduction methods [183, 12]. Moreover, there have
been major efforts to exploit the special structure of some SDP problems, espe-
cially in the context of combinatorial optimization problems for which extreme
sparsity is often encountered [57, 12, 194]. These approaches are able to solve
large-scale problems with up to 10,000 variables efficiently [11].

Besides interior point algorithms, other methods have been proposed for
SDP which are especially suited for large-scale problems. One example is given
by the spectral bundle method of Helmberg and Rendl [79], which is applicable
for problems that can be cast as an eigenvalue optimization problem. At the cost
of a poor convergence rate, it is dedicated for problems with a large number of
constraints. Another example is the nonlinear programming approach of Burer
and Monteiro [27], which tries to reduce the number of variables by exploring the
property given in Lemma 4.3 via low-rank factorization of the primal solution
matrix X. Similarly, Kočvara and Stingl [108] use an augmented Lagrangian
method as the framework of a nonlinear programming approach to solve large-
scale SDP problems.

Finally, we note that several of the mentioned SDP solvers were evaluated at
the Seventh DIMACS Implementation Challenge on Semidefinite and Related
Optimization Problems in 2000 [46]. A discussion and comparison of the partic-
ipating algorithms based on the corresponding benchmark results is presented
in [126].

4.2 Optimization via Semidefinite Relaxation

The rising interest in semidefinite programming in recent years has been initi-
ated mainly by the fact that many combinatorial optimization problems can be

3A function is called self-concordant, if it is three times continuously differentiable, and
satisfies a certain inequality constraint (see [132] for more details). This includes, e.g., all
linear and quadratic functions.
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solved approximately by applying a semidefinite relaxation approach. The basic
ideas were introduced in the seminal work of Lovász and Schrijver [116], who
derived bounds on combinatorial problems by constructing semidefinite relax-
ations based on lifting the problem variables into a higher-dimensional space.
Goemans and Williamson [66] later decisively extended this idea by developing
a randomized approximation algorithm with a strong performance guarantee for
the max-cut problem. Since then, many applications of semidefinite relaxation
in combinatorial optimization have been presented in the literature. Several sur-
veys give an overview of the recent developments [3, 65, 152, 78, 195, 115, 112].

In this section, we introduce a semidefinite relaxation approach which can be
used to approximately solve binary optimization problems from computer vision
like those presented in Chapter 2. In this context, note again that all these
partitioning problems can be cast as minimization problems of the general form
(2.1) involving a quadratic objective function and binary decision variables.
The missing linear constraint for the perceptual grouping problem (2.9) and
the restoration problem (2.12) can easily be modeled by setting c = 0 and
β = 0.

As a first step, we homogenize the objective function of (2.1) by increasing
the dimension by one to obtain a purely quadratic functional:

x>Qx+ 2d>x+ const =

(

x0

x

)>
L

(

x0

x

)

,

with L =

(

const d>

d Q

)

and x0 = 1 .

Since this is only necessary for the perceptual grouping and the restoration
problems (which lack the linear constraint), the sign of x0 does not influence
the minimization of this functional: if x0 = −1 for the optimal solution, we can
simply replace x with −x to obtain an equivalent solution that satisfies x0 =
1. Therefore, we may require without loss of generality that x′ = (x0, x)

> ∈
{−1,+1}n+1, which leads to a problem of dimension n + 1 that is equivalent
to (2.1).4 Hence, with slight abuse of notation, we will consider the following
homogeneous combinatorial optimization problem in this section:

z∗ := min
x

x>Lx

s.t. x ∈ {−1,+1}n

c>x = β ,

(4.5)

where we will only assume that L is symmetric (note that this is more general
than the unsupervised partitioning problem (2.6), where L is required to be a
Laplacian matrix). The findings then apply to all three problems presented in
Chapter 2, unless it is stated otherwise by a special choice of the constraint
variables c and β. Since (4.5) can also be interpreted as seeking a constrained
minimum cut in a graph with (possibly negative) edge-weights defined by L,

4For problems of type (2.1) with both d 6= 0 and c 6= 0, the homogenization is only valid if
the linear constraint is replaced by |c>x| = |β|, since switching the sign of the solution x may
result in c>x = −β.
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this confirms the observation from Sections 2.2 and 2.3 that both problems can
be translated into graph cut problems.

The combinatorial optimization problem (4.5) is now solved approximately
in two steps: first, the decision variables are lifted into a higher-dimensional
matrix space, where the corresponding problem is relaxed to a semidefinite
programming problem by weakly incorporating the combinatorial constraints
on the variables (Section 4.2.1). This SDP problem can then be solved with
any of the techniques presented in Section 4.1.3. In the second step, an in-
teger solution is obtained from the relaxed solution by applying a randomized
rounding procedure (Section 4.2.3), which was first suggested in [66]. Moreover,
we also investigate the geometry and feasibility of the SDP relaxation (Section
4.2.2), and provide bounds on the quality of the solutions (Section 4.2.4).

4.2.1 Lagrangian Relaxation

In order to relax the discrete optimization problem (4.5), we pursue Lagrangian
relaxation [113]. This fundamental technique not only allows some insights
into the relaxation process itself, but also yields strong bounds on the optimal
solution via Lagrangian duality, and is therefore often considered as “best”
relaxation approach [195]. Moreover, we will see that the resulting convex
optimization problem corresponds to a direct semidefinite relaxation of (4.5).

As a first step, we express the integer constraints on the entries of x by x2
i =

1, i = 1, . . . , n, and replace the linear constraint with the quadratic constraint
(c>x)2 = β2. Note that this does not change the optimization problem: if
the squared constraint results in a solution x with c>x = −β, it can simply
be replaced by −x, which yields the same objective value and satisfies the
original linear constraint. Denoting the Lagrangian multiplier variables with
yi, i = 0, . . . , n, the Lagrangian of (4.5) reads:

x>Lx− y0

(

(c>x)2 − β2
)

−
n
∑

i=1

yi(x
2
i − 1)

= x>
(

L− y0cc
> − Diag(y)

)

x+ β2y0 + e>y .

Several other methods are possible to model a linear constraint before it is
incorporated into the Lagrangian [81, 112]; however, using a squared represen-
tation simplifies the following analysis and is advantageous from the theoretical
[145, 195] and the computational [81] point of view.

In terms of the corresponding minimax-problem, the Lagrangian relaxation
of (4.5) now becomes (cf. [113] and eq. (4.2)):

z∗ ≥ max
y0,y

min
x
x>
(

L− y0cc
> − Diag(y)

)

x+ β2y0 + e>y .

Since x is unconstrained now, the inner minimization is finite-valued if and only
if L − y0cc

> − D(y) is positive semidefinite, in which case x = 0 is optimal.
Using this hidden semidefinite constraint, we arrive at the relaxed problem:

s∗d := max
y0,y

β2y0 + e>y

s.t. L− y0cc
> − Diag(y) � 0 .

(4.6)
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The important point here is that (4.6) is a semidefinite program! In comparison
to the general dual SDP formulation (4.3), we have m = n + 1, b = (β2, e)>,
C = L, and the constraint matrices A0 = cc> and Ai = eie

>
i , i = 1, . . . , n,

where ei ∈ R
n denotes the i-th unit vector. Hence, the corresponding primal

semidefinite program can directly be obtained from the general SDP formulation
(4.1):

s∗p := min
X�0

L •X

s.t. cc> •X = β2

diag(X) = e .

(4.7)

This final relaxation (4.7) can also be derived as a direct semidefinite relax-
ation of the original problem (4.5). To see this, we first rewrite the objective
function of (4.5) as x>Lx = Tr(Lxx>) = L • xx> by exploiting the commuta-
tivity of the trace. Using the quadratic representation of the constraints, this
yields the following problem formulation, which is equivalent to (4.5):

z∗ := min
x

L • xx>

s.t. cc> • xx> = β2

diag(xx>) = e .

Note that the matrix xx> is positive semidefinite and has rank one. Thus the
relaxation (4.7) consists in replacing xx> by an arbitrary positive semidefinite
matrix X ∈ Sn

+, i.e. dropping the rank one condition. In fact, if we add the
constraint rank(X) = 1 to (4.7), the problem becomes equivalent to the orig-
inal problem (4.5) [110, 78]. This already indicates the strength of the SDP
relaxation: by lifting the problem into the higher-dimensional space Sn

+, the
integer constraint on the entries of x can be taken into account appropriately,
and “only” a rank-constraint needs to be relaxed. This fundamental quality of
the lifting procedure to allow a simpler representation of intricate constraints in
higher-dimensional spaces is also a well-known fact in other fields like pattern
recognition and statistical learning [35, 184, 43].

The Lagrangian relaxation approach provides the opportunity to derive even
stronger relaxations: adding redundant constraints to the original problem for-
mulation (4.5) may result in non-redundant conditions in the corresponding La-
grangian relaxation, which may lead to tighter bounds on the objective value.
One important example of such redundant constraints is given by the well-
known triangle inequalities which define the so-called metric polytope in Sn

(cf. [80]):
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≥ 0 ,

for all 1 ≤ i < j < k ≤ n. These inequalities model the trivial observation that
for each triple i, j, k of points either two or none of the connecting edges in the
corresponding graph can be cut, which translates to the fact that not all pairwise
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Figure 4.2: The elliptope E3 containing the feasible solutions for the con-
vex problem relaxation (4.7) for n = 3. The subset of feasible combinatorial
solutions only consists of the four vertices. To take into account the linear
constraint, this set additionally has to be intersected with the hyperplane
cc> • X = β2. This is illustrated for c = e with β = 0 (left), yielding a
tangential hyperplane, and for β = 2 (right), respectively.

products Xij = xixj , Xjk = xjxk, and Xik = xixk can be −1 simultaneously.
Including all triangle inequalities yields 4

(

n
3

)

additional constraints.

The inclusion of other redundant constraints has been suggested, like the
more general clique inequalities [82], or quadratic constraints on the matrix
entries based on the Hadamard product [195]. However, although adding such
constraints yields better relaxation bounds, it has been shown that for instance
for the max-cut problem, the performance of the randomized rounding tech-
nique (cf. Section 4.2.3) which gives the combinatorial solution does not im-
prove [97]. Since preliminary results from practice support this statement for
our problem formulation (4.5), and as such constraints do not fit exactly into
the SDP framework presented in Section 4.1, we will not further consider them
here.

4.2.2 Geometry and Feasibility

In order to illustrate how the semidefinite relaxation (4.7) approximates the
combinatorial, non-convex problem (4.5), let us consider the case n = 3. The
intersection of the convex set Sn

+ with the hyperplanes defined by diag(X) = e

yields the convex set En := {X ∈ Sn
+ | diag(X) = e}, which is referred to as

the set of correlation matrices [72] or the elliptope [110]. The structure of the
elliptope has been studied extensively, see e.g. [44].

For n = 3, a matrix X ∈ E3 has three unknowns due to symmetry, corre-
sponding to the upper (or lower) triangular part. The corresponding elliptope
E3 (or rather its 3-dimensional projection) is shown in Figure 4.2. It looks like
a polytope with four vertices (which correspond to the combinatorial solutions
of the unrelaxed problem) but with non-linear faces. The set of feasible so-
lutions for (4.7) is now obtained by additionally intersecting this set with the
hyperplane cc> • X = β2 (see Figure 4.2), and thus may reduce to a single
point on the surface of the elliptope (e.g. in the case c = e and β = 0). This
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also shows that the original combinatorial problem (4.5) only has a feasible
solution if at least one of the vertices of the elliptope En lies on this hyperplane.
Nevertheless, as long as the hyperplane hits the elliptope, the solution X ∗ of
the relaxed problem can always be determined by numerically minimizing the
linear functional L • X over the feasible set. The nearest vertex to X ∗ then
corresponds to a suboptimal solution of (4.5), or at least to a combinatorial
solution which closely approximates the linear constraint c>x = β.

This simple example already indicates that it is possible that no feasible
solution for the primal SDP relaxation (4.7) exists if the constraint variables
c or β are chosen inappropriately. Another example illustrates this situation
more clearly: for the case n = 2, the constraints in (4.7) yield X =

(

1 x12
x12 1

)

with x12 =
β2−c21−c22

2c1c2
(assuming that both c1 and c2 are positive). Additionally,

since X is positive semidefinite, −1 ≤ x12 ≤ 1 has to hold, which results in the
condition (c1 − c2)

2 ≤ β2 ≤ (c1 + c2)
2. For example for β = 0, this is only valid

for c1 = c2; all other choices of c make the primal SDP problem (4.7) infeasible.
Fortunately, it is possible to exactly characterize the situations when the

primal problem (4.7) has a feasible solution. The following result is mainly
based on a theorem given in [41]:

Theorem 4.4. The primal SDP problem (4.7) is feasible for c ∈ R
n, β ∈ R if

and only if the vector c̃ :=
(

c
β

)

is balanced, i.e.

|c̃i| ≤
∑

j 6=i

|c̃j | for all i = 1, . . . , n+ 1 .

Proof. Consider the following result from [41], which is stated in a more conve-
nient way in [111]: for a given vector c̃ ∈ R

n+1, there exists a matrix X̃ ∈ En+1

with X̃c̃ = 0 if and only if c̃ is balanced. Using this result, it remains to show
that the primal SDP problem (4.7) is feasible if and only if a matrix X̃ ∈ En+1

with X̃c̃ = 0 exists.
The proof is based on the decomposition

X̃ =

(

X z

z> 1

)

(4.8)

with z ∈ R
n, which directly gives the equivalence of diag(X) = e and diag(X̃) =

e. Substituting (4.8) into X̃c̃ = 0 yields

Xc = −βz
z>c = −β .

Multiplication of the first equation with c> results in c>Xc = −βc>z = β2

via the second equation. Thus requiring X̃c̃ = 0 is equivalent to the constraint
cc> •X = c>Xc = β2 in the primal problem (4.7) in combination with choosing
z to satisfy Xc = −βz.

Finally, it remains to prove the equivalence of X̃ � 0 and X � 0. To
this end, we use the Schur complement (see Theorem A.8) of X̃ , which gives
X̃ � 0 ⇔ X − zz> � 0. We immediately see that the last statement yields
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X � zz> � 0, since the rank one matrix zz> is always positive semidefinite
(see Lemma A.9). For the other implication, observe that for each v ∈ R

n

v>(X − zz>)v = v>Xv − (v>z)2

= v>Xv − 1
β2 (v>Xc)2

by assuming β 6= 0 and substituting z = − 1
β
Xc (see above). As X � 0

(assumption), we can apply the general Cauchy-Schwarz inequality |v>Xc|2 ≤
(v>Xv)(c>Xc) (see Theorem A.10) to obtain

v>(X − zz>)v ≥ v>Xv − 1
β2 (v>Xv)(c>Xc)

= v>Xv − 1
β2 (v>Xv)β2 = 0 ,

which shows the desired positive semidefiniteness of X − zz>.
For β = 0, setting z = 0 yields the equivalences directly.

Due to this result, we will only investigate examples in the following sections
where the combination of the constraint variables c and β is balanced as stated
in Theorem 4.4. In this case, the corresponding semidefinite relaxation is known
to be “well-behaved” according to the strong duality Theorem 4.2, since besides
the guaranteed feasibility of the primal problem (4.7), a strictly interior point for
the dual problem (4.6) can always be found by setting y0 = 0 and y = −αe with
α large enough. Hence, an optimal primal solution X ∗ of the SDP relaxation
(4.7) exists which yields no duality gap:

s∗p − s∗d = L •X∗ − s∗d = 0 .

In contrast to this, note that the optimum for the dual SDP problem (4.6)
may not be attained (i.e. no feasible

(

y0

y

)

for (4.6) yields the optimal objective
value s∗d) if no strictly interior point for the primal problem exists — a case that
occurs for instance for β = 0, c 6= 0, since this requires the smallest eigenvalue
of X to be zero. However, this is not relevant for the optimization problems
considered in this thesis, since we only need the optimal primal solution X ∗ to
approximate the combinatorial solution of (4.5).

To compute this optimal solution X∗, any of the SDP algorithms sketched
in Section 4.1.3 can be used. Yet, as the primal problem may have no strictly
interior point in some cases, interior point methods based on the primal problem
are often ineligible. Due to this observation, we resorted to SDP solvers in
practice which either do not use interior point methods [108], or which are
based only on the dual problem, like the dual-scaling algorithm of Benson et
al. [12]. The latter algorithm also is especially suited for large-scale problems,
and capable to exploit the sparsity structure which is encountered in some of
the relaxations of the combinatorial problems investigated here.

4.2.3 Randomized Approximation

Once the solution matrix X∗ of the primal SDP problem (4.7) has been com-
puted, we wish to find a corresponding combinatorial solution x to the original
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problem (4.5). For this purpose, we use the randomized hyperplane technique
proposed by Goemans and Williamson [66] for the max-cut problem. To de-
scribe this method, the following geometric interpretation of the SDP relaxation
(4.7) is more convenient:

Since each feasible matrix X is positive semidefinite, it can be factorized
into X = V V > with V ∈ R

n×n, using e.g. the Cholesky decomposition (cf.
Theorem A.6). If we write V = (v1, . . . , vn)>, i.e. the rows of V are identified
by vi, the constraint diag(X) = e in (4.7) corresponds to ‖vi‖2 = v>i vi = 1
for all i = 1, . . . , n. Moreover, the first constraint can be rewritten as β2 =
cc> • (V V >) = Tr(c>V V >c) = ‖V >c‖2. Exploiting the permutation property
for the arguments of the trace also for the objective function, the primal SDP
relaxation (4.7) is equivalent to the problem

min
V ∈Rn×n

Tr(V >LV )

s.t. ‖V >c‖2 = β2

‖vi‖2 = 1 for i = 1, . . . , n ,

(4.9)

as the matrix V V > is always positive semidefinite.

In comparison to the original combinatorial problem (4.5), the relaxation
step may thus be interpreted as associating the binary variables xi ∈ {−1,+1}
with vectors vi ∈ R

n from the unit sphere in a high-dimensional space. Ac-
cordingly, each matrix entry (xx>)ij = xixj is replaced by the matrix entry
Xij = v>i vj which represents the cosine of the angle between the vectors vi and
vj . Minimizing the objective function then corresponds to finding an embed-
ding of the points on the unit sphere such that for large positive matrix entries
Lij the corresponding points i 6= j are placed far apart. Using this interpreta-
tion, it is easy to see that the above problem becomes equivalent to the original
combinatorial problem (4.5) if we furthermore demand that |v>i vj | = 1 for all
i, j = 1, . . . , n [195].

Based on the factorization X∗ = V V > of the optimal solution of the SDP
relaxation (4.7), the idea of the randomized hyperplane algorithm is straight-
forward: randomly select a hyperplane through the origin, and group all points
vi on the same side of this hyperplane together, thus partitioning the points
into two sets. In mathematical terms, this is achieved by representing the hy-
perplane by its normal vector r from the unit sphere, ‖r‖ = 1, and setting each
entry of the binary vector x to

xi = sgn(v>i r) =

{

+1 for v>i r ≥ 0

−1 for v>i r < 0
.

For the max-cut problem with positive edge weights, Goemans and Williamson
[66] prove that this randomized hyperplane technique yields a high approxima-
tion ratio (in terms of the expected objective value). In the next section, we
will show how their result can be extended to yield performance bounds for the
more general problem formulation (4.5). To obtain good results in practice,
the randomized rounding step is repeated several times for different random
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Figure 4.3: Performance of the randomized hyperplane technique.
For a reconstruction problem considered in Section 4.4.1, the solution of the
SDP relaxation is rounded to an integer solution with 500 different hyper-
planes. The histogram comprises the corresponding objective values: while
the mean objective value zsdp has a relative error about 21% in comparison to
the optimal solution z∗ of the combinatorial problem, the best integer solution
found in this way results in a relative error of only 1.2%. The objective value
of the SDP relaxation yields a lower bound s∗p of about 86.5% of the optimal
objective value.

vectors r. The final binary solution xsdp is then selected as the one that yields
the minimum value for the original objective function x>Lx.

An alternative rounding procedure which yields the same result in terms of
its expected objective value is given by Bertsimas and Ye [15]: they interpret the
solution X∗ as covariance matrix of a multivariate normal distribution N(0, X ∗)
with mean 0. Generating a vector z from this distribution, a binary vector x is
then obtained by directly setting xi = sgn(zi) for each i.

Note that since these randomized rounding techniques do not take into
account the linear constraint c>x = β, the resulting binary solution xsdp is
not necessarily feasible for the original problem (4.5) — this is only guaranteed
for c = 0, β = 0. In fact, the corresponding objective value zsdp = x>sdpLxsdp

may be even smaller than the optimal value s∗p of the semidefinite relaxation
(4.7). For this reason, different modifications of the randomized hyperplane
technique have been proposed in the literature [55, 209, 201] which are able
to find feasible solutions for bisection problems (i.e. c = e, β = 0) with a
guaranteed performance ratio. This is achieved e.g. by greedily swapping certain
points from the larger to the smaller part [55], or rearranging the vectors vi on
the sphere by outward rotations prior to the randomized rounding procedure
[209, 201]. A general framework for such approximation algorithms is given in
[76].

However, we stick to the original randomized hyperplane technique even
when a linear constraint is present. The main reason for this decision is that
for the applications investigated in this work, it is usually not mandatory to
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find an exactly feasible solution: all we demand is that the final solution is
balanced reasonably. Hence, the balancing constraint c>x = β in (4.5) rather
serves as a strong bias to guide the search to a meaningful solution than as a
strict requirement. For this reason, we can apply the SDP relaxation even in
cases where no feasible combinatorial solution exists (see Section 4.4).

Finally, Figure 4.3 indicates the performance of the randomized hyperplane
technique in practice. For a special reconstruction problem considered in Sec-
tion 4.4.1 (cf. Figure 4.5), the solution of the corresponding SDP relaxation is
computed and rounded with 500 different hyperplanes. The frequency of the
objective values obtained in this way is depicted by the histogram in Figure 4.3:
while most solutions are within 20% of the optimal solution z∗, the best ob-
jective value zsdp found by randomized rounding has a relative error of merely
1.2%. This shows that in practice, it is sufficient to compute only a limited
number of randomized hyperplanes (cf. [131]). In general, we will apply the
rounding procedure n times in our experiments in order to find the final binary
solution xsdp ∈ {−1,+1}n.

