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Prologue

In many respects this report is a companion work of [GV S99]. In some sensesit runs pardléd
to [GVS99], while in othersit isasequel to that book. Readers not familiar with [GV S99] will
find themsalves refering back to it in severd instances to follow some of the subtleties of this
work, as these are often bound with aspects of [GV S99, particularly in the case of concept-
relationship knowledge stuctures, abbreviated CRKS in what follows; they are not explicitly
repeated here.

Some smdll errorsin [GV S99 are corrected in this report and certain additions to the theory

of CRKSs are dedt with in away that covers both CRKS's and their hypernet equivalent. The
main gpplication of CRKS's - namely moddling sudy materid - is not explicitly transcribed

to this paper, but that whole notion is abstracted and made independent of any specific
teaching/learning metal anguage through the implications of this abstraction.

Two key factors emerge from this paper on hypernets. First, unlike the case for CRKSsin
which little of the generd theory of rdaion nets- see Part 111 of [GV S99] - appliesto
CRKSss, the broad theory of hypernets, asfar asit is covered in this report, is often applicable
to the hypernet equivaent of a CRKS. Second, we will show alink between relation net
isomorphism and hypernet isomorphism which makesit consderably essier to ded with
CRK Sisomorphism and, thus, with structurd analogy as used in amodelling based gpproach
to teaching/learning/andogica reasoning [GV S99].

Findly, we must mention thet it appears that the domain of potentia practica applications of
hypernets must inevitably be wider than that for relation nets. In this connection, it should be
noted, however, that this report is written with gpplicationsin the field of education in mind,
specificdly in the redlm of the modelling of study materid, the planned representation of that
materia, problem representation and solution, analogica reasoning, and to assst in

curriculum planning and student regigtration, particularly in moddling smdl course unit

sysems with rdatively complex registration conditions. Such gpplicationsin education will

not be made explicit here, but are implied by the work in Parts| and 11 of [GVS99] and in this
extenson of it.
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1. Introduction

In [GVS99] we developed the theory of relation nets. The main gpplication wasto the
representation of sudy materia in terms of amodd called a concept-relationship knowledge
structure, abbreviated CRKS, that is a specia case of arelation net. Part | of [GV S99
described the theory and an application of CRKS'sin some detail, Part |1 was dedicated to a
specid example of aCRKS, and Part 111 laid out the mathematica fundamentas of atheory of
relation nets proper.

Early work on the system that was to become known as arelation net introduced a relation net
representation of a specific curriculum that conssted of anumber of interrelated "small

course units', known in that case as modules (see [VR76] and [Wei83] for example). In this
paper, wewill be bearing in mind two smilar systems upon which that part of hypernet theory
introduced is founded, in the sense that we will introduce no theory that does not have
potentia gpplication to thiskind of system. We start by introducing these gpplication systems
in abstract form.

Firgt we present an description of a curriculum system in abstract form. Imagine, for example,
a"smal course unit" curriculum that leads to degrees and diplomas. By a course unit we
mean any complete and interrelated section of sudy materid. By aprerequisite unit for a
given course unit U we mean a course unit C, or a condition C, that must be completed or
fulfilled before course unit U can be entered. By a parallel unit for acourse unit U we will
mean a course unit P that must be completed before, or smultaneoudy with, course unit U as
arequirement for obtaining credit for U. We may extend this by adding another form of
pardld for U, namey acourse unit that may be entered at the same time as entering U, but is
not a necessary precondition for obtaining credit for completion of U.

We visudize such a curriculum system in the form of alabelled graph asfollows: Plot a
vertex for each course unit in the curriculum, and labe each vertex with the unique (code)
name of the rdlevant course unit. Each course unit U has at least one non-empty list of
prerequisites, and at least one list of pardlels which may be empty. These prerequiste and
pardle units conditute a condition set for U, and U may have more than one condition set,
depending on the particular degree or diplomain which U isregistered. In each condition set
we mark al the prerequisite units, for example with an underbar, and dso mark dl of the
pardld units of the first kind, for example with an overbar. We number each occurence of a
condition set uniquely, and notice that ditinct condition sets need not be digoint. From each
prerequisite in each condition set for U we draw an arc to U, and we label that arc with that
condition set and its number. We do thisfor dl the condition setsfor U, and repest thisfor all
the course units in the curriculum. Such alabelled graph can be read hierarchically from
prerequisites to dependants, or vice versg, i.e. from bottom-to-top or from top-to-bottom. As
we will see, such agraph is an example of ahypernet.

Such acurriculum system for ahost of "smdl" course units has pro's and con's. It's magor
advantages are to alow more flexibility of topic choice and degree/diploma structure, easier
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changes of "direction” of study, and an ability to support multi-disciplinary studies. The mgor
disadvantage is the complexity of registration and adminigtration.

Wewill see that, in combination with [GV S99], hypernet representation will engble
registration, adminigtration, planning, dteration, and anadysis of the whole structure or parts
thereof by means of forma theory and stirong but relatively smple computer support. In the
relation net gpproach to curriculum systems of this nature, an order was forced on the
members of the condition sets, which was a handicap in the representation. We will see that
the hypernet model is more "naturd™ in this case.

A smilar Stuation arisesin [GV S99] when we introduce the notion of an action diagram in
the course of adiscussion of problem formulation and solution by top-down agorithm (see
section 8.5 of [GVS99)]). Here we leave out the directed arrows in the action diagram and the
arbitrary ordering of nodes on the arrow labelsin the resulting relation net, producing instead
a hypernet associated with the action diagram. Congder, for instance, the diagram on p.139 of
[GVS99]; usng arcsin place of arrows, we get the following verson of that action diagram:

Find....

N

Figure 1.1: An example of apartial action diagram
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Part of the resulting hypernet is.

/ Find ...
\
1; [{Find.., 4 }]
4
2,[{1,234}] 3; [{1,2,3,4}] 4,[{1234}]
1 '2 3

Figure 1.2: A partia hypernet for figure 1.1

In this case there is one "condition set” in each label, and the set of vertices{1,2,3,4}
generates three edges, numbered 2;, 3;, and 4;.

Thereis aconnection between our curriculum example and this one. Reading top-to-bottom
we seethat "Find ..." isaprerequisite of 4, with no parallels, and 4 is a prerequisite of 1, for
example, with pardlds 2 and 3. Reading bottom-to-top, we must be a bit careful. In this case,
lisaprerequiste of 4 with 2 and 3 as other prerequisites of 4, and with no pardlels, and 4 is
aprerequidteof "Find ..." with no other prerequisites and no pardléls. It isthe intended
interpretation which, in each individua case, will determine whether we read such hypernets
from top-to-bottom or from bottom-to-top. For the hypernets that arise from action diagrams,
top-to-bottom isinterpreted as the specification of the top-down agorithm for the solution of
the problem(s) and bottom+-to-top as the actua solution procedure for the relevant problem(s).

On page 141 of [GV S99] we meet amore generad action diagram Stuation. The hypernet that
arises from the section of an action diagram shown thereis.

=E] =P B3 =7 Esr Ex 22 23

Es1

Figure 1.3: A hypernet from the partia action diagram on page 141 of [GV S99]
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The first index characterises the set of vertices; the second the edge with that set. Here
Ei={1,3,4,5,6}, E.={2,7,8,9}, Es={ 1,7}, E4={5,2}.
Reading top-to-bottom, we have for example:
In Ep1, 1isaprerequisite of 3with 4, 5 and 6 as pardlds.
In Exp, 2isaprerequidte of 8 with 7 and 9 as pardlds.
In Es1, 1lisaprerequisite of 7 with no paralels.
Reading bottom-to-top, these labels mean:
InE;1, isaprerequisteof 1, asare 4, 5and 6.
In Ex», 8isaprerequidteof 2, asare7 and 9.
In BEz1, 7isaprerequiste of 1 with no pardlds andin Ey1, 7 isaprerequisite of 2 asare 8
and 9.

Such hypernets can, as we will see, easly and formaly be compared for common, i.e.
sructuraly analogous, substructures using hypernet isomorphism. Thisis a potentialy
extremdy ussful technique in the development of generd problem formulation and solution
skills. We note in passing that the same kind of hypernet can be used to display and analyse
the relationships between the subroutines that combine to form a program. We will dso see
that there are some measures of the complexity of certain hypernets that can play avery
sgnificant role in the anadlyds of such hypernets.
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2. Relation nets, hypergraphs, and hyper nets

Relation nets have been introduced and fairly extensvely covered in [GV S99]. The notation
used in Part |11 thereof is detailled and therefore quite complex, but in Part | (the theory of
CRKSSs) atuple table notation is used that is much more "user friendly”. We begin this
section by changing the notation for genera relaion nets aso to the tuple table approach, and
then go on to some basic definitions of atheory of hypernets, defining the notion of hypernet
in the process.

Definition 2.1: Congder afinite st
A :{A]_, A2, ey An}
and afamily of rdations
R={R|iT I, afiniteindex set}
over A wheredl R have an arity of at least 2, i.e. card(R) 3 2, written |R |3 2. We denote
such asysem by <A, R, I>. By arelation net representation of <A, R, I> we mean apair
<A, T>where T isthe et of dl tuplesfrom dl of theR .”

Note that some of the R may beidentica. Each tuplein T is given a unique code name,
generdly of the form "i; X" wherei indicatesthe R of origin of that tuple and x is usudly the
number of the tuplein T. We will use only the unique tuple number X if we do not need to
take account of the particular R from which the relevant tuple arises. In that case we will
regard T asasingle finite family of tuplesT ={ T }.

Definition 2.2: By adiagram of areation net <A,T> we mean a representation drawn as
follows. Plot precisely one vertex for each member of A and label each such vertex with the
“name’ of the appropriate member of A. Next, for each T T T with Ty = <&, ..., &>, wherej
isthe arity of therdation R from which Ty arises, we draw an arrow from the a, vertex to the
g vertex. Now label each such arrow <ab>with alabel | (<ab>) wherel (<ab>) is defined
byl (<ab>) ={Tx1 T|Tk=<a ..., b>}. Thereisnoarrow fromal Atobl Aiffl (<ab>)
_

The notion of ahypernet was inspired by that of a hypergraph [Ber73] and adesire to ignore
at least part of the ordering implied by the arrows and paths of a reation net, without moving
too far from either hypergraphs or relation nets.

Definition 2.3: By ahypernet <A, E>we mean adructureinwhich A={A1, Az, ..., Ap} isa
fintesstand E={ E|i 1 1} isafamily of non-empty subsets of A. |A |is called the order of

<A, E> and | theindex set of <A, E>. Each A/T A iscdled avertex of <A, E>, and each

ET Eiscdledan edge of <A, E>. Two edges E and E of <A, E> aredidtinct iff i ¢ j, even
though £ and 5 may be the same set. ~

Definition 2.4: Two vertices A AjT A of ahypernet <A, E> are said to be potentially vertex
adjacent by edge E iff {Ai A, }isasubset of E. Two edgesE, 1 E aresaidto be
potentially edge adjacent iff E G E* A andfor every AcT AwithAT E C Ewesy
that E ispotentially edge adjacent with § by Ay. ™
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Now consider three distinct edgesE, §, ExT EwithE CE ! AandE CE! /& Thenwe
say that each A T E; CE; is potentialy vertex adjacent with each AsT Ex CE; by E. We write
(Ar, E;, A for every par {Ar, Ag of verticeswith A, T E CE and AsT Ex CE if Ar and As

are vertex adjacent by § in<A, E>. If E = { A/} for some AT A andsomeE T E thenwe

cdl E asingleton edge. A singleton edgeat A, 1 A isaso cdled aloop edge at A,.

Note well that a hypernet need not havein it dl the potentia vertex adjacencies, nor need it
have dl the potential edge adjacencies; in each case it may have dl, or some, or none of the
potential adjacencies.

Definition 2.5: Given ahypernet <A, E>, [if theedgesE 1 E are dl non-empty distinct
subsetsof A and] if E; E = A, and if two edges &, E are adjacent iff B C § * /E, then
<A, E>isa[simpl€ hypergraph. ~

We will ignore the standard diagrammatic representation of hypergraphs [Ber73] and draw
hypergraph diagrams as we do hypernet diagrams. The class of hypergraphs can be regarded
as asubclass of the class of hypernets.

Definition 2.6: Given any hypernet <A, E>, we produce adiagram of <A, E> asfollows. Plot
precisdy one vertex for each member of A and labe each vertex with the rdevant "name"

from A. Next, for every vertex adjacency of AT Aand AT Ain<A, E>, draw anarc
between A and A;, and label that arc with dl the membersof | ({Ai, Aj}) =

{ &1 E|(A, E, Aj), wherel :AXA® A (E)iscdled thelabelling function of <A, E>
and | ({Ai, Aj}) is defined for every pair of members{A;, A}, and | ({Ai, A}) = A iff thereis
no arc between A and A; in <A, E>, i.e. if Aj and A; are not adjacent verticesin <A, E>.
Singleton edges are not usudly represented by any arc.

The definitions given above areilludtrated in figure 2.1

Es, Eg E

El RN

E4 E

Figure2.1: Anexampleof ahypernet <A, E>

whereA={1,23456},E={ E, E, E, &, Es5, B, E7, Es } withE; ={ 1, 2, 3},
EE={2},B={12} 4a={34}, E5={23 4}, EB={5},EE={4,56}and
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Es ={ 1, 2, 3}. Notice how we have chosen to deal with E, between 4 and 5, and with Es,
between 1 and 2, in this particular hypernet.
Vertex adjacency: vertices 1 and 2 by edge E; and by edge Es for example.
Edge adjacency: edgeEs ={ 1, 2 }and edge E5s ={ 2, 3, 4} by vertex 2 for example.
Singleton (loop) edge: edge E; ={ 2} and edge Es ={ 5 }for example.
Notice that asingleton edge {Ax }, AT A, can only have label { Ay} . Singleton edges can be
thought of as representing predicates. Thus, for example, { Ax} could represent " Ag isred”.

Definition 2.7: By thedegree d (A)) of avertex AT A in ahypernet <A, E> we mean the
aumof dl the |l ({Ai, Aj}) |over dl AT A forwhich| ({A;, A})* A (Noticethat we may
have Ai = A, but singleton edges are not usudly included.)

Definition 2.8: By an isolate of ahypernet <A, E>wemeanan A;T A for which A; isnot
incident withany A;T A but A; does belong to a least one vertex adjacency (A, B, Ag)in
<A, E>with A, AsT A,ET E,and AT (E-{ A, As}). By acompleteisolateof <A, E>
wemeanan AT A which belongsto no edgein <A, E>.”

Definition 2.9: By awalk in ahypernet <A, E> we mean an alternating sequence of vertices and edges,

AL ELA B As, . Ag Bg Ager, written A % Agig,
of <A, B>, wherefor eachk =1, ..., g, Ax and A .1 are vertex adjacent by E in <A, E>. Thelength of awalk is
the number of edge entriesin the sequence, in this case . If all but possibly A 1 and A 41 are distinct vertices and
dltheg, k=1, ..., q, aredistinct edges, then
A1 % Agniscdledapath. If Ap=Ag.forapath Ay % Ag.q, and the length of that path isany number but 2,
thenwecall Ay % Agq acircuit.”

Closed paths of length 2 may exist, but we do not permit any traversal of them. Note thet a
closed path has length 2 iff it uses two edges from the same labdl.

We go back to our example in figure 2.1 and illugtrate the definitions above:
- degree: d(1) = 3 and d(2) = 4 for example.
iolae vertex 6 isan isolate, but, by virtueof &7 ={ 4,5, 6}, 6 ishot a complete isolate.
Notice that a vertex with only asingleton edge incident with it is taken to be an isolate,
even though the degree of such avertex is 1.
wak: 1, B, 2, B, 2, Es, 4, B, 5, E7, 4 isan example for awak of length 5.
path: 1, Es, 2, Es,, 4.
creuit: 1, B, 2, Es, 4, B4, 3, By, 1.

Notice that every edge T E labels one and only one vertex adjacency in <A, E>. The same
st may label severd vertex adjacencies, but each occurrence of that set is a distinct member
of the family E. Further, any given vertex adjacency may be labelled with a number of distinct
edges. Next, the reason for the introduction of singleton edges, E = { A/} for example, isto
cover casesin which there is no path “through” A, but Ay is vertex adjacent to some As by E
for ingtance, so that E CE = { A, } and, asaresult, we can legitimately tak of apath A;, 5,
As incident with A,. Finaly, the reason for not regarding a closed path of length 2 as a circuit
isthat we should ignore this Stuation, which arisessevery time || ({Ar. As}) |3 2.
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Thekind of structure met in the introduction is a hypernet. We should note thet the find
diagram in that section isthat of a hypernet with circuits, but that reading such a hypernet

from top-to- bottom imposes a“downward” direction an al the arcs and that with this imposed
direction the circuits disgppear in the sense that they become digraph semi-circuits A Smilar
Stuation arises if we read that hypernet from bottom-to-top, and we will see that this potential
torid thiskind of hypernet of circuits by means of reading imposed direction can be avery
sgnificant technique in the interpretation of such structures.

To further illugtrate some of the definitions that we have met, we consder the following
example adapted from that given on page 110 of [Wel 83]. It dedls with part of an actua
module system that once existed in the Faculty of Science at the Universty of South Africa
The code of each module consists of a subject code of three |etters followed by alevel code of
three digits of which the firgt indicates the level of study towards a degree in the faculty and
the next two a module code. The modules concerned are asfollows:
Computer science: COS111, COS121, COS211, COS212, COS221, COS201, COS311,
C0S321, COS322, COS331, COS351, COS301.
Information Systems: INF101, INF201, INF303.
Mathematics: MAT101, MAT102.

What we have hereis the sub-hypernet retrieved from the hypernet for the whole module
systemn by selecting every condition set that involves COS211. Aswe will see, this sub-
hypernet is the “context hypernet” of COS211 in the whole module system: It representsal
the intermodule relationa information about COS211 in that whole system. The set of module
codes generates, one for one, the set of vertices of our hypernet, and the condition sets
generate its edges. The paralelsin each condition set are marked with an underline.

The condition sets are as follows.

{COSs111, COS121, INF101, COS211}

{COS111, COS121, INF101, COS211, COS221, COS212}
{COSs111, COS121, INF101, COS211, COS221}
{COS111, COS121, INF101, COS211, COS221, COS201}
{C0OSs211, COS221, COS311}

{C0OSs211, COS221, COS311, COS321}

{C0OS211, COS212, COS221, COS322}

{COS211, COS221, MAT101, MAT102, COS331}
{C0OS211, COS221, COS311, COS351}

10 {C0OS201, COS211, COS221, COS311, COS321, COS301}
11. {INF201, COS211, INF303}

CoNoOrwWNPE

The condition sets are those stipulated, in the system, for obtaining credit for the find module
in each membership list. We can choose any prerequisite from alist as the other end vertex of
that list. Bearing in mind potentia edge adjacenciesit is of course possible, then, to plot each
condition as a number of edges, but to avoid unnecessary repetition of condition sets we use
each condition set only once, and as a heuridtic it is advisable to “sart” each edge a amodule
of lower leve than that of the module for which the condition is stipulated, thus making the
interpretation of the diagram smpler.
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A diagram for these modules and these condition sets, a hypernet diagram, isgiven in figure
2.2. Note that there are four isolates, but none of them is a complete isolate.

Reading from Ieft to right (bottom-to-top) we can determine how credit may be obtained for
an end vertex of each edge and of each path. Reading from right to left (top-to-bottom) we get
the same information in a different form. It will become clear later, when we ded with
"cascades’, that this difference of form is not trivid.

5 CO311
CcCos211
COS321
1
COS212 COS322
2 COS331
cosia | COS221
3 COS351
4
C0S201
cos121 N
COS301
INF201
INF101
1 INF303
MAT101
MAT102

Figure 2.2: A diagram for part of amodule system
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Next we look at the connection between hypernets and the relation nets introduced and
explored in [GVS99].

Definition 2.10: By atuple-specific relation net interpretation, or Smply an inter pretation,
of ahypernet <A, E> we mean a one-to-one correspondencel: A ® A that maps <A, E> toa
relaion net <A, T> asfollows. For every vertex adjacency (A, E, As) in <A, E>with

E ={A1, Az ..., A, , ... Ap} I A AT E,ASl E, (A, B, A) ismapped to at least one
tupleTiT Twith T, =<By, By, ..., Bk, ...., Bm(i) > and with either B; = A, and Bryi) = As or
B1 =As and By = Ar and for every B, k=2, ..m(i) - 1, By = | (Am) for someone A T E,
# =12, ..,n(i), and every member of E isused a least onceasanentry in T; so E isthe
tuplesat of T;, | Ti |=m(i) ® | E | =n(i), and this holds for each vertex adjacency by each

ET EadforeachT;T T.WewriteT;=1[E] and <A, T> =1 [<A, E>], and | T | isequd to
the number of distinct vertex adjacenciesin <A, E>.”

Definition 2.11: Each hypernet <A, E> has a countably infinite set of distinct interpretetions,
and thisset iscaled arealization of <A, E>.”

Next we describe the move from relation nets to hypernets.

Definition 2.12: Condder any given relaion net <A, T>. By an edge-specific hypernet
abstraction, or smply an abstraction, of <A, T> we mean a one-to-one correspondence

M: A ® A that maps<A, T>to ahypernet <A, E> and is defined as follows. For every tuple
Ti = <A Az AL s Ang) >] Tin<A, T>themapping M produces a set

E ={M(A1), ..., M(A)), ..., M(An )} I Ewith|E |£|Ti |, thetuple set of Tj, and avertex
adjacency (M(A1), B, M(An) ) ) in<A, E>forevery T T T. Thisresultsin the hypernet
<A,BE>andwewriteE =M [Ti]and <A, E>=M [<A, T>] .~

Each relation net <A, T> has a unique abdtraction M [<A, T>] but a countably infinite set of
digtinct relation nets can dl have the same abstraction. Obvioudy,

Theorem 2.1: Every abstraction M of ardation net <A, T>with M [<A, T>] = <A, E> isthe
inverse of someinterpretation | of <A, E> with | [<A, E>] = <A, T>, and the converseisdso
true. ”

In dedling with rdation netsin [GV S99] we faced the problem (in Part 1) that each tuple came
from a statement of relationship among concept-names, and could thus be permuted by re-
wording that statement without changing the relationship among those concept-names
involved in that statement. The following definition opens up al the possible permutations of
tuplesin a CRK S for examination and choice of "appropriate" ones.

Definition 2.13: By the completion of ahypernet <A, E> we mean that unique hypernet that
is congtructed from <A, E> by adding to <A, E> every potentia edge adjacency, and hence
every potentid vertex adjacency, of <A, E>thatisnotin <A, E>, i.e. we"fill in" dl the sets
E C E, and thusdl the vertex adjacencies that then arise, for dl distinct E§ and E, i.efor
it
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For each Ar T A for which we have (E;, Ay, E) for someE and E,i.e. AT (& C E),it j,in
the completion of M [<A, T>], thetuples T; and Ty withM [T;] = E and M [T;] = E can be
permuted so that they are adjacent a A, in anew CRKS that models the same relationships as
doesT.

Given the completion of an abgtraction M [<A, T>], we can interpret sub- hypernets of that
completion to produce god oriented gpplication CRKSsfrom <A, T>. Thisleadsto the
following definitions.

Definition 2.14: By asub-hypernet of ahypernet <A, E> we mean a hypernet <B, U> with
Bi AUl E andevery ET Uissuchtha ET E. Further, every vertex adjacency of
<B,U> by F isavertex adjacency of <A, E> by E. If B = A then we cdl <B, U> aspanning
ub-hypernet of <A, E>. Wewrite<B, U>D <A, B>

Definition 2.15: The maximum sub-hypernet <B, E- B>, of ahypernet <A,E>, that is
inducedby B A,issuchthat E1 EbelongstoE B iff 1 B.”

Let <A,E> be any hypernet and let X bethe set of al those sub-hypernets of <A E> that are
of theform <A —B,E- (A—B)> whereB | A.Then<X,D > isadidributive laitice
under E and C of hypernets, with null dement <f ,f > and universa dement <A ,E>. This
can be shown easily because E and C for hypernets are defined interms of set E and set C
respectively.

There is a one-to-one correspondence between the set of walks in ahypernet <A, E> and the
st of sami-walksin any given interpretation | [<A, E>] of <A, E>.

To close this section we turn our attention to the question of isomorphism. In Part | of
[GVS99] we defined structural andogy of CRKSsin terms of CRKS isomorphism, giving -
to the best of our knowledge - thefirg forma definition of anadogy. The notion of formaized
andogicd reasoning, and of teaching/learning by andogca moddling, is criticd to the work
inPart | of [GVS99], and akey to the practical use of structural analogy is the rather complex
congructiond scheme given there for finding isomorphic (sub-) relation nets. It appears that
we can do alittle bit better, through the medium of hypernets, by side-stepping the problems
involved in relative permutation differences between potentidly isomorphic (sub-) reation
nets. To begin, we revise the definition of isomorphism of reation nets.

Definition 2.16: Given two relation nets <A, S> and <B, T>with |A |=|B |and | S|=|T|,
we say that <A, S> and <B, T> are isomor phiciff there exisgsapar of one-to-one
correspondencesg: A® B andh: S® T whicharesuchthat tuple T; = <Aq, ...., A, ..., Ap>,
where each entry is an entry of amember of A, belongsto Siff tuple

h(T;) = <By, ...., By, ..., B>, belongsto T, where m = n and where each entry isan entry of a
member of B, and By = g(A1), Bmn =g(An), and every entry A, rt 1andr?® n,inT; ismapped
to some Bs = g(Ar) with r not necessarily equa to s. ™

The equivaent for hypernetsis rather lesstaxing, and is as follows.

14
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Definition 2.17: Two hypernets <A, E1> and <Ay, Ex>, with | A1l = | Azl and | E1| = | B, are
said to be isomor phiciff there exists apair of one-to-one correspondencesg: A1 ® A,

andh: E; ® E, suchthat A;jT A; belongsto Eyj 1 E; iff g(Asj) belongsto h(Eyj) and

(A1i, Egj, Ask) isavertex adjacency in <Aq, E1> iff (g (Aw), h (Exj), 9 (A1k) ) isavertex
adjacency in<A;, B>

Given two hypernets <A;, E;> and <A, E>>, how can we find an isomorphism between
them? We can use the following.

Constructional scheme 2.1

Step 1: Check that | A1| = | A2land | E1| = | E2| . Indeed if | A1| < | Az| and/or | Bl < | Ey| we
may be able to find an isomorphism between <A;, E;> and a sub-hypernet
<B, U>D <A, Ex>with | As| =|B|and | Ei| = | U] .

Step 2. Let (All, Eii, A12) beany vertex adjacency in< A, E;>. Try to match (A]_]_, Eii, A12)
with some vertex adjacency (A21, Ezj, A22) in < Az, E>> for which we can begin to define g

andh by settlng g(All) = Ay, g(Alz) = Ay, and h(Eli) = Ezj T E such that

EZJ ={0(A11), 9(A12)} E {g(Alk)T Az | AlkT A1 and AlkT (B -{ A11, A12}) and | Elj |=| Ezj |
sothat | Esi | = | h(Esi) = Ey|. If we can find no such matching then no isomorphism <g, h>
exigs.

Step 3: If we can find one such partid matching of an (A11, Eii, A12) and some (Az1, Ezj, A2z),
then the next step isasfollows. Try to expand the present domains of g and h to incorporate

al vertex adjacencies that involve A1 and/or Ax2 in< A, E;>. Do thisfor asmany "new"
vertex adjacencies of thiskind as possible. If there are "new" adjacencies that cannot be
covered, disregard them. Moveto step 4. If there are no "new” vertex adjacenciesthat can be
covered in this step, return to step 2 and gtart over with another vertex adjacency in

<Ay E>.

Step 4: Try, asin gep 3, to expand the present domains of g and h to cover dl vertex
adjacenciesin < Az, E;> that involve at least one of the "dready covered” vertices of

< Ay, E;>. If no expangon is possible, return to step 2 and start over with another vertex
adjacency in < A1, E;>; otherwise move to step 5.

