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Prologue 
 

In many respects this report is a companion work of [GVS99]. In some senses it runs parallel 
to [GVS99], while in others it is a sequel to that book. Readers not familiar with [GVS99] will 
find themselves refering back to it in several instances to follow some of the subtleties of this 
work, as these are often bound with aspects of [GVS99], particularly  in the case of concept-
relationship knowledge stuctures, abbreviated CRKS in what follows; they are not explicitly 
repeated here. 
 
Some small errors in [GVS99] are corrected in this report and certain additions to the theory 
of CRKS's are dealt with in a way that covers both CRKS's and their hypernet equivalent. The 
main application of CRKS's - namely modelling study material - is not explicitly transcribed 
to this paper, but that whole notion is abstracted and made independent of any specific 
teaching/learning metalanguage through the implications of this abstraction.  
 
Two key factors emerge from this paper on hypernets. First, unlike the case for CRKS's in 
which little of the general theory of relation nets - see Part III of [GVS99] - applies to 
CRKS's, the broad theory of hypernets, as far as it is covered in this report, is often applicable 
to the hypernet equivalent of a CRKS. Second, we will show a link between relation net 
isomorphism and hypernet isomorphism which makes it considerably easier to deal with 
CRKS isomorphism and, thus, with structural analogy as used in a modelling based approach 
to teaching/learning/analogical reasoning [GVS99]. 
 
Finally, we must mention that it appears that the domain of potential practical applications of 
hypernets must inevitably be wider than that for relation nets. In this connection, it should be 
noted, however, that this report is written with applications in the field of education in mind, 
specifically in the realm of the modelling of study material, the planned representation of that 
material, problem representation and solution, analogical reasoning, and to assist in 
curriculum planning and student registration, particularly in modelling small course unit 
systems with relatively complex registration conditions. Such applications in education will 
not be made explicit here, but are implied by the work in Parts I and II of [GVS99] and in this 
extension of it. 
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1. Introduction 
 
 
In [GVS99] we developed the theory of relation nets. The main application was to the 
representation of study material in terms of a model called a concept-relationship knowledge 
structure, abbreviated CRKS, that is a special case of a relation net. Part I of [GVS99] 
described the theory and an application of CRKS's in some detail, Part II was dedicated to a 
special example of a CRKS, and Part III laid out the mathematical fundamentals of a theory of 
relation nets proper.  
 
Early work on the system that was to become known as a relation net introduced a relation net 
representation of a specific curriculum that consisted of a number of interrelated "small 
course units", known in that case as modules (see [VR76] and [Wei83] for example). In this 
paper, we will be bearing in mind two similar systems upon which that part of hypernet theory 
introduced is founded, in the sense that we will introduce no theory that does not have 
potential application to this kind of system. We start by introducing these application systems 
in abstract form. 
 
First we present an description of a curriculum system in abstract form. Imagine, for example, 
a "small course unit" curriculum that leads to degrees and diplomas. By a course unit we 
mean any complete and interrelated section of study material. By a prerequisite unit for a 
given course unit U we mean a course unit C, or a condition C, that must be completed or 
fulfilled before course unit U can be entered. By a parallel unit for a course unit U we will 
mean a course unit P that must be completed before, or simultaneously with, course unit U as 
a requirement for obtaining credit for U. We may extend this by adding another form of 
parallel for U, namely a course unit that may be entered at the same time as entering U, but is 
not a necessary precondition for obtaining credit for completion of U. 
 
We visualize such a curriculum system in the form of a labelled graph as follows: Plot a 
vertex for each course unit in the curriculum, and label each vertex with the unique (code) 
name of the relevant course unit. Each course unit U has at least one non-empty list of 
prerequisites, and at least one list of parallels which may be empty. These prerequisite and 
parallel units constitute a condition set for U, and U may have more than one condition set, 
depending on the particular degree or diploma in which U is registered. In each condition set 
we mark all the prerequisite units, for example with an underbar, and also mark all of the 
parallel units of the first kind, for example with an overbar. We  number each occurence of a 
condition set uniquely, and notice that distinct condition sets need not be disjoint. From each 
prerequisite in each condition set for U we draw an arc to U, and we label that arc with that 
condition set and its number. We do this for all the condition sets for U, and repeat this for all 
the course units in the curriculum. Such a labelled graph can be read hierarchically from 
prerequisites to dependants, or vice versa, i.e. from bottom-to-top or from top-to-bottom. As 
we will see, such a graph is an example of a hypernet. 
 
Such a curriculum system for a host of "small" course units has pro's and con's. It's major 
advantages are to allow more flexibility of topic choice and degree/diploma structure, easier 
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changes of "direction" of study, and an ability to support multi-disciplinary studies. The major 
disadvantage is the complexity of registration and administration. 
 