4.2.4 Performance Bounds

If no balancing constraint is given (i.e. c = 0, β = 0) — as for the perceptual
grouping (Section 2.2) and the restoration problem (Section 2.3) — the com-
binatorial solution xsdp obtained with the randomized hyperplane technique is
feasible. In this case, it makes sense to compare the corresponding objective
value zsdp = x>sdpLxsdp with the objective value s∗p = L •X∗ of the SDP relax-

ation (4.7) and the objective value z∗ := x∗>Lx∗ of the optimal combinatorial
solution x∗. Note that the following relations between these values are always
valid:

s∗p ≤ z∗ ≤ zsdp ≤ E[z] ,

where E[z] denotes the expected objective value produced by the randomized
hyperplane technique.5 Based on the results of Goemans and Williamson [66],
we obtain the following suboptimality bound on E[z]:

Theorem 4.5. The expected value E[z] of the objective function z = x>Lx for
a combinatorial solution x calculated with the randomized hyperplane technique
is bounded by

E[z] ≤ αs∗p + (1 − α)
∑

i,j

|Lij| ,

where

α = min
0≤γ≤π

2

π

γ

1 − cos γ
≈ 0.87856 .

Proof. Using the notation of the previous section, let V = (v1, . . . , vn)> denote
a factor of the optimal solution X∗ = V V > of the SDP relaxation (4.7). Then

5In contrast to this, note that if a balancing constraint is present (i.e. c 6= 0), the com-
binatorial solution xsdp obtained by randomized approximation may yield an objective value
zsdp ≤ s∗p, since xsdp is not required to satisfy the balancing constraint.
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for the combinatorial solution x obtained with the hyperplane represented by
the normal vector r, we have:

z =
∑

i,j

Lijxixj =
∑

i,j

Lij sgn(v>i r) sgn(v>j r) .

The following propositions are easy to prove:

• Pr[sgn(v>i r) 6= sgn(v>j r)] = 1
π

arccos(v>i vj) [66, Lemma 3.2],

• arccos(t)
π

≥ 1
2α(1 − t) for −1 ≤ t ≤ 1 [66, Lemma 3.4],

• 1 − arccos(t)
π

≥ 1
2α(1 + t) for −1 ≤ t ≤ 1 [66, Lemma 3.2.2].

Using these facts and the linearity of the expectation, we deduce

E[z] =
∑

i,j

LijE[sgn(v>i r) sgn(v>j r)]

=
∑

i,j

Lij

(

Pr[sgn(v>i r) = sgn(v>j r)] − Pr[sgn(v>i r) 6= sgn(v>j r)]
)

=
∑

i,j

Lij

(

1 − 2Pr[sgn(v>i r) 6= sgn(v>j r)]
)

=
∑

i,j

Lij −
∑

i,j

Lij
2

π
arccos(v>i vj)

≤
∑

i,j

Lij −
∑

Lij>0

Lijα(1 − v>i vj) −
∑

Lij≤0

Lij

(

2 − α(1 + v>i vj)
)

= α
∑

i,j

Lijv
>
i vj +

∑

i,j

Lij − α
∑

i,j

|Lij| + 2
∑

Lij≤0

|Lij |

= αs∗p + (1 − α)
∑

i,j

|Lij | ,

which is the desired result.

Note that in contrast to the result given in [66] for the max-cut problem,
the bound in Theorem 4.5 contains the problem-dependent constant

∑

i,j |Lij|.
However, since we do not impose any restrictions on the entries of L, it is not
possible to derive a more general bound in this form.

A different, weaker relative bound (for maximization problems) is presented
by Nesterov [131], who extends the results of Goemans and Williamson to
general problem matrices L that are allowed to contain positive and negative
entries. Reformulating his results for minimization problems of the form (4.5)
(without the balancing constraint) yields the following theorem:

Theorem 4.6. Let z∗ and z∗max denote the minimum and the maximum value,
respectively, of the objective function z = x>Lx subject to the integer constraint
x ∈ {−1,+1}n. Using the randomized hyperplane technique based on the SDP
relaxation (4.7), we obtain for the expected objective value E[z]:

E[z] − z∗

z∗max − z∗
≤ π

2
− 1 <

4

7
.
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Proof. The result can be derived directly from the corresponding results in [131]
or [200]. For completeness, we include the main part of the proof here. We need
the following propositions (which are easy to prove):

• arccos(t) + arcsin(t) = π
2 for |t| ≤ 1.

• The dual of the semidefinite relaxation of the problem to find z∗max is

s∗max := min
y∈Rn

n
∑

i=1

yi

s.t. Diag(y) − L � 0 .

(4.10)

• Let X � 0 with Xii ≤ 1 for all i. Then arcsinX − X � 0, where
(arcsinX)ij = arcsinXij is taken element-wise [131, Corollary 3.2]. Using
Fejer’s Theorem (cf. Theorem A.5), this directly yields A•arcsinX ≥ A•X
for all A � 0.

Let X∗ denote the optimal solution of the primal SDP relaxation (4.7), and
define y ∈ R

n to be a feasible solution of (4.10). Then we can deduce, starting
with a fact from the proof of Theorem 4.5:

E[z] =
∑

i,j

Lij

(

1 − 2

π
arccosX∗

ij

)

=
∑

i,j

Lij
2

π
arcsinX∗

ij

= − 2

π
(Diag(y) − L) • arcsinX∗ +

2

π
Diag(y) • arcsinX∗

≤ − 2

π
(Diag(y) − L) •X∗ +

2

π

∑

i

π
2 yi

=
2

π
L •X∗ − 2

π

∑

i

yi +
∑

i

yi

=
2

π
s∗p +

(

1 − 2

π

)

∑

i

yi .

Since this is valid for every feasible y, it especially holds for the optimal solution
y∗ of (4.10), and we can conclude

z∗ ≤ E[z] ≤ 2
π
s∗p + (1 − 2

π
)s∗max .

Analogously, we get
2
π
s∗max + (1 − 2

π
)s∗p ≤ z∗max .

Combining these two equations, it follows that

E[z] ≤ 2
π
s∗p + (1 − 2

π
)
(

π
2 z

∗
max − (π

2 − 1)s∗p
)

= (π
2 − 1)z∗max + (2 − π

2 )s∗p

≤ (π
2 − 1)z∗max + (2 − π

2 )z∗ ,

which yields the desired result by direct transformation.
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Unfortunately, this bound is quite weak: the expected objective value E[z]
can only be guaranteed to lie within the best 4

7 of the total range of possible
objective values z∗max−z∗ (which in addition depends on the problem instance).
In practice, however, we do not seek E[z] but the best possible value zsdp of the
objective function by applying the randomized hyperplane technique several
times. As we will confirm in Section 4.4.1, this results in a much better perfor-
mance than is indicated by the bounds presented above (also cf. Figure 4.3).
Moreover, note that for most alternative optimization approaches applicable
to the general problem class considered here, performance bounds are lacking
completely.

4.3 Relation to Spectral Relaxation

In this section we will compare the convex relaxation approach with spectral
relaxation approaches. Besides presenting a general formulation of the SDP
relaxation as an eigenvalue optimization problem, we will show that for unsu-
pervised partitioning problems, the SDP relaxation approach always compares
favorably with the computation of the Fiedler vector (cf. Section 3.1.3).

4.3.1 Spectral Formulation of the SDP Relaxation

The idea to reformulate the semidefinite relaxation of a combinatorial problem
as an eigenvalue optimization problem dates back to Delorme and Poljak [42],
who examine the max-cut problem in this way. In this section, we extend their
idea to the SDP relaxation of the more general combinatorial problem (4.5).

Starting with the dual problem formulation (4.6), we first parameterize y
as y = αe − v, where e>v = 0. Then the positive semidefiniteness constraint
0 � L− y0cc

> −Diag(y) = L− y0cc
> + Diag(v)− αI is equivalent to λmin(L−

y0cc
> + Diag(v)) ≥ α, since the subtraction of αI reduces each eigenvalue of a

matrix by α. This leads to the following spectral representation of (4.6):

s∗d = max
y0,y

L−y0cc>−Diag(y)�0

β2y0 + e>y

= max
y0,α,e>v=0

λmin(L−y0cc>+Diag(v))≥α

β2y0 + nα

= max
y0,e>v=0

β2y0 + nλmin

(

L− y0cc
> + Diag(v)

)

= max
y0,e>v=0

nλmin

(

L− y0(cc
> − β2

n
I) + Diag(v)

)

. (4.11)

Next, we want to compare the spectral bound (4.11) with another spectral
bound which is derived by a different relaxation of the original problem (4.5).
The basic idea is to add the redundant constraint x>x = n, but to perform
Lagrangian relaxation only on the integer constraints x2

i = 1 (cf. Section 4.2.1),
which results in

z∗ ≥ z∗SR := max
y

min
c>x=β

x>x=n

x>
(

L− Diag(y)
)

x+ e>y .
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Substituting y = αe− v as above, we obtain

z∗SR = max
e>v=0

min
c>x=β

x>x=n

x>
(

L+ Diag(v) − αI
)

x+ αn− e>v

= max
e>v=0

min
c>x=β

x>x=n

x>
(

L+ Diag(v)
)

x

= max
e>v=0

n min
c>x= β√

n

x>x=1

x>
(

L+ Diag(v)
)

x , (4.12)

where the last equation follows (with slight abuse of notation) by substituting
x with

√
nx. For the special case β = 0, we can reformulate this relaxation as

an eigenvalue bound by projecting onto the orthogonal complement c⊥ of c:

z∗SR,0 := max
e>v=0

nλmin

(

V >(L+ Diag(v)
)

V
)

, (4.13)

where V ∈ R
n×(n−1) contains an orthonormal basis of c⊥ as columns, i.e. V >c =

0, V >V = I.

This spectral bound is a straightforward generalization of the constant con-
straint vector case (c = e), for which it was first provided by Boppana [19] (with
β = 0) and Rendl and Wolkowicz [153] (in the form (4.12), for general β 6= 0),
independently. For this special case of c = e, Poljak and Rendl [144] show
the equivalence of the relaxation (4.12) and the semidefinite relaxation (4.11)
by investigating general graph bisection problems, i.e. for L being a Laplacian
matrix. The following theorem extends this result to the more general case of
arbitrary problem matrices L ∈ Sn and balancing constraint vectors c 6= e:

Theorem 4.7. Assume that the primal SDP relaxation is feasible (see The-
orem 4.4). Then the dual SDP relaxation (4.6) resp. (4.11) yields the same
lower bound on the optimal solution of the combinatorial problem (4.5) as the
(spectral) relaxation (4.12) (or (4.13) for β = 0):

s∗d = z∗SR

(

= z∗SR,0 for β = 0
)

.

Proof. We mainly follow the argumentation of Ye and Zhang [202], who re-
cently proved a similar result for the minimization of a homogeneous quadratic
function subject to two homogeneous quadratic constraints. First, for ease of
notation, we define L(v) = L+ Diag(v). Consider the following subproblem of
(4.12) for fixed v ∈ R

n (due to symmetry, we can replace the linear constraint
c>x = β with the quadratic constraint (c>x)2 = β2):

z∗SR(v) := min
x∈Rn

x>L(v)x

s.t. x>cc>x = β2

x>Ix = n .

(4.14)
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Using Lagrangian relaxation, we obtain the following primal-dual pair of semi-
definite programs:

s∗p(v) := min
X�0

L(v) •X s∗d(v) := max
y0,y1

β2y0 + ny1

s.t. cc> •X = β2 s.t. Z = L(v) − y0cc
> − y1I

I •X = n Z � 0 . (4.15)

Note that the dual of this relaxation corresponds to (4.11), if the maximization
over v is included (and y1 is substituted by α). We now consider two cases:

Case β 6= 0 (unbalanced partitioning). Observe that for (4.15), both the
primal optimal solution (as the dual is strictly feasible) and the dual optimal
solution are attained: for the dual, this is a consequence of the fact that the
objective function sd(v, y0) := β2y0 + nλmin(L(v) − y0cc

>) is continuous in y0

and may reach values larger than sd(v, 0) = nλmin(L(v)) only on a bounded

interval, namely for y0 ∈
[

−n(λmax−λmin)
β2 ,

n(λmax−λmin)
n‖c‖2−β2

]

, with λmin and λmax

denoting the smallest and largest eigenvalue of L(v), respectively. This is easily

seen by considering the Rayleigh quotient x>(L(v)−y0cc>)x
x>x

for x = c (upper

bound) and x = v with v>c = 0 (lower bound) (cf. [144, Lemma 2.5]).
Therefore, a pair of complementary optimal solutions X ∗ and (y∗0 , y

∗
1, Z

∗)
with zero duality gap exists for (4.15). We now apply the following proposition,
which is proven in [177, 202]:

Assume that the positive semidefinite matrix X ∗ ∈ Sn
+ has rank r,

and let G ∈ Sn be a symmetric matrix with G •X∗ = 0. Then X∗

can be decomposed into rank-one matrices xix
>
i such that

X∗ =

r
∑

i=1

xix
>
i

and x>i Gxi = 0 for all i = 1, . . . , r.

Since in our case, the constraints of the primal relaxation yield G • X ∗ = 0
with G = 1

β2 cc
> − 1

n
I, we have x>i ( 1

β2 cc
> − 1

n
I)xi = 0 for all i = 1, . . . , r.

As I •X∗ =
∑

i x
>
i Ixi = n (second constraint of the primal relaxation), there

exists an xj , 1 ≤ j ≤ r, with x>j xj =: τ > 0. Setting x∗ :=
√

n
τ
xj then yields a

feasible solution x∗x∗> of rank one for the primal relaxation. In order to show
that this solution is also optimal, first observe that due to Fejer’s Theorem (cf.
Theorem A.5), we get Z∗ • xix

>
i ≥ 0 for all i = 1, . . . , r. Using the linearity of

the trace and the complementary slackness of Z ∗ and X∗ (cf. [196]), this results
in

0 ≤ Z∗x∗x∗> =
n

τ
Z∗ • xjx

>
j ≤ n

τ
Z∗ •X∗ = 0 ,

which shows that the complementary slackness condition is also satisfied for
x∗x∗>. Hence, the relaxation is exact, i.e. x∗ is optimal for (4.14), and maxi-
mization over e>v = 0 yields the desired result.

Case β = 0 (equipartitioning). In this case, we may assume without loss of
generality that the dual optimal solution of (4.15) is not attained — otherwise,
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we can use a similar argumentation as for the case β 6= 0 to prove the theorem
(by setting G = cc>). Due to the feasibility of the SDP relaxation (4.6), the
optimal objective value s∗d(v) of the dual is finite. Since the dual objective
function is continuous in y0, this means that s∗d(v) can only be approached
for |y0| approaching infinity. In this case, the inner minimization in the dual
objective function will only be finite if c>x becomes 0:

s∗d(v) = nmax
y0

λmin

(

L(v) − y0cc
>
)

= n lim
y0→−∞

min
‖x‖=1

x>L(v)x− y0(c
>x)2

= n min
‖x‖=1

c>x=0

x>L(v)x = z∗SR(v) .

Maximizing over e>v = 0 completes the proof.

4.3.2 Comparison with Spectral Relaxation Techniques

In this section, we compare the SDP relaxation approach with the spectral re-
laxation techniques presented for unsupervised partitioning tasks in Section 3.1.
To this end, first take a closer look at the following weaker spectral relaxation
of (4.5) for the special case β = 0:

z∗SR2 := min
x∈Rn

x>Lx

s.t. x>x = n

c>x = 0 ,

(4.16)

i.e. the combinatorial constraint x ∈ {−1,+1}n is directly relaxed to ‖x‖2 = n.
For this relaxation, the following lemma holds:

Lemma 4.8. Let V ∈ R
n×(n−1) denote the matrix which contains an orthonor-

mal basis of c⊥ (cf. last section). Then

z∗SR2 = nλmin(V
>LV ) , (4.17)

and the solution of (4.16) is given by x∗ =
√
nV w0, where w0 is the eigenvector

of norm one corresponding to the smallest eigenvalue of V >LV .

Proof. Define the orthonormal matrix P :=
(

c
‖c‖ , V

)

∈ R
n×n, and let w :=

1√
n
V >x. Then we have

P>x =

(

c>x
‖c‖
V >x

)

=

(

0√
nw

)

,

which gives x = PP>x =
√
nV w. This results in x>x = nw>V >V w = nw>w

and c>x =
√
nc>V w = 0, and substitution into (4.16) yields

z∗SR2 = min
x>x=n
c>x=0

x>Lx = min
w>w=1

nw>V >LV w = nλmin(V
>LV ) .

The optimal solution is thus given by the eigenvector w0 corresponding to
λmin(V

>LV ), which directly yields x∗ =
√
nV w0.
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For unsupervised partitioning tasks, the problem matrix L is the Lagrangian
matrix of a graph. In this case, we immediately see that the spectral relaxation
(4.16) corresponds to the computation of the Fiedler vector, if the equipartition
constraint vector c = e is used (cf. Section 3.1.3): as e is the eigenvector corre-
sponding to the smallest eigenvalue λ1(L) = 0, the solution of (4.16) becomes
z∗SR2 = nλ2(L). Comparing the results of Lemma 4.8 and Theorem 4.7 now di-
rectly reveals that (4.17) is a special case (for v = 0) of (4.13). This implies the
following lemma, which shows the superiority of the SDP relaxation approach
for the unsupervised equipartition problem:

Lemma 4.9. For the unsupervised equipartition problem (2.5), the SDP re-
laxation (4.7) yields a better lower bound on the optimal objective value than
spectral relaxation based on the Fiedler vector (3.13):

z∗SR2 ≤ z∗SR = s∗d .

Apart from this fact of being less tight concerning the value of the objective
function, the spectral relaxation approach has another disadvantage: to obtain
the corresponding combinatorial solution x of (2.6), the solution x∗ of (4.16) has
to be thresholded suitably (see Section 3.1.2). However, the appropriate choice
of the splitting value is not obvious and can be time consuming (if all possible
splitting points are tested); actually, as we will see in the next section, an unsu-
pervised choice of the threshold value may fail completely. In contrast to this,
the SDP relaxation uses a randomized algorithm to compute the combinatorial
solution, which does not depend on a critical parameter setting and even allows
the derivation of probabilistic performance bounds (cf. Section 4.2.4).

On the other hand, the computational effort for solving the spectral relax-
ation with the Fiedler vector is smaller than for solving the SDP relaxation,
as the solution is an n-dimensional vector opposed to an n × n-dimensional
matrix. This fact permits handling larger problem instances with the spectral
relaxation approach.

Finally, note that a direct comparison of the SDP relaxation with spectral
relaxation based on the normalized cut criterion (see Section 3.1.4) is not ade-
quate, since the normalized cut approach employs a different, i.e. normalized,
objective function. Applying Lagrangian relaxation to the normalized cut crite-
rion directly, however, is to no avail either: as in the problem formulation (3.8),
the binary constraint on the entries of x ∈ {−β, 1

β
}n depends on the prelimi-

narily unknown variable β, it cannot be included in the relaxation (in contrast
to the (−1,+1)-constraint in (4.5)). Yet if it is dropped completely, the result-
ing SDP relaxation yields the same optimum as the computation of the second
smallest eigenvalue of the normalized Laplacian matrix L′ = D− 1

2LD− 1
2 . This

can be seen by using the same argumentation as in the proof of Theorem 4.7,
or by direct investigation of the eigenvalues of the involved matrices: first note
that the normalized cut criterion (3.16) can be reformulated as

λ2(L
′) = min

x∈Rn
x>L′x

s.t. x>x = 1

d>x = 0 ,
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where d := D
1
2 e. It is easy to verify that Lagrangian relaxation of this problem

results in the dual SDP

max
y0

λmin(L
′ − y0dd

>) .

Using the eigenvalue decomposition L′ =
∑

i λiviv
>
i (cf. Theorem A.1) with

λ1 = 0 and v1 = d denoting the smallest eigenvalue of L′ and the corresponding
eigenvector, we see that

L′ − y0dd
> =

n
∑

i=2

λiviv
>
i + (λ1 − y0)dd

>

has the eigenvalues λ2, . . . , λn and −y0. Thus maximizing the smallest eigen-
value of L′ − y0dd

> over y0 in the SDP relaxation also results in λ2(L
′).

4.4 Experimental Results

In this section, we investigate the performance of the SDP relaxation approach
experimentally. We start with reporting statistical results for ground-truth
experiments based on restoration problems for noisy one-dimensional signals
(Section 4.4.1). The application of the SDP relaxation method to different real
scenes from all problem types that were presented in Chapter 2 is the topic
of Sections 4.4.3–4.4.5. Furthermore, we give a brief discussion of similarity
measures in Section 4.4.2, and study the computational complexity of the SDP
relaxation in practice in Section 4.4.6.

4.4.1 Ground-Truth Experiments

In order to be able to analyze the performance of the SDP relaxation method
described in Section 4.2 on a statistical basis, the approximation obtained for
the problem under consideration needs to be compared with the corresponding
global optimum (the ground-truth data) of the original functional (4.5). To
this end, we investigate the restoration of noisy one-dimensional signals based
on the functional (2.11), as in this case the global optimum can be easily and
quickly computed e.g. by using dynamic programming (or any other of the
methods mentioned at the end of Section 2.3). Moreover, we can also compare
the reconstructions with the “true” original signal, which yields valuable results
concerning the significance of the restoration functional and the quality of the
approximative solutions.

Our experiments are based on the one-dimensional synthetic signal x′ de-
picted in Figure 4.4 which involves transitions at multiple spatial scales. This
signal is superimposed with Gaussian white noise with zero mean and a standard
deviation of σ = 1.0, resulting in noisy signals g like the one shown in Figure
4.5, top. Using the restoration functional (2.11) with each signal element being
connected only to its two neighbors, we compute the combinatorial solution xsdp

from the corresponding SDP relaxation (4.7), and compare it with the global
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Figure 4.4: A one-dimensional signal x′ comprising multiple spatial
scales.
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Figure 4.5: A representative example illustrating the statistics shown in
Figure 4.6. Note that the SDP reconstruction differs from the optimal solution
only in the first two elements of the signal.

optimum x∗ of (2.11) and the original signal x′, respectively. A representative
example of such a restoration is given in Figure 4.5, bottom.

For varying values of the parameter λ controlling the desired smoothness,
this experiment is repeated 1000 times with different noisy inputs in order to
derive some significant statistics. Based on the results, we then calculate the
following quantities for each λ-value:

∆z: the sample mean of the relative gap ∆z =
zsdp−z∗

z∗ with respect to the
objective function values of the suboptimal solution xsdp and the optimal
solution x∗.

σ∆z: the sample standard deviation of the gap ∆z.

∆z′: the sample mean of the relative gap ∆z ′ =
|zsdp−z(x′)|

z(x′) with respect to the
objective function values of the suboptimal solution xsdp and the synthetic
original signal x′.