Step 5: Repesat step 4 until no more vertex adjacenciesin < Az, E;> can be covered, or until
we get any contradiction. At that stage we have an isomorphism from a sub-hypernet of

<Ay, E;>into < Ay, Ex>. If that sub-hypernet is not < Az, E;> then we store the isomorphism
and gart over with step 2, eventudly finding severd hopefully non-trivid (i.e. not just a

sngle vertex adjacency that isisomorphic with some vertex adjacency in < Az, Ex> sub-
hypernets of < Az, E;> that are isomorphic with some sub-hypernet of < A, E;>. From those
isomorphisms that we find, we can choose the most gppropriate for our purpose at the time of
choice. Recdl from [GV S99] that severd different sub-hypernets of < A;, E;> can serve as
isomorphic structurd modelSanaogies of the same sub- hypernet of < Ay, E>>, and one sub-
hypernet of < A;, E;> can serve as an isomorphic structural model/anaogy for severa
different sub-hypernets of < A, Ex>.”
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In gpplying condructional scheme 2.1 we must take account of
other edgesin E; by which Aj1and Az, are vertex adjacent,
other edgesin E that are "set equal” to B, and
potential edge adjacencies by > 1verticesin < Az, E;>, when trying to find an initid vertex
adjacency match in step 2 of the scheme.

Now it appearsthat it may well be easier in generd to automate the search for hypernet
isomorphisms than for relation net isomorphisms due to the necessity to take into account
meatching tuples "modul o relative permutetion” in the latter case. With thisin mind, we
present the following two theorems.

To set the scene, let < A1, E;> and < Az, Ex> be hypernetsand let < A1, T1> and < Ay, T>> be
rdationnetsandlet |As | = | Az, |EL|= | E|, and | T2 | = | T2 |. Further, let

D1 ={(A11, Egj, A12) | A1, A1z T A1, Eoi 1 Ea, and (A11, Eaj, Ar2) isavertex adjacency in
<A1 E>},

D2 ={(Az1, Eai, A22) | A2z, Az T Az, Exi1 Bz, and (Az1, Ezi, A2z ) isavertex adjacency in
<Az B>},

andlet | Dy | =| D2 | . Now condder the following diagram:

<q, Q>
<AL E> < > <Az B>
I |1_1 P |2_1
<A, T1> < p <Az T2>
<hg, hp>

Figure 2.3: Isomorphisms and interpretations

Here < g1, @ > isahypernet isomorphism and < hy, hy > isardation net isomorphism, |1 and
I, areinterpretations, and al these mappings are one-to one- correspondences, so their
inverses are well defined smple reversds.

Theorem 2.2: Let < A, E;> and < Az, E>> in the diagram be isomorphic hypernets. Then
there exist interpretations 11 [< A1, E1>] = <Az, Ti> and |2 [< Ap, Ex>] = < Ap, To>such
that < Az, T1> and < A, T>> areisomorphic relation nets. ™

Proof: Congder any vertex adjacency (A11, Eii, A12) in < Aq, E;>. The matching vertex

adjacency is (i(A11), B (E1i), ®i(A12)) in< Ay, Ex>. 11 isdefined asfollows. |1 takes

(A11, Eij, A1p) to precisdy onen-tuple Ty T T1in<Ag, To>. Let

Ti=<h (A]_]_), vy 11 (Alr), v 1 (A12)> where the entries other than |, (A]_l) and |1 (Alz) condst
of n - 2 entriesof some 1 (A1) with Az T Eyand Ay may be A11 or A2 and Ajx may be

equal to A12, and where every member of E;j is mapped to a least one entry in Ty = |1 [Eg]. 12
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is now defined to map (gu(A11), B(Exi), th(A12) ) in < Az, Ex>to precisely onetuple Ty T T
where sz =<l (A21), vy |2 (A2k), ey 12 (A22)> with Ay = 91(A11), Ao :g]_(Alz) and every
entry Aok = ch (A1) with k not necessaryly equal to r, and where every member of gp(Eyj) is
mapped to at least one entry in Ty = |2 [((Evwi))]. Now we define < hy, hp > such that

h: A1 ® Azand hp: T ® T, are both one-to-one correspondences, and for every

Ti=<h (A]_]_), vy 11 (Alr), v 1 (A12)>T Tq, hp (Tli)T T, ngiVG'] by

hy (T]_i) =< h]_( I (A]_]_)), ey h]_( I1 (Alr)), ey h]_( I1 (A]_z)) > with

o (12 (A12)) = 12 (A21) = 12 (R (A11)),

h (12 (A12)) = 12 (A22) = 12 (R (A12)),

h (11 (Ar)) = 12 (A2) = 12 (G:(Axr))

where the number of entriesin Ty; and hp (T1;) isclearly the same, and every 11 (Ay), r* 1 and
rt 2,inTy; ismapped to some I, (Azx) with k not necessarily equd tor. Thus, <hy, hp >isa
relation net isomorphism that maps < Az, T1> onto < Ap, To>."

Theorem 2.3: Let < A, T1>and < Az, T>> inour diagram be isomorphic relaion nets. Then
there exist abstractions M1[< A1, T1>] =< A;, Ei>and M2[< Ao, T2>] =< Ay, B > such that
< Aj, E;>and < Ay, E; > areisomorphic hypernets. -

Proof: In the proof of theorem 2.2 we constructed < hy, hy >. Here we will construct < g1, g >,
given that < hy, hp > is an isomorphism. Essentialy, what wedoistosst M; =1, and

M, =1, and reverse the process of the proof of theorem 2.2. An arbitrary tuple Ty; in

<A, T1> with Ty =< Aag, ..., A1y, ..., A12> Ismatched with precisely one tuple

hp (Tli) =< Ao, ..., Ao, ..., Ao>with Aoy =y (A]_l), Ao =h (Alz) and A= hy (Alr) withk 1
1and k* 2 and k not necessaryly equal tor. Now apply 11 to < A1, Ty>and 1,1 to < Ay, To>.
Tii =<Au1, ..., Axp, ..., A12 > ismapped, by 1172, tothetuple set, Ey; T Ej, of Ty, and avertex
adjacency (|1-1 (A11) , Eai, |1-1 (Alz)), and hp (Tli) =<h (A]_]_), vy (A12)> ] Tois mapped,
by 12}, tothetuple set, 5 T Ep, of hy (T ) and avertex adjacency

(271 (hy (A11)) 5 Eyj, 1271 (e (A12)). Now it is easy to seethat we can define a hypernet
isomorphism < g, g > from < Az, T1> onto < Az, To>smply by setting

2% (hy (A1) = g (127 (Arw)),

127 (hy (A12)=a (117 (A12),

7] (Eli) = Ezj = ({ All, ey Alr, . A12} ) :{ 91(A11), veny gl(Alr), veny 91(A12)}, and Bt &

These two theorems can be of congderable assstance. In particular, theorem 2.2 can help in
finding relaion net isomorphisms.

Definition 2.18: Let <A, E;> and <A, [E, > be hypernets, and <A ;,T;>and <A,,T,>berelation nets,
and congder the following diagram:
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<AL, E1> « p <Ay E>
<by,b2,>
M, I 1 I 2 M2
<A1, T1> p <Az, T2>
LE

Figure 2.4: Abstraction isomorphism

Here the abgtraction M isthe inverse of the interpretation I, and M, theinverse of |, and

<b 1, b »> isahypernet isomorphism. Each tuple Ty; T T1 is mapped toitstuple set M4 [T4i] in
<A1, E1>, then by <b1, by>to theisomorphictupleset <bi, b 2> (M1 [T1i]) in <A, E;>, and
thence by I, to atuple I (<by, bo> (M1 [T1])) = Taj, whereif Ty; isan ny-tuple then

[2(<by,b 2>(M1[T4i])) isan npj — tuple with my; and ny; both at least

|M1[Ta] | =|< by, b 2> (M1[T4])| and myi and rp; are not necessarily equd, and

Tii =11 (< b 1, b 2> (M2[Ty])), and thisholdsfor each Tyl T; and each Tl T2, Wecall

<Ay, T1> and <A, T>> language equivalent (LE) relation netsiff for eech T;i T Ty thereisa
least one Tyj = I2( <by, b2>(M1[Ty])) T Tz and for each Tyl T there exists &t least one
Ti=li(<b 1, b 2>Ma[ Ty T To”

Given astudy materiad CRKS—see [GV S 99] — for which the satements are set out in
language A, we can use the definition to find a“language equivdent” CRKS in which the
Satements are set out in another teaching language B. LE is an equivaence relation on the
class of relation nets.
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3. First intermission

Suppose we think of ahypernet <A, E> interms of itsdiagram. Let ST A, andlet{ab} | S,
a,bT Aand|S|3 2 Thenaand b are potentially adjacent vertices by S. Now we should
notice that if {a,b} isan actud vertex adjacency by Sin<A, E> then ST | ({ab}), and Scan
belong to the label of more than one vertex adjacency in <A, E>, and furthermore the set S
can gppear in a given label such as| ({ab}) more than once. To handle thiswe let every
digtinct occurence of Sin any label or 1abels be entered as a separate member of the family E
of edges of <A, E>. Thus, if set S occurs m timesin vertex adjacency labels, some of these
occurences perhaps in the same label, each label isindeed a set as S will gopear mtimesin the
family of edgesE of <A, E>, i.e.

En, Ent1y ooy BEnim-t
al of which are entries of the same st Sin the family E. If {ab} isavertex adjacency by
ET EthenET | ({ab}) and not E —{ab}, asignificant difference from the similar situation
for relation nets— see [GV S99]. Here each edge characterizes one and only one vertex
adjacency, except of course for singleton edges.

Deeinganedge BT E from <A, E> takes E out of one vertex adjacency labd, | ({ab}) for
example. The arc between aand b will then disappear only if | ({ab}) ={E}. Deleting a
vertex adjacency (a, B, b) of aand b by E from <A, E> also meanstaking E out of

| ({ab}). We sometimes refer to “the vertex adjacency {a,b}”. Ddeting avertex v 1 A from
<A, E> entails removing v from <A, E> together with every 1 Ethathasv i E.

Much of the theory of relation nets covered in [GV S99] can be transcribed to hypernet theory.
The key to such transcription is badicaly the following:

19

Relation Nets Hypernets
tuple occurence aj; j,b vertex adjacency (a E, b)
sngle (F())() sngleedge E
st Rof (F())()'s st R of edges

Figure 3.1: Connection between relation nets and hypernets

In this report we will be transcribing to hypernets only a selection of the theory of reation
nets covered in [GV S99]. We begin with some generd theory of hypernets and then move on
to transcription of some of the theory of Concept- Relationship Knowledge Structures, bearing
in mind our potential examples of hypernets as described in the first section of this report.




Relation nets and hypernets

4. Introduction to atheory of general hypernets

Definition 4.1: For AiT A of ahypernet <A, E> we define:

(1) Thesst E(A)) | Eof dl edgesin the name of A; by E(A) ={ § 1 E|for every vertex
adjacency of theform (A, B, As) in<A, E>wehave AT (§-{ A, As}) }.

(2) Thest E[A] | Eof dl edgeswith Aiby E[A] ={ ET E|A T E}.

(3) E(B) denotesthe set of dl E(A)) withA;T B and asimilar statement appliesto E [B], with
BI A"

Definition 4.2:

(1) Themeet <A, E> of two hypernets <B, F> and <C, G> isdefined by <A, E> =
<B C C,FC G>and <A, E>isaunique hypernet.

(2) Thejoin <A, E> of two hypernets<B, F> and <C, G> isdefined by <A, E> =
<BE C,FE G>and <A, E>isaunique hypernet.

(3) Themeet of <B, F> anc <C, G> iswritten <B, F> C <C, G>, and their join is written
<B,F>E <C, G>."

In part (1) the only way in which F and G can share edges is that those shared edges are
subsetsof B C C. Thuswe have the following

Theorem 4.1: IfET E, and hypernet <A, E> =< B C C, F CG > isthe meet of hypernets
<B,F>and<C, G>,thenE | (B C C), but the converse is not necessaily true.

Proof: Thefirst part istrivial. For the converse, wenaticetha | (B C C) can betrueif E
belongsto only oneof For G.

The join and meet operations may of course be successfully applied to the sub-hypernets of a
given hypernet.

Definition 4.3: Theadjacency function G A ® A (A) of ahypernet <A, E> is defined by,
foral ATA GA)={AT A|(A,E,As)forsomeET E} E {A}."

Definition 4.4: By awalk-family f (A; % As) inahypernet <A, E> we mean a norn-empty
st of walks between A; and Ag in <A, B>, the members of which dl have the same
subsequence over A while being pairwise distinct in edge subsequences over E. By a sub-
walk-family of f(A; % As), we mean awadk-family f (Am % An ), rEm<n £ s forwhich
every member is a subsequence of at least one member of f(A, %4 Ag).”

A wadk family can have just one member.

Definition 4.5:
(1) Let A, A;, AsT Ainahypernet <A, E>, and let A, % Asbeagivenwalk in <A, E>. Then
A issaid to be vertex between A, and Ason A % Asiff A belongsto the vertex
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subsequence of A, ¥ Asor to at least one edge E that liesinthewak A, % As or both.
(Of course both cases are covered if A; belongsto at least one of the edges of the walk.)

(2) A issaidto bereachablefrom A; in<A, E> iff thereisapath between Ar and A; in
<A, BE>.

(3) Thereachability function A:A® A (A) of ahypernet <A, E> isdefined by, for dll
AT A AA) ={ AsT A |Asisreachablefrom A in<A, E>}.

(4) Themeaningsof G(B) and A (B) for B A are obvious.”

Next we tackle the notion of a cascade, sarting with arevison of the definition for relation
netsgiven in [GVS99].

Definition 4.6: The nested sequence {<By, R« > | k 3 0} of subnets of arelation net <A, T>

iscaled afast access cascade from By iff

(1) Bol AandRy=/E ad

(2) Rl Tischoseninsuchawaythat Ti = <A, Az, ..., A_, ..., Any >1 T belongsto Ry
iff A1 1 Bo, and

(3) By = Bg E (the union of the tuple sets of the members of Ry), wherethetupleset of T; T T
istheset of dl A; T A suchthat A, iséat least oneentry in T;, and in general for k =2, 3,

(4) ReT Tischosninsuchaway that Ti = <Ag, Az, ..., A, ..., Ang)>1 T belongsto R
iff Ay T By.1, SORe11 Ry and
(5) Bx = Bx.1 E (the union of the tuple sets of the members of Ry), so Br.1 | B.

Such a cascade is said to be alimited access cascade from By in <A, T> iff ateech stepk =1,
2,..wechooseTi = <Ay, Az, .., A, .., Anpy>1 Tinsuchawaythat TiT R iff
{AT Alk=12, ..,n@)-1}i By.1, and where AyiyT A may or may not belong to By.1.

A cascade will stop when <By, Rk > = <Bx.1, Rk-1 > or when <By, R« > =<A, T>.
For hypernets we have the following transcription.

Definition 4.7: The nested sequence {<By, Dk > | k 2 0} of sub-hypernets of a hypernet

<A, B> iscdled afast access cascade from By iff

(1) Boi A and Do = A&, and

(2) D11 Eischosenin such away that for each vertex adjacency (A, 5., As), E,-T ==
belongsto D iff Ar or Asbelongsto By, and

(3) B1=Bo E (theunion of al the § that belong to D), and in genera fork =2, 3, ...

(4) Dk T Eischoseninsuch away that for each vertex adjacency (Ar, E, As), E 1 E, §
belongsto Dy iff A; or Asbeongsto By.1, so Dx.11 Dy, and

(5) Bk = Bk.1 E (theunion of dl the F that belong to Dx), S0 By.1 | B.

Such acascadeis said to be alimited access cascade from By in <A, E> iff, a each Sep
k=1,2, .. wechoose E1 Dy iff dl, but possibly one, of the members of E belong to By,
and that oneis either A, or As in each vertex adjycency (Ar, B, Ag) used in choosing the

ET Do, k=12 .."

21
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Note that that particular one of A, or Asin each case does of course belong to A, but may or
may not belong to By.1. Again such cascades stop on the same conditions as for relaion net
cascades.

Hypernets dl exhibit strong vulnerability: If weddete AxT A from ahypernet <A, E> then
we delete every edge adjacency by Ay in <A, E>, and aso every edge E 1 E for which

A1 E,i.e. weddete E [A]. Because strong vulnerability expresses context senditivity in
certain hypernets - see [GVS99] and later work in this report - we introduce the following
notion.

Definition 4.8: By the context hypernet <A E>[Ai] of Ax T A inahypernet <A, E>we mean
that sub-hypernet of <A, E> that condstsof every E1 EthathesAc 1 E , i.e. E [Ak] together
with the set of vertices{A;j T A|AT E and BT E[A(]}. <A E>[A] isahypernet.

We return to our examplein figure 2.1 and illudtrate the different notions defined so far in this
section:
st E (Ax) and E [Ac]: E(Q) ={ Es} and E[3] ={ E1, Es, Es, E4 }.
adjacency function: G(4) ={2, 3, 4, 5}, and 3(5) ={5, 4}.
wak-family: f 2% 5) ={(2,Es, 4, E7, 5), (2, B2, 2, B5, 4, K, 5), (2, E5, 4, E7, 5, Bs, 5),
(2, B2, 2, Bs, 4, K7, 5, Es, 5} or any non-empty subset of this set.
reachable A (2)=A-{6},A (20=A (1)=A (3)=A (4 =A (5.
fast accesscascade: Bo ={2},B1={2, 1,4, 3},B>={2, 1, 4, 3, 5}.
limited access cascade: B = {1, 2}, B1 ={1,2,3},B>={1, 2,3,4},B3={1, 2, 3, 4},
stop.
context hypernet: The context hypernet of 41 A, i.e. <A, E>[4] , has vertex set
Al4] ={4, 2, 3,5} and edge set E[4] ={ Es, E4, E7}.

We will seethat the notion of a cascade, which may be regarded here as a controlled search
technique, becomes an essentid part of the theory of the hypernet equivaent of a CRKS.
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5. Menger'stheorem

We will introduce the theorem, and state and prove it, tage by stagein pardld for rdation
nets and hypernets; () denotes the part for relation nets, (b) that for hypernets.

Definition 5.1:

(& Thepath-net N(P) of apath Pin ardation net <A, T> isthe minimum subnet
<B, U> P <A, T> that contains P. By thiswemeanthat U | T isthe set of tuples that
gppear in P, and B isthe union of al the tuple sets of the membersof U. N(P) isa
minimum subnet inasmuch asif we delete any member of U or any member of B then P
no longer liesin the resulting relation net.

(b) The path-hypernet N(P) of apath Pin ahypernet <A, E> isthe minimum sub-hypernet
<B, U>D <A, E> that contains P. By thiswemeanthat U | E isthe set of edgesthat
gppear in P, and B isthe union of dl the members of U. N(P) is aminimum sub-hypernet
inasmuch as if we deete any member of U or any member of B then P no longer liesin
the resulting hypernet.”

Definition 5.2:

(& Twou® v paths, P and Py, in ardation net <A, T>, are said to be interdependent paths
iff the meet N(Px) C N(P,) of their path- nets has at least one vertex other thanuand v in
it. A st {Py, ..., P} of u® v pathsin <A, T>iscdled an interdependent set iff C N(P,),
r=0,1,..,n, hasat least one vertex other than uand v init, and it isamaximal

interdependent set iff it isnot aproper subset of any interdependent set of u ® v pathsin
<A, T>.

(b) Twou % v paths, P and Py, in ahypernet <A, E>, are said to be interdependent paths iff
the meet N(Px) C N(Pr) of their path-hypernets has a least one vertex other than u and v
init. Asat {Po, ..., Pn} of u% v pahsin<A, E>iscaled an interdependent set iff
C N(P),r=0,1, ..., n, hasat least one vertex other than uand v in it, and it isamaximal
interdependent set iff it isnot a proper subset of any interdependent set of u % v pathsin
<A, B>"

Notice that the semi-pathsin <A, T> are equivaent with the pathsin <A, E> =M [<A, T>].

Theorem 5.1:(see theorem 12.6, p. 205 of [GV S99])

(@ Let{Py, ..., Py} beany interdependent set of u ® v pathsin <A, T>. Deetion of any
wi (A - {uV}) that belongsto the vertex set of C N(PY) from <A, T> will “cut” dl the
paths P, i.e. none of the paths of the set exigts in the subnet which resultswhenw is
ddeted from <A, T>.

(b) Let{Py, ..., Py} beany interdependent set of u % v pathsin <A, E>. Deetion of any
wl (A - {uV}) that belongsto the vertex set of C N(P;) from <A, E> will “cut” dl the
paths P, i.e. none of the paths of the set exists in the sub-hypernet which resultswhen w is
deleted from <A, E>."
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Proof:

(@) for <A, T>: 522 [GVS99].

(b) for <A, E>: We must show thet if wisavertex, withw * uandw * v, of C N(P,), thenit
isbetween uand v on every P,.. Let w beavertex of C N(P;), and assumethat w is not
between u and v on some P;. Then w does not belong to the vertex set of N(P;), and hence
itisnot avertex of C N(P;), which contradicts the hypothesis.

Theorem 5.2: (seetheorem 12.7, p. 205 of [GVS99))

(& Let S={Po, ..., P} beamaxima interdependent set of u ® v pathsin <A, T>. Ddetion
of anyw 1 (A - {uV}) that belongsto the vertex set of C N(P;) from <A,T> cuts
precisay thoseu ® v pathsin <A, T> that beongto S.

(b) Let S={Po, ..., P} beamaximd interdependent set of u % v pathsin <A, E>. Deletion
of anyw 1 (A - {uV}) that belongsto the vertex set of C N(P;) from <A, E> cuts
precisaly thoseu % v pathsin <A, E> that bedlongto S. ™

Proof:

(@ for <A, T>: see[GVS99].

(b) for <A, E>: From theorem 5.1 we know that deletion of w cutsdl the P, T S. Assume that
deletion of w from <A, E> cutsa least oneu % v pah PI S, Thenw is between u and v
on P, so w belongs to the vertex set of N(P). But then, since w aso belongs to the vertex
set of every N(P) with P T S, Sisnot amaximal interdependent set because the vertex
st of (C N(P;)) C N(P) contains{u,v,w}. The theorem follows. ~

Theorem 5.3: (see theorem 12.8, p. 205 of [GV S99])

(@ Thesgtof dl u® v paths, in <A, T>, that are cut by the deletionof w T (A - {u,v}) from
<A, T>isan interdependent set of u ® v pathsin <A,T>, but it is not necessarily
maximdl.

(b) Thesat of dl u % v paths, in <A, E>, that are cut by the deletionof w T (A - {u,v}) from
<A, B> isan interdependent set of u % v pathsin <A, E>, but it is not necessarily
maximal.

Proof:

(@ for <A, T>: see[GVS99].

(b) for <A, B> Let S={Py, ..., Py} betheset of dl u % v paths, in <A, E>, that are cut by
the ddetion of agivenw 1 (A - {u,v}) from <A, E>. Then w is between u and v on every
P T S, and hence w belongsto the vertex set of every N(P), P, T S. It follows that
C N(Pr) has at least one vertex w, other thanu and v, init, and hence Sisan
interdependent set. It is clear that Sis not necessarily maximal. ~

Just asfor relation nets— see p. 206 of [GV S99] — it is dways possible to partition the set of
dlu ¥ v pathsin ahypernet <A, E> by the following procedure.

(1) Startwithany u % v path Py, and develop a maxima interdependent set of u % v paths
So={Po| k=0,1, ..., no} in<A, E>towhich Py, belongs.
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(2) Deleteany woT (A - {u,v}) such that wo belongs to the vertex set of C N(Pyy),
r=0,12,..n from<A, E> Thiscutsdl theu % v paths of S, and only thoseu % v
paths.

(3) Start with any u % v path Py in the sub-hypernet that results when wy is deeted from
<A, B> i.e. <A - {wg}, E- (A - { wo})>, and develop a maxima interdependent set
Si={ Pl k=0,1, .. m}of u¥s vpahs in<A - {wp}, E- (A - { wo})>, towhich Pjo
belongs.

(4) Ddeteany wi T (A -{u, v, wo}) such that wy belongsto the vertex set of C N(Py,),
r=0,1,2, .,mfrom<(A - {wo}), E- (A - { wo})>. Thiscuts precisely those u % v paths
that belong to S;. Further, wp isnot betweenuandv onany Py, i =0, 1, 2, ..., .

(5) Continuing in thisway we get apartition{S, ..., Sy} of theset of dl u % v pathsin
<A,BE>suchthateach S, r=0,1, 2, ..., n,isamaximal interdependent set of u % v paths
in<(A - {wo, ..., W-1}), E- (A - {wo, ..., W-1})>,1r=0,1, 2, ..., n,and S isamaxima
interdependent set of u %4 v pathsin <A, E>.”

To seethat such apartition iswell defined we notice that every u % v path in <A, E> will
belong to &t least one S, and that if aparticular u % v path P belongs to both. S and S with
r <t, then it isapath in the sub-hypernet

<A - {Wo, ..., Wr-1,Wp, ..., Wr-1}, E- (A - {Wo, ..., Wr-1,Wr, ..., W-1})>

which isimpossible because, since P1 S, we have w; between u and v on every member of
S and henceon P.

Definition 5.3:

(@ AsubsetBlu® v)I A of <A, T>iscaled aseparation for uandvin<A, T> iff
<A-BUu® v), T- (A-Bu® v))>, i.ethe maximum subnet of <A, T> that has vertex
stA-BU® v),hasnou® v paths.

(b) Asubsst Bu¥z v) | A of <A, E>iscaled aseparation for uandv in <A, E > iff
<A-BUu¥sVv),E (A-BUu¥s v))>hasno u% v pahs.

Theorem 5.4: (see theorem 12.9, p. 206 of [GV S99))

@ If{So, ..., Sn} isapartitionof theset of dl u® v pathsin <A, T> suchthat & isa
maximd interdependent st of u ® v pathsin<A, T>and, foreachr= 0,1, .., m, S isa
maximal interdependent set of u® v pathsin <A - {wp, ..., Wi-1}, T- (A - {wp, ..., Wr-1})>,
where wo belongs to the vertex set of C N(P,) over P T S, and w; belongsto the vertex
setof C N(P) over P, T S, then there exists a separation B(u ® v) foruandvin<A, T>
that has precisely m eements.

(b) If {So, ..., S} isapartition of the set of dl u % v pathsin <A, E> such that & isa
maxima interdependent set of u %4 v pathsin <A, E>and, foreachr=0, 1, ..., m, S isa
maximal interdependent set of u 34 v pathsin <A -{ W, ..., Wr.1}, E- (A -{ Wo, ..., Wr.1})>,
where wg belongs to the vertex set of C N(Py) over P, T S, and w; belongs to the vertex
setof C N(P) over P 1 S, then there exists a separation B(u % v) for uand v in <A, E>
that has precisely m dements.

Proof: See [GVS99]. Proof follows at once from the partitioning and previous theorems and
definitions. ~

25
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Corollary 5.1: (Corollary 12.1, p. 207 of GVS99])

(& Theminimum number of dementsin apartition of theu ® v pathsin <A, T> into
maximal interdependent sets, congtructed asin Theorem 5.4, isequd to the minimum
number of verticesin aseparation B(u ® v) foruandv in<A, T>.

(b) The minimum number of dementsin apartition of theu % v pathsin <A, E> into
maximd interdependent sets, congtructed as in Theorem 5.4, is equal to the minimum
number of verticesin aseparation B(u % v) foruandvin <A, BE>.”

Corallary 5.2: (Corollary 12.2, p. 207 of [GVS99])

(& Any separation for uand v in <A, T> can be used to generate a partition of the set of dl
u® v pathsin <A, T> into interdependent sets which are not necessarily maximal.

(b) Any separation for uand v in <A, E> can be used to generate a partition of the set of dl
u% v pathsin <A, E> into interdependent sets which are not necessarily maxima. ™

Proof:

(@ for <A, T>: see[GVS99].