We will see that, in combination with [GVS99], hypernet representation will enable 
registration, administration, planning, alteration, and analysis of the whole structure or parts 
thereof by means of formal theory and strong but relatively simple computer support. In the 
relation net approach to curriculum systems of this nature, an order was forced on the 
members of the condition sets, which was a handicap in the representation. We will see that 
the hypernet model is more "natural" in this case. 
 
A similar situation arises in [GVS99] when we introduce the notion of an action diagram in 
the course of a discussion of problem formulation and solution by top-down algorithm (see 
section 8.5 of [GVS99]). Here we leave out the directed arrows in the action diagram and the 
arbitrary ordering of nodes on the arrow labels in the resulting relation net, producing instead 
a hypernet associated with the action diagram. Consider, for instance, the diagram on p.139 of 
[GVS99]; using arcs in place of arrows, we get the following version of that action diagram: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1: An example of a partial action diagram 
 
 

 
 
 
 
 
 
 

Find .... 

4 

  1    2    3 
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Part of the resulting hypernet is: 
 
 
 
 
      1; [{Find..., 4  }] 
 
 
 
 
 
       2; [{1,2,3,4,}]                         3; [{1,2,3,4}]        4; [{1,2,3,4}] 
 
 
 
 
 

Figure 1.2: A partial hypernet for figure 1.1 
 
 

In this case there is one "condition set" in each label, and the set of vertices {1,2,3,4} 
generates three edges, numbered 2;, 3;, and 4;. 
 
There is a connection between our curriculum example and this one. Reading top-to-bottom 
we see that "Find ..." is a prerequisite of 4, with no parallels, and 4 is a prerequisite of 1, for 
example, with parallels 2 and 3. Reading bottom-to-top, we must be a bit careful. In this case, 
1 is a prerequisite of  4 with 2 and 3 as other prerequisites of 4, and with no parallels , and 4 is 
a prerequisite of  "Find ..." with no other prerequisites and no parallels. It is the intended 
interpretation which, in each individual case, will determine whether we read such hypernets 
from top-to-bottom or from bottom-to-top. For the hypernets that arise from action diagrams, 
top-to-bottom is interpreted as the specification of the top-down algorithm for the solution of 
the problem(s) and bottom-to-top as the actual solution procedure for the relevant problem(s).  
 
On page 141 of [GVS99] we meet a more general action diagram situation. The hypernet that 
arises from the section of an action diagram shown there is: 
 
 
 
 
 
 
              E11                                E12             E13               E14                                        E41                  E21             E22                  E23 

 
 
 
 
 
                                                                                                              E31     

 
Figure 1.3: A hypernet from the partial action diagram on page 141 of  [GVS99] 

Find ... 

4 

2 1 3 

1 2 

3 9 4 5 6 7 8 
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The first index characterises the set of vertices; the second the edge with that set. Here 
E1={1,3,4,5,6}, E2={2,7,8,9}, E3={1,7}, E4={5,2}. 
Reading top-to-bottom, we have for example: 
• In E11, 1 is a prerequisite of 3 with 4, 5 and 6 as parallels. 
• In E22, 2 is a prerequisite of 8 with 7 and 9 as parallels. 
• In E31, 1 is a prerequisite of 7 with no parallels. 
Reading bottom-to-top, these labels mean: 
• In E11, 3 is a prerequisite of 1, as are 4, 5 and 6. 
• In E22, 8 is a prerequisite of 2, as are 7 and 9. 
• In E31, 7 is a prerequisite of 1 with no parallels, and in  E21, 7 is a prerequisite of 2 as are 8 

and 9.  
 
Such hypernets can, as we will see, easily and formally be compared for common, i.e. 
structurally analogous, substructures using hypernet isomorphism. This is a potentially 
extremely useful technique in the development of general problem formulation and solution 
skills. We note in passing that the same kind of hypernet can be used to display and analyse 
the relationships between the subroutines that combine to form a program. We will also see 
that there are some measures of the complexity of certain hypernets that can play a very 
significant role in the analysis of such hypernets. 
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2. Relation nets, hypergraphs, and hypernets 
 
 

Relation nets have been introduced and fairly extensively covered in [GVS99]. The notation 
used in Part III thereof is detailed and therefore quite complex, but in Part I (the theory of 
CRKS's ) a tuple table notation is used that is much more "user friendly". We begin this 
section by changing the notation for general relation nets also to the tuple table approach, and 
then go on to some basic definitions of a theory of hypernets, defining the notion of hypernet 
in the process. 
 