σ∆z′: the sample standard deviation of the gap ∆z ′.
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Figure 4.6: Statistics for the ground-truth experiment. For different
values of the scale parameter λ, the figure shows the average relative errors
∆z (comparison to the optimal solutions x∗) and ∆z′ (comparison to the
original signal x′) in the objective function for the solutions xsdp obtained from
the SDP relaxation. Also depicted is the average relative Hamming distance
(percentage of misclassified elements) between the suboptimal solutions xsdp

and the optimal solutions x∗. Note that for λ > 2, the relative error is smaller
than 3% for all measures.

Moreover, we also calculate the sample mean of the percentage of misclassified
elements in xsdp in comparison with the optimal solution x∗ (relative Hamming
distance).

The results are depicted in Figure 4.6. They reveal the accuracy of the
suboptimal solutions obtained with the SDP relaxation: in comparison to the
optimal solutions, both the average percentage of misclassified elements and
the average relative error ∆z of the objective function are below 2%, with the
corresponding standard deviation ranging between 0.12% ≤ σ∆z ≤ 1.33%. This
result is confirmed by the example in Figure 4.5, for which the optimal solution
and the SDP solution only differ in two elements. This shows that in practice,
the performance of the SDP relaxation approach can be much better than the
bounds presented in Section 4.2.4.

Concerning the restoration of the original signal x′, the quality of the SDP
solutions also is remarkably good, at least for scale parameter values λ ≥ 2: in
this case, the average relative error ∆z ′ of the objective function is below 3%,
with the corresponding standard deviation ranging between 1.95% ≤ σ∆z′ ≤
2.69% (cf. Figure 4.6). The high error rates for λ < 2 are caused by the
dominating larger spatial scales in the signal x′, which are not taken into account
correctly by the restoration functional (2.11) for small λ-values. Moreover, note
that x′ in general does not coincide with the best solution x∗ of this functional,
which is revealed by the fact that the corresponding error rates are higher:
∆z′ > ∆z. This is mainly due to the different spatial scales that occur in
x′, which cannot be covered completely by a single scale parameter λ. This
indicates that more appropriate criteria should be used for the restoration of
such signals, e.g. by incorporating suitable priors with respect to x′ (cf. [20]).
However, the derivation of such criteria is not the objective of this thesis.
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4.4.2 Similarity Measures

Before we present the results of the SDP relaxation approach for real world
images, we have to spend a few words on the derivation of suitable similar-
ity measures for the unsupervised partitioning task presented in Section 2.1.
Recall that the objective in unsupervised partitioning is to split a graph with
some extracted image features as vertices into two coherent groups. Hence, the
results depend on the edge-weights wij which encode the similarities between
two extracted image features i and j. In this work, we only consider similarities
that are derived from distances d(i, j) between the image features as

wij = e
−

“

d(i,j)
σ

”2

,

where the normalization parameter σ is chosen application dependent (usually
between 5% and 30% of the maximal distance; cf. Section 3.1.6). Note that such
an exponential decay of the similarity values with some power of the distance
measure is in accordance with results from psychophysical studies [166].

Concerning the distance measure d(i, j), we use two different calculation
methods in this section:

(i) Compute d(i, j) for each feature pair (i, j) directly, e.g. by using the Eu-
clidean distance in the feature space. Since for images, we do not include
the location of the points as additional feature, this measure does not in-
corporate information on the underlying spatial neighborhood structure
of the data.

(ii) Compute d(i, j) only for spatially neighboring points, and derive the other
distances between the points by calculating the shortest paths connecting
them. This results in a similarity measure which favors spatially coherent
structures (also cf. [52]).6

Since both methods result in completely connected graphs, the corresponding
similarity matrices are dense.

As a motivation for the second method, consider Figure 4.7, which shows a
set of points arranged in two spirally shaped regions. It was critically observed
in [62] that spectral methods based on Euclidean distances fail to partition such
“skewed” coherent groups. In fact, a direct pairwise comparison as in method
(i) will always find points from the other group at a smaller distance than most
of the points from the same group. This is illustrated by Figure 4.7, right:
in the Delaunay graph corresponding to this point set, the shortest Euclidean
path between two points of the same group traverses the other group. However,
this also shows that the spatial context introduced by the Delaunay graph is
not appropriate for a successful application of the second method. The main
problem in this situation is that both the neighborhood structure and the edge

6An alternative modification to include spatial information is to additionally use a cut-off
radius, i.e. to set the distance to infinity if two points are spatially too far apart (cf. [168]).
In the extreme case, this corresponds to defining edges only between points that are direct
neighbors. However, we do not use any cut-off radius in this section.
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Figure 4.7: A skewed data distribution with two spiral-shaped
groups. The right figure shows that within the corresponding Delaunay
graph, the shortest Euclidean path between two points of the same group
may traverse the other group.

-20 -10 0 10 20
-20

-10

0

10

20

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1

−0.1

−0.05

0

0.05

0.1

0.15

Figure 4.8: Left: Level lines of a Parzen estimate of the data distribution in
Figure 4.7. This attribute yields a more appropriate description of the spatial
context. Right: Visualization of the corresponding weighted-path distances
(method (ii)), obtained by applying a metric scaling technique and projecting
on the first two principal components: the two spiral-shaped groups, depicted
by crosses and rings, now form more compact clusters.

weights are based on the same source, namely the Euclidean distances between
the points. Typically, attributes differing from location (like color, texture,
etc.) are used to define the pairwise distances. If this is the case, method (ii)
provides a simple technique to appropriately exploit spatial coherency: calcu-
lating weighted paths as the distance measure based on the given neighborhood
structure results in shorter distances within a spatially connected group, and
in longer paths between weakly connected points (cf. [52]).

For the example shown in Figure 4.7, we simulate such an additional at-
tribute by a Parzen density estimate [58] of the spatial data distribution (see
Figure 4.8, left). The distances between neighboring points in the Delaunay
graph are then obtained by estimating the energy which is needed to join the
points along their direct connection. In this way, the given spatial neighbor-
hood structure is represented by the distances more appropriately. The effect
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Figure 4.9: Weighted shortest paths based on the Parzen estimate.
Compared to the Euclidean distance (Figure 4.7, right), within-group paths
have become shorter (left), but may still be outperformed by paths traversing
the other group (right).

of applying method (ii) is visualized in Figure 4.8, right: approximating the
resulting weighted path distances with Euclidean distances within 2D-space by
using a classical metric scaling technique [37], it shows that the points within
each spiral-shaped group (depicted by crosses and rings, respectively) have be-
come more similar to each other. Accordingly, the partition task is now better
defined, yet without becoming trivial: whereas weighted paths within a group
have been shortened, the shortest paths between two points of the same group
may still traverse the other group (see Figure 4.9).

Finally, we note that numerous other (dis)similarity measures for different
computer vision tasks have been proposed in the literature, see e.g. [149, 156].
However, since the focus of this thesis is on studying the results of the SDP
relaxation approach from an optimization point of view, we did not work on
more elaborate computations of the similarity measures.

4.4.3 Binary Unsupervised Partitioning

In this section, we present numerous results obtained by applying the SDP
relaxation approach to artificial and real world unsupervised partitioning prob-
lems (cf. Section 2.1), and compare them to the corresponding results obtained
with spectral relaxation. To this end, we decided to utilize the average cut
criterion based on the Fiedler vector (see Section 3.1.3), since it resembles the
SDP relaxation approach most (cf. Section 4.3.2). However, the experiments
reveal that the best average cut threshold may result in very unbalanced parti-
tionings for similarity values obtained with method (ii); in this case, we revert
to the median threshold instead. This unfavorable behavior of the average cut
is due to the fact that the vertex degrees di often vary considerably for the
similarities acquired with method (ii). Therefore, the normalized cut criterion
may be superior in this context, since it takes the di-values into account by
normalizing the similarity matrix (see Section 3.1.1).

Moreover, unless stated otherwise, we use (4.5) with the equipartition con-
straint (c = e and β = 0) for balancing in the experiments in this section.
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Figure 4.10: Point set clustering for Figure 4.7, using distances based
on weighted paths (method (ii)). Whereas the SDP relaxation produces the
correct partitioning (left), spectral relaxation based on the average cut crite-
rion (right) is not capable to separate the groups successfully in this case due
to a less appropriate objective function (cf. Figure 4.8, right).
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Figure 4.11: Point set clustering (cf. Figure 3.5) based on Euclidean
distances (method(i), with σ = 0.1). SDP relaxation finds the correct par-
titioning (left), while spectral relaxation fails for both the best average cut
(middle) and the median threshold (right).

Point Sets

As a first result, Figure 4.10 shows the partitioning of the two-spirals exam-
ple from the previous section (Figure 4.7) obtained with the SDP relaxation
(left) and with spectral relaxation (right), respectively. Although the similarity
weights wij are calculated using the weighted-path metric from method (ii), the
average cut relaxation still fails to compute the correct cut, whereas SDP relax-
ation partitions the spirals successfully. A look at Figure 4.8, right, indicates
the reason: the average cut criterion favors to separate the dense cluster on the
right from the rest of the points, and therefore is less appropriate in this case.
However, it should be mentioned that the Fiedler vector produces the correct
partitioning if we switch to the median threshold. Yet note in this context,
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Figure 4.12: Influence of the balancing parameter β on the clustering
result. While the optimal objective value s∗p of the SDP relaxation continu-
ously decreases towards 0 for increasing β, the corresponding objective values
zsdp of the clusterings obtained with the randomized hyperplane technique
remain constant (top). This indicates the robustness of the SDP relaxation
approach: even when β is chosen too small, the data set is divided into two
reasonable components in accordance with the parameter value (bottom).

that the SDP relaxation works completely unsupervised, and does not depend
on any thresholding heuristic.

Figure 4.11 depicts another situation, that was already examined in Sec-
tion 3.1.6: a point set consisting of a dense cluster within equally distributed
background clutter. The results for this example reflect the theoretical results
of Section 4.3.2, showing the superiority of the SDP relaxation approach: al-
though the similarities between the points are computed directly based on their
Euclidean distances with method (i), the SDP relaxation successfully separates
the dense cluster from the background — in contrast to spectral relaxation,
which only achieves an unsatisfactory partitioning, even for different threshold
values. The reason for this failure is due to the computed eigenvector, which
does not give a clear cut value (cf. Figure 3.5). Furthermore, note that the
balancing constraint e>x = 0 is not enforced for the solution obtained from
the SDP relaxation: in accordance with the visual impression, the two parts
contain 79 and 81 points, respectively.

Finally, Figure 4.12 demonstrates the influence of the parameter β on the
clustering result. For this simple example consisting of five identical clusters
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Figure 4.13: Color image partitioning. With similarities obtained with
method (ii), a small patch (36× 36 pixels) of a larger image (cf. Figure 3.6) is
segmented on a pixel basis. While the SDP relaxation successfully separates
the hand from the ball, spectral relaxation based on the Fiedler vector only
yields unsatisfactory results for both the best average cut and the median
threshold.

with each containing 50 points, the similarities are obtained with method (i),
and β varies between 0 (which gives an equipartition constraint) and the max-
imum number of points. The results reveal that while the objective value s∗p of
the SDP relaxation continuously decreases towards 0 for increasing β-values, the
randomized hyperplane technique over longer intervals finds constant cluster-
ings that are in reasonable accordance with β. Hence, the balancing constraint
acts as designated: a strong bias that guides the search to a meaningful solution
and not as a strict requirement.

In this context, it should be mentioned that by introducing a nonzero value
for the parameter β, the segmentation problem no longer remains unsupervised
in the strict sense. In Section 5.2.3 we will suggest how the balancing constraint
can be adjusted automatically.

Color Images

As a first idea to study the partitioning of color images, we create the un-
derlying neighborhood graph on a pixel basis by connecting horizontally and
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Figure 4.14: Color image partitioning, using method (i). Preprocess-
ing the input image (298 × 141 pixels) yields 211 patches (cf. Figure 3.7). In
the segmentations obtained with both SDP and spectral relaxation, patches
of similar color are grouped together.

vertically adjacent pixels, and calculate the corresponding edge-weights based
on the color differences in the perceptually uniform L*u*v* space. The remain-
ing similarities are then obtained by applying method (ii) to favor spatially
coherent structures.

The result for a small patch of a larger image (cf. Figure 3.6) is shown in
Figure 4.13. For this example, the Fiedler vector only yields unsatisfactory
partitionings: using the best average cut just separates the small black corner
from the rest of the image, whereas the median threshold results in an incoherent
segmentation (due to the same size constraint). In contrast to that, the SDP
relaxation method successfully partitions the image by clearly separating the
hand from the ball. Once more, note that the two groups arising from the
SDP relaxation do not have the same size: they contain 641 and 655 pixels,
respectively. However, better results may be obtained for spectral relaxation
by reverting to another similarity measure (see Figure 3.6, where similarities
are calculated only for neighboring pixels).

This first example already indicates the drawback of the SDP relaxation
approach: the problem size soon becomes intractable when larger images are
examined on the basis of pixels as input data. To be able to study the partition-
ing of large real world images, we therefore first compute an over-segmentation
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Figure 4.15: Color image partitioning for the image from Figure
4.14, using method (ii). SDP relaxation as well as spectral relaxation based
on the Fiedler vector result in segmentations that favor spatially coherent
structures. However, the spectral relaxation result is influenced negatively by
the requirement that both parts must have the same size.

by applying the mean shift technique (see Section 3.2) at a fine spatial scale.
This preprocessing step drastically reduces the size of the input data, without
destroying any perceptually significant structure. Instead of having to deal with
thousands of pixels, the graph vertices are now formed by the obtained image
patches, and the corresponding similarities are computed based on the mean
color difference between the patches in the perceptually uniform L*u*v* space.

We apply both methods (i) and (ii) to the color image shown at the top of
Figure 4.14. The results approve the wide range of applicability and the success
of the SDP relaxation method: whereas in the partitioning based on method (i),
image patches of similar color are grouped together (see Figure 4.14), method
(ii) yields a segmentation into two reasonable, spatially coherent parts (see
Figure 4.15). For this example, the results obtained with spectral relaxation
are also quite reasonable (see bottom of Figures 4.14 and 4.15). However, since
the best average cut just separates one patch from the rest of the image, we need
to revert to the median threshold for method (ii): this requirement influences
the result negatively. As already mentioned, the normalized cut criterion may
be more appropriate in this case. In this context, note again that the SDP
relaxation approach works without any threshold.

Choice of the Balancing Vector ccc

So far, the size of the patches obtained from preprocessing the image with the
mean shift technique was not considered by the segmentation process. This may
yield unsatisfactory separation results. Figure 4.16 gives an example: here the
sky accounts for nearly half of the image (approx. 43%), but the preprocessing
step groups all of its pixels into one patch (cf. Figure 3.7). Since for c = e,
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Figure 4.16: Color image partitioning for different balancing vectors
c. Preprocessing the input image (512 × 404 pixels) yields 404 patches (cf.
Figure 3.7), for which the similarities are computed based on method (ii).
While for c = e, SDP relaxation segments the image into two reasonably
coherent parts, using the number of pixels mi contained in each patch i as
constraint vector entries ci gives a more balanced partitioning by separating
the largest patch from the rest of the image.

all image patches are of equal importance no matter how large they are, the
SDP relaxation method segments this image into two parts (both containing
approximately the same number of patches) by cutting the city, which contains
many small patches (see Figure 4.16, center).

To derive a segmentation which takes into account different patch sizes, the
balancing constraint can be changed in the following way: calculate the number
of pixels mi contained in each patch i and set the constraint vector entries to
ci = mi instead of using ci = 1. Thus we now search for a segmentation which
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Fiedler vector (median threshold)

Figure 4.17: Segmentation for the image from Figure 4.16, top, based on the
Fiedler vector: the median threshold yields a result similar to the segmentation
obtained from the SDP relaxation.

partitions the image into two coherent parts, each containing approximately
the same number of pixels instead of the same number of patches. The result
depicted in Figure 4.16, bottom, approves the validity of this approach: now the
sky is separated from the rest of the image, giving a segmentation in accordance
with our new balancing constraint (but without enforcing it exactly). Note that
for this example, the Fiedler vector also yields a quite meaningful partitioning,
if it is thresholded at the median (see Figure 4.17); the best average cut again
only separates one patch from the rest of the image.

Texture Images

The final experiment for binary partitioning tasks deals with grayscale images
comprising some natural textures. An example is shown at the top of Figure
4.18. To derive a texture measure for this image, we subdivide it into 24 × 24-
pixel windows, and calculate local histograms for two texture features within
these windows. The corresponding graph is then obtained by identifying each
window with a graph vertex, and by computing the similarity values wij based
on the χ2-distance of the histograms for all window pairs (i, j) directly, thus
using method (i). Considering the simplicity of this texture measure, the seg-
mentation result obtained with the SDP relaxation is excellent (see Figure 4.18,
center). Based on the best average cut threshold, the Fiedler vector yields a
different, but also satisfactory solution for this example (Figure 4.18, bottom).

4.4.4 Perceptual Grouping

In this section, we study the application of the SDP relaxation approach to per-
ceptual grouping problems (see Section 2.2). In this context, the corresponding
version of the general combinatorial problem (4.5) does not have a balancing
constraint, i.e. c = 0 and β = 0.

A first artificial grouping problem is depicted in Figure 4.19: several copies
of a triangular object are hidden in a cluttered background. According to
our knowledge about the relative angles between the edges of the object, we
require two image primitives i and j to reinforce each other (by defining a high



88 Chapter 4. Semidefinite Relaxation of Binary Optimization Problems

Original image

SDP relaxation
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Figure 4.18: Grayscale-texture partitioning. The input image (720×456
pixels) is subdivided into 570 windows containing 24× 24 pixels each, and the
similarity weights are computed based on direct texture comparison (method
(i)). Both SDP and spectral relaxation result in convenient segmentations.

similarity value wij) if their enclosed angle is close to a multiple of 1
3π. The

suboptimal solution of the energy functional (2.8) computed for this example
shows the success of the SDP relaxation: the structure is clearly separated from
the background (Figure 4.19, right). Note that the presence of a small number
of extra foreground primitives is not caused by the optimization approach; since
these elements are consistent with the chosen similarity measure, they cannot
be labeled as dissimilar.

Figure 4.20 shows an example of a perceptual grouping problem obtained
from a real scene. In a first step, the input image is decomposed into a few
hundred line fragments by applying an edge detector [50]. We again discriminate
between figure and ground by defining a suitable similarity measure wij : two
image primitives (line fragments) i and j are similar if the enclosed relative
angle is close to a multiple of π

2 , i.e. the lines are either orthogonal or parallel
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Figure 4.19: Perceptual grouping. An artificial triangular object (top
left) is encoded by a similarity measure wij which favors relative angles be-
tween line fragments that are multiples of 1

3
π (bottom left). Several copies

of the object are superimposed by noise (center). The SDP relaxation of the
functional (2.9) for λ = 0.9 successfully finds the objects as the largest coherent
group of image primitives (right).
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Figure 4.20: Perceptual grouping for a real world image. Line frag-
ments within the input image are obtained by applying an edge detector (top).
The similarity measure wij encodes preferred configurations as a function of
the angle between two line fragments (bottom left): two fragments are most
similar if they are (nearly) orthogonal or parallel to each other. Although sev-
eral coherent groups of different cardinality exist in the input image, the SDP
relaxation approach determines the largest coherent group of line fragments
and suppresses the other groups (bottom right).
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Figure 4.21: Binary restoration. The original black and white map of
Iceland (right, 104 × 78 pixels) has been degraded by adding binary salt and
pepper noise (left). The restoration obtained based on the SDP relaxation of
(2.12) for λ = 2.0 is fairly good (middle).
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Figure 4.22: Binary restoration. Considering the poor signal-to-noise
ratio of the input image (left, 98×93 pixels), the quality of the reconstruction
for an appropriate choice of the smoothness parameter λ is very good (right).

(cf. the graph of w in Figure 4.20, bottom left). We refer to [84] for more
elaborate similarity measures which, however, are not essential for testing the
SDP relaxation approach from the optimization point of view.

Note that according to the similarity measure w, several coherent groups
exist for the example in Figure 4.20. Approximately minimizing (2.9) with the
SDP relaxation method determines the keyboard as the “most coherent” group,
as expected from a visual inspection of the scene (see Figure 4.20, bottom right).

4.4.5 Restoration

In Section 4.4.1, we already presented the results of the SDP relaxation ap-
proach with respect to the restoration of noisy one-dimensional signals. Figures
4.21–4.23 now depict reconstruction results for three different two-dimensional
binary images that were degraded by noise. The pixel values for these examples
are scaled to the interval [−1, 1], so that the restoration prototypes correspond
to u1 = −1 (black) and u2 = +1 (white), respectively. Only horizontally and
vertically neighboring pixels are considered as adjacent (first-order neighbor-
hood). Note that like for the grouping problem from the previous section, no
balancing constraint is present, i.e. c = 0 and β = 0 in (4.5).

The overall quality of the restorations obtained from the SDP relaxation of
the global objective function (2.11) is encouraging: for an appropriate choice
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Figure 4.23: Binary restoration. For this checkerboard image (63 × 63
pixels), small errors in the reconstruction (λ = 1.5) only occur at corners
where the local structure resembles noise.

of the parameter λ, we get smooth reconstructions despite a poor signal-to-
noise ratio of the input image (Figure 4.22), and although the desired objects
comprise structures at both large and small spatial scales (Figure 4.21). As
expected, small errors may occur at sharp corners (Figure 4.23), which are
difficult to distinguish from noise without prior knowledge. The influence of
the scale parameter λ is illustrated in Figure 4.22: as desired, the restoration
becomes smoother with increasing λ.

Finally, comparing these results with the restorations computed by the
greedy ICM algorithm (see Figure 3.8 in Section 3.3) reveals the power of the
global approach the SDP relaxation is based on: the stronger relaxation of the
MAP estimate produces much better reconstructions.

4.4.6 Computational Complexity

The experimental results presented in the previous sections demonstrate that
the SDP relaxation approach is a versatile tool for solving a broad range of
difficult combinatorial problems conveniently. However, the price we have to
pay for the favorable properties of this optimization approach (convexity, poly-
nomial time solvability, no threshold; cf. Section 1.1) is the squared number of
variables of the semidefinite programming relaxation. Although SDP solvers
like the dual-scaling algorithm of Benson et al. [11, 12] are able to exploit a
sparse problem structure (as it is encountered for the restoration problems),
the memory requirements and the computation times quickly grow with the
number of variables (see Table 4.1). While this is not a problem for perceptual
grouping tasks with a couple of hundred primitives, it prevents at present the
application to large-scale problems with several ten thousands of variables as
they appear in image restoration or unsupervised image segmentation on a pixel
basis. Especially the latter task soon becomes intractable since the matrices
involved in the computations are usually dense.