(b) for <A, E>: Suppose that we are given a separation B(u % v) = {wp, ..., Wn}. Let S bethe
st of dl u % v pathsin <A, E> that are cut by the deletion of wo from <A, E>. Next let
S bethesstof dl  u% vpahsin <A - {wg}, E- (A - {wo})> that are cut by the deletion
of wy from<A - {wo}, E- (A - {wp})>. Then let S, bethe set of dl u % v pathsin
<A - {wp, w1}, E- (A - {wp, wi})> that are cut by the deletion of w, from
<A - {wp, w1}, E- (A - {wo, wi})>.
Proceeding in thisway we develop st S, ..., Sy Itisclearthateach S, r=0, 1, ..., m, is
an interdependent set of u % v paths, and if Pisan arbitrary u % v path in <A, E> then at
least one of Wy, ..., Wn, is between uand v on P, so P belongsto at least oneof the S, r = 0,
1, ..., m. Aswe showed before, it isimpossible for P to belong to more than one S, so the
corollary follows because it is clear that the S are not necessarily maximd.

Defintion 5.4:

(@ LetP,and P, beu® v pathsin<A, T>, whereu ! v and the underlying sets of both N(P;)
and N(P,) strictly contain {u,v}. P and P; are said to be quasi-digoint u® v pathsin
<A, T> iff they belong to distinct maxima interdependent setsof u ® v pathsin <A, T>.

(b) Let P, and P; beof u % v pathsin <A, E>, whereu ! v and the underlying sets of both
N(P;) and N(P;) grictly contain{u,v}. P and P; are said to be quasi-disjoint u % v paths
in <A, B> iff they belong to digtinct maximal interdependent setsof u % v pathsin
<A, B>

We can now restate corollary 5.1 in Mengerian form.

Corallary 5.3:

(@ The maximum number of pairwise quas-digointu ® v pathsin <A, T>isequd to min
Bu® v)|.

(b) The maximum number of pairwise quas-digointu % v pahsin <A, E>isegud to min
B(u¥a v)|. "~
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Proof:

(@ for <A, T>: seep. 207/208 of [GV S99].

(b) for <A, E>: Assume that we have achieved a partition of theu % v pathsin <A, E> into
min |B(u® v)| maxima interdependent sets as referred to in Corollary 5.1, and that
B(u % v) isone of the corresponding separations. How many pairwise quas-digoint
u% v paths can wefind in <A, E>? Certainly we can find & leest min |B(u ® v)| such
paths, each in adigtinct member of the partition, and each thus cut by a unique member of
B(u¥ V), snceif deletion of agiven b1 B(u ¥ v) cuts more than one of these paths
then those paths cut are not pairwise quesi-digoint paths. Further, we cannot find more
than min |B(u ® V)| such paths, because in that case at least two of them must belong to
the same maxima interdependent set of the partition, which violates the condition that
they should be quas-digoint u % v pahs It followsthat min [B(u ® V)| equasthe
minimum number of dements of a partition of theu % v pathsin <A, E> into maximd
interdependent sets, congtructed as in theorem 5.4, which, in turn, isequd to the
maximum number of pairwise quas-digointu % v pathsin <A, E>.”

Menger’ s theorem is important because examining “flow” through a hypernet can contribute
to andysis of its structure. We will return to this point for a specid kind of hypernet in alater
Section.
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6. Connectedness

Definition 6.1: A hypernet <A, E> is said to be connected iff for every a b1 A thereisat
leest onepatha ¥ bin<A, B>

Theorem 6.1: A hypernet <A, E> is connected iff it has a closed spanning walk, i.e. awak
that meetsevery al A a least onceor, in other words, awalk in which every al A occurs at
least once in the subsequence over A. ™

Proof: trivid. ~

Definition 6.2: A sub-hypernet <B, U> of a hypernet <A, E> is called acomponent of
<A, B> iff itisamaxima connected sub-hypernet of <A, E>, where by maxima we mean
thattoaddany al (A-B)orany E1 (E-U) to<B, U> will result in a sub-hypernet of
<A, E> that is not connected.

Theorem 6.2: If <By, Up> and <Bs, U1> are distinct components of a hypernet <A, E> then
Bo and B; aredigoint, i.e. By C By = &"

Proof: Supposethat bl BoC By, andletal Bpandcl Bji. Thenthereisapaha¥ bin
<By, Up> and apath b % cin<By, U1>, S0 there is a path from any vertex in <By, Up> to any
vertex in <By, U;>, which means that <Bg, Ug> E <B;, U;> liesin asingle component of

<A, E>. The theorem follows.

Theorem 6.3: Let <A, E> be any hypernet. Then
(1) every al A belongsto precisely one component of <A, E> and
(2) every vertex adjacency, and hence dso every edge E, belongs to at most one component.

Proof:

(1) Assumethat al A belongsto two distict components of <A, E>. Then, asin the proof of
theorem 6.2 above, we reach a contradiction.

(2) Suppose that vertex adjacency (a, E;, b) is such that aisin acomponent <By, Up> of
<A, B> and that bisin adigtinct component <B;, U1> of <A, E>. Thenitiseasy to see
that Snce every vertex in <By, Up> is reachable from a, and every vertex in <Bg, U;>is
reachable from b, every vertex in <By, Up> is reachable from every vertex in <By, U;>.
The theorem follows from this contradiction.

Theorem 6.4: The distinct components of a hypernet <A, E> induce an equivaence relion
OnA."

Proof: It is easy to see that reachability is reflexive, as we regard each vertex as reachable
from itsdf by a path of length zero, symmetric and trandtive. -
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It follows immediatdly from theorem 6.4 that

Corollary 6.1: Reachahility in ahypernet <A, E> partitions A into equivaence classes that
are precisaly the vertex sets of the components of <A, E>.”
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7. Vertex bases

Definition 7.1: A vertex basisfor ahypernet <A, E>isasstV I A suchthat every al Alis
reschablefrom at least onev 1V, and V isminima in the sense that no proper subset of V
has this property. ~

Theorem 7.1: Every al A of ahypernet <A, E>, that has only aloop incident with it or isan
isolate or acompleteisolatein <A, E>, belongsto every vertex bass of <A, E>.”

Proof :Follows from the fact that no such vertex is reachable from any vertex but itsdf. ~

Theorem 7.2:V [ A of ahypernet <A, E> isavertex bads of <A, E> iff
(1) every al A isreachablefromat leastonevi V,i.e A(V)=A, and
(2 novl Vi Aisreschablefromanyw?® v,wi V,in<A E>."

Proof: We need only show that (ii) is equivalent to minimality of V. Supposethat V isa
vertex basis of <A, E> and that w, v T V and that w and v are mutually reachablein <A, E>.
Thenevery al A that is reachable from v is dso reachable from w, so v is not necessary in
V, i.eV isnot minimd. The theorem follows. ™

Corollary 7.1: No two members of V lie in the same component of <A, E>. ~
Proof: Follows from the definitions of vertex basis and of component. ™
Coroallary 7.2: Every hypernet <A, E> has at least one vertex basis. ™

Proof: A certainly fulfills condition (1) of theorem 7.2, sowe canfind a least oneV | A that
fulfills condition (2) aswdll. ~

Theorem 7.3:1f V I A isavertex basis of ahypernet <A, E> then thereis precisaly one
v1 V ineach component of <A, E>, and | V | is precisdly the number of components of
<A, B>"

Proof: Follows a once from the definition of component as we only need one vertex from
each component to reach every al A. Supposethat v, w T V liein the same component of
<A, E>. Thenitisclear that we do not need both v and w in avertex bags. V isnot minimd,
contradicting the given fact that V isavertex basisof <A, E>.”

Theorem 7.4: If <B, U>D <A, E> then every vertex basis of <A, E> contains avertex bass
of <B,U>."

Proof: LetV I A beany vertex basis of the hypernet <A, E>. Thenevery al A isreachable
fromsomeonevertexvi V. Since<B, U> D <A, E>itisdear tha every vertex b1 B A
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isreachablefrom at least onev 1 V in <B, U>. Thuswe can find a vertex basis of <B, U>
ingdeV by applying the minimdity conditionto V indde<B, U>.

Theorem 7.5: If hypernet <A, E> has no non-loop circuits and we ignore al closed paths of
length 2, i.e. that use two edges from the same labdl, then <A, E> has a unique vertex basis
that consists of precisaly thoseal A at which thereisonly aloop or which are isolates or
complete isolates.

Proof: Let V11 A of <A, E>bethesetof dl al A a which thereisonly aloop or are
isolates or complete isolatesin <A, E>, and let V| A be any vertex basis of <A, E>. By
theorem 7.1, V1 | V2 . Now suppose that V> is not included or equal to V1 | i.e
V=V;-Vytf.Levl V. Thenv mus bereachablefrom a least oneal V. because V>
isavertex basisof <A,E>. Butv 1 Vi, sovisonly reschable fromitsdlf. It follows that

Vo | Vq andthusV; = V,. Finaly, because <A,E> has no non+loop circuits and we ignore
al cosed paths of length 2, i.e. they may exist but we never traverse them, we will never be
faced with the possiblity of choosing any member of a circuit as the relevant member of a
vertex basisfor <A, E>, 0V, = V1 isaunique vertex basisfor <A,E>."

Theorem 7.6: Givenal A of ahypernet <A, E>, the hypernet <A (), E- (A (a))>, i.e. the
maximum sub- hypernet of <A, E> that is generated by A (&), is connected. ™

Proof: Every bl A (a) isreachablefrom a, and every E1 E- (A (8)) isasubset of A (a). The
theorem follows. ™

We close that section with a few observations. Given ahypernet <A, E>, let Uy I U1 E.

Then

(1) fordlal A,d(@ in<A,U;> £ d@in<A,U> £ d@in<A, E>.

(2) Fordl a bl A, if bisreachablefrom ain <A, U>> then it is reachable from adso in
<A, Ux>andin<A, BE>.

(3) Fordl a bl A,if aisadjacenttobin <A, U;> thenit isaso adjacent tobin <A, U,>
andin <A, BE>.

(4) If <A, U;> isconnected then so are <A, U,> and <A, E>.

(5) Every component of <A, U;> isaconnected sub-hypernet of a component of <A, Up>
which is, in turn, a connected sub- hypernet of a component of <A, E>.

(6) If <A, E> has no circuits then <A, U,> has no circuits, and if <A, U>> has no circuits then
<A, U1> hasnone.

(7) Every vertex basis of <A, U;> contains avertex basis of <A, U,>, which, in turn, contains
avertex bassof <A, E>.
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8. Introduction to Vulnerability

Definition 8.1: Leta, b1 A of ahypernet <A, E>. We say that aand b arejoined in <A, E>
iff thereisat least one path a%s bin <A, E>. Otherwise aand b are said to be non-joined in
<A, B>

Definition 8.2: Leta, b1 A of ahypernet <A, E>, al b, and consider any edge ET E. E is
said to be between aand b in <A, E>, written (a- E; - b), iff aand b arejoined in <A, E> and

every paha% bin<A, E>goesviaE, i.e. E isamember of the edge subsequence of every
paha%¥ bin<A,E>."~

Note that we have defined "between” for verticesin asmilar fashion — see definition 4.5 (i) .

Theorem 8.1: Leta, b1 A of ahypernet <A, E>, al b,andlet E1 E. Wehave (a- E - b)iff
aand b arejoined in <A, E> and every path a¥% bin <A, E>issuch that a least one vertex
adjacency by E isasubsequence, of length 1, of a% b. ™

Proof: If a% b goesviaE then there must be at least one vertex adjacency by E ina% b. ~
Corollary 8.1: If aand b of the theorem are adjacent verticesthen | ({a, b}) = {E}.”

Corollary 8.2: If (a- E - b) then deletion of E from <A, E> ddetesdl a%4 b pathsin
<A, B>"

Note that deleting the vertex adjacency (a, E, b) does not necessarily mean that aand b are no
longer adjacent: Wemay have{E} | | {ab}).

Let C; bethe class of connected hypernets and Cy be the class of non-connected, i.e.
disconnected, hypernets.

Definition 8.3: Let <A, E> beahypernet with E1 E. Wewrite E for E - {E}. Wecall E an

(X, y)- edge of <A, B> iff <A, E>isin C; and <A, ES >isinC,. E issadtobea
strengthening edge of <A, E> iff § is( X, y) withx >y, and aneutral edge of <A, E> iff

X=y."
Theorem 8.2: Thereis no (0,1)-edge in any hypernet.

Proof: Every pathin <A, EY >isdsoin <A, E>, o the connected class of <A, EY > isa most
that of <A, E>, i.e. ddeting E from <A, E> can not increase the connectedness of <A, E>.”

At once, from theorem 8.2, there follows

Corollary 8.3: Every E1 E of adisconnected hypernet <A, E> isa (0,0)-edge, i.€. is neutrd.
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Theorem 8.3: Let 1 E of any hypernet <A, E>. Suppose that <A, E>isin C;. Then
<A, E5 > isin G iff every (closed) spanning walk in <A, E> goesviaE. ~

Proof: By theorem 6.1 <A, E> is connected iff <A, E> has a (closed) spanning walk. If every
spanning walk goesviaE then deletion of E from <A, E> leaves no spanning walk in

<A, E5> s0<A, E5> isinCo. If <A, E5 > isin Cy then every (closed) spanning wak in
<A, E>, whichisgivento bein C;, must goviaE. "~

Definition 8.4: Let 1 E be an edge of aconnected hypernet <A, E>. E is cdled abridge iff
thereexista, b1 A with(a- E-b)."

Theorem 8.4: E1 E of aconnected hypernet <A, E> isabridgein <A, E> iff E isa (L, 0)-
edge.”

Proof: If E isabridgethen (a- E - b) for somea bin <A, E>. Thusaand b arejoined in
<A, E>, and if we ddlete E from <A, E> then aand b are non+joined in <A, EY > soaand b
liein different componentsin <A, E5 > and thus <A, ES; > isin Cp, and hence E isa ({1, 0)-
edge. If £ isa (1, 0)-edgethen there must exist a, b1 A that arejoined in <A, E> but nor
joinedin <A, E >, sowe must have (a- E - b), i.e. B isabridge, in<A,E>.”

Theorem 85: If E1 E of aconnected hypernet <A, E> isabridgein <A, E> then every
subset U | Eof edgeswith BT U isadisconnecting set of edgesin <A, E>,i.e <A, E —U>
is disconnected.

The proof follows a once from thefact that T U isabridgein <A, E>. Furthermore, it
follows from the definition of a bridge and theorem 8.4 that we have

Theorem 8.6: Every strengthening edge, i.e. (1, 0)-edge, in a connected hypernet <A, E> isa
bridgein <A, B>.”

Theorem 8.7: Let hypernet <A, E> bein Cy, and let El E.ThenE iIs(1,1) in<A,E>iff B
isnot abridgein <A, B>

Proof: If § isa(1, 1)-edge then it isnot abridge in <A, E>, by the definition of abridge. If E
isnot abridgein <A, E> then E can only be a(1,1)-edgein <A, E> since it cannot be a (0, 1)-
edge by theorem 8.2.°

Theorem 8.8: Let <A, E> beahypernetwithE T Q | E.
(1) If B isabridgein <A, E>, and <A, @>isin Cy, then E isabridgein <A, Q>.
(2) If § isgrengthening in <A, E> then E is strengthening or neutrd in <A, Q>."
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Proof:

(1) Eisabridgein <A, E> but <A, Q> is connected, so deletion of E from <A, Q> must
disconnect <A, Q> and so § must be a (1, 0)-edge, i.e. abridge, in <A, Q> since
<A, Q> b <A, E> and both are connected.

(2) B isgrengtheningin <A, E>,i.e.itisa(l, 0)-edgein <A, E>, soitisabridgein <A, E>.
Now if <A, Q> isin C; then E is strengthening, i.e. abridge, in <A, Q> by part (i). If
<A, Q@>isin Cy then, sincethereisno (0, 1)-edgein any hypernet, E must be neutrd, i.e.
a(0, 0)-edge, in<A, Q>."

Corollary 8.4: I1f E1 Eof ahypernet <A, E>withET Q | E, andif Eisa(l, 1)-edgein
<A, Q> thenFisa(l, 1)-edgein <A, E>."

Proof: Follows since both <A, Q> and <A, E> arein C,, and because E cannot be a (0, 1)-
edgein any hypernet, E must bea (1, 1)-edgein <A, E>.”

Corollary 85: Let <A, E>beahypenetwithET Q | E. LetE bea(l, 0)-edgein <A, Q>
and let <A, E> bein C;. If whenever E is between verticesaand b in <A, Q> thereisapath
a¥ bin<A, E>thaisnotin <A, Q>, then E isneutrd in <A, E>. The converseis aso true.
Next, if E isbetween aand bin <A, Q>, and thereisno path a¥% bin <A, E>thatisnotin
<A, Q> thenFisa(l, 0)-edgein <A, E>."

Proof: Both <A, Q> and <A, E> arein C;, and E isabridgein <A, Q>. Thusthereexist a b
T A suchthet E isbetween aand bin <A, Q>, i.e. every pah a¥% bin <A, Q> goesviaE.
Now if thereis at least one path a%4 bin <A, E> that does not go viaE, then E is not
betweenaandbin<A, E>s0 Fisa(l, 1)-edgein <A, E>,i.eneutrd in<A,E>. If  is
neutral in <A, E> but abridge in <A, Q>, and both <A, E> and <A, Q> arein Cy, then there
exisa, b1 A suchtha E isnot between aand bin <A, E>, i.e. E isneutrd in <A, E>, but
(a- B - b)in<A, Q> Thusthereisat least one path a¥%s bin <A, E> that does not go viag
whenever we have (a- E - b) in<A, Q>. Findly, if (a- E - b) in<A, Q>, i.e. E isabridgein
<A, Q> and thereisnoa¥ b pahin<A, Q° >, tha isnot in <A, Q>, then deletion of £
from <A, E> disconnects <A, E>, i.e. E isabridgein <A, E>, because every a%. b pathin
<A, E>isin<A, Q> and dl sucha%: b pahsgoviaE. "~
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9. Edge bases

Definition 9.1: Let <A, E> beany hypernet withB | E. B iscdled an edge basisof <A, E>
iff fordl a, bT Awehaveal A(b)iffal Ag (b), where Ag (b) isthe reachability function
of <A, B>, and no proper subset of B has this property. ~

Theorem 9.1: E1 E of ahypernet <A, E> isbetweenaand bin <A, E>, a, bl A, i.e
(a- E- b), iff E belongsto every edge basis of <A, E>.”

Proof: If (a- E ;- b) thenwecanonly getal A (b) in <A, E> by having E inevery edge
basisof <A, E>. If E belongsto every edge basis of <A, E> then theremust exista, b1 A
suchthat al A (b) and every path a¥% b goesviaE, so (a- E - b). "

Theorem 9.2: If for a, b1 A of ahypernet <A, E> thereisaunique path a¥% bin <A, E>
then{ET El2a¥% b goesviaE}iscontained in every edge basis of <A, E>.”

Proof: Every E viawhicha¥ b goesissuch that (a- E - b), so by theorem 9.1 each such E
belongs to every edge basis of <A, E>.”

Theorem 9.3: Let <A, E> beany hypernet and It B | E. B isan edge basis of <A, E> iff
(1) B preservesreachability in <A, E> and
(2) forevey E1 Bthereexista bl Awith(a- E-b)."

Proof: Preservation of reachability is one part of the definition of an edge basis. We must
show that (2) is equivalent to minimaity of B. Suppose thet thereisan edge 5T B for which
thereexistnoa, b1 A with (a- E - b). Then we can preserve the reachabilty of afrom b
without E, so we do not need E in B, i.e. aproper subset (B - {E}) | B will preserve
reachability, S0 B isnot an edge basis.

Theorem 9.4:Bi Eisan edge basis of aconnected hypernet <A, E> iff <A, B>isa
minima connected sub-hypernet of <A, E>, i.e. there is no connected sub-hypernet <A, D>
withD1 B.”

Proof: Let B be an edge basis of <A, E>. For every E1 B thereexista, b1 A with

(a- E- b), and since <A, E> is connected E isabridge in <A, E>. So we cannot leave any E
T B out of B because we would then be left with a disconnected hypernet <A, B - { E}>.
Thus <A, B> isminima and it is connected because B preserves reachability in the connected
hypernet <A, E>. Conversdly, if <A, B> is a connected sub-hypernet of <A, E> then B must
preserve reachability in <A, E>. Since <A, B> isminimd, B isaminima set of edges that
presarves reachability in <A, E>, so B isan edge basis of <A, E>.”

Theorem 9.5: Let <A, E> be any hypernet. If W isadosed spanning wak of minima length
in<A,E>thenQ={ ET E%AN goesviaE} | E contains an edge basis of <A, E>.”
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Proof: If W isacdosed spanning walk in <A, E> then <A, E> is connected. If W has minimdl
length then Q certainly preserves reachability in <A, E>, so Q must contain &t least one edge
basisof <A, E>.”

Theorem 9.6: To find an edge basis for ahypernet <A, E> we may use the following

congructiona scheme. Let D bethe set of dl vertex adjacenciesof dl aand b, at b and

a, b1 A.Each such vertex adjacency hasoneor more 1 Einl({a, b}), for each of which

wehave(a E,b),so{a b} I E.

(1) Define abipartite graph with vertex setsV; and Vo where Vi = {{a, b} T A (A)¥aand b
are adjacent verticesin<A,E>} =D and V> =E, and set V = V1 E V for that bipartite
graph. Joineach{a, b} T VitoeachE1 V., = E for which (a E, b), usng an unoriented
edge. These are dl the vertices and edges of our bipartite graph. Let Vo = E = LY and set
L@ = /£ and L'® = £ for future use.

(2) Chooseany r1 V; that has degree d(r) = 1 in our bipartite graph. If there are no such
verticesin V4 then proceed to (3) with L'® = A If thereis such a vertex, addend that
vertex sT V,, that isadjacent tor, in our bipartite graph, to L@ 1 L™®. Next addend the
vertext1 V; thet isadjacent to sinour graphto L'@® 1 V1. Now remove L® E L'
from V. Repeet (2) until V1 - L' @ = £, in which case we have found a set of edgesin E
that “covers’ al the vertex adjacenciesin <A, E>, and which contains at least one edge
basis of <A, E>, or until no more vertices with degree 1 remainin V1 - L' @, Inthe latter
case, proceed to (3).

(3) Chooseany ri Vi- L' @ that hasd(r) = 2in our graph. If thereis no such vertex then
proceed to (4) with L' @ asit isat the end of step (2). If thereis such avertex r, choose any
sadjacent to r in our graph. Addend sto L2, and addend the vertex adjacent to sin our
graphto L' @, Remove LP E L' @ from V. Repeat (3) until V1 - L' @ = /& inwhich case
we have found aset of edgesin E that "covers’ dl the vertex adjacenciesin <A, E>, and
which contains at least one edge basis of <A, E>, or until no more vertices of degree 2
remaininVi- L' @, Inthelatter case, proceed to (4).

(4) Repeat (3) successively with verticesrT Vi- L' @ that have degree 3, 4, ... . Eventualy
Vi =L' @ and at that stage L@ issuchthat {E; 1 E¥E 1T L®} contains at least one edge
basis of <A, E>, and YA PVE VEY:

End of stage 1. -

Proof of stage 1: It is clear that L'® contains at least one edge basis of <A, E> at this stage
because L? “covers’ every vertex adjacency in <A, E>. That Y4 @V£ vEv4follows from the
fact that every E1 L “covers’ one“new” vertex adjacency. Further, L® isaminimd st of
edges that “covers’ every vertex adjacency in <A, E>, becauseeach ET L@ [ E coversa
vertex adjacency by E.

(5) Examine L® asfollows FindanE1 L® that satisfies the following condition: For all
a, bl A, whenever thereis apath a¥% bviaFE in <A, E> thereisaso apath a¥% bin
<A, E> that goes viamembers of asubset of L@ - {E} only. If thereisnosuch 1 L®
then{E1 EVE1 L@} isanedgebasisof <A, E>. If thereissuch an B, set
L® = L@ {E}. Repesat the test on the members of L®. Either {E; T EVE1 L®} isan
edge basisfor <A, E> or we define L = L® - {E} for someE1 L®.
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Proceeding in thisway we find an L™ that is one of the edge bases of <A, E> for some
natural number n with n £ ¥E%
End of stage 2. -

Proof of stage 2: To show that L™ | L® isan edge basisfor <A, E> we must prove that

E1 L® necessarily belongs to an edge basis of <A, E> iff thereexist a, b1 A such that there
isat least onepath a%s bin <A, E> that goesviaE and that no path a3 bin <A, E> goes
viaany non-empty subset of L? —{E}. Firg, if thereis at least one path a% bin <A, E> that
goesviaE, and no path a% bin <A, E> goesviaany non-empty subset of L® —{E}, then
remova of E from L'® meansthat ais not reschable frombin <A, L® —{ E}>, so LY —{E}
does not contain an edge basis of <A, E>. But L does contain at least one edge basis of

<A, E>, so E must belong to every edge basis of <A, E> that is contained in L'?. Conversdly,
if for dl @ b1 A suchthat thereisat lesst onepatha% bviag1 L@ in<A, E> thereisa
paha¥: bin<A, L@ - {E}>then L2 —{E} containsat least one edge basis of <A, E>, and
s0 E does not necessarily belong to an edge basisB | L2, Thus we have the correct criterion
for rdectingan 51 L@~

To close this section we return to theorem 9.5.

Definition 9.2: Let <A, E> be aconnected hypernet. A connectedness preserving set of edges
of <A, E>isasst Qi Ewhichissuchthat <A, Q> isconnected.

How can we find aminimal connectedness preservingset Qi Ein<A, E>?

Theorem 9.7: Let <A, E> be aconnected hypernet. W is a spanning walk of minima length
in<A, E>iff By ={ E1 E AN goesviaE} isaminima set of edgesthat preservesthe
connectednes of <A, E>.

Proof: If W isagpanning wak of minima length in the connected hypernet <A, E> then
every E such that W goesviaE is needed to preserve the connectedness of <A, E>.
Conversdy, if E'1  Eisaminima connectedness preserving set of edges for <A, E> then,
since <A, E> isconnected, it has at least one spanning walk, and at least one of these
gpanning walks will use dl, and only, the membersof E. Snce E' isminimd, such a
gpanning walk will be of minimd length VEY2"
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10. Deletion of vertices

We open this chapter with a comment in the form of alemma. Let <A,E> be any hypernet,
andletB | A. Consider the following sub-hypernets of <A E>:

<B, E- B> - seeddfinition 2.15,

<AE(B)> - seedefinition4.1, (1),

<AE[B]> - seeddfinition4.1, (2),

<A,BE>[B] - seeddfinition 4.8.
If B=A thendl but possbly the second are precisdly <A ,E>. We see, from the definitions,
tha E-BI EB)I E[B].

Lemma 10.1:
(1) <A,E(B)> b <A, E[B]>.
(2) <B,E-B> b <A,E>[B] b <AEB]>"

Proof:

(1) Tocongruct <A, E [B]> from <A, E(B)> we must add zero or more edgesto <A, E(B)>.

(2) First notice that the context hypernet <A, E> [B] has vertex set & least B. To construct
<A, E>[B] from <B, E- B> we must add zero or more verticesto B, and also zero or
more edgesto E - B. Next notice that <A, E> [B] has edge set E [B], so to construct
<A, E [B]> from <A, E> [B] we must add zero or more vertices. ™

Next we recall definition 45 (1): If a b, cT A of ahypernet <A, E>, then bis said to be
vertex between aand ¢, written (a- b - ¢), iff aand c arejoinedin<A, E>andb1 E1 Efor
at least one edge on every path a¥s cin <A, BE>.

Theorem 10.1: Let a b, c be digtinct members of A inahypernet <A, E>. Then (a- b- ¢)in
<A, E>iff aand c arejoined in <A, E> and non-joined in <A - {b}, E- (A -{b})>."

Proof: If wehave(a- b- c), soaand carejoined in <A, E>, and we delete b from <A, E> to
produce<A - {b}, E- (A - {b})>, then al pathsa % c disappear from <A, E>, soaand c are

non-joinedin<A - {b}, E- (A - {b})>. Conversdly, if aand c are non-joined in

<A - {b}, E- (A -{b})> but are joined in <A, E>, then joining the context hypernet of b to

<A - {b}, E- (A - {b})>to produce <A, E> must add in a st of at least one patha %4 ¢, and b
will be between aand c on dl those added a% c¢ paths, i.e. we will have (a- b - ¢) in

<A, B>"

Definition 10.1: A vertex bT A of ahypernet <A, E> is called a cut-vertex of <A, E> iff
thereexista,cT A suchthat (a- b- c) in<A, B>

Theorem 10.2: Let <A, E> be a connected hypernet. The following statements are logicaly
equivalent for every b1 A:

(1) bisacut-vertex in <A, E>.