Definition 2.1: Consider a finite set  

A = {A1, A2, ... , An } 
and a family of relations  

R = {Ri | i ∈ I, I a finite index set} 
over A where all Ri have an arity of at least 2, i.e. card(Ri) ≥ 2, written | Ri | ≥ 2. We denote 
such a system by <A, R, I>. By a relation net representation of <A, R, I> we mean a pair  
<A, T> where T is the set of all tuples from all of the Ri .♦ 
 
Note that some of the Ri may be identical. Each tuple in T is given a unique code name, 
generally of the form "i; x" where i indicates the Ri of origin of that tuple and x is usually the 
number of the tuple in T. We will use only the unique tuple number x if we do not need to 
take account of the particular Ri from which the relevant tuple arises. In that case we will 
regard T as a single finite family of tuples T = { Tx }. 
 
Definition 2.2: By a diagram of a relation net <A,T> we mean a representation drawn as 
follows. Plot precisely one vertex for each member of A and label each such vertex with the 
“name” of the appropriate member of A. Next, for each Tk ∈ T with Tk = <ao, ..., aj>, where j 
is the arity of the relation Ri from which Tk arises, we draw an arrow from the ao  vertex to the 
aj vertex. Now label each such arrow <a,b> with a label  λ(<a,b>) where λ(<a,b>) is defined 
by λ(<a,b>) = {Tk ∈ T | Tk = <a, ..., b>}. There is no arrow from a ∈ A to b ∈ A iff λ(<a,b>) 
= ∅.♦ 
 
The notion of a hypernet was inspired by that of a  hypergraph [Ber73] and a desire to ignore 
at least part of the ordering implied by the arrows and paths of a relation net, without moving 
too far from either hypergraphs or relation nets. 
 
Definition 2.3: By a hypernet  <A, E> we mean a structure in which A= {A1, A2, ... , An } is a 
finite set and E = { Ei | i ∈ I} is a family of non-empty subsets of A. |A |is called the order of 
<A, E>  and I the index set of <A, E>. Each Ai ∈ A is called a vertex of <A, E>, and each  
Ei ∈ E is called an edge of <A, E>. Two edges Ei and Ej of <A, E> are distinct iff i ≠ j, even 
though Ei and Ej may be the same set. ♦  
 
Definition 2.4: Two vertices Ai , Aj ∈ A of a hypernet <A, E> are said to be potentially vertex 
adjacent by edge Ei iff {Ai , Aj }is a subset of Ei. Two edges Ei, Ej ∈ E are said to be 
potentially edge adjacent iff Ei  ∩ Ej ≠ ∅, and for every Ak ∈ A with Ak ∈   Ei  ∩ Ej we say 
that Ei is potentially edge adjacent with Ej by Ak. ♦  
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Now consider three distinct edges Ei, Ej, Ek ∈ E with Ei ∩Ej ≠  ∅ and Ek ∩Ej ≠  ∅. Then we 
say that each Ar ∈ Ei ∩Ej is potentially vertex adjacent with each As ∈ Ek ∩Ej by Ej. We write 
(Ar, Ej, As) for every pair {Ar, As} of vertices with Ar ∈ Ei ∩Ej and As ∈ Ek ∩Ej if Ar and As 
are vertex adjacent by Ej in <A, E>. If Ei  = { Ar } for some Ar ∈ A and some Ei ∈ E then we 
call Ei a singleton edge. A singleton edge at Ar ∈ A is also called a loop edge at Ar.  
 
Note well that a hypernet need not have in it all the potential vertex adjacencies, nor need it 
have all the potential edge adjacencies; in each case it may have all, or some, or none of the 
potential adjacencies. 
 
Definition 2.5: Given a hypernet <A, E>, [if the edges Ei ∈ E are all non-empty distinct 
subsets of A and] if  ∪i  Ei = A, and if two edges Ek, El are adjacent iff Ek ∩ El  ≠ ∅, then  
<A, E> is a [simple] hypergraph. ♦ 
 
We will ignore the standard diagrammatic representation of hypergraphs [Ber73] and draw 
hypergraph diagrams as we do hypernet diagrams. The class of hypergraphs can be regarded 
as a subclass of the class of hypernets. 
 
Definition 2.6: Given any hypernet <A, E>, we produce a diagram of <A, E> as follows. Plot 
precisely one vertex for each member of A and label each vertex with the relevant  "name" 
from A. Next, for every vertex adjacency of Ai ∈ A and Aj ∈ A in <A, E>, draw an arc 
between Ai and Aj,  and label that arc with all the members of λ({Ai, Aj}) =  
{ Ek ∈ E | (Ai, Ek, Aj ), where λ: A x A → ℘(E) is called  the labelling function of <A, E>  
and λ({Ai, Aj}) is defined for every pair of members {Ai, Aj}, and λ({Ai, Aj}) = ∅ iff there is 
no arc between Ai and Aj in <A, E>, i.e. if Ai and Aj are not adjacent vertices in <A, E>. 
Singleton edges are not usually represented by any arc. ♦  
 