In this context, several approaches from both the computational and the
problem formulation point of view seem to be promising to mitigate the problem
of dimensionality in the near future:
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Image n time (in sec.)

1D signal restoration (Fig. 4.5) 256 3
spiral point sets (Fig. 4.10) 256 5
density point set (Fig. 4.11) 160 2
five clusters (Fig. 4.12) 250 4
hand/ball color image (Fig. 4.13) 1296 726
fence color image (Fig. 4.14) 211 3
city color image (Fig. 4.16) 404 17
texture image (Fig. 4.18) 570 59
triangle grouping (Fig. 4.19) 198 1
keyboard grouping (Fig. 4.20) 466 25
Iceland restoration (Fig. 4.21) 8113 13,320
arrow/bar restoration (Fig. 4.22) 9115 20,034
checkerboard restoration (Fig. 4.23) 3970 1,188

Table 4.1: Sizes and computation times for the different problems con-
sidered in this section (obtained with the dual-scaling algorithm from [11, 12]
on a 3 GHz Pentium IV PC).

• Using Lemma 4.3, the maximal rank r of the primal solution matrix X of
the SDP relaxation (4.7) can be bounded by r <

√
2n for large problem

sizes n (as the number of constraints equals m = n + 1 in (4.7)). This
means that in principle, the number of n2 problem variables in the primal
of the SDP relaxation can be drastically reduced by setting n − r rows
of the matrix V in the decomposition X = V V > to zero (cf. Section
4.2.3). In fact, first algorithms that exploit this property have already
been published (e.g. [27]).

• For unsupervised partitioning tasks, a dense similarity matrix W can be
made sparser by using a cut-off radius R, i.e. by setting the similarity
of two points to zero if they are spatially farther apart than R units
[168, 118]. In the extreme case, this results in defining edges only between
directly neighboring pixels.

• For spectral relaxation methods, the problem size has been successfully
reduced by applying sampling methods that only select a restricted num-
ber of pixels to represent the complete problem [48, 118, 54]. We will
consider this possibility for the SDP relaxation approach in Section 5.3.

• Another alternative to reduce the size of unsupervised partitioning prob-
lems has already been applied in Section 4.4.3: the input is preprocessed
to find image elements of larger scale which then replace the pixels as ver-
tices in the corresponding graph representation. In the context of image
segmentation, there has been an increasing interest in this idea recently
[189, 151, 60]; therefore, we will also analyze this approach in more detail
in Section 5.2.



Chapter 5

Efficient Unsupervised
Segmentation

The results presented in the previous chapter indicate the usefulness of the SDP
relaxation approach for image partitioning tasks. Concerning the problem size,
however, they also reveal the limitations of this technique in practice. For this
reason, we will examine methods in this chapter that enable the application of
our SDP relaxation method to larger problem instances as they arise for real
world partitioning tasks.

Specifically, we will investigate graph-based unsupervised image segmenta-
tion problems as they were introduced in Section 2.1. A general problem in
this context concerns the size of the corresponding similarity matrix W . If
the graph vertices represent the pixels of the image, the size of W increases
quadratically with the number of pixels, and thus soon does no longer fit into
memory completely (e.g. for an image of 481 × 321 pixels — the size of the
images from the Berkeley segmentation dataset [121] — the similarity matrix
contains 1544012 ≈ 23.8 billion entries). Hence, any graph-based partitioning
technique becomes computationally demanding (or even intractable) for larger
problem instances.

A common approach to handle this issue is to revert to sparse similarity
matrices by connecting pixels only within a certain neighborhood [168, 62,
204]. While spectral methods profit from this idea (since eigenvectors of sparse
matrices can be calculated more efficiently), this is of no avail for our SDP
relaxation: the solution matrix X of (4.7) usually is still dense even when the
problem matrix L is sparse [12].

In this chapter, we therefore present two other methods which immensely
reduce the size of unsupervised partitioning problems and thus make them fea-
sible for the SDP relaxation approach. The basic idea of the first method has
already been used in Section 4.4.3: based on computing an over-segmentation
of the image in a preprocessing step, we abandon pixels as the basic image el-
ements and use the obtained patches instead to form the graph representation
(Section 5.2). In contrast to that, the second method reduces the problem size
with a completely different technique that is based on a probabilistic sampling
approach (Section 5.3). To derive more meaningful results, we first introduce
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an obvious extension of the binary SDP relaxation method (Section 5.1): im-
age segmentations into multiple parts can be obtained naturally by computing
partitions recursively in a hierarchical way.

5.1 Hierarchical Segmentation

Up to now, we have only considered binary image partitioning problems. In
practice, however, a segmentation into more than two parts may be more mean-
ingful and is therefore often desired. For unsupervised clustering tasks, a cor-
responding straightforward extension consists in a hierarchical application of
the binary approach: by recursively computing two-way partitions, we obtain a
segmentation into multiple parts (see e.g. [98]). In the context of graph-based
image segmentation, this idea leads to consecutive calculation of minimum cuts,
for graphs of decreasing size. A general description of the hierarchical frame-
work for computing a multipart segmentation is given by the following algo-
rithm:

initialize: number of segments k = 1; first segment S1 = V ;
WHILE stopping criteria are not met DO

select segment Si (i ∈ {1, . . . , k}) to split next;
compute binary partitioning Si = Si,1 ∪ Si,2 (using minimum cuts);
k = k + 1; Si = Si,1; Sk = Si,2;

END

For spectral partitioning techniques, successful applications of such a hier-
archical framework have been presented e.g. in [198, 118]. In the subsequent
sections of this chapter, we will also employ it to obtain multiclass segmenta-
tions based on our binary SDP relaxation approach. Yet first, we will briefly
discuss the pros and cons of the hierarchical framework in the context of unsu-
pervised image segmentation (Section 5.1.1), and make appropriate suggestions
for the decision parameters involved in the partitioning process (Sections 5.1.2
and 5.1.3).

5.1.1 Hierarchical Partitioning vs. Direct Multiclass Clustering

Some authors argue against recursive bisection techniques, and instead favor
partitioning a given graph into multiple clusters directly [29, 169, 173]. One
mentioned reason is that a hierarchical approach requires the recalculation of
the Laplacian and the minimization of the objective function for each step [29].
While this may be a drawback for real-time applications, it is only of minor
interest for many image segmentation tasks, especially since the computational
effort decreases with each level of the hierarchy.

The more important argument given against recursive bipartitioning is that
the resulting clustering into k groups may not correspond to the optimal k-way
segmentation [169, 173]. In fact, it is easy to provide examples that confirm
this statement (see Figure 5.1). Yet this reasoning is slightly biased, since the
hierarchical approach is not specifically designed for finding a “flat” partitioning
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Figure 5.1: Example where recursive bipartitioning fails to find the
optimal 3-way cut depicted in the left image. Hierarchical application e.g. of
the binary average cut criterion produces a different solution for this simple
example by first splitting the point set in the middle, and then separating top
and bottom of one of the parts (right).

into a fixed number of groups, but rather tries to reveal information about the
structural relationship between the different segments. If we know the number
k of parts the image should be segmented into in advance, a direct k-way
optimization criterion is certainly more suited to model the desired objective. In
Section 6.2, we will consider according direct multiclass partitioning techniques.

For unsupervised image segmentation problems, however, the number of
parts present in the image is usually unknown. In this case, the recursive bi-
partitioning framework represents the better alternative, since it allows the
selection of a suitable number of segments during the partitioning process.
Moreover, the subsequent splitting of segments yields a complete coarse-to-fine
hierarchy of similar segmentations. This contrasts a direct multipartitioning
approach, which may result in completely different segmentations for varying
cluster-numbers k. Depending on the desired granularity of the final segmen-
tation, we can therefore easily switch between different levels of the hierarchy.
Furthermore, such a hierarchical representation of the image seems to be closer
to human perceptual organization [121].

Besides these advantageous attributes, recursive image segmentation also in-
troduces two additional decision parameters (cf. above algorithm): as no global
objective function is optimized, criteria have to be defined in order to select the
appropriate segment which should be partitioned next in each step, along with
a suitable condition of when to stop the recursion. In the next two sections, we
will discuss how such criteria can be derived based on the size of the current
segments and the weights of the next potential cuts.

5.1.2 Which Segment to Split Next?

After each binary partitioning step, the question arises which of the segments
obtained so far should be split next. Since the goal of unsupervised image
segmentation tasks mainly consists in capturing the global impression of the
scene, large parts of coherent structure are usually preferred to finer details.
To obtain such a coarse-to-fine segmentation of the image, higher levels of the
partition hierarchy have to be examined first. To this end, we in general select
the largest existing segment (the one that contains most pixels) as the next
candidate to be split.
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Recalling that the binary SDP relaxation method is originally based on the
graph-bisection criterion (2.6), which seeks a minimum cut through the graph
subject to a balancing constraint, we may allow some exceptions to the above
general selection rule:

• If the computed bisection for the candidate segment results in a high
cut-value zsdp, this indicates that the structure of this segment is already
quite coherent. In this case, however, it should not be split any further and
maintained as it is instead. To decide when a cut-value is too expensive,
we compare it against the sum d(V ) =

∑

i,j wij of all edge-weights of
the complete graph (which is an upper bound on the cut-value). Then
splitting the candidate segment is only accepted if the corresponding cut-
value zsdp is smaller than a certain fraction 0 < a < 1 of d(V ): zsdp <

ad(V ).

• Since it is not prohibited, the bipartition obtained from the SDP relax-
ation by randomized rounding may be the trivial solution of the underly-
ing optimization problem, i.e. the non-cut solution that groups all points
into one segment again. In this case, of course, this segment should no
longer be considered to be split.

• Another exception may be defined in the case that the graph representa-
tion of the image is not based on the pixels directly, but on other image el-
ements corresponding e.g. to patches obtained from an over-segmentation
(see Section 5.2): if the largest (concerning the number of pixels) segment
contains less than a certain number pmin of image elements, it should not
be split any more. In this way, we prevent large patches from always
being separated completely from the rest of the image.

5.1.3 Stopping Criteria

The probably most difficult question in connection to unsupervised image seg-
mentation concerns the number of parts the image consists of, or alternatively,
when to stop the hierarchical partitioning process. When asked to segment
an image, every human is likely to give a different answer to this question.
Hence, one can even argue that without defining the desired granularity, image
segmentation becomes an ill-posed problem.

In this thesis, we consider two different stopping criteria for the hierarchical
application of the SDP relaxation method that are both based on the desired
granularity: whereas the first one directly defines a maximum number k of
parts for the final segmentation, the second one is more sophisticated. Note
that building the sum zsum(m) :=

∑m
i=1 zsdp,i of the cut-values zsdp,i calcu-

lated in each step i of the partitioning process results in an increasing function
depending on the step number m, which is bounded above by the sum of all
edge-weights d(V ) (cf. last section). Therefore, an additional stopping criterion
is introduced by limiting the total cut-value zsum(m) to a certain fraction q < 1
of d(V ): zsum(m) < q d(V ). We can then control the granularity of the final
segmentation by adjusting the value of q appropriately.



5.2. Over-Segmentation with Mean Shift 97

5.2 Over-Segmentation with Mean Shift

One straightforward remedy to reduce the size of a graph-based image segmen-
tation problem is to abandon pixels as graph vertices and to resort to other
image representing elements instead. For example, the perceptual grouping
task (Section 2.2) can be interpreted in this way: by using edge elements as ba-
sic image descriptors, a smaller graph representation is derived. In this section,
we closer investigate an idea that was already introduced in Section 4.4.3: an
over-segmentation of the image is computed in a preprocessing step by apply-
ing a clustering technique at a fine spatial scale. Instead of having to deal with
thousands of pixels, the graph representation of the image is then based on the
obtained image patches (or “superpixels”) of coherent structure. Actually, this
is also a more natural image representation, since the real world does not con-
sist of pixels — those are merely the result of the digital image discretization
process.

While different preprocessing methods have been proposed in the literature
in this context [198, 118, 189, 8, 151], we suggest to use the mean shift technique
presented in Section 3.2 for this purpose. After briefly reviewing the main
aspects of the corresponding preprocessing step (Section 5.2.1), we describe
how to obtain an appropriate graph representation based on the computed
image patches (Section 5.2.2), and how suitable balancing constraints for our
SDP relaxation method can be selected automatically (Section 5.2.3). Several
results for large real world images are finally presented in Section 5.2.4.

5.2.1 Preprocessing Step

In order to adequately reduce the problem size without destroying any percep-
tually significant structure, we apply the mean shift technique [33] at a fine
spatial scale. To this end, each pixel is represented by a feature vector compris-
ing its position and its color in the perceptually uniform L*u*v* space. The
mean shift algorithm then forms clusters of similar feature vectors based on
their Euclidean distances in the corresponding 5-dimensional feature space.

The final number and the size of the image patches obtained in this way are
controlled by three parameters: the spatial and the range bandwidth σs and σr

to scale the entries of the feature vectors, and the minimum cluster size M (see
Section 3.2). We adjust these parameters manually or semi-automatically in
order to obtain a final clustering into 100–700 image patches (corresponding to
less than 0.01% of the complete number of pixels for images from the Berkeley
segmentation dataset [121], for instance), which is a suitable problem size to
be processed efficiently with our SDP relaxation approach. In general, for the
examples considered in this section, we derive such a number of patches by
fixing M = 50 as a reasonable minimum region size, and setting σs = 5.0 (as
an adequate fraction of the image size) and σr = dmax

15 , where dmax denotes the
maximum distance in L*u*v* color space found for a random sample set of 200
pixels.

Figure 5.2 shows an example of the image patches obtained with the mean
shift algorithm — more examples were already given in Figure 3.7. They reveal
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Figure 5.2: Over-segmentation with the mean shift technique. For
this sample image from the Berkeley segmentation dataset [121], 304 image
patches are obtained. Note that in accordance with the homogeneous regions
of the image, the patches differ in size.

an important quality of the mean shift over-segmentation: when large homo-
geneous regions exist in the image, they are also represented by large patches
instead of being split artificially. This results in superpixels of considerably
varying size. As will be shown in Section 5.2.3, our SDP relaxation approach
can take this aspect into account appropriately. In contrast to this, spectral
techniques usually require patches of similar size. Moreover, the splitting of
such homogeneous regions during the following partitioning process (something
spectral techniques tend to do) is effectively prevented.

5.2.2 Constructing the Graph

Basically, a graph representation of the image can be constructed by associating
each image patch i obtained in the preprocessing step with a graph vertex, and
computing the similarity matrix based on the distances of the corresponding
mean colors yi in L*u*v* space. In order to additionally take into consider-
ation the spatial distances between the image patches, we already indicated
several different methods in Section 4.4.2. The simplest approach consists in
constructing a locally connected graph with weighted edges being defined only
between neighboring patches based on their color differences. From this repre-
sentation we may obtain a fully connected graph by, e.g., calculating shortest
paths between all vertices (cf. method (ii) in Section 4.4.2). Alternatively, such
a fully connected graph can also be derived directly by using the spatial distance
between two patches as an additional cue in the calculation of their similarity.

Yet due to the varying size and shape of the image patches, it is hard to
define an appropriate spatial distance measure directly: for instance, the spatial
barycenter of a patch may lie outside its region, which may result in completely
misleading spatial distances. For this reason, we connect only directly neigh-
boring image patches. In contrast to the experiments in Section 4.4.3, we also
abandon the time consuming calculation of shortest paths between all vertices,
especially since experiments indicated that a fully connected graph does not re-
sult in better segmentations. However, we slightly modify the calculation of the
similarity values wij in order to take into consideration the varying boundary
lengths lij between two neighboring image patches i and j:

wij = lije
− ‖yi−yj‖

σr , (5.1)
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where yi denotes the mean color of patch i, and the normalization parameter σr

corresponds to the range bandwidth computed for the mean shift (see previous
section).

The multiplication with lij in (5.1) simulates a standard coarsening tech-
nique for graph partitioning [118]: the edge-weights between two neighboring
clusters are calculated as the sum of the edge-weights of the vertices which were
grouped together within these clusters. Assuming a first-order neighborhood
(four connections for each pixel inside the image) of the original graph, this
is equivalent to adding the weights along the boundary between two patches.
As each image patch contains pixels of similar color, the exact color of the
boundary pixels can be replaced with the mean color yi of the patch without
considerably changing the resulting weight.

Note that additional cues like texture or intervening contours can be incor-
porated into the classification process by computing corresponding similarity
values based on the image patches, and combining them appropriately (see e.g.
[118, 165, 120]). However, we did not consider modified similarities values here.

5.2.3 Balancing Constraint Selection

Remember that our SDP relaxation approach is based on the unsupervised
segmentation problem (2.6), which involves a balancing constraint c>x = β

that can be set application-dependent. In this context, the classical graph
(equi-)partitioning approach uses c = e (the vector of all ones) and β = 0 to
obtain a balanced clustering. While this is reasonable for graphs where each
vertex is equally important, the vertices now correspond to image patches of
varying size, which suggests different weights. As we already argued in Section
4.4.3, a more appropriate balancing constraint in this case is derived by counting
the number of pixels mi contained in each image patch i, and setting the entries
of the constraint vector to ci = mi instead of to ci = 1 (while keeping β = 0).
In this way, our approach seeks two coherent parts in the image with each
containing approximately the same number of pixels.

If the SDP relaxation method is applied within the hierarchical framework
presented in Section 5.1, we may get into the situation where the current part
of the image contains a dominating patch k which is much larger than the other
patches in this part of the image: ck = maxi ci � cj for all j 6= k. In this case, a
segmentation into two parts of the same size may no longer be possible. In fact,
due to Theorem 4.4, the SDP relaxation (4.7) has a feasible solution only if the
constraint vector c in combination with β is balanced: |ci| ≤ |β| +∑j 6=i|cj | for
all i = 1, . . . , n, and |β| ≤ ∑j|cj |. Yet if this is not the case, this theorem also
reveals that a feasible instance of the SDP relaxation can be derived by adjusting
the value of β appropriately: as β corresponds to the desired difference between
the size of both parts of a segmentation, setting β = ck −∑i6=k ci makes (4.7)
feasible. Since this constraint strictly requires to separate the largest patch k

from the rest of the patches, we enlarge β by a fraction of the number of pixels
contained in the small remaining patches, β = ck − 1

2

∑

i6=k ci, to allow for more
flexibility in practice.

Finally, note that such adjustments are not admissible for spectral relaxation
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Original image

→ → →

→ →

Figure 5.3: Evolution of a hierarchical segmentation based on the SDP
relaxation approach. In each step, the parts indicated in gray and black are
separated. Note the coarse to fine nature of the evolution: the broad parts
of the image are segmented first (middle row), whereas the finer details arise
later (bottom row).

methods: while the Fiedler vector (3.13) always requires balancing the number
of patches, the normalized cut relaxation (3.16) balances the degrees of the
patches. Hence, neither can the number of pixels contained in a patch be
incorporated, nor is it possible to influence the gap between both parts of the
solution before the thresholding step.

5.2.4 Experimental Results

To evaluate the performance of the over-segmentation-based SDP relaxation
method for large real world scenes, we apply it to images from the Berke-
ley segmentation dataset [121] within the hierarchical framework presented in
Section 5.1. As a first example, Figure 5.3 shows how the final segmentation ob-
tained by SDP relaxation evolves hierarchically. One can clearly see the coarse
to fine advancement of the hierarchical segmentation: the first steps segment
the broad parts like the sky and the water, whereas the finer details of the
surfer are partitioned later. Also note that although the water contains many
patches (cf. Figure 5.2), its further splitting is effectively prevented within the
hierarchical framework since the the corresponding cut-values are too high (see
Section 5.1.2).

Figure 5.4 depicts the encouraging final segmentations for several different
images, which are computed with the hierarchical SDP relaxation method in
less than 5 minutes on a 2 GHz Pentium IV PC. Concerning the parameters
introduced in connection with the hierarchical framework in Sections 5.1.2 and
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Original SDP relaxation Normalized cut
relaxation

Figure 5.4: Hierarchical segmentation results for five color images of
size 481 × 321 pixels from the Berkeley segmentation dataset [121]. Note
the superior quality of the segmentations obtained with the SDP relaxation
approach in comparison to the normalized cut relaxation, which are approved
by the higher F -measures given in Table 5.1

5.1.3, we set a = 0.02 (as the fraction of the sum of all edge-weights) for the
maximally allowed cut-value, and pmin = 7 as the minimum number of patches
that must be contained in a candidate-segment. Since appropriate values for
the parameter q controlling the granularity turned out to differ from image
to image, we simply set the maximum number of parts to 10 and picked the
final segmentation from the hierarchy by visual inspection. The automatic
determination of a suitable stopping criterion thus remains an open point for
future research.

For comparison, we also compute the corresponding normalized cut segmen-
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F -measure
Image # Segments SDP Ncut

(a) 7 0.92 0.77
(b) 9 0.76 0.73
(c) 8 0.69 0.64
(d) 6 0.68 0.61
(e) 8 0.58 0.35

Table 5.1: Quantitative performance of the SDP relaxation. The high
F -measures obtained for the images in Figure 5.4 confirm the encouraging
results in comparison to the normalized cut relaxation. Also given is the
corresponding final number of segments picked from the partitioning hierarchy.

tations that contain the same number of final segments as the SDP solutions.
To this end, we use the hierarchical framework with identical parameter set-
tings, and only replace the binary partitioning technique. The results given in
Figure 5.4 indicate the superiority of the SDP relaxation method: especially
note that for some images, the normalized cut relaxation yields quite small
segments instead of producing balanced partitionings. However, this apples-to-
apples comparison should be judged with care: as the normalized cut relaxation
cannot take into account the varying size of the image patches appropriately,
the over-segmentation produced with mean shift possibly is not an adequate
starting point for this method.

Since the Berkeley segmentation dataset also provides “ground-truth” data
in the form of segmentations produced by humans, we are able to measure the
performance of our SDP relaxation algorithm quantitatively by comparing the
results with the corresponding human segmentations. To this end, we use the
precision-recall framework presented in [120], which is a standard method in
the information retrieval community [182]. Based on the boundaries of the seg-
ments, the precision p measures the fraction of pixel-pairs that are correctly
grouped together in comparison to the human segmentations, while recall r is
the fraction of pixel-pairs from a ground-truth segment that are accurately de-
tected by the partitioning algorithm. The F -measure then captures the trade-off
between accuracy and noise by combining precision and recall as their weighted
harmonic mean: F = pr

γp+(1−γ)r . As in [120], we use γ = 0.5. Resulting in

a value between 0 (corresponding to bad segmentations) and 1 (good segmen-
tations), the F -measure is a valuable statistical indicator for the performance
of a partitioning algorithm. The F -measures obtained for the final segmenta-
tions from Figure 5.4 are given in Table 5.1: they confirm the visual impression
that the results of the SDP relaxation method outperform the normalized cut
segmentations.