(2) <A - {b}, E- (A -{b})> isdisconnected .
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(3) Thereexists apartition { A1, A2} of A - {b} suchthatfordl al Alanddlci A2we
have (a- b- c)in<A, BE>.
(4) Thereexista, c1 A suchthat (ab-c) in<A, E>.”

Proof:

(1) b (2): If bisacut-vertex of <A, E> thenthereexist , ¢c1 A suchthat (a- b - ¢)in
<A, E>. But thenaand c arenot joined in <A - {b}, E- (A -{b})>, so they belong to
different components of <A - {b}, E- (A -{b})>, and hence<A - {b}, E- (A -{b})>is
disconnected.

(2) b (3): <A - {b}, E- (A -{b})> isdisconnected. Let A11 A bethe vertex set of a
component of <A - {b}, E- (A -{b})> and A2 be the vertex set of any other component of
thishypernet. Letal Alandcl A2. Since<A - {b}, E- (A -{b})> is disconnected there
isno paha—cin<A - {b}, E- (A -{b})>, but since <A, E> is connected thereis at least
one path a—c in <A, E>, and every such path has b vertex between aand cin <A, E>, 0
(a-b-c)in<A, BE>.

(3) b (4): Follows at once from (3).

(4) P (1): Follows a once from the definition of a cut vertex. ™

Corollary 10.1: Vertex b1 A of aconnected hypernet <A, E> isa cut-vertex of <A, E> iff
<A - {b}, E- (A -{b})> has more components than <A, E>.”

Proof : Follows from part (2) of theorem 10.2. ~

Definition 10.2: Vertex b1 A of ahypernet <A, E> iscdled an (x, y)- vertex of <A, E> iff
<A,BE>isinCyand <A - {b}, E- (A -{b})>isin Cy. biscalled an strengthening vertex iff
x>y, aneutral vertex iff x =y, and aweakening vertex iff x <y.”

Theorem 10.3: If hypernet <A, E> isin C and hypernet <A, E*(@)> isin C,, where
E°(@ = E - E(@), thenx 3 y. The theorem dso holds for E[d].

Proof: Follows at once from the fact that deleting the edges E(8) | E, i.e. the edgesin the
nameof a, from <A, E> to produce <A, E°(a)> cannot increase the connectedness class of

<A, E> asthere are no (0,1)- edgesin any hypernet. Thusx 3 y. (Seetheorem 8.2).

Note in passing that there can exist weakening vertices, i.e. (0, 1)-vertices, in ahypernet.
Congder the following smple example

a <A, E>inCy:

a m {ac} - C - b
b) <A - {b}, E- (A -{b})>inC;y:

a B ja,c[ .C
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Theorem 10.4:
(D) IfbT Aisa(x,y)-vertexin <A, ES(b)> thenitisa(z, y)-vertex in <A, E> withz 3 x.
(2) IfbT Aisa(z y)-vetexin <A, E>thenitisa(x, y)-vertex in <A, E°(b)>withz3 x.”

Proof: Firgt notice that deleting b from <A, E(b)> yidds <A - {b}, E° [b]>, as does deleting

b from <A, E>, and we are given that <A - {b}, E° [b]>isin C,.

(1) Sating with <A - {b}, E'[b]> we get <A, E%(b)> by adding b and al the edges of
E°(b) - E[b]. Theresult <A, E°(b) > isin Cy. To get <A, E> from <A, E°(b)> we must add
al theedges of E — E° (b), i.e. al the edges of E(b), and we get <A, E> whichisin C,.

Now we cannot have z < x because adding edges to a hypernet can only srengthen its
connectedness or leave it the same, s0z 3 x.

(2) Startingwith <A - {b}, E° [b]>, whichisin C,, we get <A, E> by adding b and dll the
edges of E[b], and <A, E>isin C,. Now to get <A, E°(b)> from <A, E> we must delete dl
the edges of E(b). Let the connectedness class of <A, E5(b)> be Cx. Then by theorem 10.3,
z3 Xx.”

Corollary 10.2: For ahypernet <A, E>withb1 A, the particular cases of the theorem are:
a bisx,yin<A,E(b)> b bis(z,y)in<A, E>withz 3 x

1,1 1,1
1,0 1,0
01 1,10r Q1
0,0 1,0 0r 0,0
b) bis(z,y) in<A,E>P bisx,yin<A, E(b)>withz3 x.
11 1,1o0r 01
1,0 1,0 or 0,0
0,1 0,1
0,0 0,0

Theorem 10.5: Let B | A bean non-empty set for ahypernet <A, E>, and let B'= A —B.

Further let E(B) = (E E(b) forbT B)I EandE[B]=(E E[b]forbl B) I E Thenwe

have

(1) E(B)=(C E°(b) for b1 B)and E°[B] = (C E°[b] for b1 B).

(2) <A-B, E- (A-B)> =<B', E- (B")> isasub-hypernet of <A - {b}, E- (A-{b})> for every
bl B.

(3) <A, E°(B) > isasub-hypernet of <A, E° (b)> for every b1 B.

(4) <B,E[B4>=C <A -{b},E[A - {b}]>forbT B, sotheorder of the deletion of the
b1 BI A doesnot affect the result.

Proof:

(2) and (3) follow at once because it is less “damaging” to <A, E>to removeoneb1 B from
<A, E>than it isto ddete dl the members of B from <A, E>.

(4) We consider thecaseinwhichB ={a, b} | A sinceitisobviousif B={a},al A.Firs,
<B',E[B]>=<A - {a b}, E[A-{a b}]>. Next we examine
<A-{a,E[A-{a]>C<A-{b}, E[A-{b}]>. Itsunderlying st is
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(A-{a)C(A-{b})=(A-{ab}). Itsset of edgesisE [A-{a}] C (E[A-{b}], i.e al the
edgesin E that do notinvolveal A anddonotinvolvebl A,i.eE[A-{a b}].Thus
<A-B,E[A-B]> = <B,E[B]> =C <A —{b}, E[A —{b}]>inthiscase, and since
<A - {b},E[A - {b}], over dl b1 Binthiscase, and since C and E are commutative, the
order in which the members of B are deleted does not matter. ™

Here follow some observations that are dl relatively easy to prove. Consider a hypernet
<A, E>witha bT Aanda ! b, andthelist
<A, B> <A - {a}, E (A-{a})>,
<A - {b}, E- (A -{b})>,
<A -{a b}, E (A-{ab})>
<A, EX(@)>, <A, E(b)>, <A, E°({a, b}) >
of sub-hypernets of <A, E>. Then
(1) Lets] A-{ab}.d(s) in<A, E>is? itsvdueindl the other members of the ligt. Its
vauein <A, E5(@)>is? itsvduein<A - {a}, E- (A - {a})>,in<A - b}, E- (A - {b})>,in
<A-{a b}, E (A-{ab})>andin<A, E (a)>, <A, E° (b)>and <A, E° ({3, b})>. Its
vauein<A - {a}, E- (A - {a)>is3 itsvduein<A - {a b}, E- (A - {a b})> and its
vauein<A, E ({a b})>is? itsvduein<A - {a, b}, E- (A - {a b})>. Further, its vaues
in<A, E° (8)>, <A, E° (b)>and <A ,E‘{ab})> are? itsvduesin <A, E [a]>, <A, ET[b]>
and <A, E “[{ a b}]> respectively.
(2) Vertex adjacency and edge adjacency in<A - {a, b}, E- (A - {4, b})> ensures these
adjacenciesin dl the other members of the list.
(3) Fordl s tT (A - {a b}) thelength of the shortest s % t pathin
<A - {a b}, E (A-{a b})>is? thelength of the shortest s ¥ t path in each of the other
members of theligt.
(4) If <A, E°({a, b}) > is connected then so are <A, E5(a) >, <A, E°(b) > and <A, E>. Every
component of <A, E({a, b}) > is a sub-hypernet of acomponent of <A, E>.
(5) Every vertex basis of <A, E°({a, b}) > contains a vertex basis of <A, E°(a)>, of
<A, E(b)>, and of <A, E>.”
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11. Hypertrees

Definition 11.1: A hypernet <A, Er>iscdled ahypertreeiff <A, Er>isminimdly connected
in the sense that deletion of any E T Er will disconnect <A, Er>."

Asadirect consequence of the definition we see that
Every hypertree is connected.
A hypertree has no circuits, where, for the purposes of this chapter only, the term circuit
includes closed paths of length 2.
For every a, b1 A of ahypertree <A, Er>, either | ({a, b}) = £ or | ({a b}) isasingleton.
For every a, b1 A of ahypertree <A, Er>, there exists one and only one path a4 bin
<A, Er>.

Theorem 11.1: Thefollowing Satements are logicaly equivaent:

(1) T=<A, Er>isahypertree.

(2) T isconnected and has no circuits.

(3) T isconnected and has VA~ 1 edges each of which labels a distinct vertex adjacency.
(4) T hasno circuits, and has VAY2- 1 vertex adjacencies each of which has asingleton label.
(5) Fordl a bl A, thereisprecisdy onepatha¥ binT.”

Proof:

(1) b (2): If Tisahypertreethen it isminimaly connected, 0 it is connected. Assume that
thereisadircuit in T. Then ddetion of any edgein this circuit cannot disconnect T, 0 T is
not minimally connected. It followsthat T has no circuits.

(2) P (3): If T isconnected then it has at least YAY2- 1 edges, and thus vertex adjacencies
with at least asingleton labe on each. If T has more than YAY2- 1 edgesthen it must have
at least one circuit. It followsthat T has precisaly YAY2- 1 edges. If two of these edges
label any one vertex adjacency in T then T hasacircuit. Since T has no circuits by (ii),
each edgein T must belong to asingleton labe on avertex adjacency.

(3) P (4): By theargument above, T can have no circuits asit is connected and has YAY2- 1
edges. Since each edge labels a single vertex adjacency there are YAY%- 1 vertex
adjacencies, and each of these has asingleton label consisting of a unique edge, though we
may have edgesthat are equa sets of course, because T has no circuits.

(4) b (5): T hasno drcuits, and has YAY2- 1 vertex adjacencies each with asingleton labdl. It
followsthat T is connected, sofor a, b1 A thereisat least onepath a¥s bin T. Suppose
there was another distinct path betweenaand b in T. Then T would have at least one
dircuit. It followsthat for dl a, b1 A thereisaunique patha¥ binT.

(5) P (1): T hasprecisaly onepatha¥% bfordl a bl A, so T is connected. Deletion of any
edge on such apath will disconnect T, so T isminimaly connected, and hence T isa
hypertree. ™

Definition 11.2: A vertex al A of ahypertree T = <A, Er> is caled apendant of T iff
d(@ =1. Any al A that isnot apendant hasd(a) 3 2 and iscaled an internal vertex of T.”

V)
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Sinceatree T = <A, Er> has VAY2- 1 vertex adjacencies, each with a singleton labd,
summing over dl al A yidds S d(a) = 2 (YAY2- 1), and this number is divided among the
YAYsverticesin such away that noal A hasd(@) = 0. If YAY3 2, so that the sum of the
degreesis?® 2,then T has at |least two pendants. Deletion of any interna vertex from any
hypertree T will disconnect T. ~

Theorem 11.2: Andemental A of ahypertree T = <A, Er> isapendant of T iff thereis
precisely oneedge B 1 Er with E = {&} and precisdly oneedge 51 Er with{a I E.~

Proof: If al A isapendant thenwe must haveasingleedge 1 Er with{a} | E, and §
must be adjacent to some E T Er by a This means that we must have E = {&} so that d(a) = 1
(snce E ={a} does not contribute an arc to <A, Er>: E isadummy edge that is not counted
in Y1), Further, there can be no other B¢ T Er that is adjacent to any other edge than
because then d(a) would not be 1 and so awould not be a pendant of T. Conversdly, if we
have precisdy one E 1 Er with E ={a} and precisely oneedge E 1 Er with{a} | E thenit
isclear that d(@ = 1, soaisapendant of T. "

For every pendant al A of ahypertree T = <A, Er> we thus have a single singleton edge
E1 Er with E={a&}, not counted in Y&r%2

Theorem 11.3: Deletion of apendant al A from ahypertree T = <A, Er> will disconnect T
iff thereis at least one vertex adjacency (¢, B, d), c,dT AandET Er,witha! candat d
andal (E—{c,d}),andd(@ =1."

Proof: If only apendant aiis deleted from T then thiswill not disconnect T, so if this deletion
isto disconnect T then deletion of amust delete at least one edge not incident with afrom T.
Conversdy, if al A andal (E —{c, d}) for some(c, E, d) in T then deletion of afrom T
will disconnect T, and Snce d(@) = 1, aisapendant. ™

Definition 11.3: Given any connected hypernet <A, E>, T =<A, Er>withEr | Eissaidto
be a spanning hypertree of <A, E> iff T isaminimaly connected sub-hypernet of <A, E>.”

Theorem 11.4: Every connected hypernet <A, E> has at least one spanning hypertree. ™

Proof: <A, E> is connected. By part (i) of theorem 11.1, if <A, E> hasno circuitsthenitisa
hypertree and is of course spanning. If <A, E> has acircuit, delete one edge on that circuit
and test the result. Either it is connected and has no circuits, so it is a spanning hypertree, or it
is connected and has a circuit. In the latter case, delete one edge on that circuit and test the
result. Either it is connected and has no circuits, so it is a spanning hypertree, or it is
connected and has a circuit. Proceeding in this manner we produce a spanning hypertree thet
isasub-hypernet of <A, E>.”

Let <A, E> beahypernet and let T = <A, Er> be aspanning hypertree of <A, E>. The
YETY= YAY> 1 edges, not counting the singleton dummy pendant edges, are called branches
of <A, E>withrespectto T, and theremaining | E — Er | edges of <A, E> are called chords
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of <A, E>with respect to T. Since any hypernet <A, E> issuch that A is partitioned by the
components of <A, E>, and since each of these components has at least one spanning
hypertree, <A, E> can be spanned by aforest of k spanning hypertrees where k is the number
of components of <A, E>, and of course k = 1iff <A, E> is connected.

Consider a connected hypernet <A, E> and aspanning hypertree T = <A, Er> of <A, E>.
Now there may be another spanning hypertree T" = <A, E'1> of <A, E> that differsfrom T
only inasmuch as for at least one vertex adjacency (a, B, b) in T, T hesinit the vertex
adjacency (a, E ,b) witha b1 AandE,E1 E,ET Er,E1 Er,andE ! E. Thisleadsto
the following definition.

Definition 11.4: Let T = <A, Er> be a gpanning hypertree of a connected hypernet <A, E>.
Thejoin of dl the spanning hypertrees of <A, E> that have precisaly the same vertex
adjacencies{a, b}, a, b1 A, asT but are pairwise different in at least one vertex adjacency by
virtue of containing that vertex adjacency by anedge 1 E different fromtheedge E T Er

by which the same two vertices are adjacent in T, iscdled aspinney of <A, E>.”

A spinney has no circuits.

Theorem 11.5: Let <A, E> be a connected hypernet. A sub-hypernet <A, Er>, Er | E, of
<A, B> isa spanning hypertree of <A, E> iff, for dl a, bl A, transfering any

ET (I {ab})-11{ab}))tol t({a b}), wherel 1 isthelabdling function of T, yiddsa
connected spanning sub-hypernet <A, (Er E {E})> of <A, E> such that <A, (Et E {E})> has
precisaly one closed path of length 2.~

Proof: If trandferring any edge from (I ({a, b}) —1 1({a b})) tol +({a b}) yiddsa spanning
ub-hypernet of <A, E> that has precisaly one closed path of length 2 then <A, Er> is
minimally connected and must be a spanning hypertree of <A, E>. Conversdly, if <A, Er>isa
spanning hypertree of <A, E> then trandferring precisaly one edge E from

(I {ab})-1t{ab})tol r({a b})foranya bl A that are vertex adjacent in <A, Er>will
yield at least one closed path, with verticesaand bin <A, (Er E {E})>, since<A, Er>is
minimaly connected. The trandfer cannot yield more than one such closed path unless

4 1({a, b} )¥2> 1 before the transfer, which isimpossible since <A, Er> isahypertree and
thus4 +({a b} )= 1."

Definition 11.5: Let <A, E> be a connected hypernet and let T = <A, Er> be agpanning
hypertree of <A, E>. A closed path formed by trandferring precisdy one edge E from
(E—Ey) to Er to produce <A, (Er E {E})> iscaled afundamental circuit of <A, E> with
respect to T. The number of chords, and hence the number of fundamenta circuits, of a
connected hypernet <A, E> isthe same with respect to every spanning hypertree <A, Er> of
<A, E>. Thisnumber is cdled the cyclomatic number n(<A, E>) of <A, E>, and isgiven by
n(<A, B>) = VEY- (VAY2- 1) = AE - Er)Ye= VEY2- VEY2"

Wewill not pursue atheory of circuitsin this report.
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It isclear that closed paths of length 2, not regarded as circuitsin hypernetsin generd, area
source of some embarrassment when dealing with circuits in a hypernet. We will see, in later
sections, that in certain hypernets the problem effectively disappears.
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12. Connectivity and cut-sets

Definition 12.1: Let <A, E> be aconnected hypernet. R I Eisan edge cut-set of <A, E> iff
<A, (E — R)> isadisconnected sub-hypernet of <A, E> and no proper subset of R has this
property. V | A isavertex cut-set of <A, E> iff <A -V, E- (A-V)> =<V’ E- V®>isa
disconnected sub-hypernet of <A, E> and no proper subset of V hasthis property.

Observations: Let <A, E> be a connected hypernet.

(1) {a | Aisavertex cut-set of <A, E> iff aisacut-vertex in <A, E>.

(2) IfRI Eisanedgecut-set of <A, E>andevery E1 Rissuchthatal E,al A, butis
not adjacent with any vertex by E , then aisacut-vertex in <A, E>.

(3) If we partition A into two sets A; and A, then any minima set of edges of <A, E> the
deletion of which cuts dl the pathsa; % a withay T A;anda 1 A, isan edge cut-set of
<A, BE>. Any minimd st of vertices of <A, E> with the same property is a vertex cut-set
of <A, B>.

(4) T =<A, Er>isahypertreeiff every E 1 Er congtitutes an edge cut-set { E}} of T. Further,
{c} | Aisavertex cut-set of <A, Er>, i.e cisacut-vertex of T, iff cisan interna vertex
of Torcissuchthatc1 E —{a, b} for at least one vertex adjacency (a, E, b) in T with
a,bl Aandc! aandc! bandE1 Er.”

Definition 12.2: Let <A, E> be a connected hypernet. The smalest number of vertices that
must be deleted from <A, E> to disconnect it is caled the vertex connectivity ve <A, E> of
<A, E>, and the smallest number of edges that must be deleted to discomect <A, E> iscdlled
the edge connectivity ec <A, E> of <A, E>.”

Recall that deleting a vertex adjacency (a, £, b) from ahypernet <A, E> meansto delete E
from| ({a, b}), and that this does not delete the arc between aand b unless| ({a, b}) = {E}.

Theorem 12.1: Let <A, E> be aconnected hypernet. Then
vC <A, B> £ ec <A, E> = minimum degree min d(a) of dl theal A in<A, E> when loops
aredisregarded. ~

Proof: We can clearly disconnect <A, E> by deleting min d(a) edges from <A, E>, thereby
cutting off vertex a. Deletion of these edges E can be achieved by deleting one vertex from
each of these edges E other than vertices adjacent by that E (one of which is of course @). It
follows that, Snce these vertices need not dl be distinct for distinct edges,

VC<A,E>£ ec<A, E>. Itisclear that ec <A, E>=min d(a). ~

Theorem 12.2: R Eisan edge cut-set of aspinney S= <A, E> iff thereis at least one pair
{a,b} [ AforwhichR=I ({a b})."

Proof: If R=1 ({a b}) then deletion of R from Swill disconnect S and no proper subset of R
will "cut” afrom b, so R isan edge cut-set of S. If R isan edge cut-set of Sthen deletion of R
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from Smust ”cut” the arc between two verticesa, b1 A in S. It followsthat R=1 ({a, b})
and no proper subset of R will "cut” afromb. ™

Theorem 12.3: Every edgecut-set R | E of aconnected hypernet <A, E> is such that at least
one edge from every spanning hypertree of <A, E> belongstoR. ™

Proof: If deletion of R from <A, E> does not entail deletion of at |east one edge from each
spanning hypertree of <A, E> then there will remainin <A, E — R> at least one spanning
hypertree of <A, E>. But then <A, E — R> is connected, so R cannot be an edge cut-set of
<A, B>. It follows that deletion of an edge cut-set from <A, E>"cuts’ every spanning
hypertree of <A, E>.”

Theorem 12.4: Every closed path of length > 1, in a connected hypernet <A, E>, has an even
number of edgesin common with every edge cut-set of <A, E>.”

Proof: LetR [ E bean edge cut-set of <A, E>. Deetion of R from <A, E> will partition A

into two subsets, A; and Ay, in<A, E —R>insuchaway thetforany ag T A; andany a1 A;
thereisno path & % & in<A, E — R> because thereis at least one member of R on every
such path. Consider any closed path Pin <A, E>. If dl the vertices that lie on this closed path
belong to A;, or if they dl belong to A, then R has zero edges in common with that path. If
some of the vertices on P belong to A; and others to A,, then P must cross back and forth
between A; and A,. Start tracing Pat &g T Az for example. P must end at &, S0, in tracing P,
every time we moveto A, with an edge on P we must move back to A; with another edge on

P (since Pisapath). Thus P shares an even number of edgeswith R.

Definition 12.3: An edge cut-set R of a connected hypernet <A, E>issaidtobea
fundamental edge cut-set with respect to a panning hypertree T = <A, Er> of <A, E> iff one
and only oneedge of T belongstoR. ~

The number of fundamenta edge cut-sets of <A, E> with respect to T is (YAY2 1), regardless
of which spanning tree T of <A, E> ischosen. Recall that the pendants of a hypertree (or
spinney) T = <A, Er> each belong to a singleton edge, but such edges are dummy edges that
dlow usto have apath incident with a pendant and are not counted among the edges of Er.

Theorem12.5: With respect to a given spanning hypertree T = <A, Er> of a connected
hypernet <A, E>, achord edge of <A, E> that determines a fundamenta circuit P of <A, E>,
when trandfered to T, belongs to every fundamenta edge cut-set of <A, E> associated with
those branches of <A, E>, i.e. edges of T, that belong to P, and that chord belongs to no other
fundamental circuit, in <A, E>, withrespectto T. ~

Proof: Consder the branches of <A, E>, with respect to T, that liein P. Associated with each
of these branches there is a fundament edge cut-set of <A, E> that hasthe relevant branch asa
member. Now the chord presents, with other branchesin P, a“way round” the branch that
determines this fundamenta edge cut-set, so to disconnect <A, E> our chord must belong to
this fundamenta edge cut—set. Next, suppose that our chord belongs to both fundamental
circuit P and to another digtinct fundamental circuit P, both in <A, E> and with respect to T.
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Now our chord then lies on both P and P, and all the other edgesin P and P are branches of
<A, E> with respect to the same spanning hypertree T = <A, Er>, i.e. they are members of E.
Now we can move from one end vertex of our chord through P to the other end vertex of our
chord, and then back through P* to where we started. Then we have traced awalk that is either
aclosed path, or which determines more than one closed path, usng only edgesin Er. This
contradictsthe fact that T = <A, Er> isagiven hypertreein <A, BE>.”

Theorem12.6: A sst R E isan edge cut-set of aconnected hypernet <A, E> iff <A, E - R>
= <A, R®>isamaxima disconnected spanning sub-hypernet of <A, E> in the sense that for
dlR withEil RI E <A, R>isaconnected hypernet.

Proof: If R Eisanedge cut-set of <A, E> then <A, R°> is a disconnected sub-hypernet of
<A, E> andnoRsl R hasthisproperty, soif R issuchthat R 1 R then <A, R™>is
connected, i.e. <A, R° >isamaxima disconnected spanning sub-hypernet of <A, E>.
Conversdly, if <A, R >isamaxima disconnected spanning sub-hypernet of <A, E> then
ddletion of R from <A, E> disconnects <A, E>, and deletion of any R’ Rwill not
disconnect <A, E>, i.e. <A, (R')° > is connected. It follows that no proper subset of R will,
when deleted, disconnect <A, E>, so R isan edge cut-set of <A, E>.”

Constructional Scheme 12.1: LeeR | E be any disconnecting set of edges of a connected

hypernet <A, E>. To find an edge cut-set included in R we may proceed as follows.

(1) Aindany BT R suchtha E isabridgein <A, E>. Then{E¢} | Risan edge cut-set of
<A, E>. If thereis no such member of R, proceed to (2).

(2) Chooseany BT Randform <A, E—{E}>. Findany 51 R—{EJ} suchtha §isa
bridgein <A, E —{EJ}>. Then {Ex, E} | Risan edge cut-set of <A, E>. If thereisno
such member of R — {E}, set Ry = {E} and proceed to (3).

(3) Chooseany En T R- Ry andset R, ={En} E R'y. Form <A, E - R, > (whichis
<A,E—{En, E}>here). Findany 51 R- R, suchtha F isabridgein <A, E - R', >.
Then R, E {E} isan edge cut-set of <A, E>. If thereis no such member of R - R'y, repeat
(3) defining R = {E} E R'm.1, m=3, 4, ..., successively. Eventually we find an edge cut-
set Ry, or wefind Ry, = R, for somen, in which case R is an edge cut-set of <A, E>.”

The scheme works because we know that R is a disconnecting set so there must be an edge
cut-set included in R, and we keep “weakening” <A, E> by taking out members of R from
<A, B> successively until wefind, in R, abridge of <A, E - Rw> in which case

R'm E {bridge} isan edge cut-set of <A, E>, or we do not find a bridge in any step in which
case Risan edge cut-set of <A, E>.

Theorem 12.7:B A isavertex cut-set of aconnected hypernet <A, E> iff B isaminima
st of vertices such that for every spinney S of <A, E> thereis at least one internd vertex of S
that belongsto B, or thereis at least one vertex adjacency {a, b} inSsuchthat al B and

bi BandeveryET | {a b}) has(E —{a b}) C B A or both.~

Proof: Supposethat B isavertex cut-set. Then if the condition does not hold deletion of B
from <A, E> will leave @ least one hypertree T B <A, E>, s0<A - B, E - (A —B) will be
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connected, contradicting the fact that B is a vertex cut-set of <A, E>. Conversdly, if the
condition holds then deletion of B from <A, E> disconnects every spinney S <A, E>, and
thusdso <A, E>. Snce B isminimd, B isavertex cut-set of <A, E>.”

Theorem 12.8: Let <A, E> be aconnected hypernet and B | A be avertex cut-set of <A, E>,

and let Sbeany spinney in <A, E>.

(1) Supposethat <A, E — E- B> isconnected, and let T = <A, Er> be a spanning hypertreein
S. T =<A, Er>isagpanning hypertree of <A, E — E- B> iff evay E 1 Er issuchthat
ECB=A

(2) If T =<A, Er>isaspanning hypertreein <A, E — E(B) > then at least one internd vertex
of Shdongsto B. ”

Proof: Recdl tha E- B={E T EX%:E | B! A.

(1) If Tisaspanning hypertree of <A, E —E- B > thenevery E 1 Er hasE C B because if
this were not so then E would not be amember of E — E- B but would belong to E- B and
could thus not belong to a spanning hypertree in <A, E — E- B >. Conversdly, if every
E1 ErhasE CB=/AthenevayE1 Er bdongsto E — E- B, soddetionof E-Bi E
from <A, B> does not affect T = <A, Er>. T isagpanning hypertreeof SB <A, E>, 0T
isaspanning hypertree of <A, E — E- B>.