The definitions given above are illustrated in figure 2.1: 
 
 
                                                   E3, E8                                                      E2 
                                          
                                   
 
                             E1                                                      E5                                        E6 
 
    
 
                                                     E4                                              E7 
 
 

Figure 2.1:  An example of a hypernet  <A, E> 

 
where A = { 1, 2, 3, 4 5, 6}, E = { E1, E2, E3, E4, E5, E6, E7, E8 } with E1 = { 1, 2, 3 },  
E2 = { 2}, E3 = { 1, 2 }, E4 = { 3, 4 }, E5 = { 2, 3, 4 }, E6 = { 5 }, E7 = { 4, 5, 6 }and  

1 2 

4 3 5 

6 
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E8 = { 1, 2, 3 }. Notice how we have chosen to deal with E7, between 4 and 5, and with E8, 
between 1 and 2, in this particular hypernet. 
• Vertex adjacency: vertices 1 and 2 by edge E3 and by edge E8 for example. 
• Edge adjacency: edge E3 = { 1, 2 }and edge E5 = { 2, 3, 4} by vertex 2 for example. 
• Singleton (loop) edge: edge E2 = { 2} and edge E6 = { 5 }for example. 
Notice that a singleton edge {Ak }, Ak ∈ A, can only have label {Ak}. Singleton edges can be 
thought of as representing predicates. Thus, for example, {Ak}could represent " Ak is red". 
 
Definition 2.7: By the degree d (Ai) of a vertex Ai ∈ A in a hypernet <A, E> we mean the 
sum of all the | λ({Ai, Aj}) | over all Aj ∈ A for which λ({Ai,  Aj}) ≠ ∅. (Notice that we may 
have Ai = Aj , but singleton edges are not usually included.) ♦ 
 
Definition 2.8: By an isolate of a hypernet <A, E> we mean an Ai ∈ A for which Ai is not 
incident with any Aj ∈ A but Ai  does belong to at least one vertex adjacency (Ar, Ej, As) in 
<A, E> with Ar, As ∈ A, Ej ∈ E, and Ai ∈ ( Ej -{ Ar, As }). By a complete isolate of <A, E> 
we mean an Ai ∈ A which belongs to no edge in <A, E>.♦ 
  
Definition 2.9: By a walk in a hypernet <A, E> we mean an alternating sequence of vertices and edges,  
                          A1, E1, A2, E2, A3, ... , Aq, Eq, Aq+1, written A1   Aq+1, 
of <A, E>, where for each k = 1, ..., q, Ak and Ak+1 are vertex adjacent by Ek in <A, E>. The length of a walk is 
the number of edge entries in the sequence, in this case q. If all but possibly A1 and Aq+1 are distinct vertices and 
all the Ek, k = 1, ..., q, are distinct edges, then  
A1    Aq+1 is called a path. If A1 = Aq+1 for a path A1   Aq+1, and the length of that path is any number but 2, 
then we call A1   Aq+1 a circuit. ♦  
 
Closed paths of length 2 may exist, but we do not permit any traversal of them. Note that a 
closed path has length 2 iff it uses two edges from the same label. 
 

We go back to our example in figure 2.1 and illustrate the definitions above: 
• degree: d(1) = 3 and d(2) = 4 for example. 
• isolate: vertex 6 is an isolate, but, by virtue of E7 = { 4, 5, 6 }, 6 is not a complete isolate. 

Notice that a vertex with only a singleton edge incident with it is taken to be an isolate, 
even though the degree of such a vertex is 1. 

• walk: 1, E3, 2, E2, 2, E5, 4, E7, 5, E7, 4 is an example for a walk of length 5. 
• path: 1, E8, 2, E5,, 4. 
• circuit: 1, E3, 2, E5, 4, E4, 3, E1, 1. 
 
Notice that every edge Ei ∈ E labels one and only one vertex adjacency in <A, E>. The same 
set may label several vertex adjacencies, but each occurrence of that set is a distinct member 
of the family E. Further, any given vertex adjacency may be labelled with a number of distinct 
edges. Next, the reason for the introduction of singleton edges, Ei = {Ar} for example, is to 
cover cases in which there is no path “through” Ar but Ar is vertex adjacent to some As by Ej 
for instance, so that Ei ∩Ej = {Ar } and, as a result, we can legitimately talk of a path Ar, Ej, 
As incident with Ar. Finally, the reason for not regarding a closed path of length 2 as a circuit 
is that we should ignore this situation, which arises every time | λ({Ar. As }) | ≥ 2. 
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The kind of structure met in the introduction is a hypernet. We should note that the final 
diagram in that section is that of a hypernet with circuits, but that reading such a hypernet 
from top-to-bottom imposes a “downward” direction an all the arcs and that with this imposed 
direction the circuits disappear in the sense that they become digraph semi-circuits. A similar 
situation arises if we read that hypernet from bottom-to-top, and we will see that this potential 
to rid this kind of hypernet of circuits by means of reading imposed direction can be a very 
significant technique in the interpretation of such structures. 
 