5.3 Probabilistic Sampling

An alternative approach to reduce the computational effort for solving graph-
based image segmentation problems is based on probabilistic sampling of the
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input data: by picking only a small random subset of pixels, a graph partitioning
problem of small scale is obtained for which the solution can be calculated
efficiently. Due to the fact that the number of coherent parts in an image is
typically much smaller than the number of pixels, this solution usually can be
generalized well to a solution of the full original problem.

The mathematical foundation for this approach is derived from fast matrix
approximation methods that rely on probabilistic sampling techniques [56, 1].
Basically, these methods find good low-rank approximations (concerning the
spectral structure) of a given matrix M efficiently by sampling the entries of M .
In the context of graph-based image segmentation, this idea amounts to closely
approximating the symmetric problem matrix M ∈ Sn (which is derived from
the similarity matrix W ) with a matrix M̂ of considerably lower rank k � n by
randomly selecting a small number of pixels (represented by the corresponding
rows or columns of M) from the image.

One example of such a probabilistic matrix approximation approach is the
Nyström method, which originates from the numerical treatment of integral
equations (see, e.g., [7]), and which recently has been applied successfully in
connection with normalized cut relaxations of different grouping problems [54]
and for machine learning tasks [171, 191]. As a natural alternative, we present
a probabilistic SVD approximation method in Section 5.3.2, which has been
introduced by Drineas et al. [48] in a different clustering context. Before the
relation of this approach to the Nyström method is discussed (Section 5.3.3), we
briefly address the topic of how to pick the sample points appropriately (Section
5.3.1). In Section 5.3.4, we then describe how the probabilistic SVD approxima-
tion method can be applied to solve unsupervised partitioning problems based
on both the normalized cut and the SDP relaxation. Finally, the performance
of these probabilistic approaches is evaluated experimentally by considering sta-
tistical results for ground-truth experiments on bipartitioning point sets as well
as hierarchical segmentations of large real world images (Section 5.3.5).

5.3.1 Sample Selection

The success of any partitioning technique that is based on probabilistic matrix
approximation certainly depends on an appropriate sample selection procedure,
i.e. to pick suitable points (which are represented by columns of the problem
matrix M) that provide enough information to closely approximate the com-
plete problem. To this end, Drineas et al. [48] propose to sample points from
the input data with probabilities that are proportional to the squared norm
of the corresponding columns of M . For the rank-k matrix M̂ obtained based
on such a selection process, they are able to prove a theoretical bound on the
approximation quality which yet requires a large number of samples to be se-
lected. On the other hand, they also state that in practice it suffices to pick a
much smaller number of samples to obtain good approximation results.

If the problem matrix M is dense, Frieze et al. [56] argue that a column Mi

of M (representing the point i) can be selected with probability Pr[i] = 1
n

in
order to fulfill the requirements of the proven approximation bound. Since this
corresponds to a uniform distribution of the input data, we can pick the desired
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number s of samples independently at random from the complete set of points.
In connection with the Nyström method, Fowlkes et al. [54] successfully use the
same random selection procedure for picking columns of their dense problem
matrices. Note that besides its simplicity, this sample selection procedure has
the enormous advantage that it does not require to calculate the complete
matrix M to decide which points to pick — in contrast to the approach of
Drineas et al. [48] mentioned above. Due to these facts, we will only consider
dense problem matrices in this section, and also rely on the aforementioned,
simple random procedure to select the sample points.

To facilitate the analysis of the following sections, we assume that the pixels
are rearranged so that the s selected sample points precede the remaining points
of the image. The corresponding (symmetric) problem matrix M ∈ Sn can then
be partitioned into smaller submatrices:

M =

(

A B

B> C

)

,

with A ∈ R
s×s, B ∈ R

s×n−s and C ∈ R
n−s×n−s. This rearrangement does not

change the spectral structure of the matrix.

5.3.2 Probabilistic SVD Approximation

The probabilistic matrix approximation technique we present in this section
is based on the following well known fact from linear algebra [69] about the
singular value decomposition (SVD) of a matrix:

Lemma 5.1. Let the SVD of the symmetric matrix M ∈ Sn be given by

M =
n
∑

i=1

σiqip
>
i ,

and denote by Qk ∈ R
n×k the matrix comprising the left orthonormal singular

vectors qi for the k largest singular values σ1 ≥ · · · ≥ σk of M . Then the best
rank-k approximation to M within a suitable matrix norm1 is given by

min
D∈Sn

rank(D)=k

‖M −D‖ = ‖M −QkQ
>
k M‖ . (5.2)

Based on (5.2), Drineas et al. [48] propose to approximate the top k left
singular vectors qi of the complete matrix M by calculating the top k left
singular vectors q̂i of the sampled n× s submatrix2

S =

(

A

B>

)

. (5.3)

1More specifically, the approximation (5.2) holds for every unitarily invariant matrix norm
(cf. [175]), which includes the spectral norm ‖.‖2 and the Frobenius norm ‖.‖F.

2More precisely, Drineas et al. [48] use a weighted submatrix S′ := SR− 1

2 instead of S,
where R is a diagonal matrix with the entries Rii = sPr[i] that weights the columns of S with
their selection probabilities. However, since we use uniform sampling (see Section 5.3.1), we
get R = s

n
I, which yields S′ =

p

n
s
S and thus is equivalent to employing S directly.
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Figure 5.5: Visualization of the approximation quality obtained with
the probabilistic SVD method. For the similarity matrix W of the clustering
problem depicted in Figure 5.7, the top eigenvector q1 is plotted against the
corresponding approximation q̂1 based on sampling 15% of the points.

As can be seen easily [48], this can be accomplished efficiently by computing
the eigenvectors yi corresponding to the k largest eigenvalues λ1 ≥ · · · ≥ λk ≥ 0
of the much smaller, positive semidefinite matrix S>S ∈ Ss

+, and calculating

q̂i =
Syi

‖Syi‖
=

Syi√
λi

for i = 1, . . . , k .

Hence, this probabilistic SVD approximation method yields an efficient way
to find a matrix M̂ which approximates the best rank-k approximation to M
from (5.2). Putting everything together, we obtain the following relations:

M ≈ QkQ
>
k M ≈ Q̂kQ̂

>
k M = M̂ ,

where Q̂k ∈ R
n×k again denotes the matrix containing the (orthonormal) vec-

tors q̂i as columns.

Under specific conditions, a theoretical bound on the approximation quality
of M̂ can be proven [56, 48]. Since however, this bound requires large sampling
rates, it is of no practical value in the context of efficient image segmentation,
and is therefore not considered here. Instead, Figure 5.5 gives a first impression
of the performance of the probabilistic SVD method: for the similarity matrix
W of a clustering problem that will be considered in Section 5.3.5 (cf. Figure
5.7), the entries of the eigenvector q1 belonging to the largest eigenvalue are
plotted against the corresponding entries of the approximation q̂1. Although
only 15% of the points are sampled, the approximation quality is quite good.

A different interpretation of the SVD approximation method is derived by
observing that the left singular vectors q̂i of the sampled submatrix S equal the
top singular vectors (or equivalently the top eigenvectors) of the symmetric,
positive semidefinite matrix SS> ∈ Sn

+, and that the same holds for the matrices
M andMM> (cf. Lemma A.2). Using these facts, we see that the above method
also corresponds to approximating the matrix MM> with the matrix SS> of



106 Chapter 5. Efficient Unsupervised Segmentation

smaller rank s in the following way:

MM> =

(

AA> +BB> AB +BC>

(AB)> + (BC)> B>B + CC>

)

≈
(

AA> AB

(AB)> B>B

)

=

(

A

B>

)

(

A> B
)

= SS>

= Q̂sΣQ̂
>
s ,

(5.4)

where the thin SVD3 Q̂sΣQ̂
>
s of SS> is obtained from the eigenvalue decompo-

sition Y ΣY > of the positive semidefinite and much smaller matrix S>S ∈ Ss
+

by setting

Q̂s := SY Σ− 1
2 . (5.5)

Here, Σ := Diag(λ1, . . . , λs) denotes the diagonal matrix containing the eigen-
values λ1 ≥ · · · ≥ λs ≥ 0 of S>S (which are equal to the top singular values of
SS>) on the diagonal in descending order, and the orthogonal matrix Y ∈ R

s×s

contains the corresponding eigenvectors yi as columns.

5.3.3 Comparison to the Nyström Method

Recently, a different sampling-based, efficient matrix approximation technique
has been proposed in the context of spectral grouping [54] and machine learning
[191], which is derived from the so-called Nyström extension [7]. Based on the
sampled submatrix S from (5.3), the basic idea of this approach is to directly
approximate the problem matrix M with a rank-s matrix M̂ by implicitly ap-
proximating the submatrix C of M with the matrix B>A−1B (we assume for
the moment that the submatrix A is positive definite):

M =

(

A B

B> C

)

≈
(

A B

B> B>A−1B

)

=

(

A

B>

)

A−1
(

A> B
)

= SA−1S>

= P̂sΛP̂
>
s .

(5.6)

The thin SVD P̂sΛP̂
>
s of the approximating matrix M̂ := SA−1S> again can

be calculated efficiently by computing the eigenvalue decomposition ZΛZ> of
the smaller matrix

A′ := A+A− 1
2BB>A− 1

2 = A− 1
2S>SA− 1

2 ∈ Ss
+

and setting

P̂s := SA− 1
2ZΛ− 1

2 . (5.7)

3In this context, thin SVD means the SVD of a matrix without the singular vectors corre-
sponding to the zero singular values.
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This time, Λ := Diag(λ1, . . . , λs) denotes the diagonal matrix containing the
eigenvalues λ1 ≥ · · · ≥ λs ≥ 0 of A′ on the diagonal in descending order, and
the orthogonal matrix Z ∈ R

s×s comprises the corresponding eigenvectors as
columns. In practice, only the top k eigenvectors of the matrix A′ are calculated,
which leads to the rank-k approximation P̂kΛkP̂

>
k of M .

Comparing the approximations (5.4) and (5.6) reveals the similarity of the
Nyström method and the probabilistic SVD approximation: whereas the latter
approach calculates the eigenvectors q̂i of the matrix SS> as an approximation
to the top eigenvectors of MM> (which are the same as the top eigenvectors
of M if the matrix M is positive semidefinite), the Nyström method approxi-
mates the top eigenvectors of M by computing the eigenvectors p̂i of the matrix
SA−1S>. Hence, for positive semidefinite matrices M ∈ Sn

+, both approxima-
tions will become very similar if the submatrix A resembles the identity matrix,
A ≈ I. In fact, both approaches can be considered as special cases of the gen-
eral low-rank matrix approximation method presented by Frieze et al. [56] for
rectangular matrices [191].

Interestingly, both methods maintain the inner products of the columns
of the sample matrix S after projection onto the subspaces spanned by the
corresponding approximative eigenvectors. For the probabilistic SVD approxi-
mation, we can verify this by using the definition (5.5) of Q̂s in connection with
the eigenvalue decomposition S>S = Y ΣY > with Y >Y = I:

S>Q̂sQ̂
>
s S = S>SY Σ− 1

2 Σ− 1
2Y >S>S

= Y ΣY >Y Σ−1Y >Y ΣY >

= Y ΣY > = S>S .

Similarly, using the definition (5.7) of P̂s in connection with the fact S>SA− 1
2 =

A
1
2ZΛZ> derived from the eigenvalue decomposition of A′, we get for the

Nyström method:

S>P̂sP̂
>
s S = S>SA− 1

2ZΛ− 1
2 Λ− 1

2Z>(A− 1
2 )>S>S

= A
1
2ZΛZ>ZΛ−1Z>ZΛZ>(A

1
2 )>

= A
1
2ZΛZ>A

1
2 = S>S .

Concerning the applicability of the Nyström method, we had to assume (as
opposed to the SDP approximation method) that the submatrix A is positive

definite in order to assure that the inverse A−1 and the square root A
1
2 exist.

In fact, the second requirement is already fulfilled if the matrix M is positive
semidefinite: in this case, A is also positive semidefinite, which guarantees the
existence of the square root A

1
2 . Yet the inverse A−1 may not be calculated if

any of the eigenvalues of A is 0. As a remedy for the indefinite case, Fowlkes
et al. [54] propose a modification of the Nyström method which utilizes the
pseudoinverse instead of A−1. However, besides increasing the computational
effort, this modification may lead to a significant loss in numerical precision,
and thus should only be applied when necessary [54].
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In contrast to that, the probabilistic SVD approximation method does not
involve the calculation of any square roots or inverse matrices (except for Σ− 1

2 ,
which is unproblematic since Σ is diagonal and positive definite). Hence, this
approach is more convenient concerning the computational complexity, and
less sensitive when being applied to nearly singular matrices. Indeed, it can
also be used to calculate rank-k approximations for non-positive semidefinite
matrices. In this case, however, one has to be cautious when applying the SVD
approximation method to spectral partitioning approaches which are based on
the largest eigenvectors of the problem matrix: as the largest singular vectors
could also correspond to eigenvectors of negative eigenvalues (cf. Lemma A.2),
they may yield incorrect partitionings.

5.3.4 Application to Binary Partitioning

In this section, we describe how the probabilistic SVD approximation method
presented in Section 5.3.2 can be applied to solve binary partitioning problems
based on the SDP relaxation approach (see Section 4.2) and the normalized
cut relaxation (see Section 3.1.4), respectively. In this context, first note that
the problem formulations corresponding to both partitioning techniques involve
minimizing the objective function, whereas the probabilistic SVD method ap-
proximates the singular vectors belonging to the largest singular values. How-
ever, since x>Lx = x>(D−W )x = −x>Wx+ d(V ) for x ∈ {−1,+1}n, we can
directly transform the objective for both problem formulations to maximization
by substituting the Laplacian L with the similarity matrix W . For the SDP
relaxation (4.7), this results in the equivalent problem

max
X�0

W •X

s.t. cc> •X = β2

diag(X) = e .

(5.8)

More specifically, since we are only concerned with image partitioning problems
on a pixel basis in this section, the corresponding graph vertices can be assumed
to be of equal importance. For this reason, we generally set c = e and β = 0 in
the balancing constraint in (5.8).

On the other hand, the above substitution yields for the normalized cut
relaxation (3.16):

max
z∈Rn

z>Wz

z>Dz

s.t. z>De = 0 ,

which corresponds to computing the eigenvector belonging to the second largest
eigenvalue of the normalized similarity matrix W ′ = D− 1

2WD− 1
2 (cf. Lemma

3.4).
Moreover, we assume in this section that the similarity matrix W is positive

semidefinite in order to guarantee the equivalence of its largest singular vectors
and its largest eigenvectors (see Lemma A.2). In general, this is no restriction
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since an indefinite matrix W can always be changed into a positive semidefinite
matrix by adding a multiple of the identity matrix, W̃ := W +γI, with γ ∈ R

+

chosen large enough: this transformation increases the eigenvalues of W by γ,
but does not change the eigenvectors or the order of the eigenvalues.4 Since
experiments indicate that the positive eigenvalues are mostly dominating for
real image data, this transformation yet is usually not necessary in practice.

SDP Relaxation

To solve the SDP relaxation (4.7) by means of the probabilistic SVD approx-
imation method, we use the fact that the randomized hyperplane technique
(see Section 4.2.3) calculates an integer solution x ∈ {−1,+1}n based on the
Cholesky decomposition X∗ = V V > of the solution matrix X∗ of (4.7). This
results in the equivalent problem formulation (4.9) with the objective function
Tr(V >LV ), where the second constraint ensures that the rows vi of V have unit
norm. If we disregard the balancing constraint in (4.9), the complete eigenvalue
decomposition W = QΛQ> of the similarity matrix W yields a special instance
of the SDP relaxation in the maximization form (5.8),

max
X�0

diag X=e

W •X = max
V ∈R

n×n

‖vi‖2=1

Tr(V >WV ) ≥ Tr(Q>WQ) =

n
∑

i=1

λi ,

since QQ> = Q>Q = I. For this reason, we suggest to calculate an approxima-
tive Cholesky decomposition of the solution matrix X ∗ in the same way as an
approximation to the top eigenvectors of W is obtained with the probabilistic
SVD approximation method.

In more detail, the solution steps are as follows:

1. Calculate the sampled submatrix S ∈ R
n×s of W to obtain the matrix

S>S ∈ Ss
+.

2. Solve the following small-size version of the SDP problem 5.8, which yields
the solution matrix X̃∗ ∈ Ss

+:

max
X̃�0

S>S • X̃

s.t. ee> • X̃ = 0

diag(X̃) = e .

(5.9)

3. Compute an approximative Cholesky factor V̂ ∈ R
n×s for the solution

matrix X∗ of the original SDP problem (5.8) by setting V̂ = SṼ (similarly
to (5.5)), where Ṽ ∈ R

s×s denotes the Cholesky factor of the solution
matrix X̃∗ = Ṽ Ṽ > of (5.9).

4. Normalize the rows v̂i of V̂ to satisfy the original norm constraint on the
rows of the Cholesky factor.

4In particular, if we apply this modification directly to W ′ for the normalized cut, we can
set γ = 1 since all eigenvalues of W ′ are known to be larger than −1 (see Lemma 3.4).
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5. Adapt the randomized hyperplane technique (Section 4.2.3) to calculate
binary vectors x ∈ {−1,+1}n: for random vectors r from the unit sphere
in R

s, compute xi = sgn(v̂ir) for i = 1, . . . , n (note that v̂i is a row vector).
As final combinatorial solution we then select that binary vector x which
yields the smallest value for the following adjusted version of the original
objective function in (4.5):

x>Lsx , (5.10)

where Ls is obtained from L by setting all columns to zero that correspond

to points which are not sampled: Ls = Ds−Ws =
(

Diag(S>e) 0
0 0

)

− (S 0).

Concerning the final step, the modification (5.10) can be interpreted in
the following way: instead of seeking a minimum cut in the complete problem
graph, a sparsified graph is examined that only contains the edges between the
samples with their full weight and the half-weighted edges between samples
and non-samples. Thus, the objective function is slightly adjusted to take the
confidence in the entries of the solution vector into account.

Normalized Cut Relaxation

If the similarity matrix W is positive semidefinite, so is W ′, and we can apply
the probabilistic SVD approximation method directly to approximate the top
eigenvectors ofW ′. Since this requires the sampled part S ofW ′ to be calculated
exactly, we assume that besides the similarities to the sampled points (the
sampled part of W ), the complete degree vector d = De is computed in a
preprocessing step.5 In this context, a slightly different method is proposed
in [54] in connection with the Nyström method: instead of W ′, the original
similarity matrix W is approximated first and normalized afterwards. In this
way, the time consuming computation of the correct degree vector d is avoided.
However, this procedure is not applicable for the SVD approximation method,
which requires to approximate W ′ directly.

In order to obtain a binary solution, the second step of the normalized cut
relaxation demands to find a suitable threshold value on the second smallest
eigenvector v2 of the generalized eigenvalue problem (3.17) (see Section 3.1.2).

While by multiplication with D− 1
2 , the computed approximate eigenvectors Q̂k

of W ′ are easily transformed into the corresponding approximative eigenvectors
of the original normalized cut problem, we meet two other problems in this
context: first, several experiments indicated that the information contained in
the second largest eigenvector of the full problem matrix W ′ may now be shifted
to another of the top approximative eigenvectors, so using only the second
largest approximative eigenvector can be misleading. Second, due to time and
memory restrictions, we cannot make use of the original normalized cut criterion
(3.4) (which involves the complete similarity matrix W ) to calculate the optimal
threshold value.

In order to deal with these problems, we calculate the binary solution with
a modified technique that is still directly based on the normalized cut criterion,

5Note that the calculation of the complete degree vector d is not necessary for the SDP
relaxation approach.
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but only requires the sampled part of the similarity matrix W along with the
complete degree vector d = De. To this end, we first normalize the rows of the
matrix D− 1

2 Q̂k (which contains the approximative eigenvectors to the original
normalized cut problem) to unit length to project them onto the unit sphere
(cf. [190, 134]). For each of the top “projected” eigenvectors obtained in this
way, we then compute the threshold which yields a binary vector x ∈ {−1,+1}n

that minimizes the following adjusted version of (3.4):6

x>Lsx

x>Ds(x+ e)
+

x>Lsx

x>Ds(x− e)
, (5.11)

with Ls and Ds being defined as in (5.10). Comparing the optimal binary
vectors x obtained for each of the first top projected eigenvectors, the final
solution is given by that x which results in the smallest value for (5.11).

Note that in connection with the Nyström method, a different technique is
proposed to compute the final partitioning for the normalized cut relaxation
[54]: based on the embedding of the points into the space R

k given by the

(scaled) rows of the matrix D− 1
2 Q̂k, a direct segmentation into multiple parts

is obtained by applying the k-means algorithm. Although this method seems to
be more robust by considering the information contained in several approximate
eigenvectors at once, we do not study it here. In fact, it has been criticized that
the solution calculated with k-means is not based on the original normalized
cut criterion any more, since the embedding yields a different grouping problem
[155]. Instead, we focus on hierarchical binary partitionings in this section;
direct multiclass segmentation methods are considered in Section 6.2.2.

5.3.5 Experimental Results

In this section, we present several results for unsupervised partitioning problems
obtained by applying the probabilistic SVD approximation technique in con-
nection with the SDP relaxation approach and the normalized cut relaxation,
respectively. Besides evaluating the performance statistically for artificial point
sets, we segment large real world images within the hierarchical framework as
suggested in Section 5.1.

Concerning the graph representation of the problems, the SVD approxima-
tion method needs a dense similarity matrix W to work: otherwise, the sampled
submatrix S may contain zero-rows, which prohibits to infer the group mem-
bership of the corresponding unsampled pixels. Since applying a shortest paths
approach like method (ii) from Section 4.4.2 for this purpose is prohibited due
to time and memory restrictions, we simply expand the feature vectors yi in
this section by including the position of each point i along with its color in the
perceptually uniform L*u*v* space. The required similarity values wij are then
computed directly for each pair of points i and j as

wij = e−dM (i,j) ,

6The original version (3.4) corresponds to (5.11) with Ls and Ds being replaced by the full
matrices L and D, respectively.
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where dM (i, j) :=
∑

k

(yi−yj)2k
σk

denotes the Mahalanobis distance between the
corresponding feature vectors yi and yj, with appropriately adjusted scaling
factors σk. As this results in a positive semidefinite similarity matrix W , we
can use W unchanged for all the following applications.