(2) Recdl that E(B) | E,B i A, of <A, E>isthesst E(B)={E; 1 E%4{a E,b),a bl A and
(E—{a b}) CB! A}, i.e theset of dl edgesin the name of at least one member of B.
Now T = <A, Er>isagpanning hypertreein <A, E — E(B)>, and B is a vertex cut-set of
<A, E>s0<A —B, E- (A —B)> isdisconnected. Thus ddetion of dl the edges of E(B)
leaves <A, E — E(B)> connected, so <A, E — E(B)> has a spanning hypertree T, but
deletion of B from <A, E> leaves<A — B, E- (A — B)> disconnected, and this can only
happen if B contains at least one internd vertex of T so that deletion of B from <A, E>
will disconnect <A, E> but deletion of E(B) from <A, E> will not disconnect <A, E>.”

Corollary 12.1: Let T be a gpanning hypertree of a connected hypernet <A, E>, and let
<A, B> be disconnected by deleting the vertex cut-set B from <A, E> by virtue of deletion of

internd verticesof T only. Then T isa spanning hypertree of <A, E —E(B)>.

Proof: follows a once from the fact that deletion of E(B), only, from <A, E> will not
disconnect <A, E> but ddetion of B, and thus E(B), and in fact E [B], from <A, E> will
indeed disconnect <A, E> because a least oneinternd vertex of T belongsto B.

Theorem 12.9: LetB i A beavertex cut-set of aconnected hypernet <A, E>. Then

<A, E — E(B)> is disconnected iff every spinney S of <A, E> hes at least one vertex adjacency
{ab},a bl A suchthaevery ET | {{a b}) has(E —{a b}) C B! A wherel sisthe
labelling function of S.”

Proof: If <A, E — E(B)> is disconnected, by ddeting only E(B) from <A, E>, then every
spinney S of <A, E> is disconnected by the deletion of E(B) from <A, E>. To do this, deletion
of E(B) from any spinney S mugt involve deletion of at least one arcin S. Thus there must be
an{a b} inSsuchthat| {a b}) 1 E(B), soforeachE1 | §{a b}) wemust have
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(E—{a b}) CB! A Convearsy, if every spinney Sin <A, E> has a least one vertex
adjacency {a, b} suchthatevery BT | ({a b}) has(Ei—{a b}) CB* A& i.e
| {{a b}) | E(B),then<A, E —E(B)> isdisconnected. "

Theorem 12.10: If al A isacut-vertex of aconnected hypernet <A, E>, but not of
<A, E — E(@>, then

E@ ={E 1 E¥%(c, E, d) isavertex adjacency by E in<A, E>and al (E —{c, d})}
includes an edge cut-set of <A, E>.”

Proof: Ddetion of al A from <A, E> leaves us with a disconnected hypernet

<A —{a&}, E (A —{&a)>, but deletion of afrom <A, E — E(a)> leaves it connected, i.e.

<A —{a}, E — E(a)> isconnected. Note that E — E(a) isthe set of dl the edges of E that are
not in the name of a, while E- (A —{a}) isthe set of al edgesthat do not have ain them, so

E- (A—{a) i (E-E(@).Intheorem 10.4 on deletion of vertices we showed that if aisacut-
vertex of <A, E>,i.e.is(1, 0) in<A, E>, thenitis(1, 0) or (0, 0) in <A, (E@@)*> =

<A, E —E(a8>. Now aisnot acut-vertex in<A, E —E(@>, soitisnot (1, 0) in<A, E — E(a)>
and must thus be (O, 0). Thus <A, E — E(a)> is disconnected, so E(a) must be a disconnecting
st of edgesin <A, E> and hence E(a) includes an edge cut-set of <A, E>. ™

Finally, we notice that if <A,E> isconnected but <A ,E — E (a)> is disconnected, then ais a cut-vertex of <A E>.
The contrapositiveis: If aisnot acut-vertex of <A,E> then

<A, E - E (a) > is connected.
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13. Blocks

Definition 13.1: By ablock <B, G> of ahypernet <A, E> we mean amaxima connected sub-
hypernet, of <A, E>, that has no cut-vertex. ~

Any block of <A, E> isasub-hypernet of acomponent of <A, E>.

Theorem 13.1: If <B, R>isablock of ahypernet <A, R> then <B, R> isa sub-hypernet of
some block of ahypernet <A, E>withRi E.”

Proof: If <B, R>isablock of <A, R>thenit isasub-hypernet of <A, E>. Since <B, R> must
then be a connected sub-hypernet, of <A, E>, with no cut-vertex, it is a sub-hypernet of some
maxima connected sub- hypernet, of <A, E>, that has no cut-vertex, so <B, R> isasub-
hypernet of some block of <A, E>.”

Theorem 13.2: Let <B, G> be ablock of ahypernet <A, E>, with ¥BYZ 3. Then

(1) thereisnobT B suchthat <B, G — G(b)> or <B —{b}, G- (B —{b})>isin Co, and
(2) thereisno bridgein <B, G>, and

(3) ifevary BT G has¥EY2> 2 then thereisno bridgein <B, G>.~

Proof:

(1) <B, G> is connected. If therewere some b1 B such that <B, G — G(b)> or <B —{ b},
G- (B —{b})> were disconnected then b would be a cut-vertex of <B, G>, s0 <B, G>
would not be a block.

(2) Supposethat E 1 Gisabridgein <B, G>. Then thereis avertex adjacency (a, Ei, b),
a, b1 B, that providesthe only path between aand b in <B, G>. Since<B, G> is
connected, and ¥BY2 3, it followsthat at least one of aand b is a cut-vertex of <B, G>.
This contradicts the given fact that <B, G> isablock.

(3) If every E 1 G of the block <B, G> has ¥E¥%> 2, then consider a vertex adjacency
(a Ei,b),a bl ET G.If Eisabridgein <B, G>then ddetionof any c1 (E —{a, b})
will disconnect <B, G>, so ¢ would be a cut-vertex of <B, G>, which isimpossible. It
followsthet thereisno bridgein <B, G>.

Corollary 13.1:

(1) If aand b are digtinct vertices of <B, G> then, fordl ¢l B,c! aandc? b, thereisat
least one path a% b that doesnot go viaany 1 G for whichcl E.

(2) If E1 Gisabridgein <B, G> then YEY2= 2.

(3) Fordl al B, there are no two distinct verticesb, ¢ B such that every path b % cin
<B, G> goes via some vertex adjacency (d, E, f) withal (E—{d, f})."

Proof:
(1) Followsfrom thefact that c is not acut-vertex of <B, G>, so <B, G — G(C)> is connected.
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(2) IFET Gwith/E Y2 2 were abridge in <B, G> then, given any vertex adjacency
(a E,b)by Ein<B,G> abl B,eachcl Bwithcl (E —{a b})would beacut-
vertex of <B, G>.

(3) If thereweresuch anal B it would be acut-vertex of the block <B, G>.”

Theorem 13.3: The following assartions are logicdly equivaent:

(1) <B, G>isablock, of hypernet <A, E>, with ¥B%2 3.

(2) For dl digtincta, b, cT B of ahypernet <B, G> b <A, E> there exists at least one path
a¥—c,in<B, G>, which issuch that b isnot betweenaand cona¥—c, and <B, G>isa
maxima such sub- hypernet.

(3) For al distincta, b, c1 B of ablock <B, G> D <A, E>, there exists a path P joining
aand cin <B, G> that satifies the following conditions:

a) P; haslength 3 2.

b) Givenany b1 (B —{a, b}) such that b is between aand c on Py, it is dways possible to
find apath P joining aand c in <B, G> such that b is not between aand c on P,, and

<B, G> isamaxima such sub-hypernet of <A, E>."

Proof:

(1) b (2): There certainly exits apath a¥%s— c in <B, G> because <B, G> isablock with
¥BY23 3. Now bisnot a cut-vertex of <B, G>, so we do not have (a- b - ¢), i.e. bisnot
between aand c on every path a%:— cin <B, G>. It follows that there is a least one path
a¥—cin<B, G> such that b is not between aand ¢ on that path. Because <B, G>isa
block it isamaxima such sub-hypernet of <A, E>.

(2) b (3): Thereisapath joining aand ¢ in <B, G> such that b is not between aand ¢ on that
path. Let P, bethe patha%—b % —c, so P; haslength 3 2, and P; exists because, from
(2), every pair of verticesin B are joined in <B, G>. Further, we know from (2) that there
exigsapath a¥%2— ¢, in <B, G>, which is such that b is not between aand c on that path.
Any such path will do for P,. Findly, maximdity of <B, G> from part (2) remainsvalid
because we have only used (2) to derive (3).

(3) P (1): Weknow that ¥BY23 3 becausethe length of Py isat least 2. Further, al digtinct a
andcin B arejoined in <B, G>, s0 <B, G> is connected. Now there are no distinct
a,b,cl Bsuchthat (a- b - ¢), for in choosing Py as the concatenation of paths
a¥2—b ¥ — c wewould then not be able to find a path P joining aand ¢ such thet b is not
between aand ¢ on P.. Thus <B, G> a0 has ho cut-vertices, and we have derived (1). ™

Theorem 13.4: Let <By, Go> and <Bsy, G1> be digtinct blocks, of ahypernet <A, E>, for
which By C By = Bo1 ! /& Then By = {b}, asingleton, and givenany al (Bo — Bo1) and any
cl (B1—Boy), bisbetween aand c on every patha¥%—cin<By E By, Go E G>,i.e.
(a-b-c)in<Bg E By, G E G;>."

Proof: <Bg E B, Go E G;>isclearly not ablock in <A, E>, and By ¢ A, which meansthat
<Bo E B1, Go E G;> isaconnected sub-hypernet of <A, E>, so there exists at least one

b1 Bo E B; suchthat bisacut-vertex of <By E By, Go E Gi>. Now b1 (Bo — Boy) for, if it
were, then b would be a cut-vertex of <By, Go>, but <By, Gp> isablock. Smilarly

bl (B1—Bo1), sowehavebl Bos. Letpl Bor, withp? b. Thenwe canfind apatha¥—p
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in <Bo, Go> such that b is not between aand p on a % — p because b is not a cut-vertex of
<Bo, Go>. Smilarly we canfind apath p % — cin <Bj, G;> such that b is not between p and ¢
on p ¥a— ¢ because b is not a cut-vertex of <B;, G;>. But then b is not between aand c on the
concatenation of paths a % — p % — ¢, which contradicts the fact that b must be a cut-vertex of
<Bo E B, Go E G;>. Thusthereisnosuchpi Bo1, S0 Bor = {b}, and since b is a cut-vertex
of <By E By, Gy E G;> it follows that b must be between aand ¢ on every path a%—cin
<Bo E By, G E G;>whereal Bpandcl Byanda! bandct b.”
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14. Second inter mission

We now move to transcription of some of the theory of Concept- Relationship Knowledge
Structures (CRKS's) developed in Part | of [GV S99], describing the hypernet equivaent of a
CRKS and examining some of its features. We will let the vertices of such hypernets

represent concept-names as for CRKS's. In a CRKS each tuple of concept- names comesfrom
a statement of relationship between the concept-names in that tuple. Two main festures arise:
Firgt the occurrences of concept-names are ordered by the relevant statement of relationship,
thus giving rise to atuple of those concept-names and hence a direction from the first
concept-name in the tuple to the last, and second, a given concept-name can appear more than
onceinatuple.

In the hypernet equivaent of a CRKS each tuple of the CRKS is represented by an edge that
is precisaly the tuple set of, i.e. the set of concept-names of, that tuple. Asaresult we lose all
direction — arrows become arcs — and a concept-name can only occur once in the edge
equivaent to the relevant tuple. Thusagiven set ST A of ahypernet <A, E> can be
associated with severd different tuples al of which have the same tuple s, but thereisa

1 — 1 correspondence between the set of tuples of agiven CRKS and the set of edges, and
therefore the set of vertex adjacencies, of the equivaent hypernet.
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15. Concept-Name Relationship Hyper nets

Definition 15.1: By aconcept-name relationship hypernet, or CNR-hypernet, we mean a

hypernet <A, E> inwhich

(1) A isaset of concept-names and

(2) eachedgeE 1 E can beregarded as the tuple set of atuple of concept-names thet arises
from a statement of relationship among those concept-names. ™

Definition 15.2: A CNR-hypernet <A E> iscdled aformal hyperschema iff

(1) fordlal A,al E1 Eforatleast onenon-singleton edge B, so E [d] ¢ /A whenwe
disregard singleton edges. Thuseach al A isassociated with at least one other vertex of
<A, B>

(2) <A, E> hasno circuits, i.e. no closed paths of any length other than 2.

(3) Thereisat least onepi A a whichthereisaspecid singleton edge B, 1 E with
E, ={p}, and p also belongsto a least one other £ T E. Each such pis called aprimary
of <A, B>

(4) Thereisat least onegl A a which thereisaspecid singleton edge Eg1 E with
Ey={g}, and g dso belongsto at least oneother E T E. Each such giis called agoal of
<A, E>. (Wewill diginguish primaries from goals later.)

(5) Thereare no singleton edgesin <A, E> other than those at primaries and gods, and no
singleton edgeisused on any pathin<A, E>.

The reason for the Singleton edges is that pathsin <A, E> can “gsart” at primaries and
“terminate’ a goas. We will show later how it is possible to regard al paths as having afixed
direction in certain CNR-hypernets.

Definition 15.3: A forma hyperschema <A, E> is said to be completeiff it has no isolates. ™

Note that no forma hyperschema can have complete isolates.

Theorem 15.1: If aformd hyperschema <A, E> is connected then it is complete, but the
converseis not dwaystrue.

Proof: If <A, E> is connected then it has no isolates, so <A, E> iscomplete. To prove that the
converseis not dways true we exhibit the following forma hyperschema, which is complete

but not connected
c d

I {ac}) | ({b, d})

a b
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wherel ({a c}) ={E} and E ={a, b, ¢} and where| ({b, d}) ={E} and E ={b, d} for
example. Notice in passing that if we delete b, for example, then we get

CH am dm

Definition 15.4: The context-hyperschema of al A inaforma hyperschema <A, E> isa
hypernet <A, E>[a] = <A[4d], E[a]> D <A, E> that is defined asfollows. E[d] is, as defined
before, theset of dl E 1 Ethat haveal E, and A[a] ={b1 AY:bbdongsto at least one of
theE 1 E[d}.”

Thuswe canwrite A[] ={E E %E 1 E[d)}. Since E[d] = E- A [d], because E- A[4] isthe
stofadl ET EwithE | A[a) and each such § must haveal E given thet

Alal ={E E¥E 1 E[4]}, we can also write <A ,E>[d] = <A[d], E- A[d>, the maximum sub-
hypernet of <A ,E> that isinduced by A[a] | A. So <A,E>[a] = <A[d], E[d]> =

<A[al, E- A[a]>. (See definitons 2.15, 4.1, and 4.8)

Definition 15.5: A betweenness sequence for a path-family f(ay % a&,) inaformd
hyperschema <A, E> isfound asfollows. Firg, for dl themembersof | ({&, a+1}),1=1, 2, ...,
n- 1, for each vertex adjacency inf(ay % a&,), by whichg and g+ areadjacent inf(ag 3% &),
welig

a, Ei1, B2, ..., BEim(), a+1.
We then chain these ligts together in successon from & to a, for f(ay 3% a,). Next we write
out each Ex in the sequence, i.e. we replace each Ex by the members of the set
{vl Aww1 Ey}, getting asequence of members of A starting with & and ending with a,.
Thisis a betweenness sequence for f(ay 3% a,) in <A, E>. Such a betweenness sequenceis
clearly not unique. (Note that a path-family is not empty, and it may only have one member.)
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16. Derivability in a Formal Hyper schema

Definition 16.1:

(1) Given any forma hyperschema<A, E>andasst X | A, wesay that al A isimmediately
derived from hypothesis X iff thereisat least onex T X and at least one E T E by which
thereisavertex adjacency (X, B, an() = 8), with every member of (E —{X, an)}) a
member of X.

(2) Given any forma hyperschema<A, E>andasst X | A, wesay thatal A isderivablein
terms of hypothesis X in <A, E> iff thereisapahp¥% a, p1 A, in<A, E> such that
there exists at least one betweenness sequence Sfor p % awith the property that for
evarytl Swehave
a) tisaprimary of <A, E>or
b)tT Xor
) tisimmediatdy derived from asubset of §, where S isthe set of dl predecessors of t
inS.

(3) Wesay that al A isderivable from Pin<A, E>, or smply derivablein <A, E>, where P
isthe set of dl primaries of <A, E>, iff aisderivableinteemsof some X | A, by virtue of
at least one path p % aand a betweenness sequence Sfor p % a with either X = A or
suchthat every x T X isderivablein terms of E.

(4) Ifal Aisderivablein <A, E>, by virtue of apath p % a, p aprimary of <A, E>, then
p ¥ aiscdled aderivation path for ain <A, E> and each such pathp % aiscadled a
derivation path for ain <A, E>, and ais said to be aderived vertex of <A, E>.”

Definition 16.2: A complete forma hyperschema <A, E> is cdled a Concept-Relationship
Knowledge Hypernet, or smply a CRKH, iff every vertex of <A, E> isderivablein <A, E>.”

Congder any CRKH <A, E>. Derivahility in <A, E> induces a certain sense of directionon a
CRKH in thefollowing way. Given any part of aderivation path, p % a of length® 1, ais
derived in terms of some of its predecessors in a betweenness sequence S, for p % athat
garts with p and endswith a

Now we can specify, in a (complete) formal hyperschema <A, E> that isa CRKH, how to
determinewhich of theal AwithanE 1 E suchthat E ={a} are primariesof <A, E> and
which are goals.

Simply stated, pisaprimary of <A, E> iff thereisasingleton edge E = {p}1 E and every

vertex adjacency {p, b} by oneor more 1 E that belongto | ({p, b}) is such that

(1) phesatrivid derivation by a path of length zero and a set of hypothesis X = A2 and

(2) bisderivable by virtue of an X that is a betweenness sequence, for the vertex adjacency
{p, b}, that starts with p and ends with b.

Next, gisagoal of <A, E> iff g hasasingleton edge B ={g}at it, and g isnot a primary of
<A, E>, and there is no vertex adjacency {g, a on any derivation path for any vertex al A in
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<A, E>. It isevident that, Snce every vertex of aCRKH <A, E> isaderived vertex, we must

have the following.

(1) Thereisa least oneprimary p1 A of <A, E> for which there exists at least one vertex
adjacency (p, E, b), b1 A, in <A, E> for which every member of (E; —{b}) isaprimary
of <A, B>

(2) Thereisat lesst onegod g1 A of <A, E> that is not in any betweennness sequencein
any but the last position.

We are now in apogtion to redefine circuits in the case of a CRKH: A closed derivation path,
of any length whatsoever, iscaled acircuit, and a CRKH has no circuits of any length (snce
singelton edges do not generate an arc at any vertex; here the primaries and goas of a
CRKH).

From this point on we can visudize a direction for every vertex adjacency {a, b}, a, b1 A,in
any CRKH <A, E>, the direction imposed by derivation. Thus we may replace arcs with
arrows in each CRKH.

Theorem 16.1: Let <A, E> bea CRKH. Thereis at least one path that joins each primary of
<A, E>tosomegod of <A, E> in <A, E>, and thereis a least one path that joins each god of
<A, E>to some primary of <A, E>in<A,E>.”

Proof: Let p beany primary of <A, E>. Thereis a least one derivation path incident with p.
Follow that path incident with p. <A, E> has no circuits, and thus this path must have afinite
length and can only be incident with agoa on the end of the path because no derivation path
can end with another primary of <A, E>. Let g be any god of <A, E>. Thereisat least one
derivation path incident with g. Again <A, E> has no circuits so this peath, which we follow in
the reverse derivation mode, must have finite length and must end with a primary on the other
end because it could not end with another goa of <A, E> unless we go with aderivation path
to that god, thus mixing forward and reverse directions aong that path, and thus generating a
semi-path that is not a path. ~

Theorem 16.2: Let <A, E>beaCRKH, and let al A be neither aprimary nor agoa of

<A, E>. Thenthereisat least one path p % gin <A, E>, p some primary of <A, E>and g
some god of <A, E>, such that alieson p %4 g, i.e. aisamember of the vertex subsegquence of
RN

Proof: Since <A, E>isaCRKH, aisaderived vertex in <A, E>. Since ais aderivable, there
isaderivationpathp ¥% a, p1 A, in<A, E>. By theorem 16.1 this path must continue on to
somegod of <A, B>

We now need to say something about paths in a CRKH.
Constructional Scheme 16.1: To congtruct a path tree, for a CRKH <A, E>, displaying and

ditinguishing every path from each primary of <A, E>. We will refer to vertices and edges of
<A, E> and nodes and branches of the tree.
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Note that we should bear in mind that derivation imposes directiondity on a CRKH. Itisclear
that if we follow pathsin a CRKH only in the “derivation direction” we will have no circuits

in any CRKH. Thisdirectiona ordering on pathsin a CRKH may appear just to reduce a
CRKH to aCRKS, but in the case of a CRKH we have

(1) achoice of the vertex by which two edges are adjacent in generd and

(2) no ordering, and no repetition, of vertices in the edges by which vertices are adjacent.

This degree of choice gives usthe potentid, for example, to use any teaching metalanguage
when we pick an interpretation of an CRKH in the educationd applications mentioned in
[GVS99]. The CRKH modd is more flexible than the CRK S one in applications, and we have
adrong link between the two models, to which link we will add more detall at alater stage of
thisreport.

Onefind point before we tackle the congtructional scheme: Derivability of avertex b by
virtue of apath a% b inaforma hyperscheme depends, for the induced direction of
derivation onto a¥% b, on the existence of at least one appropriate betweenness sequence for
a % b. Wewill see, in the following section, that there is a very specific characterization of
appropriate betweenness sequences. Now for the scheme.

First we introduce an unlabelled dummy node to serve as the root of the path tree, and one
only node for each primary of <A, E>. Connect each such node to the root with an unlabelled
branch, and label each non-root node with the appropriate primary concept-name from A.
From each node for avertex v 1 A the tree now develops asfollows. Find every vertex
adjacency (v, B, w) in <A, E> for which w is derived through v and E, and suppose that
E={v=c,Cy, .., C, .., Ch1, Cn}, and let ¢, =w. Thuswefind dl such edges E with
E={v=cyCy, ..., Ck, ..., Cn(i)-1, Cn(i)} fOr some n(i). We now plot anew node for each such
Cn(i), and insert a branch between each node for v and every node for each of these cy(;y. Each
such branch is now labelled with the edge E that generates it, and each node for a given ¢y is
|labelled with the concept-name for that c(;). Repest thisfor every E 1 E. The resuilting tree
exhibits, aong the paths from the root, every path from aprimary to agod in <A, E>, and
distinguishes these paths. Each primary of <A, E> is represented by one only node, and every
goal of <A, E> by at least one node. *

Congtructional Scheme 16.2: Find dl the paths between vertex u and vertex v in a CRKH
<A, E>. Because of the derivation induced directionality in <A, E>, we can think of ourselves
looking for dl paths“from” agivenul A “to” agivenvi A.

First we should note that we can run afast access cascade againg the derivationd direction in

any CRKH just as easly aswith this direction or without direction — see definition 4.7.

(1) Run afast access cascade backward from Ag = {V} in <A, E>. Let the resulting hypernet
be<A”,E’>. I1ful A thentherearenou %, v pathsin <A, E>.

(2) Iful A’, then proceed asfollowsin <A", E">. Find dl the edges that label avertex
adjacency which “gtarts’ with u. Let these edgesbe By, E, ..., En, and let their “end”
verticesbe vy, Vo, ..., Vk, ..., Vm-1, Vm respectivey.Eachtime v = v, k = 1, ..., m, we have
found apath u %4 v of length 1. Mark each such edge and its vertex adjacency inE” asa
u¥s v path edge.
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(3) Find dl the unmarked edgesin <A, E'> that “gart” with any v ¢ v among the vertex
adjacencies found and marked in step (2). We now plot atree asfollows

Vi1 Vo L Ve, Vm

from step (2), and then continue the development of the tree by inserting a separate branch
between each v 1 v of step (2) and the vertex w, T A" for each edge by which v is

adjacent with w,.

If any of these vertices wy, = v then we have now found dl theu % v paths of length 2in
<A",E’>D <A, E>. Again mark al the edgesand vertex adjacencies used in this step to
findu % v paths of length 2, and proceed to step (4) with al the unmarked edgesin E"and
dl thosewn T A" withw, * v.

(4) Repeat step (3) for the next leve of the tree, marking the edges and vertex adjacencies
used in each stage of the generation of u % v paths of lengths 3, 4, ..., if any, until dl the
usable edgesin E™ and their vertex adjacenciesin <A, E'> have been marked by this
procedure.
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17. CRKH Theorems

Theorem 17.1: Any complete forma hyperschema <A, E> can be generated by alimited
access cascade fomthe set Bo | A of dl the primaries of <A, E> iff evary al A isderivable
in<A, B> i.e <A, E>isaCRKH. "

Proof: If <A, E> is generated from By by alimited access cascade then, in each step of the
cascade, every new vertex generated belongsto an edge B T E which is such that every

vertex in E but the single new vertex, if any, isa primary or avertex generated in a previous
step. Thus for every new vertex v generated in step n of the cascade thereiis, at that stage, at
least one path p % v, of length n, in <B,,, Ex>, and each such path has a betweenness sequence
Sinwhichevaryt1 Sisderivedintermsof X I A witht primary, ortT X, ort

immediately derived from asubset of S. Now if tisprimary then tistrividly derivable from
aset of hypotheses X = £ by a path of length zero. Next we noticethat X | Bn.1, 0if tT X,
and tisnot primary here, then thereisapath p'% tin <Bn.1, En.1 > because <A, E>isa
complete forma hyperschema, so t is not newly generated in <B,, E,> and thisholdsfor dl n
=2, 3, ---, 0t isnever generated. Thuswe cannot havetT X. Fndly, if tisimmediatdly
derived from asubset of S thenthereisans] S andanedgeE 1 E, | E such that we have,
somewherein <Bn.1, Ey.1>, avertex adjacency (s, E;, t) with every member of (E —{t}) a
member of S 1 (Bn.1 —{1t}).

We have seen that every member of By is a derived vertex. Suppose that every member of By.1
in<Bn.1, En-1>, fordln=1,2,..,n—1, isaderived vertex in <A, E> and consider <B;, E,>.
Now our set E —{t} issuch that every one of its membersis derivable by the induction
hypothesis. But then, with (s, E, t), t is derivable in terms of hypotheses X = (E —{t}), and
every member of X is derivable by the induction hypothesis, so t is derivable, and so every
member of B, isderivablein <B,, E,>. It follows that, because <B,,, E,> = <A, E> for somen,
every vertex al A isderivablein <A, E>.

Conversdly, supposethat every al A isderivablein <A, E>. Then <A, E> can be generated
by alimited access cascade from its set of primaries By as follows. By isthe st of primaries

of <A, B>, and B = /E. E; istheset of dl edgesE T E such that every member of E but one
isaprimary of <A, E>, i.e. amember of By. B; isthe union of By and dl the new (nhorn+
primary) vertices generated in step 1 of the cascade. Ingenerd B, k=2, 3, ..., ischosenin
suchaway that E1 E¢i Eiff dl but possibly one member of E belong to By_1. By isBy.1,in
which every member is derivable in <B.1, Ex-1>, together with the set of dl new vertices
generated in step k. Eventudly, for somenT Q, <By, E,> = <A, E> becauseevery al Ais
derivablein <A, E> and the cascade generates only derivable new vertices in each step.

Theorem 17.2: If al A of acomplete forma hyperschema <A, E> is derivable in terms of
X1 A, withX = Eoreveryx 1 X derivablein <A, E>, by virtue of a derivation path p % a,
p aprimary of <A, E>, and a betweenness sequence Sfor p % a, thenevery t1 Sisderivable
in<A,B>."

Proof: Since pisaprimary it is derived by a derivation path of length zero with betweenness
sequence S= X = A Run alimited access cacade from the set By of dl primaries of <A, E>
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in<A, E>. If p % aisapath of length n then we mugt “find’ p % ain <B,, E,> because ais
derivable. Let an appropriate betweenness sequence for p % a, i.e. onewhich makesp % a
aderivation path, be Sand set X = S. Then, Sinceaisderivableand S=X 1 A, we see that
every member of Sisderivablein <A, BE>.”