To further illustrate some of the definitions that we have met, we consider the following 
example adapted from that given on page 110 of [Wei 83]. It deals with part of an actual 
module system that once existed in the Faculty of Science at the University of South Africa. 
The code of each module consists of a subject code of three letters followed by a level code of 
three digits of which the first indicates the level of study towards a degree in the faculty and 
the next two a module code. The modules concerned are as follows: 
• Computer science: COS111, COS121, COS211, COS212, COS221, COS201, COS311, 

COS321, COS322, COS331, COS351, COS301. 
• Information Systems: INF101, INF201, INF303. 
• Mathematics: MAT101, MAT102. 
 
What we have here is the sub-hypernet retrieved from the hypernet for the whole module 
system by selecting every condition set that involves COS211. As we will see, this sub-
hypernet is the “context hypernet” of COS211 in the whole module system: It represents all 
the intermodule relational information about COS211 in that whole system. The set of module 
codes generates, one for one, the set of  vertices of our hypernet, and the condition sets 
generate its edges. The parallels in each condition set are marked with an underline.  
 
The condition sets are as follows. 
1. {COS111, COS121, INF101, COS211} 
2. {COS111, COS121, INF101, COS211, COS221, COS212} 
3. {COS111, COS121, INF101, COS211, COS221} 
4. {COS111, COS121, INF101, COS211, COS221, COS201} 
5. {COS211, COS221, COS311} 
6. {COS211, COS221, COS311, COS321} 
7. {COS211, COS212, COS221, COS322} 
8. {COS211, COS221, MAT101, MAT102, COS331} 
9. {COS211, COS221, COS311, COS351} 
10. {COS201, COS211, COS221, COS311, COS321, COS301} 
11. {INF201, COS211, INF303} 
 
The condition sets are those stipulated, in the system, for obtaining credit for the final module 
in each membership list. We can choose any prerequisite from a list as the other end vertex of 
that list. Bearing in mind potential edge adjacencies it is of course possible, then, to plot each 
condition as a number of edges, but to avoid unnecessary repetition of condition sets we use 
each condition set only once, and as a heuristic it is advisable to “start” each edge at a module 
of lower level than that of the module for which the condition is stipulated, thus making the 
interpretation of the diagram simpler.  
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A diagram for these modules and these condition sets, a hypernet diagram, is given in figure 
2.2. Note that there are four isolates, but none of them is a complete isolate. 
  
Reading from left to right (bottom-to-top) we can determine how credit may be obtained for 
an end vertex of each edge and of each path. Reading from right to left (top-to-bottom) we get 
the same information in a different form. It will become clear later, when we deal with 
"cascades", that this difference of form is not trivial. 
 
 
                                                                                  5 
 
                                                                                     6 
                                                                                   7 
                                                                                 8 
 
                                  1                                                9 
 
 
 
                               2 
 
 
 
                                         3 
 
                              4       
                                  
 
                                                                                    10 
 
 
 
                                                                                 11 
 
 
 
 
 
 
 
 
 

Figure 2.2: A diagram for part of a module system 
 
 
 

COS111 

COS211

COS212

COS221 

COS201

INF201 

COS121 

INF101 

MAT101

MAT102 

CO311 

COS321 

COS322 

COS331

COS351

COS301 

INF303 
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Next we look at the connection between hypernets and the relation nets introduced and 
explored in [GVS99]. 
 
Definition 2.10: By a tuple-specific relation net interpretation, or simply an interpretation, 
of a hypernet <A, E> we mean a one-to-one correspondence I: A → A that maps  <A, E>  to a 
relation net <A, T> as follows. For every vertex adjacency (Ar, Ei, As) in <A, E> with  
Ei  = {A1, A2, ... , A

°  , ...., An(i)} ⊆ A, Ar ∈ Ei, As ∈ Ei, (Ar, Ei, As) is mapped to at least one 
tuple Ti ∈ T with Ti = < B1, B2, ... , Bk , ...., Bm(i) > and with either B1 = Ar and Bm(i) = As  or 
B1 = As   and Bm(i) = Ar and for every Bk, k = 2, ...m(i) - 1, Bk = I (A

°
) for some one A

° ∈ Ei, 
° = 1, 2, ..., n(i), and every member of Ei is used at least once as an entry in Ti  so Ei is the 
tuple set of Ti, | Ti | = m(i) ≥ | Ei | = n(i), and this holds for each vertex adjacency by each  
Ej ∈ E and for each Tj ∈ T. We write Tj = I [Ej] and <A, T>  = I [<A, E>], and | Ti | is equal to 
the number of distinct vertex adjacencies in <A, E>.♦ 
 
Definition 2.11: Each hypernet <A, E> has a countably infinite set of distinct interpretations, 
and this set is called a realization of <A, E>.♦ 
 
Next we describe the move from relation nets to hypernets. 
 