Statistical Performance Evaluation

To measure the performance of the sampling-based versions of the partitioning
methods statistically, we create two different point sets as depicted in Figure
5.6, top. Using the complete similarity matrix (based on the Euclidean dis-
tances of the points), both the SDP relaxation approach and the normalized
cut relaxation are able to separate the clusters correctly. For different sampling
rates, we then compute partitionings based on the probabilistic SVD approx-
imation method and compare them to the optimal solution by counting the
number of misclassified points. To derive some significant statistics, this exper-
iment is repeated 100 times for each sampling rate, with different sample points
selected.

The diagrams in Figure 5.6 reveal that for both the SDP and the normalized
cut relaxation, good results are obtained with the probabilistic SVD approx-
imation method, also for relatively small sampling rates. In particular, the
quite simple example in Figure 5.6, left, always gives a mean error below 5%
if at least 10% of the points are sampled. In comparison, note that for the
point set depicted in Figure 5.6, right, decreasing sample numbers soon result
in a significant loss of structure as the similarity values are solely based on
Euclidean distances, which makes this problem quite intricate. Although for
this reason, the measured mean error increases for smaller sampling rates, it
should be mentioned that both partitioning approaches still were able to find
the optimal solution at least once down to a sampling rate of 10%.

Moreover, Figure 5.6, bottom, shows that the computational effort is re-
duced by applying the probabilistic SVD approximation method. With a nearly
quadratic decay of the time needed to solve the partitioning problems, this is
most significant for the SDP relaxation: for small sampling rates, the corre-
sponding computational effort even becomes comparable to the normalized cut
relaxation.

For comparison, we also apply the Nyström method to the normalized cut
relaxation for these examples. While the corresponding clustering performance
resembles that of the probabilistic SVD approximation-based approach (Figure
5.6, middle), there are two striking discrepancies: the bad performance for high
sampling rates depicted in Figure 5.6, middle left, is due to the fact that for
this example the similarity matrix W is nearly singular, which leads to inac-
curate results in the calculation of the inverse submatrix A−1. The increase of
the computational effort when sampling based on the Nyström method is intro-
duced (cf. Figure 5.6, bottom) can be attributed to the same cause: the high
complexity of calculating an inverse matrix makes this method inefficient for
larger sample numbers. Hence, these results approve the theoretical drawbacks
of the Nyström method indicated in Section 5.3.3.
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Figure 5.6: Statistical performance for two clustering problems,
based on 100 experiments for each sampling rate. Using all points, the optimal
solutions for both point sets are found with the SDP relaxation approach as
well as with the normalized cut relaxation (top). Concerning the quality of
the solutions obtained with the probabilistic SVD approximation technique
(middle), both methods give good results also for relatively small sampling
rates, especially for the quite simple example depicted left. In particular, the
computational effort is reduced strongly for the SDP relaxation (bottom), thus
making it comparable to that of the normalized cut relaxation for small sample
numbers.

Image Segmentation

Figure 5.7 gives the segmentation results obtained with the probabilistic SVD
approximation method for a small patch of a larger color image (cf. Figure 3.6)
when 6.2% of the points (s = 80) are sampled. In order to compare the perfor-
mance for both partitioning approaches, we also computed the corresponding
optimal solutions based on the complete similarity matrix for this example (Fig-
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Original

Optimal SDP solution Optimal normalized cut solution

Sampling-based SDP solution Sampling-based normalized cut
solution

Figure 5.7: Comparison of segmentations with and without sam-
pling. For a small patch (36 × 36 pixels) of a larger color image (cf. Figure
3.6), the probabilistic SVD approximation method is applied based on sam-
pling 6.2% of the pixels. While maintaining a satisfying segmentation quality,
the computational effort to produce the approximate solutions is reduced enor-
mously (by more than 95%).

ure 5.7, middle row). While the sampling-based binary partitions are reasonable
approximations to the optimal segmentations, the computational effort needed
to produce these results is drastically reduced: from 13.5 minutes for the com-
plete SDP, and 3.5 minutes for the complete normalized cut, to 5–6 seconds for
both sampling-based approaches.

Finally, we apply the sampling-based partitioning approaches to large real
world image segmentation problems. The results for several examples from
the Berkeley segmentation dataset [121] are depicted in Figure 5.8. In order
to produce partitionings into more than two segments, we again use the hier-
archical framework presented in Section 5.1. For these examples, the binary
partitionings computed for each candidate segment are always based on 100
randomly selected pixels (which corresponds to 0.26% of the entire image). To
decide which segment should be split next in each step, we apply a selection



5.3. Probabilistic Sampling 115

Original Sampling-based SDP
solution

Sampling-based
normalized cut solution

Figure 5.8: Hierarchical segmentation based on sampling. For five dif-
ferent images of size 240× 160 pixels from the Berkeley segmentation dataset
[121], the probabilistic SVD approximation method is applied based on sam-
pling s = 100 pixels in each hierarchical step (corresponding to 0.26% of the
total number of pixels). Both partitioning approaches, the SDP relaxation as
well as the normalized cut relaxation, give satisfactory results.
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procedure that slightly differs from the one presented in Section 5.1.2: instead
of generally choosing the largest segment, we pick the candidate that yields the
lowest normalized cut value. This procedure is stopped after four steps, which
results in a partitioning into at most five segments.

The results in Figure 5.8 reveal that for both the SDP and the normalized
cut segmentation approach, the application of the probabilistic SVD approx-
imation method is successful: taking into account that no effort is made to
smooth the segments, to select the sampled pixels more deliberately or to stop
the partitioning process at a more adequate number of segments, the quality of
the segmentations is satisfactory. Concerning the computational effort, it takes
just about 350 seconds for the sampling-based normalized cut relaxation and
about 110 seconds for the sampling-based SDP relaxation to find the first binary
partitioning for these images. In this context, note that the most time consum-
ing step for problems of this size consists in the final calculation of the binary
solution: the vectors to be examined are by orders of magnitude larger than the
solutions of the corresponding sampling-based small scale problems. This fact
also explains the larger solution time for the normalized cut relaxation, since
we test several approximative eigenvectors for good cut values — in contrast
to the SDP relaxation, where only a fixed number of random hyperplanes is
evaluated.

In comparison to the over-segmentation-based partitioning method pre-
sented in Section 5.2, the image segmentation results of the sampling-based
techniques naturally are more noisy, since they are obtained on a pixel basis
without any smoothing effort. For this reason, we do not provide quantitative
quality measures (like the F -measure from Section 5.2.4) here. However, the
reduced computational effort permits computing multiple segmentations of a
single image based on different samplings, which then can be combined to ob-
tain the final solution by calculating the most probable group membership for
each pixel (see e.g. [176]). For the sampling-based normalized cut relaxation,
this topic is addressed in more detail in the diploma thesis of Hanno Acker-
mann [2], along with an elaborate analysis of the parameters involved in the
probabilistic SVD approximation method.



Chapter 6

Solving Non-Binary Problems

So far, we have only considered segmentation tasks that are based on binary
optimization problems which can be cast in the general form (2.1). Problems
of this type are amenable to the general convex relaxation approach presented
in Chapter 4. In practice, however, the situation may be more complicated:
instead of seeking good binary solutions, a direct decomposition of the image
into more than two parts is often desired.

In this context, a first approach was presented in Section 5.1, where a seg-
mentation into multiple parts was obtained by computing binary partitionings
in a hierarchical way. However, such a hierarchical framework is only appro-
priate for the unsupervised segmentation task, and not for perceptual grouping
or image restoration. In fact, the perceptual grouping problem (see Section
2.2) is intrinsically binary as a one-against-all task: image elements either be-
long to a shape (indicated by high interaction coefficients wij) or they do not;
other shape definitions lead to different grouping problems, that have to be
solved independently. On the other hand, the energy functional (2.11) for the
binary image restoration problem (see Section 2.3) involves comparisons with
previously defined, prototypical representatives of each group. Thus for multi-
ple classes, a hierarchical framework would lead to binary restoration problems
that involve the comparison of one class against all the others, which usually is
not feasible since a suitable representative for the all-class cannot be defined.

In this chapter, we will therefore present a natural, direct extension of the
binary restoration problem to the non-binary case, which can also be solved by
semidefinite relaxation (Section 6.1). For the sake of completeness, and since
the relaxation is quite similar to that of the multiclass restoration problem, we
will also briefly introduce how the binary unsupervised partitioning problem
can be extended to find a multiclass segmentation in a direct way (Section 6.2).

6.1 Multiclass Restoration

As already stated above, the binary restoration problem (2.12) is not suited for
a hierarchical application. However, in contrast to unsupervised segmentation
tasks, the number of classes k the image should be partitioned into is usually
defined in advance. This knowledge allows deriving a direct extension of the
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binary restoration problem to multiple classes in a straightforward way (Section
6.1.1), which can also be solved by a semidefinite relaxation approach (Section
6.1.2). First experimental results are given in Section 6.1.3.

6.1.1 Problem Formulation

To extend the binary energy functional (2.11) to multiple classes, we now indi-
cate the class membership of an image element i by a vector xi ∈ {e1, . . . , ek}
taking as value one of the k unit vectors from R

k. Moreover, we assume that
each locally measured feature vector gi ∈ R

m is known to originate from one of
k prototypical vectors u1, . . . , uk ∈ R

m, which yield the columns of the proto-
type matrix U ∈ R

m×k. Generalizing the separation costs for associated image
elements i, j in (2.11) to PijD(xi, xj) = λ‖xi − xj‖2 = 2λ(1 − x>i xj), and the
assignment costs to

Ci(xi) = ‖Uxi − gi‖2

= (Uxi − gi)
>(Uxi − gi)

= x>i (U>U)xi − 2x>i (U>gi) + ‖gi‖2

= x>i diag(U>U) − 2x>i (U>gi) + ‖gi‖2

= x>i
(

diag(U>U) − 2U>gi

)

+ ‖gi‖2 ,

we obtain the generalized energy functional

EMR(x) :=
∑

i

‖Uxi − gi‖2 + λ
∑

〈i,j〉
‖xi − xj‖2

= Tr
(

X
(

diag(U>U)e> − 2U>G
)

)

+ ‖G‖2
F − λTr(MXX>) + 2λ|〈i, j〉|

= Tr
(

−λMXX> +
(

ediag(U>U)> − 2G>U
)

X>
)

+ ‖G‖2
F + 2λ|〈i, j〉|

(6.1)

by inserting into the generic energy function (2.10). In (6.1), X ∈ R
n×k denotes

the indicator matrix containing the class indicator vectors xi as rows, G ∈
R

m×n comprises the feature vectors gi as columns, and |〈i, j〉| denotes the total
number of element associations. The symmetric matrix M ∈ Sn subsumes
these associations between the image elements by entries Mij = 1 whenever
two elements i, j are neighbored, and is zero otherwise.

Disregarding the constant terms, this results in the following optimization
problem for multiclass restoration:

z∗MR := min
X∈Rn×k

Tr
(

−λMXX> +
(

ediag(U>U)> − 2G>U
)

X>
)

s.t. Xek = en

Xij ∈ {0, 1} ∀ i, j ,

(6.2)

where ej ∈ R
j denotes the vector of all ones of appropriate size. Note that

the first constraint in (6.2) requires each row of X to sum to one, which in



6.1. Multiclass Restoration 119

connection with the second constraint ensures that each row corresponds to a
unit vector ei.

This combinatorial optimization problem resembles the quadratic assign-
ment problem (QAP, see, e.g., [137, 28]), which aims for optimally placing n

given activities at n given locations by minimizing a cost function of the form
Tr(AXBX> − 2CX>) with positive matrices A,B,C ∈ R

n×n. In fact, if we
allow multiple activities to be placed at the same location, the multiclass resto-
ration problem exactly becomes a special case of the uncapacitated QAP [105];
this can easily be established by defining the cost matrix B = E − I and the
flow matrix A = λM .

The original QAP has attracted considerable interest in connection with
semidefinite relaxation approaches [206, 26]. In the next section, we will show
how these methods can be generalized to find approximate solutions for prob-
lems of the type (6.2). Alternatively, several of the approaches already men-
tioned in Section 2.3 can be used for this purpose. Moreover, other relations
of (6.2) to different optimization problems are stated in the literature: whereas
Kleinberg and Tardos [105] point out the equivalence of this special case of
their uniform labeling problem to a pairwise homogeneous Markov random
field, Boykov et al. [24] prove the equivalence to a multiway cut problem.

6.1.2 Lagrangian Relaxation

Analogously to the relaxation of the QAP presented in [206], we perform
Lagrangian relaxation of (6.2). For ease of notation, let M̃ := −λM and
C := ediag(U>U)> − 2G>U ∈ R

n×k. We start with representing the con-
straints in a quadratic form, to obtain the following equivalent problem to
(6.2):

z∗MR = min
X∈Rn×k

Tr
(

M̃XX> + CX>
)

s.t. ‖Xek − en‖2 = 0

X2
ij −Xij = 0 ∀ i, j .

(6.3)

Using the Lagrange multipliers W ∈ R
n×k and u0 ∈ R, we add the constraints

to the objective function, and perform relaxation by virtue of the “minimax
inequality” [152] (see Section 1.4 for notations):

z∗MR = min
X

max
W,u0

Tr
(

M̃XX> + CX>
)

+
∑

i,j

Wij(X
2
ij −Xij)

+ u0(Xe
k − en)>(Xek − en)

≥ max
W,u0

min
X

Tr
(

M̃XX> + CX>
)

+ Tr
(

W (X ◦X −X)>
)

+ u0 Tr
(

XEkX
> − 2En×kX

>
)

+ u0n

= max
W,u0

min
X

Tr
(

M̃XX> +W (X ◦X)> +X(u0Ek)X
>

+ (C −W − 2u0En×k)X
>
)

+ u0n .
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Next we homogenize the objective function by multiplying X with a constrained
scalar x0, which increases the dimension of the problem by one. This additional
constraint is then inserted into the objective function by introducing the La-
grange multiplier w0:

z∗MR ≥ max
W,u0

min
X,x2

0=1
Tr
(

M̃XX> +W (X ◦X)> +X(u0Ek)X
>

+ x0(C −W − 2u0En×k)X
>
)

+ u0nx
2
0

≥ max
W,u0,w0

min
X,x0

Tr
(

M̃XX> +W (X ◦X)> +X(u0Ek)X
>

+ x0(C −W − 2u0En×k)X
>
)

+ u0nx
2
0 +w0x

2
0 −w0

=: s∗d .

Transforming the problem variables x0 and X into a vector by defining y :=
(

x0

vec(X)

)

, we finally obtain

s∗d = max
W,u0,w0

min
y

y>
(

LM̃,C +AW,w0 + u0F
)

y − w0 , (6.4)

with

LM̃,C :=

(

0 1
2 vec(C)>

1
2 vec(C) Ik ⊗ M̃

)

, (6.5)

AW,w0 :=

(

w0 −1
2 vec(W )>

−1
2 vec(W ) Diag(vec(W ))

)

, (6.6)

F :=

(

n −(enk)>

−enk Ek ⊗ In

)

, (6.7)

where A⊗B denotes the Kronecker product of A and B (see Section 1.4).

There is a hidden semidefinite constraint in (6.4): the inner minimization
is bounded below only if the matrix in the quadratic term is positive semidefi-
nite, in which case the corresponding minimum becomes zero. This yields the
following relaxation of (6.2):

s∗d = max
W,u0,w0

− w0

s.t. LM̃,C +AW,w0 + u0F � 0 .
(6.8)

To obtain a direct semidefinite relaxation of (6.2), we derive the Lagrangian
dual of (6.8). To this end, first observe that the matrix in (6.6) can be split
into AW,w0 =

∑nk
i=0 wiAi by defining w := vec(W ) and Ai ∈ Snk+1 with

(Ai)i1,i2 :=







1 i1 = i2 = i+ 1
−1

2 i 6= 0, i1 = 1, i2 = i+ 1 and i 6= 0, i1 = i+ 1, i2 = 1
0 elsewhere

.

(6.9)
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Using the dual positive semidefinite matrix variable Y ∈ Snk+1
+ , we get

s∗d = max
w0,w,u0

min
Y �0

−w0 + Tr
(

Y (LM̃,C +
nk
∑

i=0

wiAi + u0F )
)

≤ min
Y �0

max
w0,w,u0

Tr(LM̃,CY ) + w0

(

Tr(A0Y ) − 1
)

+
nk
∑

i=1

wi Tr(AiY )

+ u0 Tr(FY )

=: s∗p .

As the inner maximization is unconstrained, this minimization problem is finite
only if the factors in the last three terms are zero. Using this hidden constraint,
we finally obtain the following semidefinite program as the dual of (6.8):

s∗p = min
Y �0

LM̃,C • Y

s.t. A0 • Y = 1

Ai • Y = 0 for i = 1, . . . , nk

F • Y = 0 .

(6.10)

The connection of this semidefinite relaxation with the original integer prob-
lem (6.2) becomes clear immediately: the (0, 1)-matrix X ∈ R

n×k is transformed
into a vector vec(X) and then lifted into the higher-dimensional space of posi-
tive semidefinite matrices Snk+1

+ by setting

Y :=

(

1
vec(X)

)

(

1, vec(X)>
)

. (6.11)

As for the binary case (cf. Section 4.2.1), the relaxation consists in discard-
ing the intractable rank one constraint on Y , and minimizing over the space
of positive semidefinite matrices instead. Besides the A0-constraint, which is
an artificial one to enable the homogenization of the objective function, the
other constraints in (6.10) directly correspond to the constraints in the origi-
nal problem formulations (6.2) or (6.3): the Ai-constraints guarantee that the
diagonal and the first row (and column) of Y are identical, thus modeling the
(0, 1)-constraint on the entries of X, whereas the F -constraint is derived from
the sum-one-constraint on the indicator vectors constituting the rows of X.

Concerning the solvability of the SDP relaxation (6.10), we have the follow-
ing lemma:

Lemma 6.1. A feasible solution matrix Y for (6.10) is singular, with at least
n of its eigenvalues being equal to zero.

Proof. The constraint matrix F 6= 0 is positive semidefinite: as can easily be
calculated, its non-zero eigenvalues are λnk+1 = n + k and λn(k−1)+2 = · · · =
λnk = k. As Y is also positive semidefinite, the constraint F • Y = 0 in (6.10)
directly implies that FY has to be the null-matrix [3, Lemma 2.9]. Hence,
Y Fi = 0 for each column Fi, which shows the singularity of Y . As exactly
n columns Fi of F are linearly independent (namely i = 2, . . . , n + 1), the
dimension of the null space ker(Y ) is at least n.
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Figure 6.1: One-dimensional restoration. The original signal (top) is
distorted by Gaussian white noise (middle) and restored with the SDP relax-
ations presented in Section 4.2 and Section 6.1.2. The reconstructions obtained
for this representative example differ in only two points from each other.

Lemma 6.1 implies that the primal semidefinite program (6.10) has no
strictly interior point. On the other hand, it is not difficult to find a strictly
interior point for the dual SDP (6.8).1 Hence, the Slater condition holds for
the dual, so that by Theorem 4.2 there is no duality gap: s∗p = s∗d. However,
due to Lemma 6.1, it is not guaranteed that the optimal value of the dual SDP
(6.8) is attained (cf. also Section 4.2.2). Therefore, interior point methods can
suffer from instability when solving the SDP relaxation (6.10) and may not
converge [206]. This problem is circumvented by reverting to other SDP solvers
that are based on different algorithms (like, e.g., PENNON [108], which uses
a generalized version of the augmented Lagrangian method), or by projecting
the problem onto a lower dimensional face of the semidefinite cone [206].

For the QAP, Zhao et al. [206] show that it is possible to tighten the SDP
relaxation by incorporating additional constraints, that are redundant for the
original problem. Such constraints may also be added for the multiclass resto-
ration problem. For example, we know that the diagonal entries of the matrix
XX> (the squared norms of the indicator vectors) are equal to 1, which gives

1This can be accomplished by setting u0 = 0, and choosing w0 and the entries of W large
enough to make the diagonal of the matrix LM̃,C + AW,w0

as dominant as necessary to yield
a positive definite matrix.
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Figure 6.2: Statistics of the SDP relaxation comparison. The results
reveal that the binary SDP relaxation in general performs slightly better than
the multiclass SDP relaxation.

the additional constraint Tr(XX>) = n. Future work will show which mean-
ingful constraints can be added and in how far they are useful to find good
approximative solutions. In this work, however, we rely on the basic relaxation
(6.10).

6.1.3 Experimental Results

In this section, we present some results obtained for the multiclass restoration
problem based on the primal-dual SDP relaxation pair (6.10) and (6.8). In
order to derive a suboptimal integer solution for the original problem (6.2), the
first column Y1 of the solution matrix Y ∗ of the primal problem (6.10) is used:
since Y1 =

( 1
vec(X)

)

, we seek the largest value in each block of length k in Y1

(starting with the second entry) to give the position of the one-entry in the
corresponding indicator vector.2

As a first experiment, we compare the performance of the multiclass SDP
relaxation (6.10) for the case k = 2 with the direct binary relaxation (4.7). To
this end, a synthetic one-dimensional signal (Figure 6.1, top) is first distorted
by adding Gaussian white noise and then restored based on both SDP relax-
ation approaches — see Figure 6.1 for a representative example. In order to
derive some significant statistics, we compute 100 noisy versions of the signal
for different values of the smoothness parameter λ, and calculate the mean rel-
ative errors of the objective values and the mean relative Hamming distance,
both in comparison to the optimal solution (cf. Section 4.4.1 for a more detailed
explanation of this experiment).

Figure 6.2 depicts the corresponding statistical results. Interestingly, a
slightly better performance of the binary SDP relaxation (4.7) can be observed.
However, this is not due to the tightness of the relaxation: the experiments
reveal that the objective values of both relaxations coincide. Instead, this dif-
ference rather indicates that the randomized hyperplane technique which is

2Note that we cannot apply the randomized hyperplane technique (Section 4.2.3) here,
since the original problem variables are k-dimensional vectors now.
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Original Noisy input SDP restoration

Figure 6.3: Multiclass image restoration result. The original image
(left) of 10 × 18 pixels is degraded by adding Gaussian white noise (middle).
The result of the reconstruction (using λ = 0.05) is almost perfect (right):
only one pixel is classified incorrectly.