Theorem 17.3: Let <A, E> be aforma hyperschemawithal A any non-primary vertex of
<A, E>. If aisderivablein <A, E>, by virtue of apath p % a, then pisaprimary vertex of
<A, B>

Proof: We know that p %2 aisaderivation path. Let S be a betweenness sequence for p % a,
and st X =S. Then aisderivablein terms of X, with X * /A because ais non-primary, and
evary x T X isderivablein <A, E>. Foreveryt1 S=X, tisaprimayortl Xortis
immediately derived from asubset of S. Inthis casewe dearly havet] X trivialy. Consider
p. We havepisaprimary in <A, E>, or p isimmediately derived from asubset of S, = /£
Only primaries and isolates are immediately derivable from hypotheses A, by atrivid
derivation path of length zero. Now p is certainly not an isolate, o in ether case we have that
pisaprimary of <A, E>.”

We now set out some corollaries of theorems 17.1, 17.2, and 17.3.

Corollary 17.1: If every t T Sin the proof of the theorem is derivablethen every t 1 Sis
immediately derived fromsome X | Ain<A, E>.”

Proof: There are two casesto consider.

a) If tisonp % athenthereisavertex adjacency (X, §,t)onp % a andthentis
immediatey derived from X = (E —{t}) | A.

b) If t doesnot lieon p % a, but isbetween p and aon p % a, we know that t is derivable
from theorem 17.2. Thusthereis at least one derivation path p'%a t, p” aprimary of <A, E>,
in<A, B>, and p'¥% t “ends’ with avertex adjacency (u, E, t). Let X = § —{t}, and we see
that t isimmediately derived from X. ™

Corollary 17.2: If vertex al A of acomplete forma hyperschema <A, E> isderivablein
<A, E>then a isimmediately derived fromsome X | A."

Proof: If aisderivablein <A, E> then there must be some derivation path p % afor a, p
primary, in <A, E>. Let the vertex adjacency withaonp ¥% abe(x, B, a),x1 AadET E,
and sat X = (E —{a}). Then aisimmediately derived from hypotheses X in <A, E>.”

Corollary 17.3: Apathp ¥ a, a p1 A,inaCRKH <A, E> isaderivation path for aiff pisa

primary of <A, E>.”

Proof: If p% aisaderivation path for ain <A, E> then p isaprimary by theorem 17.3.
Conversdy, if pisaprimary then any path p % aisaderivation path for abecause, if Sisa
betweenness sequence for p % athen every member of Sisderivablein <A, E> snce<A, E>
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isaCRKH, so we can seethat aisderivablein<A, E> by p % aif wesat X = S(=4 if
p=a)."

Corollary 17.4: If every path incident with aprimary of a complete forma hyperschema
<A, E> isaderivation pathin <A, E>, thenevery al A isderivablein <A, E> and so <A, E>
isaCRKH. "

Pr oof:Follows at once from the definitions of derivation path, derivable and CRKH. ~

Corallary 17.5: Let <A, E> be acomplete formal hyperschema, and let p be any primary of
<A, E> and abe any non-primary of <A, E> such that thereisapath p %4 ain <A, E>. Then
p % aisaderivation pathin <A, E>, i.e. aisderivablein <A, B>, iff every b1 A, bt a, that
isbetween pand aon p ¥ aisderivablein <A, E>.”

Proof: Let p % abe aderivation path with betweenness sequence Sforp % a. bl A, bt a,
isbetweenpand aonp % aiff b1 S, and by theorem 17.2 every b1 Sisderivablein

<A, E>. Conversdly, let every b1 athat is between p and aon p % abederivablein <A, E>.
Thenb1 S, and if every member of Sisderivablein <A, E> then ais derivable. But this
means that ais derivable in terms of a least one X I A with X = /E or every member of X
derivablein <A, E>, and at least one path from a primary to amust be a derivation path for a
in<A, E>. Choose X =S?* A for our path p % aand it followsthat p %2 aisaderivation path
forain<A, B>

Corollary 17.6: Let <A, E> be acomplete formal hyperschema. Every al A isderivablein
<A, B> iff evary pathp % a p primary andal A, in <A, E> isaderivation path. -

Proof: The reverse implication is corollary 17.4. If every al A is derivable then there exists,
by definition of the term derivable (from the set P of dl primaries of <A, E>), a least one
derivation path p %2 a, p primary, in <A, BE>.”

Corollary 17.7: A complete forma hyperschema <A, E> can be generated by alimited access
cascade from the st of dl its primariesiff every path incident witha primary of <A, E> isa
derivation path.

Proof: Follows at once from therem 17.1 and Corollary 17.6.

Corollary 17.8: Let <A, E> be acomplete formal hyperschema. Every al A isderivablein
<A, E>,i.e. <A, E>isaCRKH, iff every al A isimmediady derived from some set X, of
hypotheses which is such that every x T X, is aderived vertex in <A, E>.”

Proof: If every al A isderivable then there is at |east one derivation path p % afor ain
<A, E>. Let (x, E, &) be the vertex adjacency with athat lieson suchapathp ¥ a, E1 E.
Then aisimmediatdly derived from X, = (E; —{&}). Conversdly, let every al A be
immediately derived from some set X, of hypotheses such that every x T X is aderived
vertex in <A, E>. Then there exists at least one vertex adjacency (x, B, @), § T E, with
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(§—{a}) | Xa Now x isaderived vertex, asis every other member of X,. Thusthereisa
least one derivation path p % x for some primary p, and we can concatenate p % x and

(X, Ej, 8 to make up apath p % a Since every member of § —{a} isderivablein <A, E>, we
see by Corollary 17.5that every b ainp % aisderivable.

Let S be an appropriate betwenness sequence for p % a, and set X = S, Thenaisderivablein
termsof X, i.e. derivable, because X T A but evelyxT X isdeivablein <A, B>

Collecting some of the results of this section together, we have proved the following.

Theorem 17.4: Let <A, E> be acomplete forma hyperschema. Then precisely the whole of

<A, B> can be generated by alimited access cascade from the set By of dl the primaries of

<A, E>

(1) iff every al A isderivablein <A, E>, whichistrue

(2) iff <A, E>isaCRKH, whichistrue

(3) iff every pathp % a paprimary andal A, isaderivaion pathin <A, E>, whichistrue

(4) iff evayal A isimmediady derived from someset Xa I A of hypotheseswhich issuch
that every x T X, isaderived vertex in <A, E>, which istrue

(5) iff evary b athat isbetween pand a paprimary andal A, on every pathp % ain
<A, E>isdeivablein <A, BE>.”

Running alimited access cascade from the set of dl primariesin a complete formd
hyperschema <A, E> provides an automated method of testing <A, E> for CRKH datus.

Theorem 17.5: Let <A, E> be any hypernet, and let | [<A, E>] = <A, T>. <A, E>isaCRKH
iff <A, T>isaCRKS. "

Proof: Let <A, E> be a CRKH, and consider a specific interpretation | [<A, E>] = <A, T>.
Since | preserves vertex adjacencies, | will preserve al pathsin <A, E>, mapping each path in
<A, E>toasemi-path in <A, T>. Thus| preserves dl derivation pathsp % a, p aprimary and
al A, and each derivation path p % ais mapped to precisdy one derivation pathp ® ain
<A, T>. It followsthat <A, T>isaCRKS. Conversdly, let <A, T> be a CRKSwith

<A, T>=1[<A, E>] for some hypernet <A, E>. Let M betheinverse of 1, so that

M [<A, T>] = <A, E>. Then, ance M preserves dl vertex adjacenciesin <A, T>, it preserves
all sami-paths, mapping each semi-path in <A, T> to precisaly one path in <A, E>. It follows
that every derivation pathp ® a paprimary andal A in<A, T>is mapped to precisdy one
derivation path p % ain <A, E>. It follows that <A, E>isaCRKH. "~

The theorem is essentid to a generdization of Part | of [GVS99].

Definition 17.1: By aderivation adjacency in aformd hyperschema <A, E> we mean a
vertex adjacency (a, E,b),a, b1 AandET E, that lies on aderivation path for bin <A, E>
andissuchthat every x 1 (E —{b}) iseither aprimary of <A, E> or belongs to a derivation
adjacency (y, B, X) thet lies on aderivation path for x in <A, B>, i.e evay x I (E —{b}) is
derivablein <A, E>.”
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Theorem 17.6: Let <A, E> be a CRKH. Then every vertex adjacency (8, E, b), a, b1 A and
ET E in<A, E>isaderivation adjacency of <A, E>.”

Proof: Consider an arhitrary vertex adjacency (a, E, b) in <A, E>. Since <A, E>isa CRKH
both aand b are derivablein <A, E>. Then éther (a, §, b) ison aderivation path for ain

<A, E>, or itison aderivation path for bin <A, E>. Suppose, without loss of generdity, that
(a B, b) lieson aderivation path for b. Then (a B, b) is aderivation adjacency because every
x1 (E —{b}) isderivablein <A, E>.

We now begin to turn our attention to the sort of uses of CRKH’ s outlined for CRKS'sin
[GVS99].

Definition 17.2: Given aCRKH <A, E> and any non-primary al A, we define aderivation
path hyperschema D(p % &) for aderivation path p % ain <A, E> to be a sub-hypernet of
<A, E> that
(1) containsp—aand
(2) isaformd hyperschemain which the only primaries and isolates are dl primaries of
<A, E> and in which every non-isolate is derivable, and
(3) isminima inthe sensethat p % ais not a derivation path in any sub-hypernet produced
from D(p % a) by deleting from it any vertex or any edge. ~

The primaries and isolates of D(p % &) are dl regarded as singleton edgesin D(p %4 a). We
should notice thet a derivation path hyperschemafor al A in <A, E> isnot generdly unique
because there may be severd derivation pathsfor ain <A, E>.

Definition 17.3: Given aCRKH <A, E>withal A, we define the predecessor hyperschema
P(a) of ain <A, E> to be that sub-hypernet of <A, E> that is generated by running afast

access cascade in the reverse of the direction of derivation from By ={a} in<A, E> as

follows Ey = A <Bs, E;> contains dl the derivation adjacencies, incident with g, through
which ais derived, i.e. that lie on any derivation path for ain <A, E>. Thisfixes B, and B; is
atogether with the set of dl the verticesin al the members of E;. <B,, E;> contains dl the
derivation adjacencies incident with each b1 B; and through which b is derived in <A, E>,
which specifies E;, and By is B together with the st of al verticesin dl the members of B,

and so on. The cascade will stop with aprimary, or primaries, of <A, E>. It isclear that P(a)
isa CRKH with goal aand set of primaries a subset of the set of primaries of <A, E>.”

It is easy to show that the next theorem follows from the definitions above.

Theorem 17.7: GivenaCRKH <A, E>withal A, thejoinof dl theD(p ¥ &) in<A, E>, p
some primary of <A, E>, isa sub-hyperschema of P(a). -

The converse of the theorem is not generdly true, as can be shown by smple counter
examples—see [GV S99].

Definition 17.4: Let <A, E>beaCRKH and E T E an edge of <A, E>. By ahypercluster for
E we mean any minimd sub-CRKH, of <A, E>, that has E as one of its edges, where by
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minimal we mean that if we ddete any vertex or edge from a hypercluster then the resulting
hypernet does not have E init. ”

A hyperduster for agiven E T EinaCRKH <A, E> isnot generdly unique.

Congtructiona schemesto find the D(p % @), and P(8), in aCRKH <A, E> are easily adapted
from [GV S99]. Definitions 17.2, 17.3 and 17.4 are important in the modelling of study
material, as can be seen from [GV S99]. In this case, the case of hypernets, their application
potentid is broader than for the CRKS's of [GV S99].

Theorem 17.8: Cisadluster for T; T TinaCRKS<A, T>iff D isahypercluster for
E =1[T;]inaCRKH <A, E>, where<A, T> =1 [<A, E>] and C = | [D] for some
interpretation |.

Proof: Follows easly from the definition of an interpretation and itsinverse. ™
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18. Gauges of complexity

In this section we present some way's to gauge the complexity of a CRKH.

Definition 18.1: Thevertex context number of al A inaCRKH <A, E> isgiven by
V() = YA[dY2and the edge context number of ais given by Ec(a) = VE[a]2 where
<A[al, E[a]> = <A ,E>[d] isthe context hyperschemaof ain <A, E>.”

Definition 18.2: By thedegree d(a) of al A inaCRKH <A, E>we mean the sum of all
thetd ({a, b})v4over dl b1 A forwhich | ({a b})* A By thein-degreeid(a) of awe mean
thesum of dl the'4 ({a, b} zover dl b1 A forwhich| ({a b})* AEand (a E, b), E some
edge of <A, E> which issuch thet (a E, b) lies on aderivation path for ain <A, E>. By the
out-degree od(a) of awe mean the difference od(a) = d(a) —id(a).

Definition 18.3: By theflow at al A inaCRKH <A, E> we mean the number
f(a) = min{id(a), od(a)} . -

Definition 18.4: By the path-multiplicityat al A inaCRKH <A, E> we mean the number
p(a) =id(a) * od(a).

Definition 18.5: By thelocal context number of al A inaCRKH <A, E> we mean
|E (E - {a})|wheretheunionistekenoverdl E1 EwithE1 | ({a b})andbl A."

So far dl our gauges should have rdatively high vauesin any CRKH mode of a“red world”
Stuation. Relatively low vaues will indicate a weakness of association among vertices.

Definition 18.6: Let <A, E>beaCRKH, andlet ST A with S A Therank of S, r(S), in
<A, E> isdefined by r(S) = max ¥S C EYsover dl theE T E. The number r(A) is caled the
rank of <A, E>.”

Definition 18.7: Let <A, E> bea CRKH. A sub-family By | E iscdled amatching if the
edges of By are pairwise digoint.

Definition 18.8: A transversal of aCRKH <A, E>isasst T Asuchtha T C E ! Afordl

E 1 E. Thetransversal number of <A, E> isthe minimum number of verticesin any
transversa of <A, B>.”

Of interest for CRKH' s are maximum matchings, which tdll us something about “essentid”
edgesin the case in which “knowledge’ is being moddled and we have E E; = A wherethe
union is taken over the edges of By, and the transversd number which tells us how many
“essentid” verticesbelong to A.

Definition 18.9: Let <A, E> be a CRKH, and consider alimited access cascade from the set
of dl primaries of <A, E>. The deductive distance dd(a) of al A from the primaries of
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<A, E>isniff aisfirg found in <B,, E,>, i.e. inthe (n+1) ‘ th Step of the cascade, i.e.

al Bn.1.Byann-dliceof <A, E>wemeantheset of dl al A that arefirst found in <B,, E,>,
i.e. inthe (n+1) * th step of the cascade, i.e. al (Bn—Bn.1). Let Ny I A bean n-diceof <A,
E>, andletal N,. Thenthe weighted deductive distance, wd(a), of afrom the primaries of
<A, E> is defined by wdd(a) = E N; where the union is taken over

i1 {0,1,...,n-1}=nl Q."

We would, in most gpplications, not want dd(a) or wdd(a) to be relatively large compared to
their values for other vertices of <A, E>.

Definition 18.10: Letal A of aCRKH <A, E> belong to an n-dice N,, in <A, E> for some
nT Q. Then YN Yiscdled thewidth W(a) of <A, E>ata. ”

Associated with therank of aset SI A of aCRKH <A, E> isthe following.

Definition 18.11: Let <A, E>beaCRKH, and let Pi A bethe set of primaries of <A, E>. By
thescopeof aset B A in<A, E>wemeantheset S(B) | E defined by

SB)={E 1T E¥%SCE ! A .By thescopenumber of Bi A in<A, E>wemean ¥S(B)Y2
S(P) is caled the primary scope of <A, E>, and ¥&(P)¥4he primary scope number. ~

Wewould like the primary scope number to be relatively high — it isat leest Y#Y2-, and if
S(B) isrddively low then B is rdatively weskly associated with other membersof A. If

B ={a} then S({a}) = E[4].

Definition 18.12: Let <A, E>beaCRKH withE T EandSi A. Theedge rank Er(S) of E
with respect to Sisdefined by r(S, B) = Y6 C B2~

Definition 18.13: By avertex covering C of a CRKH <A, E> we mean asub-family Ci E
such that the union of al the edgesin CisA.”

Wewould be interested in minima vertex coverings, again ameasure of “essentid” vertices
in<A, B>

Minimum traversals and maximum matchings are fairly dosdly related — see [Ber73].

Next we turn to analysis of a CRKH <A, E> by means of edge ranksin order to illustrate one
use of some of our gauges. Run alimited access cascade from the set By of dl the primaries of
<A, B>, stting By = A as usud. Suppose we have completed step n of the cascade, i.e. we
have <B,, E;> D <A, E>. (B, —Bp-1) isan ndice, of <A, E>, with width ¥B,, — B,.1%2 Now
complete step n+1 of the cascade, producing <Bn+1, Eqn1>, and consider (Eq+1— En). Let

ET (Ew1—En) and let edge rank 1 be given by ri((Bn+1 - Bn), E) = ¥4Bn+1 - Bn ) C E¥2 This
isthe number of “new” vertices found in step (n+1) that belong to B, a“new” edgefound in

step (n+1). Let the equivalence class of E in (Eq+1 - En ) induced by therank 1 value of E be
denoted by r1[(Bn+1 - Bn), E]. We now partidly order these equivaence classes, from the
smalest to the largest, by r; value. Cal ther; value of each class the ri-difficulty of that class.
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Next consider any one of these classes. Insgde r1[(Bn+1 - Bn), E] we define another
equivaence relation on this set of edges, al of which have the same edgerank 1 vaue, as
follows, looking now &t the “dependence’ of these edges on the verticesin (B, — Bp). Let edge
rank 2 be rz((Bn — Bo), E), where T r1[(Bn+1 - Bn), E]. The r, values specify equivaence
classesrp[(Bn — Bo), E] | r1[(Bn+1 - Bn), E]. Every member of any of these equivalence
classes has the samerr;, vaue, and we partidly order these r, equivalence classes, insde
r1[(Bn+1 - Bn), E], from smalest to largest 1, vaue, the relevant r, value being cdled the
ro-difficulty of the associated equivalence class.

Next consider an r2[(Bn — Bo), E]. Insde this eqivalence class we define a third equivaence
relation as follows. Let edge rank 3 be defined by r3(Bo, Ex), with BT r2[(Bn — Bo), E]. This
specifies egivalence dasses r3[Bo, E¢] | 12 [(Bn — Bo), E]. Again of course every member of
r3[Bo, Ex] hasthe samers value, and again we partialy order these edge rank 3 egivdence
classes from smdlest to largest r3 vaue. Thisrs vaueis cdled the rs-difficulty of the rlevant
class.

Now we can choose an equivaence class of minima r;, value, then one, ingde that class, of
minimd r2 vaue, and then one, inthat r, dass, of minimd r3 vaue. This dlows us to choose
those 1 Eq.1 of minimal difficulty (to learn — see [GV'S99]) and work through each 1y
eqivaence dass from minima to maximd difficulty in <Bn+1, Ene1>.

Findly, consder any given interpretation | [<A, E>] = <A, T> of the CRKH <A, E>. Clearly
<A, T> isaCRKS (from the definition of interpretation). Now condder | () =T, ET Eand
T,T T. Thenumber of entriesin T;, cdl it the length of T, isat least ¥&E¥2 We partialy order
the edges of each r3[Bo, B from smallest to largest tuple length of the | [E. ], E, T r3[Bo, Ed],
regarding those edges corresponding with minima length tuples to be the least difficult in

r3[Bo, Ex]. This defines egivalence classes in each r3[Bo, Ex], each being characterized by a
tuple length value called the rs-difficulty of the class. We do the same in each r2[(Bn — Bo), E]
E r3[Bo, Ex], and then in each r1[(Bn+1 - Bn), E] E r2[(Bn — Bo), E], using rs-difficulty to
partidly order edgesin each equivalence class at each rs, 1> and r1 levd in turn. We can use
the values of al four gauges, r1, ro, r3 and r4, to partidly order al the tuplesin any CRKS

<A, T>= | [<A, E>] from “least difficult” subset of T to “mogt difficult” subset of T,

providing us with a tuple-ordering strategy in presenting <A, T> - see [GV S99].
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19. Structural analysisof a CRKH

We now turn to structura characteristics of CRKH’s. These are smilar to those exposed in
the chapter on presentation strategies in [GV S99].

(1) Themost basic structura characteristics of a CRKH are its vertex basis and its edge bases.
The sat of primaries of a CRKH isits unique vertex bass, and, in the terminology of
graph theory, the set of gods of a CRKH isits unique vertex contrabass.

(2) Application of Menger's Theorem in a CRKH yields two interesting ingghts into the
structure of a CRKH. Let K = <A, E> be a CRKH with set of primaries P and set of gods
G. Convert K toaCRKH Z asfollows Ddete from K al egdesthat consst of only a
primary and agod or that consst of only primaries and agod. Next add dummy vertices
p and gto K, and add new dummy edges{p, p} for eechp1 Pand{g, g} foreachgi G.
This completes the construction of Z = Zy. Theset of dl p % gpaths, in Z, that have a
given vertex vp of K between p and giscaled abundleof p % gpathsand is denoted by
So. Every member of & is cut by deletion of vp from K. Consder aminima separation
B(p % g) forp andginK andlet B(p % g) ={vo, V1, ..., Vn} . Deleting the context-
hyperschema of vp from K deletes al the members of bundle &, deleting that of v; deletes
theset S; of dl p % g pathsinwhat remains of K from thet remaining hypernet, i.e. dl
thep % gpathsin <A —{vo}, E- (A - {vo})> that havev; between p andg inK, and so
on, producing apartition of dl thep % gpathsin Z into n bundles. Two p % g paths P,
and P; are said to be quasi -disjoint iff they belong to two digtinct bundles. Then Menger’s
Theorem dates that the maximum number of quas-digoint p ¥ gpathsinZ isequd to
minYB(p % g)| - seethe chapter on Menger’s Theorem in this report, and the chapter on
presentation Strategies and section 12.5 in [GV S99].

The paths deleted from K in congtructing Z are dl of length 1 and are essy to ded with
Separately. Since two quasi-digoint p ¥ g paths can shareavertex v of K, i.e. somev
may be between p and g on both paths, we introduce the following. Two p % g paths are
said to be independent iff (i) they are quas-digoint and (ii) no vertex v of K is between p
and g on both paths. It is easy to see that if the two paths are independent then they are
quasi-digoint, but a smple counter example will show that the converseis not generdly
true. ”

Definition 19.1: A set of pairwise independent p % g pathsin Z iscdled aflow, and the
measure of aflow is defined to be the number of paths of the flow. ™

Theorem 19.1: The measure of amaximum flow for p and g through Z isless than or equd to
mnYB(p % g)¥2”

Proof: Follows from Menger’s Theorem for Z and the fact that independent paths are quas-
digoint, but the converse is not necessarily true, so there cannot be more pathsin aflow than
there are pairwise quas-digoint p % gpathsinZ.”
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The members of aminima vertex separaion B(p% g) in Z are criticd in K, asare the pathsin
amaximim flow, in some gpplications. Dedling with the paths of length 1 that were deleted
from K to produce Z, if any, is easy after applying the theorem.

Menger’s Theorem aso gppliesin edge form, as briefly outlined below. By an edge

separation E (p%ag) forp andginZ we mean a set of edges of K which, if deleted from Z,
will leaveno p% gpathsinZ. By an edge-bundleinZ wemeantheset of dl p % g paths that
use a particular edge of K. Pick an edge e of K. Let edge-bundle S betheset of dl p% g
pathsin Z that use . Delete from Z the common edge, ey, of each of the members of S.
Repedt this processin what remains of Z, defining bundle S; for edge e;. Continue until no
more p % g pahsreman. Two p % gpaths are said to be quasi -edge-digjoint iff they belong
to two distinct edge-bundles. Now Menger’s Theorem states that the maximum number of
pairwise quas-edge-digoint p % g pathsin Z isequd to the minimum number of membersin
an edge separation E(p3ag) inZ, i.e min/E(p % g)¥2

Since two quas-edge-digoint paths can share an egde of K, we define the following notion.

Two p % gpathsin K are said to be edge-independent iff

(1) they are quasi-edge-digoint and

(2) noedgeof K lieson both p % gpaths. If two p % g paths are edge-independent then they
are quasi-edge-digoint, but the converseis not generdly true.

Definition 19.2: A set of pairwise edge-independent p % g pahsinZ iscdled an edge-flow,
and the measure of an edge-flow is defined to be the number of p % g pathsin the edge-flow.

Theorem 19.2: The measure of amaximum edge-flow for p and g through K islessthan or
equa to min YE(p ¥ g)¥2"

Proof: Follows from the edge verson of Menger’s Theorem for Z and the fact that edge-
independent p % g paths are quasi-edge-digoint but the converseis not necessarily true, so
there cannot be more pathsin an edge-flow than there are pairwise quas-digoint p % g paths
inZ.”

Can we get closer to the measure of aflow? Consder Z, and partitiontheset of dl p % g
pathsin Z asfollows. Delete any vertex \p of K from Z, and let S bethesetof dl p % g
pathsin Z that are cut by that deletion. Let <Bo, Eo> B K be the hypernet that is defined to be
the context hyperschema of al the vertices of K that are between p and gonany p % gpath
in S, i.e. <Bo, Ep> isthejoin of al the context hyperschemas of each vertex of K that is
between p and gonany p % gpathin &. Delete <By, Ep> from Z, and let <Bs, E;> bethe
sub-hypernet of Z that remains after this deletion. Chooseany vi T (B1 —{p, g} ), delete vy
from <By, E;>, and let S; betheset of dl p % g pahsin <Bg, E;> that are cut by that deletion.
Now delete from <B,, E;> the context- hyperschema of dl the vertices of <B;, E;> that are
between p andgonany p % gpathin S;. Continuein thisway, defining S forr=0, 1, ..., t,
until S+1 isempty. Then aflow of measure (t + 1) can be found by choosing precisdly one
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p ¥ g pathfromeach S. The sat of verticesw, r =0, 1, ..., tisan example of what issaid to
condtitute aflow-separation F(p % g) for p and ginZ, and we clearly have:

Theorem 19.3: The measure of amaximum flow for p and g through K isequd to
mn¥YF(p ¥ g2~

Can we do asmilar thing for edge-flows? We can indeed. Delete every edge of every
member of S, where Spistheset of dl p ¥ g paths of Z that are cut by the deletion of edge
ey from K. Next choose any edge e, of K tha remains after the deletion of al edges of dl the
pathsin S Let S betheset of dl p % g paths, in what remains of Z, if any, that are cut by
the deletion of e; from the remaining hypernet, and then delete from that remaining hypernet

al the edges of every member of S'1. Continuing in thisway we patition dl thep % g paths
inZintos4s S, S'1, ..., S'n. Now two p ¥ g paths are edge-independent iff they belong to
two digtinct S'j, because the two paths are certainly quasi-edge-digoint and they can share no
edge of K.

Thus we have

Theorem 19.4: The meaure of amaximum edge-flow for p and g through Z isequd to min
Y6(p ¥ g)¥s where G(p ¥ Q) isan edge-flow-separation for p andginZ,i.e. G(p % g ) isa
st of edgessuch as e, €y, ..., €, that generate apartition of p % gpathssuchas S, S'1, ..., S'n
respectively. ~

Since deletion of vertices of K is more destructive than deletion of edges from K in generd,
because of strong vulnerability, we have the following.

Theorem 19.5: If twop % gpaths P, and P, in Z are independent then they are edge-
independent, but the converseis not generaly true. ™

Proof: Since P, isindependent of P,, P; and P, are quasi-digoint, and P; and P, share no
vertex of K, i.e. no vertex of K isbetween p and g on both P; and P,. Since P, and P, arethen
vertex-digoint, they must clearly be edge-digoint, o they are edge-independent because they
belong to different edge bundles. Edge-digoint implies quas-edge-digoint, but the converse
isnot truein generd. If P; and P, are edge-independent then they may clearly share avertex

of K, so they are not, in generd, independent p % g paths. ~

Corallary 19.1: mnYF(p % g)%2£ YG(p ¥4 g)v2inZ.”
Proof: Follows at once from Theorem 19.5.