Definition 2.12: Consider any given relation net <A, T>. By an edge-specific hypernet 
abstraction, or simply an abstraction, of  <A, T> we mean a one-to-one correspondence  
M: A → A that maps <A, T> to a hypernet <A, E> and is defined as follows. For every tuple 
Ti  =  < A1, A2, ... , A

° , ...., An(i) > ∈ T in <A, T> the mapping M produces a set  
Ei  = {M(A1), ... , M(A

°
), ...., M(An(i) )} ∈ E with | Ei | ≤ | Ti |, the tuple set of Ti, and a vertex 

adjacency (M(A1), Ei, M(An(i) ) ) in <A, E> for every Ti ∈ T. This results in the hypernet  
<A, E> and we write Ei = M [Ti] and <A, E> = M [<A, T>] . ♦ 
 
Each relation net <A, T> has a unique abstraction M [<A, T>] but a countably infinite set of 
distinct relation nets can all have the same abstraction. Obviously,  
 
Theorem 2.1: Every abstraction M of a relation net <A, T> with M [<A, T>] = <A, E> is the 
inverse of some interpretation I of  <A, E> with I [<A, E>] = <A, T>, and the converse is also 
true. ♦ 

 
In dealing with relation nets in [GVS99] we faced the problem (in Part I) that each tuple came 
from a statement of relationship among concept-names, and could thus be permuted by re-
wording that statement without changing the relationship among those concept-names 
involved in that statement. The following definition opens up all the possible permutations of 
tuples in a CRKS for examination and choice of "appropriate" ones. 
 
Definition 2.13: By the completion of a hypernet <A, E> we mean that unique hypernet that 
is constructed from <A, E> by adding to <A, E> every potential edge adjacency, and hence 
every potential vertex adjacency, of <A, E> that is not in  <A, E>, i.e. we "fill in" all the sets 
Ei  ∩ Ej, and thus all the vertex adjacencies that then arise, for all distinct Ei and Ej, i.e.for all  
i ≠ j. ♦ 
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For each Ar ∈ A for which we have (Ei, Ar, Ej) for some Ei and Ej, i.e. Ar ∈ (Ei  ∩ Ej), i ≠ j, in 
the completion of M [<A, T>], the tuples Ti and Tj with M [Ti] = Ei  and M [Tj] = Ej can be 
permuted so that they are adjacent at Ar in a new CRKS that models the same relationships as 
does T. 
  
Given the completion of an abstraction M [<A, T>], we can interpret sub-hypernets of that 
completion to produce goal oriented application CRKS's from <A, T>. This leads to the 
following definitions. 
 
Definition 2.14: By a sub-hypernet of a hypernet <A, E> we mean a hypernet <B, U> with  
B ⊆ A, U ⊆ E, and every Ei ∈ U is such that Ei ∈ E. Further, every vertex adjacency of  
<B,U> by Ej is a vertex adjacency of <A, E> by Ej. If B = A then we call <B, U> a spanning 
sub-hypernet of  <A, E>. We write <B, U> ∠ <A, E>.♦ 
 

Definition 2.15: The maximum sub-hypernet <B, E↑B>, of a hypernet <A,E>, that is 
induced by B ⊆ A, is such that Ei ∈ E belongs to E↑B  iff Ei  ⊆  B. ♦  
 
Let <A,E> be any hypernet and let X be the set of all those sub-hypernets of <A,E> that are  
of the form  < A – B, E ↑(A – B) >  where B  ⊆  A. Then < X, ∠ >  is a distributive lattice 
under ∪ and  ∩  of hypernets, with null element <φ ,φ>  and universal element <A,E>. This 
can be shown easily because  ∪ and  ∩  for hypernets are defined in terms of set  ∪ and set  ∩ 
respectively. 
 
There is a one-to-one correspondence between the set of walks in a hypernet <A, E> and the 
set of semi-walks in any given interpretation I [<A, E>] of <A, E>. 
 
To close this section we turn our attention to the question of isomorphism. In Part I of 
[GVS99] we defined structural analogy of CRKS's in terms of CRKS isomorphism, giving - 
to the best of our knowledge - the first formal definition of analogy. The notion of formalized 
analogical reasoning, and of  teaching/learning by analogical modelling, is critical to the work 
in Part I of [GVS99], and a key to the practical use of structural analogy is the rather complex 
constructional scheme given there for finding isomorphic (sub-) relation nets. It appears that 
we can do a little bit better, through the medium of hypernets, by side-stepping the problems 
involved in relative permutation differences between potentially isomorphic (sub-) relation 
nets. To begin, we revise the definition of isomorphism of relation nets.  
 