Noisy input SDP restoration

Figure 6.4: Multiclass image restoration result. A patch of the noisy
diamond image from [24] of 37 × 37 pixels (left) is restored with the SDP
relaxation approach with λ = 0.05 (right).

used to obtain a combinatorial solution from the solution matrix X ∗ of (4.7)
performs better than the method used to find the indicator vectors from the
first column Y1 of the solution of the multiclass relaxation (6.10). Nevertheless,
the restorations are still remarkably good: the average relative error of the ob-
jective value and the average relative Hamming distance both are below 2%,
with standard deviations below 0.58% (objective error) and 1.56% (Hamming
distance), respectively. Yet it should be mentioned that the solution of the
binary SDP relaxation (4.7) is calculated in less than a second, whereas it takes
6–7 seconds to solve the multiclass SDP relaxation (6.10), which is obviously
caused by the larger problem size (Y ∈ S401

+ for (6.10) vs. X ∈ S201
+ for (4.7)).

Figures 6.3 and 6.4 show the restorations of two noisy images originally
comprised of multiple gray-values. For these examples, we first convert the
pixel values to the interval [0, 1], and employ the PENNON solver [108] to find
the solution of the SDP relaxation (6.10) based on a first-order neighborhood
(horizontal and vertical adjacent pixels are connected). The reconstructions
obtained for both examples are promising: only few pixels are grouped incor-
rectly.

Figure 6.5 depicts the corresponding restorations computed with the ICM
algorithm (see Section 3.3). Comparing the results with the SDP solutions
reveals two facts: for the image in Figure 6.3, the tighter SDP relaxation yields
a clearly superior reconstruction. On the other hand, the ICM result appears
to be slightly better for Figure 6.4. However, this is mainly due to the second-
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ICM restoration for
Figure 6.3 (λ = 0.02

and λ = 0.1)

ICM restoration for Figure 6.4 (λ = 0.1), second-
(left) and first-order (right) neighborhood

Figure 6.5: Restorations obtained with the ICM algorithm, for the
noisy images from Figures 6.3 and 6.4, respectively. For the correct choice
of the parameter λ, the ICM algorithm is able to find satisfactory results.
However, at least for the left image, the reconstruction obtained with the
SDP relaxation approach is better. For the right image, the ICM algorithm
profits from the second-order neighborhood that also considers the diagonally
adjacent pixels.

order neighborhood that is used by ICM, which better accounts for the diagonal
structures present in this image. If we switch to a first-order neighborhood, the
results become much worse (cf. Figure 6.5, right).

As already indicated by the small size of the sample images, there is one ma-
jor drawback of the SDP relaxation: since the problem size increases quadrati-
cally with nk (the product of the number of pixels and the number of classes),
the corresponding semidefinite programs soon become intractable in terms of
memory and computational time requirements. For instance, it takes 2.5 min-
utes to find the solution for the image in Figure 6.3 (problem size: nk = 1080),
and already more than 3.6 hours for the image in Figure 6.4 (nk = 5477), with
memory requirements of several hundreds of megabytes. In contrast to that,
the ICM algorithm computes the solution in less than one second. Hence, the
application of the multiclass SDP relaxation is (yet) restricted to small resto-
ration problems consisting of only few different classes. The future will show
whether algorithms emerge which make larger problem instances tractable.

6.2 Unsupervised Multiclass Partitioning

In Section 5.1, we already presented an obvious extension of the binary unsu-
pervised partitioning problem to multiclass segmentation: applying the binary
approach in a hierarchical way yields a segmentation of the image into multiple
parts. In this section, we will show how the binary problem formulation can
directly be extended to a multiclass segmentation problem (Section 6.2.1).

Concerning the choice of the cost function, this approach may be considered
more adequate than the hierarchical method, since it minimizes a global objec-
tive criterion. Spectral relaxation methods are able to exploit this property by
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calculating multiple eigenvectors at once (Section 6.2.2). However, the direct
method involves at least one drawback: since the cost function directly depends
on k, the desired number of clusters in the final segmentation has to be defined
in advance. Although there are suggestions for eigenvalue-based criteria which
may find appropriate values for k automatically [125], different choices for k
may still yield completely different segmentations, which does not seem to be
in correspondence to human vision.

Nevertheless, if k is known beforehand, direct multiclass partitioning is a
reasonable technique to find a desired segmentation. In Section 6.2.3, we will
therefore also briefly investigate how this problem can be handled by SDP
relaxation. First experimental results are presented in Section 6.2.4.

6.2.1 Problem Formulation

Assume that the number k of groups the input data should be partitioned into
is known in advance. As in Section 6.1.1, we indicate the cluster membership
of the image element i by setting xi to one of the k unit vectors e1, . . . , ek from
R

k. The binary cut cost function cut(S, S) in (2.4) can then be extended to
express graph partitionings into multiple groups S1, . . . , Sk in the following way
(see, e.g. [153, 96, 204]):

cut(S1, . . . , Sk) =
1

4

∑

i,j∈V

wij‖xi − xj‖2 =
1

2

∑

i,j∈V

wij(1 − x>i xj)

=
1

2
Tr(W (E −XX>)) =

1

2
Tr(DXX> −WXX>)

=
1

2
Tr(LXX>) =

1

2
Tr(X>LX)

=
1

2

k
∑

j=1

X>
j LXj ,

(6.12)

with the columns Xj of the multiway cut indicator matrix X ∈ R
n×k indicating

the elements from class j, and the rows corresponding to unit vectors.

As in (2.6), we can balance the groups by introducing a linear constraint
X>c = β with c ∈ R

n, β ∈ R
k and

∑

i βi =
∑

i ci, to obtain the following
representation of the multiclass partitioning problem:

z∗MP := min
X∈Rn×k

1

2
Tr(X>LX)

s.t. X>c = β

Xek = en

Xij ∈ {0, 1} ∀ i, j ,

(6.13)

where ej ∈ R
j denotes the vector of all ones of appropriate size (cf. (6.2)).

For vertices of equal weight, c = e = (1, . . . , 1)>, an interesting interpre-
tation of this problem can be derived [153]: first observe that the objective
function can equivalently be written as 1

2 Tr(X>LX) = 1
2d(V )− 1

2 Tr(X>WX),
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Figure 6.6: Simplex defined by the 4 unit vectors v1, . . . , v4 ∈ R
3, with

its barycenter at the origin.

where W denotes the adjacency matrix of the graph (cf. (6.12)). Defining the
partitioning representation matrix Y := XX>, where Yij = 1 if i and j belong
to the same subset St, we obtain by comparing W and Y in Frobenius norm:

‖W − Y ‖2
F = ‖W‖2

F + ‖Y ‖2
F − 2Tr(WY )

=
n
∑

i,j=1

w2
ij +

k
∑

i=1

β2
i − 2Tr(X>WX) .

Hence, since the first two terms are constant, the multiclass partitioning prob-
lem (6.13) is equivalent to the following matrix approximation problem, which
seeks the best approximation to the adjacency matrix W :

min
Y

‖W − Y ‖F

s.t. Y represents a partition .

A different representation of the multiclass partitioning problem is derived
by using another set of possible values for the indicator vectors xi, as was
suggested by Frieze and Jerrum [55] for the max-k-cut problem: instead of
signifying the group membership by the k unit vectors ei ∈ R

k, they employ a
different set of unit vectors v1, . . . , vk ∈ R

k−1 which are required to point as far
apart as possible. Geometrically, this demands that all pairs of vectors enclose
an angle of the same size. Thus, the unit vectors vi form an equilateral simplex
in R

k−1 with its barycenter at the origin [55], as is illustrated in Figure 6.6 for
the case k = 4. As can be proven easily [55, 78], these vectors vi ∈ R

k−1 satisfy

v>i vi = 1 for i = 1, . . . , k,

v>i vj = − 1

k − 1
for 1 ≤ i 6= j ≤ k .
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Analogously to (6.12), a partitioning x1, . . . , xn based on the unit vectors vi

yields the cut-value

cut(S1, . . . , Sk) =
k − 1

2k

∑

i,j∈V

wij(1 − x>i xj)

=
k − 1

2k
Tr(X>LX) ,

where X ∈ R
n×(k−1) again contains the indicator vectors xi ∈ {v1, . . . , vk} as

rows. As in (6.13), it is possible to balance the groups by a linear constraint
with c ∈ R

n and β ∈ R
k:

X>c =

n
∑

i=1

cixi

=

(

∑

i∈S1

ci

)

v1 + · · · +
(

∑

i∈Sk

ci

)

vk

=

k
∑

j=1

βjvj .

Unfortunately, this constraint involves the unit vectors vj to be given explicitly.3

However, for a constant vector β = β̄e with β̄ := 1
k

∑

i ci, this can be obviated
by reverting to the quadratic constraint

c>XX>c = c>X





k
∑

j=1

β̄vj



 = β̄

(

1 − 1

k − 1
(k − 1)

)

c>e = 0 ,

where we use the fact that each row of X corresponds to one of the unit vectors
vi ∈ R

k−1.
In this case, we obtain the following representation of the k-equipartition

problem (cf. [78]):

min
X∈Rn×(k−1)

k − 1

2k
Tr(X>LX)

s.t. c>XX>c = 0

(XX>)ii = 1 for i = 1, . . . , n

(XX>)ij ∈ {− 1
k−1 , 1} ∀ i, j .

(6.14)

Since in the unsupervised setting we consider here, fixed values for the
“sizes” βi of the individual parts are usually not available in advance, we will
only investigate the k-equipartition case with a constant vector β = β̄e in the
following sections. While spectral relaxation is generally based on the problem
formulation (6.13), we will show how SDP relaxation techniques can be used to
approximately solve both versions of the multiclass partitioning problem, (6.13)
and (6.14).

3The vectors vj can indeed be calculated by factorizing the matrix A = k
k−1

Ik − 1
k−1

E: as
A is positive semidefinite with e being the only eigenvector to the eigenvalue 0, the eigenvalue
decomposition gives A = Ṽ ΛṼ > = V V >, with V ∈ R

k×(k−1) containing the desired vectors
as its rows [78].
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6.2.2 Spectral Relaxation

Spectral relaxation approaches for partitioning a given data set directly into
several groups are based on calculating multiple eigenvectors of the (normalized)
Laplacian matrix L. This idea has recently been studied by many authors (see
[4, 190, 134, 204, 25], and references therein). Although the proposed algorithms
differ with respect to the computational details, they coincide in key aspects.
Specifically, the combinatorial complexity of multiclass partitioning problems
like (6.13) is always dealt with in two steps: first, a transformed formulation
of the original partitioning problem is relaxed to an eigenvector problem by
dropping several of the given constraints. In a second step, these constraints
are taken into account again by projecting the eigenvectors appropriately, which
yields an embedding of the n points into a k-dimensional subspace. Finally, a
corresponding discrete solution close to the continuous solution of the relaxation
is found by applying some clustering heuristic.

A detailed comparison of different methods from the literature is beyond
the scope of this work. Nevertheless, we will next briefly explain how the two
main steps of spectral relaxation approaches can be justified in the context of
multiclass partitioning problems of the form (6.13). To this end, we consider
the k-equipartition version of (6.13) with constant constraint vectors c = en and
β = n

k
ek. To derive a spectral relaxation for this problem representation, first

observe that the columns of the indicator matrixX are orthogonal to each other:
X>X = n

k
I. Adding this redundant constraint to (6.13), and substituting

Z :=
√

k
n
X, the problem is relaxed by dropping the other constraints:

z∗MPSR := min
Z∈Rn×k

n

2k
Tr(Z>LZ)

s.t. Z>Z = I .

(6.15)

By virtue of Fan’s Theorem (see Theorem A.4), a solution for this problem is
given by Z∗ = V , with the columns vi of V ∈ R

n×k containing the eigenvectors
of L corresponding to the k smallest eigenvalues λ1(L) ≤ · · · ≤ λk(L).4 This
results in an optimal value for (6.15) of z∗MPSR =

∑k
i=1 λi(L). The same re-

sult can be obtained for the multiclass normalized cut problem based on the
normalized Laplacian matrix L′ = D− 1

2LD− 1
2 (see [204]).

Hence, the first step in spectral relaxation approaches requires to compute
the k smallest eigenvectors vi of L (or L′, respectively). In practice, often
more than k eigenvectors are calculated, since it has been observed that better
partitionings can be obtained in this way [4]. Observing that the rows zi of the
solution matrix Z∗ = V yield an embedding of the original image elements into
the space R

k, the second constraint in (6.13) can now be taken into account
by normalizing these rows zi, which corresponds to projecting them onto the
k-dimensional unit-sphere: z ′i = zi

‖zi‖ (cf. [134, 204]).

4Note that the optimal solution Z∗ is not unique: in fact, it is easy to show that each
matrix V R with R ∈ R

k×k being an arbitrary orthonormal matrix (i.e. R>R = RR> = I)
results in the same objective value [204].
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In order to finally derive a corresponding discrete solution, the points z ′i are
partitioned into k groups by applying some heuristic clustering procedure. For
this final step, different methods have been proposed in the literature, like:

• Apply the k-means algorithm on the points z ′i to minimize the distortion
[118, 134].

• Partition the points z ′i based on the enclosed directional angle [29].

• Compute a linear ordering of the points z ′i and derive a multiclass parti-
tioning by finding k − 1 splitting points in this ordering [4].

• Iteratively seek better solutions by using alternating projections [25] or
by alternately rotating and discretizing the matrix Z ′ [204].

Considering computational aspects, spectral relaxation is a convenient tech-
nique to find approximate solutions for the multiclass partitioning problem.
However, from the theoretical point of view, this method exhibits two weak
points: first, the relaxation (6.15) is not very strong, since many constraints
of the original problem are dropped. In fact, a lower bound on the optimal
multiway cut (6.13) that is better than z∗MPSR has already been presented by
Donath and Hoffman [47]:

z∗MP ≥ zDH := max
e>v=0

1

2

k
∑

i=1

βiλi(L+ Diag(v)) . (6.16)

Note that this bound generalizes the spectral bound for the binary partitioning
problem given in (4.13). In the next section, we will see that even stronger
bounds can be obtained by reverting to semidefinite relaxations of (6.13); also
see [153].

Second, the clustering heuristic used to find a discrete solution usually is
no longer based on the original objective criterion. In fact, for the normalized
cut it can be shown [155] that standard embedding techniques always yield a
grouping problem in the corresponding vector space which is not equivalent to
the original problem. Therefore, it is not clear how good the final solution really
is.

6.2.3 Semidefinite Relaxation

Semidefinite programming relaxations of the multiclass graph (equi-)partition-
ing problem (with constant constraint vector c = e) have been researched quite
thoroughly in recent years, based on both problem formulations (6.13) and
(6.14) [153, 96, 197]. Since the extension of the results to the more general case
with arbitrary constraint vector c 6= e considered in this work is straightfor-
ward, we will only present the final results here and refer to the corresponding
literature instead.



6.2. Unsupervised Multiclass Partitioning 131

SDP Relaxation of (6.13)

An SDP relaxation of the unsupervised partitioning problem based on the rep-
resentation (6.13) can be obtained in the same way as was presented for the
restoration problem (6.2) in Section 6.1.2. To this end, we first equivalently
reformulate (6.13) by representing the constraints in a quadratic form:

z∗MP = min
X∈Rn×k

1

2
Tr(LXX>)

s.t. ‖Xek − en‖2 = 0

‖X>c− β‖2 = 0

X2
ij −Xij = 0 ∀ i, j .

(6.17)

Comparing this with (6.3), we immediately see (by setting C = 0 and M̃ = 1
2L)

that the only difference is the additional balancing constraint present in (6.17).
Since this can be taken into account during Lagrangian relaxation in a similar
way as the first constraint (see [197]), we analogously to the relaxation (6.10) of
the restoration problem obtain the following SDP relaxation of the multiclass
partitioning problem (6.13):

s∗1 := min
Y �0

L̃ • Y

s.t. A0 • Y = 1

Ai • Y = 0 for i = 1, . . . , nk

F • Y = 0

F2 • Y = 0 ,

(6.18)

where F and the Ai-matrices are defined as in (6.7) and (6.9), and

L̃ :=

(

0 0
0 1

2Ik ⊗ L

)

,

F2 :=

(

β>β −(β ⊗ c)>

−β ⊗ c Ik ⊗ cc>

)

.

More precisely, in the equipartition case with constant constraint vector β = β̄ek

considered here we have (F2)11 = 1
k
(
∑

i ci)
2 for the first entry of F2.

Concerning the solvability of the SDP relaxation (6.18), the same proposi-
tions hold as were stated in Section 6.1.2 for the multiclass restoration problem.
Especially, the problem matrix Y can again be interpreted as a relaxation of
the rank one matrix obtained from the vectorized matrix X (cf. (6.11)):

Y =

(

1
vec(X)

)

(

1, vec(X)>
)

.

Hence, as suggested in Section 6.1.3, a combinatorial solution can be computed
from the first column (or row) Y1 of the optimal solution Y ∗ of (6.18): starting
with the second entry, find the largest entry in each block of length k, and set
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the corresponding entry of the indicator matrix X to one. Future work will
show if better discrete solutions can be obtained by other rounding techniques.

Finally note that the size of the problem matrix Y for the relaxation (6.18)
is (nk+ 1)× (nk+ 1), which makes this approach only applicable for problems
of moderate size. Yet we will show next that a convenient relaxation of smaller
size n× n is obtained by resorting to the problem formulation (6.14).

SDP Relaxation of (6.14)

In order to derive a semidefinite relaxation for the representation (6.14) of
the multiclass partitioning problem, first observe that the matrix X in (6.14)
only occurs in the quadratic form XX>. This suggests to directly replace the
positive semidefinite matrix XX> ∈ Sn

+ of rank k− 1 with an arbitrary matrix
Y ∈ Sn

+, which results in the following SDP relaxation (cf. [78]):

s∗2 := min
Y �0

k − 1

2k
L • Y

s.t. cc> • Y = 0

diag(Y ) = e

Yij ≥ − 1

k − 1
∀ i, j .

(6.19)

In comparison to the binary case (4.7), this relaxation may be interpreted
as a straightforward generalization: the only difference is the additional in-
equality constraint on the entries of Y . However, this constraint is of essential
importance: if it were dropped, the entries of Y were admitted to take val-
ues between −1 and +1, which would result in a much weaker relaxation. In
contrast, note that the corresponding constraint Xij ≥ −1 in the binary case
(4.7) is redundant, since the matrix entries are automatically restricted to the
interval [−1,+1] due to the constraint on the diagonal entries of X.

By applying the above relaxation approach to the problem formulation
(6.13), Karisch and Rendl [96] derive a lower bound on the objective value
that is equivalent to (6.19). Besides presenting relations between several other
SDP relaxations of the equipartition problem, they also show that (6.19) repre-
sents a stronger bound than the spectral bound (6.16) of Donath and Hoffman
[47]:

z∗MP ≥ s∗2 ≥ zDH .

Concerning the solvability of the SDP relaxation (6.19), we have to deal with
two difficulties: on the one hand, this semidefinite program obviously has no
strictly interior solution, since the first constraint requires c to be an eigenvector
of Y with eigenvalue zero. On the other hand, due to the additional inequality
constraints on the entries of Y we can no longer use one of the standard SDP
solvers that are applicable for problems of the general form (4.1). For these
reasons, we employ the spectral bundle method of Helmberg and Rendl [79] to
solve the SDP relaxation (6.19), which is able to handle semidefinite programs
of this type.
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In order to finally derive a combinatorial solution from the optimal solution
matrix Y ∗, we apply the following generalized version of the binary randomized
hyperplane technique [55]:

1. Compute the factorization Y ∗ = V V > (e.g. by Cholesky decomposition,
see Theorem A.6) with the rows of V ∈ R

n×n corresponding to unit
vectors vj ∈ R

n.

2. Generate k independent random vectors r1, . . . , rk ∈ R
n from the unit

sphere by choosing from the standard normal distribution with mean 0
and variance 1. Each ri then represents one group i of the partitioning.

3. Assign each element j to the group i′ for which the corresponding random
vector ri′ is closest to vj, i.e. for which v>j ri′ = maxi v

>
j ri.

For k = 2, this algorithm reduces to the binary randomized hyperplane tech-
nique presented in Section 4.2.3. As the probability that two elements j1 and
j2 are assigned to the same set only depends on their inner product v>j1vj2 , it
is possible to prove strong performance guarantees of this algorithm, at least
for the max-cut problem [55]. However, due to the additional equipartition
constraint present in (6.14), these bounds do not apply here.

The final combinatorial solution is obtained by applying the above random-
ized hyperplane technique multiple times and picking the segmentation that
yields the best objective value for (6.14). In this context, note that like for
the binary case, we do not enforce the balancing constraint X>c = β for the
combinatorial solution, which may result in partitionings that contain a lower
number of groups than is specified by k. However, this is no drawback, since
the “correct” k is usually unknown for unsupervised partitioning tasks. This
insight further justifies the use of the balancing constraint, which rather serves
as a bias to guide the search than as a strict requirement.

6.2.4 First Experimental Results

In this section, we present some experimental results obtained with the different
spectral and SDP relaxations of the multiclass partitioning problem. Since the
corresponding research is still in progress, the results have to be considered as
preliminary, but a couple of important observations can be given nevertheless.

A first experiment is depicted in Figure 6.7: for this simple point set con-
sisting of five identical clusters, the similarity matrix is computed based on
the Euclidean distances of the points (cf. Section 4.4.2, method (i)). Setting
k = 5, we obtain the correct partitioning if this cluster number is enforced for
the final result (Figure 6.7, left). While for spectral relaxation based on the
normalized cut criterion, this is achieved by applying the k-means algorithm
on the normalized row vectors of the eigenvector matrix V (see Section 6.2.2),
we find a corresponding solution from the result of the SDP relaxation (6.19)
by only accepting those final clusterings computed with the randomized hyper-
plane technique that comprise the desired number of groups. If this requirement
is omitted for rounding the SDP solution, a segmentation into fewer clusters
with a lower objective value is found (Figure 6.7, middle).
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Figure 6.7: Simple multiclass clustering example. For k = 5, both
the SDP relaxation (6.19) and the normalized cut relaxation (with k-means)
are able to find the correct partitioning, if we enforce the right number of
clusters (left). Otherwise, the SDP relaxation yields less clusters, since the
corresponding objective value is lower (middle). In contrast to that, the SDP
relaxation (6.18) is too weak to reasonably partition this dataset (right).