Since deleting the context- hyperschema of dl verticesin dl thep % g paths on which some
vertex v lies is more destructive than deleting only the context-hyperschema of v, we have:

Theorem 19.6: mnYF(p ¥4 g)v2£ YB(p % g2~
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Since deleting dl the edges of S’ is more destructive than deleting just the generating edge e,
we have:

Theorem 19.7.mn¥4 (p % Q)%2E£ YE (p % Q)"
Findly, for the same reason, we have

Theorem 19.8:mn¥YB(p % g)L2EmMnYE (p % g)e
Thus we have

Corollary 19.2:

mnYF(p ¥ g)%2£ mnY4G (p % g)¥2£ mn/E (p % g)%2
ad

minYF(p ¥ gQ)¥2£ mnYB(p % g)2£mMnYE (P % g)¥2”

Facets of Menger’s Theorem will be useful in some applications inasmuch as they separate
out certain vertices, edges and derivation paths for specid attention.

(3) Matchings and Coverings re-visted. In Chapter 5 of [GV S99] we discussed a variety of
presentation strategies, and this section of the report picks up some of that work, but with
adifferent emphasis. Before continuing with this section, we look again at matchings and
coverings as both are important facets of the structure of a CRKH. One of the key
gpproaches to finding matchingsis the congruction of a bipartite graph G from a CRKH
<A, B> asfollows. Order the edges of <A, E> in any way, and plot them as vertices of G
intwo columns E; = E and E, = E, each in the defined order. Join two distinct vertices of
G w1 Erandva1 E, that are adjacent by at least onevertex al A in<A, E>. From this
graph G one can write an dgorithm to find amatching in <A, E>, where we recdl| thet a
meatching is defined asfollows

Definition 19.3: A matchingM | EinaCRKH <A, E> isaset of edges of <A, E> that are
pairwise (potentidly) non-adjacent. M is amaximal matching iff we can add no edge of <A,
E> to M without destroying the matching property. ™

It isessy to find amaxima matching, in <A, E>, usng G — see [GV S99] p. 74 for example.
The members of amaxima meatching are pairwise “independent” edges inasmuch as no two
of them are adjacent edgesin <A, E>. A rdatively large vdue of YMY2compared with ¥EY2
will indicate a certain poverty of derivation paths, S0 maxima matching can be important in
andysng the structure of <A, E>. Now recall vertex covering.

Definition 19.4: A vertex cover of aCRKH <A, E>isaset of edgesE: | E which is such that
E E,ET E;,isequd to A. A minimal vertex cover of <A, E> isaset of edges that, together,
involveeachal A at least once, and from which we may delete no edge without destroying

the covering property. ~

73
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If we find amaxima matching in <A, E> then we can convert it to aminima vertex cover —
see[Ber89]. A minimum cover will tel us the minimum number of edgesthat “say

something” about eachal A in<A, E>, and presents us with a set of edges that actualy does
this. Congtructiona Scheme 5.4 in [GV S99] can easly be re-written to find aminima vertex
cover for <A, E>.

(4) Next weturn to the CRKH equivaent of atuple oriented partial presentation strategy,
not dealt with in [GV S99] but sometimes relevant for structurd analysis of a CRKH. Let
<A, E> be any CRKH.

Definition 19.5: By aprimary edge of <A, E>wemeanan E 1 E such that every member of
E, but precisely one, is primary in <A, E>, and that one other vertex is non-primary in
<A, B>"

(1) Let Lo bethe set of dl primary edges of <A, E>, and there must of course be at least one.
Now we gtart to describe a procedure in terms of our bi-partite graph G. Mark the
members of Lo, in E; andin B, in G, and then delete all edges of G that link members of
Lo, i.e. represent adjacencies of members of L.

(2) DefineLy | Easfollows. A vertex E 1 E; (and of E) in G belongsto L iff it is adjacent
with at least one member of Ly in G. Delete al edges of G that link membersof Ly, i.e.
represent adjacencies of members of L;. Now partially order the membersof L; as
followsLet the order of each 1 T L1 be ¥4;%4 and arrange the members of Ly in partia
order of decreasing order, those with maximum order being said to be closest to Lo
because they are, among the members of L;, most closdly associated with the vertices
involved in the members of L.

(3) Repeat step 2 with Lo replaced by L; and L; replaced by L, then with L, and L3, and so
on until Ly has been defined and we then find Ly+1 = A We have then dedlt with some of
the edges of <A, E>in apartid order that consists of succesive sepswith apartid
ordering of edgesin each step.

(4) Finding the “strongest” associations of edges, in each step, with edgesin dl the previous
steps can be another indication of the strength of association in a CRKH. It is clear that
one can define apartid presentation strategy, i.e. ahierarchy of nested sub-hypernets of
<A, E>, dong these lines. In practice E Li | E may congtitute only avery small subset of
E, but we can condsider it as displaying “core associaions’ among (some of) the vertices
of <A, B>.

Another indication of the kind of association that should be examined in aCRKH <A, E> is
the case of spiralling — see [GV S99]. Here we can regard this as away of sorting knowledge
about al A if spiralling occurs for a (as it often does). Suppose that we have, in the
predecessor hyperschemaP(@) of al A, asub-hyperschemathat contains at least one
derivation path for athat does not use a, i.e. ais not between the relevant primary and aon

this path other than asthe “end” vertex of that path, and at least one derivation path for a that
does usea*“on theway to &'. The minimum sub-hyperschemaof P(a) that contains the join of
the derivation path hyperschemas of dl such pathsin P(@) isthen said to conditute a

recursive, or bootstrap, approach to ain P(8), and thusin <A, E>. It iscalled therecursive
sub-hyperschema of ain <A, E>, and it contains a least one derivation path hyperschema, for
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a, that does not use a, and at least one that does. Knowledge about al A in <A, E> isfirst to
be found in the recursive sub-hyperschemafor ain <A, E>, if one exigts, darting with those
derivation paths that terminate at a but do not use a anywhere e se in them, thus establishing
preliminary knowledge of ain <A, E>. Then the other derivation pathsin the recursive sub-
hyperschema can be dedt with, and then P(a), and then findly the context hyperschema of a
in <A, E>. This provides us with a graded gpproach to finding al the knowledge about ain
<A, E>. Congructional Scheme 5.5 in [GV S99] can easlly be transcribed to provide away of
finding the recursive sub-hyperschemaof al A in <A, E>. A recursive sub-hyperschemais
unique.

Deductive Complexity of a CRKS — see [GV S99] — can be usefully transcribed to a CRKH.
It isclear that alimited access cascade from the primaries of a CRKH <A, E> generates a
hierarchy, in <A, E>, in the form of a nested sequence of sub-hypernets of <A, E>. Wewill

be concerned with that hierarchy and the notion of deductive distancesin <A, E>, which we
recall here.

Definition 19.6: The deductive distance from the primaries of aCRKH <A, E>of al A'is
defined by dd(a) isthe levd of ain <A, E>, where that leve is the step number in alimited
access cascade from the primaries of <A, E>, in <A, E>, in which aiis first encountered in that
cascade. ”

The primaries of <A, E> condtitute By, S0 they arein level zero of the cascade, so dd(p) =0
for every primary of <A, E>. Next werecall congtructional scheme 16.1. In it we showed how
to congtruct atree that displays every path from each primary of <A, E> asaunique path in
that tree. Now we |abd that tree, as we congtruct it, by marking all its branches and nodesin a
way that alows usto compute what we cal the deductive complexities DCOM. Again we
refer to vertices and edges of <A, E>, and to nodes and branches of the path tree.

Firgt we introduce an unlabelled dummy node to serve asthe root of the tree, and one only
node for each primary of <A, E>. Each such node isjoined to the root by an unlabelled
branch. Every node, other than the root, is labelled with (concept-name, deductive distance of
the vertex represented by that node, deductive complexity DCOM of that node). So far we
have

root

p1,0,1 p,0,2 L Pn, 0,1
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for the n primaries of <A, E>, where dd(p;) = O for every primary and we set DCOM (p)) = 1
for every primary. For each node for avertex u 1 A, the path tree now develops as follows.
Find every edge E by which there is a vertex adjacency (u, E, v) where

E={u=cy, Cy ..., Cm = V}. We plot anew node for vertex v for eachedge § 1 E by which
thereis avertex adjacency (u, g, v) for thisu and v, and insert a branch from each node for u
to every node for v. Each such branch is labelled with the index k of the edge Ex that
generaesit, together with al the members of B other than the two vertices which are
adjacent by B in <A, E>. Thus, for our example E above, we would get a branch from each
node for u to every node for v in the path tree, and that branch would have labd i; ¢, cs, ...,
Cm-1, Where any order of the cs will do. Each new node for v is labelled with its concept- name,
its deductive distance from the primaries of <A, E>, and the node value of DCOM. The node
vaue of DCOM is computed from the edge that generates the particular, unique, branch to
that node by setting DCOM = DCOM for the “beginning” node of that branch + S (DCOM of
the node for ¢5) from s= 2 to m-1 over dl the ¢ written dong that branch in the branch [abd.
We set dcom(cs) equa to any minima vaue of DCOM of a node for the vertex cs. In the case
of an edge{u, v}, the branches between u and v for this edge are dl labelled with the index of
this edge and the set A of vertices, and for such abranch we set DCOM for the end node of
the branch, i.e. the one furthest from the root, to DCOM for the beginning node of that branch
+1.

Next we number the nodes of the path tree. Number the root zero, and then number all sons
from left to right. Now we assign a value of dcom for each concept- name that appearsin any
branch labd asfollows. Fill in DCOM for each node that has dd = 1. Certainly thisis possble
because dl the primaries have dd = 0 and every node at dd = 1 represents a vertex that was
derived in terms of primaries only. Next, proceed to nodes for vertices at dd = 2, then at

dd = 3, and so on in turn, using the following method. For each concept-name v in abranch
labd, look in the path tree for any node for v that has aminima vaue of DCOM among those
nodes. Suppose that we choose node number n for v: Then dcom(v) = DCOM(n), and
wherever v occurs in any branch labd we enter dcom(v) and (n) next to v in thet labd. To see
that this assgnment of values of DCOM is possble for al the non-root nodes of the path tree,
consder the following informa argument. In level O we have dl the primaries, and each
primary has anode for which DCOM = 1. Since each primary istrividly derived by a
derivation path of length zero, we must set dcom = DCOM = 1 for each node for aprimary.
Thistakes care of thefirg stage of filling in DCOM and dcom. We now temporarily define a
first derivation path for any non-primary vertex v of <A, E>, in <A, E>, asfollows. Suppose
thatvisinlevd n,n3 1, in<A, E>. A firg derivation path for v isany derivation path for v,

in <A, E>, for which every vertex u used on that derivation, i.e. in an edge of that derivation
path, isinalevd m <n.

Let v be any vertex, of <A, E>, that liesin leve 1, and let D(v) be any first derivation path for
vin<A, E>. Thenthe only vertices of <A, E> that are used in reaching v by means of D(v)

are primaries of <A, E>, and thisincludes the case of A labdls. It follows that we canassign a
vaue of DCOM to that node copy of v thet liesat the “end” of the unique path, in the path
treefor <A, E>, which corresponds with this first derivation path D(v) for v. Notice that there
must be a least one first derivation path in <A, E> for every v A inany given levd,

because <A, E> can be precisdy generated by alimited access cascade from its primaries. We
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now assign avaue of DCOM to the relevant node copy of v for every firg derivation path for
v. Any minima vaue of DCOM assgned to anode copy of v in the path tree using this
procedurefor v 1 A can be chosen to be the value of dcom for v, and this value is now fixed
for v so wefill it in, together with the number of the chosen node copy of v, a every
occurrence of v in alabdl in the path tree. We do thisfor every v T A theat liesin level 1, and
thisis possble because each such vertex has at least one firgt derivation path, in <A, E>, that
involves only primaries, possbly with a Z labd, in reaching thet vertex.

Next suppose that we are done with dl level n vertices of <A, E>for somen 3 1. Thusevery
vertex of <A, E> that liesinlevd m £ n has been associated with at least one vaue of DCOM
and with asingle vaue of dcom. Let v now be any vertex of <A, E> that liesin levd (n+1) in
<A, E>, and let D(v) be any first derivation path for v in <A, E>. The only vertices of <A, E>
that are used in reaching v by means of D(v) are verticesu in levelsm £ n, so each such
vertex u is associated with some node copies for each of which we have avaue of DCOM,
and dl those copies have the same previoudy chosen vaue of dcom. It follows that we can
now compute a vaue of DCOM for that node copy of v which liesat the “end” of the unique
path, in the path tree of <A, E>, that corresponds with thisfirst derivation path D(v) for v. We
do thisfor each firg derivation path for v. Any minima vaue of DCOM associated with some
node copy of v in the path tree using thisfirst derivation path procedure for v can be chosen to
be the value of dcom for v and atached to every occurrence of v in abranch labe of the path
tree, together with the number of the node copy of v which was chosen in assgning the value
of dcom to v. We repeat thisfor every vertex of <A, E> that liesin levd (n+1): Thisis
possible because each such vertex has at least one first derivation path that involves only
veticesinlevedsm £ n, and possibly A [abdls, in reaching that vertex, and at least one such
path must exist because <A, E> can be precisely generated by alimited access cascade from
its primaries. Since <A, E> and its path tree arefinite, it follows that the assgnment of

DCOM and dcom vaues for every node in that path tree can be achieved: DCOM(n) can be
computed for every node n in the path tree of <A, E>.

Using the path tree of a CRKH <A, E> we can, by combining the DCOM and deductive
distance values for each leaf (pendant) of the path tree, where each leaf isa copy of some goal
of <A, E>, assgn acomplexity value to each derivation path in <A, E>, thereby establishing a
partia order of the derivation pathsin <A, E> from the least complex to the most complex.
Thisleads to a presentation strategy — see [GV S99]. We make some brief comments on this
gtuation in our third intermission.
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20. Third intermisson

Thisintermisson is very speculative, and is partly for the amusement of frustrated theoreticdl
physicigts like one of the authors (HO van Rooyen), but also contains some serious
suggestions about the use of CRKS s and CRKH’sin the representation of study material —
see Parts| and Il of [GVS99]. In such arepresentation, the notion of a CRKH freesthe
designer from specific satements of relationship in a particular teaching metalanguage,
opening the way to “language freg” design.

Hamilton's Principle of Least Action appears to be a potentid unifying principle for the
theories of reativity, eectromagnetic theory and quantum mechanics: All we need seemsto

be the appropriate definition of “action” in each case. In thisauthor’ s view, it is unfortunate
that the principle is formulated in a number continuum thet is awholly humean invention and

has little to do with the “red world’, thus condtituting a fundamenta a priori flaw in the

models used in these fields of theoretical physics. Discrete models would be more suitable,
both for (partid) representation and for computation, and aso for smulation, but are dow to
appear, partly probably due to the overwhel ming concentration on the gpparent success of redl
and complex number modelling in Physicsin generd and a concurrent and gopalling neglect

of basic scientific method in severd fidds of the physica “sciences’ in recent years.

Where shal we look for potentia “discrete versons’ of Hamilton's Principle? Let me suggest
here that we have indeed uncovered something, in the very unlikely fied of education, that
looks sugpicioudy like a discrete verson of Hamilton's Principle and is dso lightly attached
to probability, depending of course on ones enthusiasm for that Principle, which can make
one see ghosts where there may not be any!

We have seenthat deductive complexity can be used to partidly order the set of adl derivation
pathsin a CRKH, and of coursein a CRKS. By partidly ordering the members of each of
these “ deductive complexity equivalence classes’ by means of the deductive distances of the
leaves of our path tree from the primaries, we can define an overall complexity for each
derivation path of the rdevant CRKH (or CRKS). Now consder any one of these “ complexity
equivalence classes’, and let it have n members, each of which is aderivation path with the
same complexity. (One might suppose that ateacher/learner would start with the class of
lowest complexity!). Theapriori probability thet the teacher/learner will choose to start with
any one of these derivation pathsis 1 in n, and the moment one is chosen the probability of
choice of al therest in the equivaence classbecomes 1 in (n-1). Of course the
teacher/learner will often make these choices on the basis of persona familiarity with the
“subgdiary” derivations involved in teaching/learning a given derivation path, but to some
extent this heurigtic, and subjective, influence on the order of choice of derivation paths has
been built into the complexity measure of those paths. What is asking to be recognised here is
asort of “least action” principle to be adhered to by “good”’ teacherslearners. The
teecher/learner must follow a derivation path of minimum complexity every time g(he) hasa
choice, and the probakility of choice varies with every choice actudly made, indicating a

clear influence of the chooser on the whole of the remaining CRKH (CRKYS) every time a
choiceismade. The Stuation is of course actualy more complicated than this smple choice
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of derivation path indicates, because in choosing a derivation path we are in fact choosing a
whole sub-hypernet (sub-net) in which at least one derivation of each vertex between p and g,
p aprimary and g agoa, on the chosen derivation path p %2 g must exist. One such sub-
hypernet (sub-net) for p % g can easly be congtructed from the labelling of p % g on our
path tree, s0 dl the information is available for our chosen path p % g. One can see quite
planly how this worksin the example that congtitutes Part |1 of [GV S99].

If we define the complexity of aflow to be the sum of the derivation path complexities over
al the independent derivation path sections of the pathsin the flow, then the same thing can
be said about the choice of a particular flow: A flow of lowest complexity can be found by
selecting a derivation path of lowest capacity from each of the sets of paths from which one
member is chosen, from each s, to make up aflow.

Agan we may have saverd digtinct flows with the same flow complexity, so we meset the
same stuation as with the choice of individud derivation peths, and asmilar Principle
gpplies. One may ask, incidentdly, why a teacher/learner would wish to teach flows. The
answer is that it makes some good sense as the various paths belonging to any given flow
each go through a“region” of the rdevant CRKH (CRKYS) that is unrelated to the “region”
through which any other path in that flow goes.

Our principle of least complexity can be worded in afairly evokative way. The “movement”

of ateacher/learner “through” a CRKH (CRKYS) will always be along a derivation path of
minimum complexity in the current CRKH (CRK'S), or, more succinctly: The Principle of

Least Complexity for “Good” Teachers/Learners. Given achoice of (derivation) paths (or of
flows) from one (primary) vertex to another (goal) vertex in (CRKH/CRKYS) space, a path that
isof least complexity under the current conditions in that pace will be followed.

While thisintermisson is likely to evoke afew chuckles over acocktall thereis, hidden
behind it, a serious apped to give more consderation to the marvelous Principle of Hamilton
and to freeit, if possble, from itsorigind home in the caculus. As discrete modelling, the
naturd fidd of the digital computer, becomes ever more important we may find much wider
use of such theorems asthat of Menger in its various formats, and perhaps too of genera
principles such as that of Hamilton's*Least Action”.
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21. An Extended View of Modeling Study Material

Before continuing with the development of CRKH theory, we will use asmple example to
show how the use of the representation of study materia in CRKS form islinked with, and is
extended by, the notion of a CRKH. Our illustration is the partid modd of CRK Stheory
itsdlf, as given in Appendix A of [GVS99], in the form of a CRK'S. For convenience, we
repesat the statements of Appendix A here. The CRKSisrather trivia, but is an adequate
illugtration of the point that we wish to make in this section.

The concept-names in the statements are those printed in bold. Here are the statements, made

on the basis of part of Part 1 of [GV S99].

1. Theproblem of devisng ascience of teaching has a potentid solution in terms of vee
diagrams.

2. Theproblem of devisng ascience of teaching has a potentia solution in terms of
concept circle diagrams.

3. Theproblem of deviang a science of teaching has a potentid solution in terms of
concept maps.

4. The problem of devisng ascience of teaching has a potentid solution in terms of
semantic networks.

5. Theproblem of devising ascience of teaching has a potential solution in terms of
conceptual graphs.

6. Theproblem of devisng ascience of teaching has a potentia solution in terms of CNR-
nets.

7. Concept maps ded with concept-names and relationships among them, asdo CNR-
nets.

8. Concept-names are represented by the verticesin aCNR-net.

9. Rdationships are represented by the tuplesinaCNR-net.

10. Tuples represent relationships inaCNR-net.

11. A CNR-net has subnets.

12. Theset of dl subnets of aCNR-net, with meet and join defined on it, formsa
digtributive lattice.

13. A concept-name, in a CNR-net, represented by a vertex with in-degree zero and out-
degree® 1,iscdled aprimary.

14. A concept-name, in a CNR-net, represented by a vertex with out-degree zero and in-
degree® 1,iscdled agoal.

15. A primary isavertex with in-degree zero and out-degree® 1inaCNR-net.

16. A goal isavertex with out-degree zero and in-degree3 1inaCNR-net.

17. A CNR-net with at least one primary, at least one goal, and no circuits, and in which
each concept-name isr elated to at least one other concept-name, is caled aformal
schema.

18. A formal schema that congsts of dl the tuples that involve agiven concept-name
condtitutes, for that concept-name, its context-schema.

19. A formal schema inwhich every vertex hasdegree® 1 issaid to be complete.

20. A formal schema may have the property that every one of its verticesis derivable.

21. A complete formal schema inwhich every vertex isderivable iscalled aCRKS.
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22. Derivability and completeness of aformal schema characterizesa CRKS.

23. A primary inaCRKS istrividly derivable.

24. Every statement of relationship inaCRKS istreated as an inference rule: Thisleadsto
the notion of derivability.

25. A formal schema that is complete and in which every vertex isderivable iscdled a
CRKS.

26. TuplesinaCRKS are preserved by CRK'S isomor phism.

27. 1somorphismof CRK S's expresses structural analogy.

28. Structural analogy is expressed in terms of isomor phic (sub-) CRKS's.

29. | somor phismis used to express structural analogy among (sub-) CRKS's.

30. Derivability isredized ina CRK S by means of derivation paths.

31. Derivation paths expressderivability inaCRKS.

32. Derivability isredized interms of derivation paths inaCRKS.

33. A formal schema can be searched for relevant subnets usng cascades.

34. A cascade from the primaries of aformal schema can be used to test aformal schema
for CRKS form.

35. In aformal schema we can use a cascade from the primariesto test for CRK S form.

These statements do not tell us much about CRK'S's, but we can continue to design more
satements until we “cover” CRKS theory. Thisisjust asmpleillustration after all!

The Tuples Table is asfollows, with the tuple st for each.

1. <problem, vee diagram> { problem, vee diagram}

2. <problem, concept circle diagram> { problem, concept circle diagram}

3. <problem, concept map> { problem, concept map}

4. <problem, semantic network> { problem, semantic network}

5. <problem, conceptua graph> { problem, conceptua graph}

6. <problem, CNR-net> { problem, CNR-net}

7. <concept map, concept-name, { concept map, concept-name, relationship,
relationship, CNR-net> CNR-net}

8. <concept-name, CNR-net> { concept-name, CNR-net}

9. <rdationship, tuple, CNR-net> {relationship, tuple, CNR-net}

10. <tuple, relationship, CNR-net> {tuple, relationship, CNR-net}

11. <CNR-net, subnet> { CNR-net, subnet}

12. <subnet, CNR-net, digtributive lattice> { subnet, CNR-net, digtributive lattice}

13. <concept-name, CNR-net, primary> { concept-name, CNR-net, primary}

14. <concept-name, CNR-net, goal> { concept-name, CNR-net, god}

15. <primary, CNR-net> { primary, CNR-net}

16. <goal, CNR-net> {god, CNR-net}

So far the difference is that the entriesin the tuples are in a gtrict order, but those in the edges
are unordered.

17. <CNR-net, primary, god, concept-name, { CNR-net, primary, goal, concept-name,
relationship, concept-name, formd relationship, forma schema}
schema>
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18. <forma schema, tuples, concept-name, {forma schema, tuples, concept-name,
concept-name, context-schema> context-schema}

19. <forma schema, complete> {forma schema, complete}

20. <formal schema, derivable> {forma schema, derivable}

21. <complete, formal schema, derivable, { complete, formal schema, derivable, CRKS}
CRKS>

22. <derivability, complete, forma schema, { derivahility, complete, forma schema,
CRKS> CRKS}

23. <primary, CRKS, derivability> { primary, CRKS, derivability}

24. <rddionship, CRKS, derivability> {rdationship, CRKS, derivability}

25. <formal schema, complete, derivable, {forma schema, complete, derivable, CRKS}
CRKS>

26. <tuple, CRKS, CRKS, isomorphism> {tuple, CRKS, isomorphism}

27. <isomorphism, CRKS, structural {isomorphism, CRKS, structura anadogy}
anaogy>

28. <dtructurd analogy, isomorphic, CRKS> {structura anadogy, isomorphic, CRKS}

29. <isomorphism, structura andogy, {isomorphism, structural analogy, CRKS}
CRKS>

30. <derivability, CRKS, derivation path> { derivability, CRKS, derivation path}

31. <derivation path, derivability, CRKS> { derivation path, derivability, CRKS}

32. <derivahility, derivation path, CRKS> { derivahility, derivation path, CRKS}

33. <forma schema, subnet, cascade> {formal schema, subnet, cascade}

34. <cascade, primary, forma schema, formal { cascade, primary, forma schema, CRKS}
schema, CRKS>

35. <forma schema, cascade, primary, {forma schema, cascade, primary, CRKS}
CRKS>

In designing a CRK S we need to decide on the primaries, the god's, and the concept- names,
and then write out statements and permutations (re- Statements) of relationships, congructing
the diagram a every step as the developing diagram often indicates what kind of statements
need to be made in order to archieve derivability of every vertex. A useful hintistoruna
limited access cascade from the primaries at each stage of the design, getting each step of the
cascade complete before moving to the following step of the cascade. The diagrams are given
infigure 21.1 (CRKS) and figure 21.2 (CRKH). In labdling the diagrams we use some
obvious abbreviations of concept-names and the edges of the CRKH are [abelled by the index
number of the statements.

In the diagram of the CRKS we have entered tuple numbers on the arrows. Thus for example,
3 arises from <problem, concept mgp>and  the completelabd is3; £ 17 arisesfrom
<CNR-ngt, primary, god, concept-name, relationship, concept-name, forma schema> and the
complete labe has only one member, 17; <primary, god, concept-name, relationship,
concept-name>. In Figure 21.2 the corresponding complete label is 17; { CNR-net, primary,
god, concept-name, rdationship, forma schemat . In the diagram of the CRKH for this
knowledge about CRKS's, we have entered only the edge index numbers. Thus, for example,
the labd |({ derivable, CRKS}) is made up of B, and Esz, 0, in full, we have |({ derivable,
CRKS}) = {{ derivability, complete, forma schema, CRK S}, { derivability, derivation path,
CRKS}}.
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Starting with a CRKS <A;, T1> with the statements of relationship among its concept-names
in ateaching metalanguage L, we can eadly abstract the unique corresponding CRKH

<A1, E1> =M [<A1, T1>]. Now we can trand ate the concept-names to another teaching
meta anguage L, bearing in mind that a concept-name can even be aphrasein Ly and/or Ly,
producing a 1- 1 correspondence between A; and the set of trandated names A,. Next we
construct aCRKH <A, Ex> that isisomorphic with <A, E;>. Then we write statements of
rdationship in L, using, for eech edge E 1 Ey, dl and only the translations of the members of
E asthe L, concept-namesin the relevant statement in L, where we can use the trandated
members of E in any order, and each can be used any number of times in the satement in L.
The relaionships, as opposed to the statements of relationship, should remain unchanged.
This now defines a set T, of tuples, and we have <Ay, T>> = | [<A,, E;>] for some
interpretation | of <Az, Ex>.

Thus<A;, T1> and <A, T>> may be made isomorphic by appropriate choice of interpretation
of <Ay, Ex>, but such achoice may beimpractical. Indeed, we may not want to be restricted
to having <A, E;> isomorphic with <A;, E;> asthisforces one to preserve vertex
adjacencies. Inthat case <Ay, To> =1 [<A2, Ex>] mugt be chosen in such away that the

rel ationships expressed by the members of T, are preserved by the members of T, inteaching
language L. We refer the reader to Definition 2.18.