Definition 2.16: Given two relation nets <A, S> and <B, T> with | A | = | B | and | S | = | T |, 
we say that <A, S> and <B, T> are isomorphic iff there exists a pair of one-to-one 
correspondences g: A→ B and h: S→ T which are such that tuple Ti = <A1, ...., Ar, ..., An>, 
where each entry is an entry of a member of A, belongs to S iff tuple  
h(Ti) = <B1, ...., Bs, ..., Bm>, belongs to T, where m = n and where each entry is an entry of a 
member of B, and B1 = g(A1), Bm = g(An), and every entry Ar, r ≠ 1 and r ≠ n, in Ti is mapped 
to some Bs = g(Ar) with r not necessarily equal to s. ♦ 

 
The equivalent for hypernets is rather less taxing, and is as follows. 
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Definition 2.17: Two hypernets <A1, E1> and <A2, E2>, with | A1| = | A2| and | E1| = | E2|, are 
said to be isomorphic iff there exists a pair of one-to-one correspondences g: A1 → A2 
and h: E1 → E2  such that A1i ∈ A1 belongs to E1j ∈ E1 iff g(A1i) belongs to h(E1j) and  
(A1i , E1j, A1k) is a vertex adjacency in <A1, E1> iff (g (A1i), h (E1j), g (A1k) ) is a vertex 
adjacency in <A2, E2>.♦ 
 
Given two hypernets <A1, E1> and <A2, E2>, how can we find an isomorphism between 
them? We can use the following. 
 
Constructional scheme 2.1 
 
Step 1: Check that | A1| = | A2| and | E1| = | E2| . Indeed if | A1| < | A2|  and/or  | E1| < | E2|  we 
may be able to find an isomorphism between <A1, E1> and a sub-hypernet  
<B, U> ∠ <A2, E2> with | A1| = | B| and | E1| = | U| . 
 
Step 2: Let (A11, E1i, A12) be any vertex adjacency in < A1, E1>. Try to match (A11, E1i, A12) 
with some vertex adjacency (A21, E2j, A22) in < A2, E2> for which we can begin to define g 
and h by setting g(A11) = A21, g(A12) = A22, and h(E1i) = E2j ∈ E2 such that  
E2j = {g(A11), g(A12)}∪ {g(A1k) ∈ A2 | A1k ∈ A1 and A1k ∈ (Ei -{ A11, A12}) and | E1j | =  | E2j | 
so that | E1i | =  | h(E1i ) =  E2j | . If we can find no such matching then no isomorphism <g, h> 
exists. 
 
Step 3:  If we can find one such partial matching of an (A11, E1i, A12) and some (A21, E2j, A22), 
then the next step is as follows. Try to expand the present domains of g and h to incorporate 
all vertex adjacencies that involve A11 and/or A12 in < A1, E1>. Do this for as many "new" 
vertex adjacencies of this kind as possible. If there are "new" adjacencies that cannot be 
covered, disregard them. Move to step 4. If there are no "new" vertex adjacencies that can be 
covered in this step, return to step 2 and start over with another vertex adjacency in  
< A1, E1>. 
 
Step 4: Try, as in step 3, to expand the present domains of g and h to cover all vertex 
adjacencies in < A1, E1> that involve at least one of the "already covered" vertices of              
< A1, E1>. If no expansion is possible, return to step 2 and start over with another vertex 
adjacency in < A1, E1>; otherwise move to step 5. 
 
Step 5: Repeat step 4 until no more vertex adjacencies in < A1, E1> can be covered, or until 
we get any contradiction. At that stage we have an isomorphism from a sub-hypernet of  
< A1, E1> into < A2, E2>. If that sub-hypernet is not < A1, E1> then we store the isomorphism 
and start over with step 2, eventually finding several hopefully non-trivial (i.e. not just a 
single vertex adjacency that is isomorphic with some vertex adjacency in < A2, E2> sub-
hypernets of < A1, E1> that are isomorphic with some sub-hypernet of < A2, E2>. From those 
isomorphisms that we find, we can choose the most appropriate for our purpose at the time of 
choice. Recall from [GVS99] that several different sub-hypernets of < A1, E1> can serve as 
isomorphic structural models/analogies of the same sub-hypernet of < A2, E2>, and one sub-
hypernet of < A1, E1> can serve as an isomorphic structural model/analogy for several 
different sub-hypernets of < A2, E2>.♦ 
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In applying constructional scheme 2.1 we must take account of 
• other edges in E1 by which A11and A12  are vertex adjacent, 
• other edges in E2 that are "set equal" to E2j, and 
• potential edge adjacencies by > 1vertices in < A1, E1>, when trying to find an initial vertex 

adjacency match in step 2 of the scheme. 
 