We also see that the SDP relaxation (6.18) of the multiclass partitioning
problem (6.13) does not give a reasonable result (Figure 6.7, right). A closer
look at the first column of the corresponding solution matrix Y reveals the
reason for this behavior: since the entries are nearly constant (Y1,i ≈ 0.2 for
all i), they do not yield valuable suggestions for the corresponding indicator
vectors. Hence, this relaxation seems to be too weak; in fact, Wolkowicz and
Zhao [197] use an additional constraint (the so-called “gangster operator”) and
a projection technique to arrive at a stronger relaxation. Future work will show
if this will also lead to better results for the application considered here. Due
to the above result, however, we will no further consider the SDP relaxation
(6.18) in this section.

We also apply the multiclass partitioning relaxations to a few real images
from the Berkeley segmentation dataset [121]. In order to reduce the problem
size, these images are first preprocessed with the mean shift technique, and a
graph representation is constructed by calculating similarity values wij only for
neighboring patches i and j (cf. Section 5.2.4). Moreover, we again use the cor-
responding patch-sizes as entries of the constraint vector c in the equipartition
problem (6.14). Since this requires each segment to contain n

k
pixels (with n

denoting the total number of pixels), the resulting problem may have no feasible
solution, e.g. if the largest patch comprises more than n

k
pixels. For this reason,

we eliminate such large patches before applying the SDP relaxation (6.19), and
add them afterwards as a single cluster.

By generally setting k = 5, we obtain the segmentations depicted in Fig-
ure 6.8. Considering that we did not elaborate on the similarity values, the
number of clusters or more sophisticated techniques to compute a combinato-
rial solution, the results are quite promising: important parts of the images are
separated from each other. The corresponding spectral solutions given in Figure
6.8, right, are in this case based on the normalized cut criterion by calculating
the 5 smallest eigenvectors of the normalized Laplacian, and applying k-means
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Original image SDP relaxation (6.19) Spectral relaxation

Figure 6.8: Multiclass segmentations obtained with spectral and SDP
relaxation, respectively. For these examples, we generally set k = 5. Note
that the SDP relaxation may yield segmentations into fewer clusters, while
the normalized cut relaxation with k-means always results in 5 parts.

on the scaled rows of the matrix containing these eigenvectors as columns.
Concerning the computational effort to derive these results, it only takes

a few seconds to find the normalized cut solution. In contrast to that, we
generally stop the spectral bundle method to solve the SDP relaxation after 60
minutes, since the approximate solution obtained after that time is sufficiently
close to the optimum to calculate the corresponding combinatorial solution.
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Chapter 7

Conclusion

7.1 Summary

The main topic of this thesis is to introduce a novel optimization technique to
the field of computer vision. The resulting semidefinite programming frame-
work can be applied to a broad class of combinatorial optimization problems
which arise naturally in early and mid-level computer vision, like unsupervised
image segmentation, image restoration or perceptual grouping tasks. The in-
vestigations show that the SDP relaxation approach is an attractive alternative
to established optimization techniques, especially due to its sound underlying
mathematical principles and the absence of tuning parameters.

Comparison of Spectral Techniques

As they are closely related to our SDP relaxation approach, we study different
spectral relaxation methods for graph-based image segmentation problems in
Section 3.1. In particular, we present a general framework to define suitable
measures for the quality of a segmentation which is based on scaled graph
cuts. Minimizing these measures is NP-hard, but a general relaxation can
be derived that leads to the computation of the second smallest eigenvector
of a matrix related to the Laplacian matrix L of the underlying graph. A
corresponding binary solution of the original combinatorial problem is then
obtained by applying an appropriate thresholding technique.

As special cases, this general framework comprises the average cut approach
[74, 159] resulting in the computation of the Fiedler vector [51], and the nor-
malized cut approach of Shi and Malik [168]. We show how the corresponding
relaxations are connected to other graph theoretical measures, like the isoperi-
metric number or the Cheeger constant. Moreover, we consider the average
association as the analogon to the normalized association measure, which is
equivalent to the normalized cut. Since such an equivalence does not hold for
the average cut, we derive an appropriate relaxation for the average associa-
tion measure, which results in computing the second largest eigenvector of the
centered similarity matrix W̃ . This contrasts weaker relaxations presented in
the literature in this context [142, 168], which rather yield relaxations to a
foreground association measure instead.
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Several experiments confirm the theoretical findings:

• The solutions for the spectral relaxation approaches can be computed in
short time (less than a minute for a few thousand pixels).

• If the degrees of the graph vertices do not differ considerably, the average
and normalized cut approaches yield very similar partitioning results.

• Concerning the choice of the similarity measure, the cut approaches are
more robust than the average association criterion, which therefore has
to be considered a weaker partitioning technique.

• In certain situations (e.g. when only one part of the image gives a high
inner association measure), however, the foreground association criterion
is more appropriate and yields better clustering results.

Semidefinite Relaxation of Binary Optimization Problems

In Chapter 4, we present the core of this thesis: a semidefinite relaxation ap-
proach that can be applied to general binary minimization problems comprising
a quadratic objective function that is subject to an additional linear constraint.
The resulting semidefinite program has several favorable properties from both
the mathematical as well as the computational point of view (cf. Section 1.1.1),
which e.g. enable the computation of the optimal solution to arbitrary precision
in polynomial time. We prove that such an optimal solution for the relaxation
exists under mild conditions (balanced constraint vector), and that it yields a
tighter lower bound on the minimum of the original optimization problem than
spectral relaxation with the Fiedler vector.

Subsequently, a corresponding combinatorial solution is obtained based on
a randomized approximation technique. We discuss interpretations of this ap-
proximation procedure, and provide performance bounds on the final solution
that hold under certain conditions (missing linear constraint). Numerous ap-
plications to diverse computer vision problems approve the advantages of the
SDP relaxation approach:

• Ground-truth experiments on the restoration of one-dimensional signals
show that in practice, the SDP relaxation yields much better results than
are assured by the theoretical performance bounds. For most alternative
optimization approaches, however, similar bounds are missing completely.

• Spectral relaxation may result in unsatisfactory partitionings when no
appropriate threshold value is found or chosen. In contrast to that, the
solution obtained from the SDP relaxation by randomized rounding does
not depend on tuning such a parameter.

• The SDP relaxation approach works for a wide range of optimization
problems, where spectral methods fail (like separating dense foreground
from sparse background) or cannot be applied (like perceptual grouping
or image restoration tasks).
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• The general balancing constraint allows us to appropriately account for
varying importance of the graph vertices, as it may be required when
the extracted image elements do not correspond to pixels (but e.g. to
patches of differing size). Such an adjustment is not possible for spectral
relaxation approaches.

• For perceptual grouping problems that have been considered as difficult
[192] due to the complexity of the underlying global optimization criterion
[84], convenient solutions are computed in only a few seconds.

• In comparison to the local greedy ICM algorithm [16], the global SDP
approach yields a much tighter relaxation of the underlying combinatorial
problem. Hence, the corresponding image restoration results are much
better.

Efficient Graph-Based Image Segmentation

The price for the convenient properties of the SDP relaxation is the squared
number of variables that are involved in the optimization approach. While
this is no problem for perceptual grouping tasks with a few hundred image
primitives, it prevents at present the application to large-scale problems as
they naturally arise for real world image segmentation problems on a pixel
basis. Although there exist SDP solvers [12, 194] that are able to exploit a
sparse problem structure (as it is present for image restoration or segmentation
problems represented by locally connected graphs), memory requirements and
computation times grow quickly with the number of variables. Experiments
show that currently, problems with up to 10, 000 variables can reasonably be
solved (cf. Section 4.4.6).

In Chapter 5, we therefore present two different methods which efficiently
reduce the problem size for binary unsupervised partitioning tasks. The first
approach is based on a preprocessing step which computes an over-segmentation
of the image by applying the mean shift technique [33] at a fine spatial scale. In-
stead of thousand of pixels, we then use the obtained image patches (or “super-
pixels”) as the basic elements to define the corresponding graph representation
of the image. The second method pursuits the idea of probabilistic sampling:
by randomly selecting a small number of pixels from the image, we obtain an
optimization problem of small scale, the solution of which can conveniently be
generalized to a complete segmentation afterwards.

Experimental results reveal the success of these approaches:

• The over-segmentation reduces the problem size by several orders of mag-
nitude (to less than 0.01% of the pixel-based graph), so that a solution
based on the SDP relaxation can be computed in short time (less than
one minute). For the probabilistic sampling approach, it is sufficient to
select less than 0.5% of the pixels to obtain convenient segmentations.

• Using small image patches instead of pixels leads to a more natural im-
age representation — the pixels are merely the result of the digital image
discretization process, and do not occur in the real world. Moreover, in
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comparison to pixel-based partitioning methods, smoother final segmen-
tations are obtained.

• The varying size of the superpixels can be taken into account appropri-
ately by adjusting the balancing constraint of the SDP relaxation ap-
proach. This yields results of superior quality in comparison to the nor-
malized cut relaxation, which is approved quantitatively by comparing
the obtained partitionings to image segmentations produced by humans
[121].

• For the SDP relaxation approach, probabilistic sampling drastically re-
duces the computational effort so that it becomes comparable to solving
the normalized cut relaxation. In fact, the most time consuming step con-
sists in the final calculation of the corresponding binary solutions, which
are by orders of magnitude larger than the solutions of the sampling-based
optimization problems. Due to the reduced effort it is possible to compute
several solutions based on different samplings, and to combine them or to
pick the best one in order to derive the final segmentation.

Extension to Non-Binary Problems

The SDP relaxation approach presented in Chapter 4 is suited for binary prob-
lems only. In practice, however, the decomposition of an image into more than
two parts is often desired. A straightforward extension suitable for unsupervised
partitioning tasks consists in a hierarchical application of the binary method:
by recursively computing two-way partitions, a segmentation into multiple parts
is obtained (Section 5.1).

In Chapter 6, we follow an alternative idea by presenting direct multiclass
extensions for the image restoration and the unsupervised segmentation prob-
lem, respectively. Fixing the number k of desired classes, natural modifications
of the corresponding problem formulations are derived in a first step. Based on
an indicator matrix X ∈ R

n×k, we obtain different combinatorial optimization
problems for both vision tasks, which involve quadratic objective functions that
are subject to several constraints. Using Lagrangian relaxation, we show that
in both cases suitable SDP relaxations can be defined. However, since either
the corresponding problem matrices are very large now (nk × nk entries) or
a high number ( 1

2n(n − 1)) of additional inequality constraints is introduced,
solving these semidefinite programs becomes much more elaborate than for the
binary case.

Nevertheless, first experimental results are promising:

• For binary restoration problems (k = 2), ground-truth experiments show
that the multiclass SDP relaxation and the original binary SDP relaxation
yield identical objective values. Moreover, the corresponding combinato-
rial solutions are very similar, with an error of less than 2%. The difference
is caused by the employed rounding techniques: whereas the binary SDP
relaxation uses a randomized approximation, the multiclass SDP relax-
ation finds a combinatorial solution directly by comparing certain entries
of the solution matrix.
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• For small multiclass image restoration problems, high quality solutions are
obtained. However, the required computational effort is quite demanding:
for an image with n = 1369 pixels, it takes more than 3.5 hours to compute
the reconstruction.

• For unsupervised segmentation problems, the number k of parts present in
the image is usually unknown in advance. This fact favors the hierarchical
approach, which allows us to select the final number of segments during
the partitioning process. Moreover, the resulting coarse-to-fine hierarchy
yields similar segmentations of varying granularity, which seems to be
close to human perceptual organization.

• Concerning direct multiclass segmentation, two different SDP relaxations
are presented: the first one is applicable to general partitioning problems,
but only yields unsatisfactory results which is most likely due to an insuf-
ficiently tight relaxation. In contrast, the second approach is restricted
to equipartition problems. The segmentations obtained with this method
are promising, especially since a modification of the binary randomized
approximation technique computes final combinatorial solutions that are
allowed to consist of less than the specified number k of segments. In this
way, the correct choice of k becomes less critical.

7.2 Future Work

So far, the focus of our work has primarily been on analyzing the mathemat-
ical characteristics of the SDP relaxation approach that arise in connection
with combinatorial optimization problems in computer vision: Lagrangian re-
laxation, duality, feasibility issues, performance bounds, and comparison to
spectral relaxation. Moreover, we investigated topics regarding modifications
of the SDP relaxation to make it more efficient, and possible extensions to non-
binary problems. Although we demonstrated the applicability of our approach
for several non-trivial computer vision tasks, there are still several issues that
suggest further research:

• An important topic in the context of unsupervised segmentation is the
derivation of suitable similarity measures. Up to now, we mostly relied
on quite elementary color and texture cues, without working out tailor-
made metrics for specific applications. Accordingly, a significant aspect
of our future work will consist in defining more elaborate similarity mea-
sures that are adequate in the SDP relaxation framework. This espe-
cially includes the related problem of learning such suitable measures for
classification, which can also be handled with semidefinite programming
techniques (cf. [109]).

• The binary optimization problems considered in this thesis involve one
linear constraint at most. However, there is neither a limit on the number
of constraints for the SDP relaxation approach, nor is it restricted to
linear constraints; in fact, quadratic constraints are even more suitable
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to be included. In this context, note that other optimization approaches
like spectral relaxation do not permit considering additional constraints.
Future work will show in how far this generality of the SDP relaxation
method allows us to tackle other computer vision tasks as well.

• In connection with graph partitioning, we already indicated that the SDP
relaxation approach can also be used to solve partly supervised segmen-
tation tasks by adjusting the constraint variable β (see Section 4.4.3). In
this context, note that the membership of certain points to the same clus-
ter can also conveniently be modeled by additional quadratic constraints
on the entries of x: for instance, xixj = 1 enforces i and j to belong to
the same cluster. For this reason, the problem of semi-supervised segmen-
tation is another interesting topic for future research. In recent related
work [135], a similar semidefinite programming approach is proposed for
the related problem of graph partitioning with preferences.

• Concerning the sampling-based version of the SDP relaxation method
presented in Section 5.3, there are several aspects which suggest future
work. On the one hand, it would be interesting to study whether better
segmentations could be obtained if the sampled pixels were selected in
a more sophisticated way than just randomly. On the other hand, the
idea seems to be promising to calculate several partitionings based on
different samplings which then can be combined to produce a stable final
segmentation (cf. [176]). Furthermore, smoother results can certainly be
obtained by applying an appropriate postprocessing step.

• The investigation of direct multiclass SDP relaxations in Chapter 6 has
just been started, but first preliminary results are promising. Future
research will show if stricter relaxations (cf. [206, 197]) give better res-
torations and image segmentations, respectively. Moreover, it would be
interesting to develop algorithms that are able to handle the correspond-
ing large problem sizes appropriately.



Appendix A

Symmetric and Positive
Semidefinite Matrices

This appendix collects some important facts about symmetric and positive
semidefinite matrices that are used throughout this thesis, and gives refer-
ences to where the corresponding proofs can be found. For further information,
we refer to the standard literature on linear algebra and matrix analysis, like
[87, 175, 69, 205], or books on semidefinite programming [78, 196].

In general, the space of symmetric matrices Sn can be interpreted as a

vector space in R
(n+1

2 ), with the natural inner product between two matrices
A,B ∈ Sn defined as

A •B = Tr(A>B) =
n
∑

i,j=1

AijBij .

A symmetric matrix A is completely characterized by the solutions of the
linear equations

Aq = λq ,

which are given by its eigenvalues and eigenvectors:

Theorem A.1 (Eigenvalue decomposition). All eigenvalues λi(A) of a
symmetric matrix A ∈ Sn are real. There exists an orthonormal matrix Q ∈
R

n×n, QQ> = Q>Q = I, such that

A = QΛQ> =

n
∑

i=1

λiqiq
>
i ,

where Λ = Diag(λ1(A), . . . , λn(A)) ∈ Sn is a diagonal matrix containing the
eigenvalues λi(A) on its main diagonal. The columns qi of Q comprise the
corresponding eigenvectors of unit length.

Proof. See [69, Theorem 8.1.1].

Obviously, the eigenvalue decomposition and the singular value decomposi-
tion (SVD) [69, Theorem 2.5.2] are very similar for symmetric matrices:
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Lemma A.2. Denote the SVD of the symmetric matrix A ∈ Sn by

A = UΣV > =

n
∑

i=1

σiuiv
>
i ,

where Σ = Diag(σ1, . . . , σn) is a diagonal matrix containing the singular values
σi of A on its main diagonal. The columns ui of U and vi of V comprise the
corresponding left and right singular vectors of unit length, respectively.

Using the eigenvalue decomposition of A from Theorem A.1, appropriate
sorting of the eigenvalues results in σi = |λi|, with the corresponding singular
vectors and eigenvectors satisfying ui = vi = qi for λi ≥ 0 and ui = −vi = qi
for λi < 0, respectively.

An important characterization of the eigenvalues of a symmetric matrix is
based on a Rayleigh quotient formulation:

Theorem A.3 (Courant-Fischer Minimax Theorem). Let λ1(A) ≤ · · · ≤
λn(A) denote the eigenvalues of A ∈ Sn. Then

λk(A) = min
U⊂R

n

dim(U)=k

max
06=v∈U

v>Av
v>v

.

More generally, for the eigenvalues λ1 ≤ · · · ≤ λn of the general eigenvalue
problem Aq = λBq with positive definite B we have

λk = min
U⊂R

n

dim(U)=k

max
06=v∈U

v>Av
v>Bv

.

Proof. See e.g. [69, Theorem 8.1.2] (special case), and [175, Corollary VI.1.16]
(general case).

Especially, we get the Rayleigh-Ritz principles

λ1(A) = min
06=v∈Rn

v>Av
v>v

and λn(A) = max
06=v∈Rn

v>Av
v>v

for k = 1 and k = n, respectively [87, Theorem 4.2.2].
A generalization of these characterizations to the sum of the smallest eigen-

values is given by the following theorem:

Theorem A.4 (Fan’s Theorem). Let λ1(A) ≤ · · · ≤ λn(A) denote the eigen-
values of A ∈ Sn. Then

k
∑

i=1

λi(A) = min
V ∈R

n×k

V >V =I

Tr(V >AV ) ,

and the minimum is attained for V = (q1, . . . , qk) containing the eigenvectors
corresponding to λ1(A), . . . , λk(A) as columns.
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Proof. For a short proof see [136]. Fan’s Theorem is also a special case of the
more general Wielandt principle, which is proven e.g. in [175, Theorem 4.5].

To recall the general definition, a matrix A ∈ Sn is called positive semi-
definite (denoted by A ∈ Sn

+ or A � 0), if x>Ax ≥ 0 for all x ∈ R
n. If strict

inequality holds for all x 6= 0, A is called positive definite.
The following theorem collects several equivalent characterizations for pos-

itive semidefinite matrices:

Theorem A.5 (Positive semidefiniteness). For A ∈ Sn the following state-
ments are equivalent:

• A is positive semidefinite: A ∈ Sn
+.

• x>Ax ≥ 0 for all x ∈ R
n.

• The eigenvalues of A are nonnegative: λi(A) ≥ 0 for i = 1, . . . , n.

• A •B ≥ 0 for all B ∈ Sn
+ (Fejer’s Theorem).

• The determinant of every principal submatrix (a submatrix obtained by
deleting rows and corresponding columns) of A is nonnegative.

• A = V V > for some matrix V ∈ R
n×m, with rank(V ) = rank(A).

Proof. See [78, Theorem 1.1.13 and Corollary 1.2.7], and [205, Theorem 6.2].

The last statement in this theorem includes the following special case:

Theorem A.6 (Cholesky decomposition). For A ∈ Sn
+, there exists a lower

triangular matrix V ∈ R
n×n with nonnegative diagonal entries such that A =

V V >. If A is positive definite, then this decomposition is unique.

Proof. See e.g. [78, Theorem 1.1.10].

A different special case is given by the root of a positive semidefinite matrix:

Theorem A.7 (Square root). For A ∈ Sn
+, there exists a unique positive

semidefinite matrix C ∈ Sn
+ such that A = CC. This square root of A is also

denoted as C = A
1
2 .

Proof. See e.g. [87, Theorem 7.2.6].

Another important characterization of the positive semidefiniteness of a
matrix is obtained by considering a block decomposition:

Theorem A.8 (Schur complement). Suppose that the symmetric matrix
M ∈ Sn can be partitioned into

M =

(

A B

B> C

)

,

with A ∈ Sm being positive definite, C ∈ Sn−m and B ∈ R
m×n−m. Then M is

positive semidefinite if and only if C −B>A−1B ∈ Sn
+.
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Proof. See e.g. [87, Theorem 7.7.6].

The simplest positive semidefinite matrices are the rank one matrices zz>:

Lemma A.9. Let z ∈ R
n denote an arbitrary vector. Then the rank one matrix

zz> is positive semidefinite with the only nonzero eigenvalue λn = z>z.

Proof. Since x>(zz>)x = (x>z)2 ≥ 0 for every vector x ∈ R
n, the positive

semidefiniteness of zz> follows directly from the definition. Moreover, (zz>)z =
(z>z)z, so that z>z is an eigenvalue with the corresponding eigenvector z. As
zz> has rank one, this is the only nonzero eigenvalue.

Finally, the following theorem gives a generalization of the fundamental
Cauchy-Schwarz inequality for inner products based on positive semidefinite
matrices:

Theorem A.10 (General Cauchy-Schwarz inequality). For a positive
semidefinite matrix A ∈ Sn

+ we have

|x>Ay|2 ≤ (x>Ax)(y>Ay) .

Proof. This is a special case of Theorem 8.4 in [205]. A direct proof is based
on factorizing A = V V >, substituting x′ = V >x and y′ = V >y and applying
the original Cauchy-Schwarz inequality.
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[108] M. Kočvara and M. Stingl. PENNON - a code for convex nonlinear
and semidefinite programming. Optimization Methods and Software,
18(3):317–333, 2003.

[109] G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I.
Jordan. Learning the kernel matrix with semidefinite programming. Jour-
nal of Machine Learning Research, 5:27–72, 2004.

[110] M. Laurent and S. Poljak. On a positive semidefinite relaxation of the
cut polytope. Linear Algebra and its Applications, 223/224(1–3):439–461,
1995.

[111] M. Laurent and S. Poljak. On the facial structure of the set of correlation
matrices. SIAM Journal on Matrix Analysis and Applications, 17(3):530–
547, 1996.

[112] M. Laurent and F. Rendl. Semidefinite programming and integer pro-
gramming. In G. N. K. Aardal and R. Weismantel, editors, Handbook on
Discrete Optimization. Elsevier, 2004.
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