In summary, the second diagram isthat of the unique CRKH which is the abgtraction of the
CRKS represented by the first diagram, though many distinct CRKS's can of course have this
same CRKH as abstraction. The concept-names involved in the CRK'S can be trandated to, or
congtructed in, another teaching metdanguage, and from these we could build a CRKH that is
isomorphic with the English language (in this case) CRKH represented by the second

diagram. The new CRKH can now beinterpreted asa CRKSinthe”new” languagein a
number of ways, where we recall that Theorem 17.5 assertsthat if that "new” hypernetisa
CRKH then each and every interpretation of it isa CRKS. Such a CRKS can now be used to
teach/learn the knowledge represented by our English language CRKS in the "new” language.
Heuridticdly, the satements from which the tuples arise in the "new” language should be
chosen, from the aternatives for each CRKH edge, in amanner that best suitsthe
teacherd/learnersin that language. It may be that the vertex adjacencies forced upon the
designer are ingppropriate in the "new” language.
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22. Accommodation and analogy

Definition 22.1: By an accommodation of aCRKH <A, E> we mean any restructuring of

<A, E>, for example adding 1 to theweight of anedge E T E every timetha E isused in any
way, thereby emphasizing certain edges of <A, E> in the sense that the higher the weight of

an edge in the current, accommodated hypernet, the greater the ” user familiarity” with that

edge. By aunit edge accommodation we mean adding one edgeto <A, E>. By aunit vertex
accommodation we mean adding one vertex to <A, E>. By ahypercluster accommodation
we mean adding a hypercluster for some new edgeto <A, E>."

Definition 22.2: In the case of unit accommodations and hypercluster accommodations of a
CRKH <A, B>, we say that the accommodation is assimilated by <A, E> iff the restructured
hypernet that resultsisitsedf a CRKH. ~

It isclear that aunit edge accommodation of a CRKH <A, E> in which dl the members of
the new edge are dements of A isthe smplest form of accommodetion. A unit vertex
accommodation of avertex v I A will of course never be assimilated: We need to add in, as
well, appropriate associations with members of A, in the form of new edges, to produce a
context hyperschemafor v that is assmilated by <A, E> if our objectiveisto construct
CRKH’sfrom ample structures. If a unit edge accommodation involves an edgein which
thereisat least onevertex v I A then we have adightly less complex problem, because here
we introduce both v and an edge that has v as a member.

Aswasindicated in [GVS99], the most "naturd” kind of accommodation is (hyper) cluster
accommodation, because of the key role of (hyper) clustersin teaching/learning and in finding
(CRKH) CRKSisomorphismsin practicd Stuationsin which andogy modelling is used. We
will return to this point in the later section on isomorphism and structural anaogy for
CRKH’s.

Findly, let us point out that even though a hypercluster is, by definition, a (minima) CRKH
for a given edge, accommodeating a hypercluster into a CRKH does not dways lead to
effective assmilation of that hyperclugter. Certainly the join of the CRKH <A, E> and a
hyperclugter that is digoint from <A, E> will yiedd a CRKH, o that hyperclugter is
assmilated by <A, E>, but thisisatrivia Stuation of no importance: What weneedtodo is
congder only such hyperclugters that are not digoint from <A, E>, i.e. the meet of <A, E>
and the hypercluster in question has & least one vertex, and here there may be red problems
that require to be dedt with to achieve assmilation of the hypercluster by <A, E>. If we ded
with the case in which the meet is < A, A2> then the accommodation and assmilation is
usdlessin restructuring <A, E> in practice. What we need for effective assmilaion is that we
add to <A, E> and the hypercluster in question enough vertices and edges to end up with a
restructured hypernet <A’, E'> that isa CRKH and is such that the hypercluster introduced
bel ongs to a component of <A’, E'>.
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Combining unit and hypercluster accommodations can aways produce, with enough
persaverance, an (effective) assmilation. Some brief comments on accommodetions in the
case of CRKS s are presented in [GV S99].
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23. Isomor phism and Structural Analogy

To seeif two given CRKS's, or two given CRKH’ s, are isomorphic we can use constructiond
scheme 6.2 of [GV S99], which easily transcribes to the CRKH case. If two CRKH’s

(CRKS ) are isomorphic then we say that they are structurally analogous. The use of
gructurd andogy in teaching/learning by virtue of the use of "modelling” has been discussed,

in the case of CRKS's, in [GV S99], and the discussion appliesto CRKH's aswell. Further, an
example of structurd anaogy is presented in Chapter 7 of [GVS99], and again that work can
be transcribed to the case of CRKH'’s. Also covered in that chapter of [GV S99], and also
smoothly transcribable to CRKH' s by smply replacing tuple labe s with tuple-set (edge)

labels on the arcs, even leaving arc directions unchanged for ease of reading, is the section on
theorem proofs.

What, then, is the reason for introducing CRKH’ sin this connection? Wdll, the centra
problem isthat of finding, if possible, an isomorphism between two sub-CRKS's: Given
<A1, T1>and <A, T»>, how can we find and congtruct an isomorphism between them? In
[GVS99] arather complex congtructiona schemeto do this, if possible, was presented. We
now wish to point out that an easier solution gppears from the notions of interpretation and
abgtraction. Setting up the problem in the field of teaching/learning "new” knowledge by
refering to given knowledge, i.e. in the sphere of teaching by the use of a”modd” of new
knowledge in terms of given knowledge, we visudize the following Stugtion in which we
need to congtruct an isomorphism, i.e. astructura andogy, to compare new, developing
knowledge with given knowledge.

We gart with existing knowledge in the form of aCRKS K = <A, T> and some " new”
observationsin the form of acluster K’ = <A’, T'> for some tuple of "new” concept-names.
Now in seeking a match, in K, for K’, we meet the firgt, and greatest, problem in trying to set
up an isomorphisnvstructurd anadogy between asub-CRKS of K and the cluster K’: That of
relative permutations. How do we recognise a match between atuple in K and atuplein K’
when we have to take account of al possible permutations of both tuples? Bearing in mind
that the whole procedure is atrid-and-error attempt to find the "best” structurd analogy — see
Chapter 8in [GV S99] — we side-gep this problem while maintaining the basic gpproach used
in[GV S99, as outlined briefly below.

First we abstract K = <A, T>and K’ =<A’, T'>, producing CRKH <A, E> and the
hypercluster CRKH <A’, E'> respectively. Now relative permutations are irrelevant. Next we
look at the member or members of E’, assuming that not dl members of E and of E’ are
unordered pairs, and find amatching of <A’, E'>in <A, E> by matching dl the setsin E
with a collection of the same number of setsin E that form ahypercluger in <A, E>, if
possible. There may be severa such matchings, so it is better, but not essentid, to Sart with a
number of "new” hyperclusters and try to match them smultaneoudy. Even then there may be
more than one possble initid matching, but continuing with the congtruction will show which
initid matching is”best”. (Of course one can aso apply heurigtics in deciding between

severd possible matchings, but our forma measure of relative successis the number of
vertices and edges in the find maitching.)
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Next we turn the isomorphism found from <A’, E'> into a hyperclugter in <A, E> round, and
expand itsdomain in <A, E> one edge a atime, each edge having as”large’” ameet with the
current domain of the growing isomorphism in <A, E> as possible. Each edge projected by

the tentative expansion of the domain of our CRKH isomorphism istested as follows. We
define, a each stage of the " prediction” from <A, E>, an interpretation of the ” predicted”
CRKH, based on expanding the inverse of the abstraction of <A’, E'>, and producing for each
predicted edge a tuple from that edge. What tuple? Well, combining the abstraction of <A, T>
with the potentidd CRKH isomorphism and the devel oping interpretation we can identify the
potentid matching tuple in <A, T>, so we can corgruct a matching tuple in the growing new
knowledge CRK S that contains<A’, E'>.

Now try to provide semantics for that predicted new tuple by trying to write an gppropriate
and cons stent statement of relationship for that tuple, identifying the relevart "new” concept-
names in that tuple. If thiseffort is” acceptable’, and judging that may require some empirica
work suggested by the predicted tuple, then we accept the " prediction”; if not then we move
on to another ”prediction”. Eventudly we will have found no isomorphism, or severd from
which to choose, and can use the matching sub-hypernet of <A, E> asa”modd” of the
"new” knowledge for usein presenting the "new” knowledge. Thereisjust one further
dipulation: The matching rdaion nets must be CRKS's, and thus the matching hypernets
must be CRKH's, in the case of teaching/learning applications, but in other applications we
can broaden the approach to isomorphic matching of generd hypernets. To writea
congtructional scheme for the procedure briefly outlined aboveis essy.

Findly, the section on the use of aogtraction isomorphism and agorithmic isomorphism in the
field of problem solving - section 8.5in[GV S99 - iseadly transcribable to CRKH
representations of top-down agorithms. In fact, as pointed out in section 1 of thisreport, the
entire treetment of problem solving in [GV S99] is best done in terms of CRKH'’ s becausein
[GVS99] we forced an arbitrary order onto the members of the edges. Either top-down
direction, with asingleton vertex basis, or bottom-up direction, with a non-empty, non-
singleton vertex basis, can be "read into” the hypernet. If read top-to-bottom we have a
(usudly connected) hypernet; if read bottom-to-top we have derivation path ordering in a
(usualy connected) CRKH. In the case of connectedness, which is clearly desiregble, afairly
generous dice of the theory of hypernets presented in this report is gpplicable in the andysis
of the structure of the kind of hypernets refered to in section 1, and considerable smple
computer support for such andyss can easily be made available.

As pointed out in [GV S99, the isomorphism finding procedure can aso be used in other
education oriented gpplications for example, such asin finding and andysing ” common

ground” for the current study material among the CRKS s/CRKH'’ s drawn up by the members
of aclassof learners.
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24. M odels of Reasoning

CRKS modds of reasoning were introduced in Chapter 9 of [GVS99], and dl that issaid
there can be transcribed to CRKH models. Models of intuitive and deductive reasoning are
based upon sequences of fast access and limited access cascades respectively. | nductive
reasoning is based on finding what is common among a number of CRK S s by means of
abstraction isomorphisms, and then projecting this structure into (partidly) Smilar new

CRKS s by means of dgorithmic isomorphiam, thereby describing common inductive
reasoning formdly. If only two CRKS s are involved we describe one as a ructural andogue
of the other. We are of course assuming that all these CRKS's can have digoint vertex sets.

Deductive reasoning may be described as” vertica reasoning” and is geared to developing the
consequences of aset of primary concept-names or, in generd, certain ”basic facts’. This
might also be described as” made reasoning”, and is predominant in basic education in many
fields. In contrast, inductive reasoning may be described as”latera reasoning” with some
justification, and can aso be described as analogical reasoning on the forma basis of CRKS
isomorphism. We may also assert that this ”analogical association” can be described as
"femde reasoning’. Though we do not of course clam that dl maes reason verticdly and Al
femdes laterdly, sSince many people are adept at both methods of reasoning, there seemsto be
cause to dlam that many femde learners have more difficulty than maesin certain fields of
education as the result of the "mae orientation” of organization and presentation of study
materid. We believe that much more emphasis should be placed on analogicd reasoning in
teaching and research if we want to achieve a balance between establishing new concepts and
the development of their consegquences.

In [GVS99] we introduced the notion of cluster sets, and from this the notion of cluster
associations. In the CRKH gpproach to reasoning, this isthe precise equivaent of plotting a
graph in which each vertex represents the cluster set of a hyperclugter, i.e. the union of the
edges from which the relevant hypercluster is defined, and two vertices are joined iff the two
relevant cluster sets have a non-empty intersection. Notice that we are implying that this edge
isincluded in the vertex set of the (hyper) cluster for that edge. If necessary, permutations of
the defining tuple for the (hyper) cluster can be used to construct the (hyper) cluster.
Labeling each arc in this graph with the relevant intersection set produces a graph of the
clugter associations involved, and following walks in this graph is our modd of associative
reasoning.

At the other extreme from associative reasoning, among our five CRKS models of reasoning,
is congtructive reasoning. This is dependent upon the associations described above. Inthe
other three models we assume that dready constructed CRKS's (or CRKH'’s) exigt. Inthe
association model only individua observations, each represented by a (hyper) cluster, exist.
The question then is how to order at least some of those (hyper) clugters, usng some or dl of
the associations in our association graph, into abody of knowledge in the form of aCRKSon
the bagis of (part of) the data displayed in that graph. How do we effectively combine
clusters? The process of joining (hyper) clusters together to produce a CRKS (or CRKH) is
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termed constructive reasoning. Some mainly heurigtic guiddines for thistask are set out in
Chapter 9 of [GV S99].

In the following section of this report we set out a brief example of models of reasoning. We
do thisin terms of CRKH'’s rather than CRKS s because of the flexibility of interpretation
into CRKS format. We must however bear in mind that we have dwaysto sart dl but the
association model with specific statements of relationship, thus giving riseto CRKS sfrom
which we abgtract to CRKH' sfor arange of specific interpretations, one of which isthat
CRKSof origin.
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25. An [llustration of M odels of Reasoning

In this smple example, in terms of CRKH modds, we start by assuming that the properties of
addition of integers are discovered by induction from a number of (good and bad) examples,
such as the notion of a” number ling’ for ingtance, by the use of (partia) abstraction
isomorphisms. Notice that we could opt for the ” common ground” of the ranges of these
abstraction isomorphisms, or for the ”best” one.

Wetake "integer” to be the only primary concept-name, and we assume that the properties of
the relationship of equdity are known. Equdity is represented by the symbol =, and addition
of integers by +. Zero is represented by the symbol 0. All concept-names about which we
wish to say something are marked in the statements of relationship given. In order to
demondirate andlogica reasoning, in avery smal way, we distinguish between the word
"zero” and the symbol ”0” in the sense that wetreat "0 as a concept-name in the Satements
of relationship, but ”zero” as a non-concept-name word. Thistrick enables usto find anon
trivid isomorphism between two sub-CRKH'’ s of the CRKH that we construct from our
Statements of relationship.

The statements that arise from our " observed” clusters, and the diagram of each cluster, and,
implicitly, the hypercluster abstracted from it, follow. We would show directions, imposed by
derivation paths, in the CRKH’s, these being those shown in the clusters. We attempt to build
acluster for each tuple defined by using only previoudy met tuples/statements with the
defining tuple of that cluster. For each cluster we define a complexity measure as follows.

Definition 25.1: Given any cluger K, the cluster complexity of K isgiven by
CCOM(K) = S n where the sum istaken over dl the n-tuples of K. Given a hypercluster

M [K], the hypercluster complexity HCOM(M [K]) = S¥EY2where the sum istaken over dl

theedgesE of M [K].
Itisclear that HCOM([K]) £ CCOM(K).

For each of the statements below, we give acluster K which can easly be converted to the
abstracted hypercluster M [K], together with the value of CCOM(K) and the value of
HCOM(M [K]). Thesetwo vaues give us one kind of estimate of the rdative difficulty of
learning the clugter, and hypercluster, respectively.

1. Addition of integers isrepresented by the symbol Q.
A dugerfor 1is

int 1 £ Q
[ > o
CCOM =2 and HCOM = 2.

2. For every integer X thereisaunigque negation that isaso an integer and is represented by
the symbol = x.
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A duder for 2is
int 2; <int> -
o > O

CCOM =3 and HCOM = 2.

3. = (= x),thenegativeof = X, for every integer x,is¢ Xx.
A clugter for 3is

= 3, <—|,—|,int> (;

2: <int>

o —»0O

int
CCOM =3+5=8and HCOM =2+ 3=5.
4. Thereisaspecid uniqueinteger, for Q, caled zero and represented by the symbol 0.

A duster for 4is
int 4; <+> 0

[ > @

Tie

®Q
CCOM =2+3=5andHCOM =2+3=5

5. ¢ holdsbetween - 0 and 0.

A cluser for5is
o 5, <=,0>

3, <=, -, int>

0
> @
T4;<+>
oe¢— ©

- Q LA int

o —»0

CCOM =5+4+3+2=14andHCOM =3+3+3+2=11

6. Theonly integer that isits own negativeisO,i.e. = O¢ O.
A cluger for 6is

int  6;<0,-,0,0,¢ >[4<+> 0
> @

2; <int> il;ﬁE 5|<=,0>
o

- Q ¢
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CCOM =3+6+3+4+2=18andHCOM =2+4+3+3+2=14
(note: 4; <+> isnecessary s0 asto reach O for usein 6).

7. ¢ holds, for any integers x andy, betweenx Qy andy Q x.
A duger for 7is

o 7, <int, +> Q

> @
Tl;/E
o

int
CCOM =4+2=6andHCOM =3+2=5,

8. 0Qx¢ xforevery integer x with O under the operation Q.
A cludter for 8is

0 8, <+,¢,int, 0> Q
o >

7; <int, +>

L
o int

CCOM =6+4+2=12andHCOM =4+3+2=09.

9. x¢ xQ Oforevery integer x with O under the operation Q.

A cluger for 9is
o 9; <+, 0, int, 0> Q
[ > @
1;/{
oe——®

0 4<+> int
CCOM=6+2+3=11andHCOM =4+2+3=09.

10. From statements 8 and 9 we have that ¢ holds, for every integer x, between x Q 0 and
0 Q x, which conforms with statement 7.
A clugter for 10is
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c 10; <int, +, 0, 0> Q

o—ye

>
1
0<¢—
0 4 <+ int

CCOM =6+2+3=11and HCOM =4+ 2+3=09.

11. = xQ x ¢ zerofor every integer x with— x under the operation Q.
A cluger for 11is

11; <+, ¢,int,=>

Q
>

o
E, <=, -, int>
o
¢

CCOM =5+6+2=13andHCOM 3+5+2=10

.T’.

int

12. Zero ¢ X Q (= x) for every integer x with = x under the operation Q.
A duger for 12is

c 12; <+,= ,int, = >

[

er

o—ip e

o
- 2;<int> int

[

CCOM =6+2+3=11andHCOM =4+2+2=8.
13. From statements 11 and 12 we have that ¢ holds, for every integer X, between x Q (= X)
and = x Q x. This conforms with statement 7.
A duger for 13is

Q 131 <Int1 +1 o > Q

o—re

>
1
04—

- 2:<int> int



Relation nets and hypernets

CCOM=6+2+3=11andHCOM =4+2+2=8.

14. For any integers X,y and z, ¢ holdsbetweenx Q (y Q2 and(x Qy) Q z
A clugter for 14 is

int 14 <¢c,+++> | LA Q
o >

7 <int, +>

¢
CCOM =6+2+4=12andHCOM =3+2+3=8.

Notice that we must reach + by means of 1; /£ before we can use 14. It is easy to verify that
each of our clustersisindeed aminima CRKSfor the tuple in question.

Even this smple example isrich in associations, o the associations graph will be only
partiadly presented: In figure 25.1 we show only those cluster associations that involve ”0”.
Each vertex of the graph is labdled with the tuple number of its cluster s, and its cluster st .

Next, we congtruct a CRKS/ CRKH from the given clusters. Because we have smplified the
congtruction by using only previoudy defined tuplesin the cluster for a particular tuple, we

can smply gart with clugter 1 and then join it with cluster 2, 3, ..., 14, in that order, with no
problem. The process will not dways be so straightforward! Notice that only sdlected
associations are used in congtructing the CRKS/CRKH. Some choices of association are as
follows. Tuple 4 isassociated, via”0”, only with tuples 5, 6 and 8. Tuple 10 is associated with
tuple5via”=", and tuples 9 and 10 are associated with tuple 8 via”+”, where our choices are
the concept-names at which we make these tuples adjacent and are among a host of such
choiceswhich can be made. The CRKSis shown in figure 25.2.



Relation nets and hypernets

4 {+,int, 0}

{ +int, 0}

5
{-,=0,int, +}

{+,int, 0} \{+,int, O} ,0,int, +}

{+,int, O} {+,int,0} {p,int,+ 0, +}

6
{=-,int,+,0,¢}

8
{0+¢,int}

int,+,0,¢}

{c,+ int O} {E, + int, 0}

{int,+,0,¢c}

,+,int, 0
{c,+ int, 0} 10
{¢,+, int, O}

{¢,+, int, 0}

Figure 25.1: Cluster associationsinvolving "0"

integer
4; <+> 1A
6;<0,-,0,¢> 14;<¢,+ +,+> 1L, K+c,int,-> int>

8 <+¢,int, 0>

f<+,0,int, 0>
10; <int, +, 0, 0>
12; <+, int~>
13; <int, +,~ >

Figure 25.2: CRKS/CRKH
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Toillustrate our modd of intuitive ressoning in this CRKS - figure 25.1 - we run afast access
cascade from By = {int}, the only primary. At each step we show only what is newly found in
that step.

Step 1: int

Step 2:
0 int -
® °
8; <+, ¢,int, 0> 11; <+, ¢ int, ~>
7;<int,+>—_—_ | 12; <+, =, int, 7>
9;<+,0,int,0>  |13;<int,+,-, > o
10; <int, +, 0, 0>

After two steps the whole CRKS has been accessed. Suppose that after step 1 we decide to
explore further only the concept-name "¢ ”. We start a new cascade with B% = {¢}. LY
= /E, and for T?; we have a choice of tuplesthat start with"¢”, i.e. tuples 5, 7, 9, 10, 12 and
13. If we choose only 5, then this step 2 yidlds

0 5 <=,0> c

-

aformal schema. For the next cascade, let’'s choose B3, = {0, ¢}, and T3; = {5} again. We get,
in this step 3, the newly found data
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Step 3:

7; <ift, +> | 12; <+, =, int, =>
9, <t,0,int,0> |13; <int, +,, >
11, <+, ¢, int~> 10; V. + 0, 0>

+

Joining these formal schemas, leaving out the previous step 2, we see that this” controlled”
chain of fast access cascades has generated the given CRK'S. The power of thisview of
intuitive reasoning by means of a sequence of " directed” fast access cascades will only
become apparent when the given CRKSisvery large.

To illugtrate our model of deductive reasoning in this CRK'S we run a limited access cascade
from its primary, i.e. BYo = {int}, in steps, showing what is newly derived in each step.

Step 1: int 2; <int> -
>0
1. /&
®
+
Step 2: ot -®
4: <+> 3, <=, 4, int>
o
0 ¢
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Step 3:

<int, +> | 12; <+,=, int, =>
9;<+,0,int,0>  |13;<int, +,-,~> | 10; <int, +, 0, 0>

The join of these three forma schemas s precisaly our given CRKS. Suppose that after step 2
we decide to continue with a new limited access cascade from B = {int, +, ¢ }. Inthefirst
step of this cascade we get

int ¢C @
4, <c +,+,+>
4; <+> 2; <int> ; 7Aint, +>
o
0

The next step, 2, of this second cascade yields

- int

3 <A, 4, int> ; <+, ¢,int,=> 6} <0,-,0,¢>

5 <A, 0> ‘

9; <+, 0,int, 0> | 10; <int, +, 0, 0>
12; <+, =, int~ > | 13; <int, +-, >

; <+, ¢ int, 0>

Joining < By, T>, < B?;, T?1> and step 2’ above yields the entire CRKH.



Relation nets and hypernets 101

Finally, we point out thet it is easy to show that clusters 8 and 11 can be adjusted to be
isomorphic. We change to an dternative clugter for 11, for thetuple<— , +, ¢, int, =, +>, as
shown below.

- 11; <+ int, => +

7; <int, +>

% int

We have deleted 3 and added 7. This does not affect the congtruction of the CRKS from the
clugters. This dternative cluster and that for Satement 8 are isomorphic, where”-” and "0’
are matched, so, for example we can use this structurd analogy between the two clustersto
teach/learn cluster 11 by referring to cluster 8, previoudy learned, asamodd of cluster 11.
Further, it is easy to extend this isomorphism by joining cluster 9, and then cluster 10, to
cluster 8, deleting tuple 4, and isomorphicaly mapping this domain onto the join of cluster 12

and 13, without tuple 2, with our revised cluster for tuple 11.
Joining clusters 8, 9 and 10 yields the CRKS

¢ 7:<int,+>| 9;<+,0,int, 0> +
@

10; <int, +, 0, 0>

8, <+, ¢ int, 0>>

Joining clusters 12 and 13 to our adternative cluster for 11 yields the CRKS

c 7: <int, +>| 12; <+, =, int, => +

13; <int, +,7, =>

11; <+, ¢, int, =>
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Ignoring 2 and 4, it is easy to find the isomorphism between these two CRKS s— we can go
viathe equivdent CRKH's. Expansion of the domain of the mapping onetuple at atime,

garting with the isomorphism between clusters 8 and 11 (revised), will break down when we
try to map 4; <+>. In mogt cases isomorphic (sub-) CRKS CRKH’ swill share no vertices.

We refer the reader to Chapters 9 and 10 of [GV S99N] for comments on structural anaogy
and the uses of CRKS /CRKH’ s in education.

Closing comment: It is clear that the digraphs congtitute a sub- class of the class of relation
nets, and it appears that relation nets have, potentialy, awider domain of practica
gpplications when used as modesin such gpplications. It is aso apparent that the graphs
form asub-class of the class of hypernets, as do the hypergraphs. Thus, in genera, hypernets
should have awider domain of practica gpplications, when used as modelsin such
gpplications, than ether of these two sub- classes.
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| ndex
abstraction 13 edge basis 35
accommodation 86 edge-bundle 71
action diagram 4 edge connectivity 46
adjacency function 20 edge context number 67
assmilated 86 edge cut-set 46
associative reasoning 90 edge-flow 71
between 32 edge-independent 71
betweenness sequence 56 edgerank 68
block 51 edge separation 71
branch 43 edgewith 20
bridge 33 edge-specific hypernet abstraction 13
bundle 70 fast access cascade 21
circuit 10, 58 first derivation path 76
chord 43 flow 67,70
cluster complexity 92 flow-separation 71
CNR-hypernet 55 forma hyperschema 55
completeisolate 10 fundamental circuit 44
complete 55 fundamental edge cut-set 46
completion 13 god 55,57
component 28 goesvia 32
concept-name relationship hypernet 55 hypercluster 65
concept-relationship knowledge hypernet 57 hypercluster accommodation 86
concept-relationship knowledge structure 4 hypercluster complexity 92
condition set 4 hypergraph 9
connected 28 hypernet 8
connectedness preserving set of edges 37 hypertree 42
constructive reasoning 91 immediately derived from hypothesis 57
context hypernet 22 in-degree 67
context hyperschema 56 independent 70
course unit 4 index set 8
covering 73 inductive reasoning 90
CRKH 57 interdependent paths 23
CRKS 4 interdependent set 23
cut-vertex 38 internal vertex 42
cyclomatic number 44 interpretation 13
deductive complexity 75 inthenameof 20
deductive reasoning 90 intuitive reasoning 90
deductive distance 67, 75 isolate 10
degree 10, 67 isomorphic 14, 15
derivable (from) 57 join 20
derivable in terms of hypothesis 57 joined 32
derivation adjacency 64 label 8
derivation path 57 labelling function 9
derivation path hyperschema 65 language equivaent relation net 18
derivation vertex 57 length 10, 69
diagram 8,9 limited access cascade 21

edge 8 local context number 67



loop edge 9

matching 67, 73

maximal interdependent set 23
maxima matching 73
maximum sub-hypernet 14
measure 71

meet 20

minimal difficulty 69
minimal vertex cover 73
neutral edge 32

neutral vertex 39
non-joined 32

order 8

out-degree 67

parald unit 4

path 10

path-hypernet 23
path-multiplicity 67
path-net 23

pathtree 75

pendant 42

potentially edge adjacent 8
potentialy vertex adjacent 8
predecessor hyperschema 65
prerequisite 4

primary 55, 57

primary edge 74

primary scope 68
primary scope number 68
quasi-digoint 26, 70
quasi-edge-digoint 71
rank 67

r-difficulty 68
reachability function 21
reachable 20

redization 13

recursive sub-hyperschema 74

relation net 8

scope 68

scope number 68
separation 25

smple hypergraph 9
sngletonedge 9
spanning hypertree 43
spanning sub-hypernet 14
oinney 44

soirdling 74
strengthening edge 32
strengthening vertex 39
strong vulnerability 22
structuraly andogous 88
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sub-hypernet 14

sub-walk family 20

transversal 67

transversal number 67
tuple-oriented partial presentation Strategy 74
tuple-specific relation net interpretation 13
unit edge accommodation 86
unit vertex accommodation 86
vertex 8

vertex basis 30

vertex between 20, 38

vertex connectivity 46

vertex context number 67
vertex cover 73

vertex covering 68

vertex cut-set 46

wak 10

walk family 20

weakening vertex 39

weight 86

weighted deductive distance 68
width 68

(x,y)-edge 32

(X, y)-vertex 39
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