Now it appears that it may well be easier in general to automate the search for hypernet 
isomorphisms than for relation net isomorphisms due to the necessity to take into account 
matching tuples "modulo relative permutation" in the latter case. With this in mind, we 
present the following two theorems.  
 
To set the scene, let < A1, E1> and < A2, E2> be hypernets and let < A1, T1> and < A2, T2> be 
relation nets and let | A1 | = | A2 |, | E1 | = | E2 |, and | T1 | = | T2 |. Further, let  
D1 = {(A11, E1j, A12 ) | A11, A12 ∈ A1, E1i ∈ E1, and (A11, E1i, A12 ) is a vertex adjacency in  
< A1, E1> }, 
D2 = {(A21, E2i, A22 ) | A21, A22 ∈ A2, E2i ∈ E2, and (A21, E2i, A22 ) is a vertex adjacency in  
< A2, E2> },  
and let | D1 | = | D2 | . Now consider the following diagram: 
 
                                                           < g1, g2 >     
              < A1, E1>                                                                      < A2, E2>                      
 
 
               I1         I1

-1                                                                                                               I2         I2
-1 

 

 
             < A1, T1>                                                                       < A2, T2> 
                                                            < h1, h2 >         
 

Figure 2.3: Isomorphisms and interpretations 

 
Here < g1, g2 > is a hypernet isomorphism and < h1, h2 > is a relation net isomorphism, I1 and 
I2  are interpretations, and all these mappings are one-to one-correspondences, so their 
inverses are well defined simple reversals. 
 
Theorem 2.2: Let < A1, E1> and < A2, E2> in the diagram be isomorphic hypernets. Then 
there exist interpretations  I1 [< A1, E1> ] =  < A1, T1> and I2 [< A2, E2> ] =  < A2, T2> such 
that < A1, T1> and < A2, T2> are isomorphic relation nets. ♦ 
 

Proof: Consider any vertex adjacency (A11, E1i, A12 ) in < A1, E1>. The matching vertex 
adjacency is (g1(A11), g2(E1i), g1(A12)) in < A2, E2>. I1 is defined as follows. I1 takes  
(A11, E1i, A12 ) to precisely one ni-tuple T1i ∈ T1 in < A1, T1>. Let  
T1i = < I1 (A11), ..., I1 (A1r), ..., I1 (A12)>  where the entries other than I1 (A11) and I1 (A12) consist 
of ni - 2 entries of some I1 (A1r)  with A1r ∈ E1i and A1r may be A11 or A12  and A11 may be 
equal to A12, and where every member of E1i is mapped to at least one entry in T1i = I1 [E1i]. I2 
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is now defined to map (g1(A11), g2(E1i), g1(A12) ) in < A2, E2> to precisely one tuple T2j ∈ T2 
where T2j =  < I2 (A21), ..., I2 (A2k), ..., I2 (A22)>  with A21 = g1(A11), A22 =g1(A12) and every 
entry A2k = g1(A1r ) with k not necessaryly equal to r, and where every member of g2(E1i) is 
mapped to at least one entry in T2j = I2 [(g2(E1i))]. Now we define < h1, h2 > such that  
h1: A1 → A2 and  h2: T1 → T2 are both one-to-one correspondences, and for every   
T1i = < I1 (A11), ..., I1 (A1r), ..., I1 (A12)> ∈ T1, h2 (T1i) ∈ T2 is given by 
h2 (T1i) = < h1 ( I1 (A11)), ..., h1 ( I1 (A1r)), ..., h1 ( I1 (A12)) >  with   
h1 ( I1 (A11)) =  I2 (A21) = I2 (g1(A11)),   
h1 ( I1 (A12)) =  I2 (A22) = I2 (g1(A12)), 
h1 ( I1 (A1r)) =  I2 (A2k) = I2 (g1(A1r)) 
where the number of entries in T1i and h2 (T1i) is clearly the same, and every I1 (A1r), r ≠ 1 and 
r ≠ 2, in T1i is mapped to some I2 (A2k) with k not necessarily equal to r. Thus, < h1, h2 > is a 
relation net isomorphism that maps < A1, T1> onto < A2, T2>.♦  

 
Theorem 2.3: Let < A1, T1> and < A2, T2> in our diagram be isomorphic relation nets. Then 
there exist abstractions M1[< A1, T1>] = < A1, E1> and M2[< A2, T2>] = < A2, E2 > such that  
< A1, E1> and < A2, E2 > are isomorphic hypernets. ♦ 
 
Proof: In the proof of theorem 2.2 we constructed < h1, h2 >. Here we will construct < g1, g2 >, 
given that < h1, h2 > is an isomorphism. Essentially, what we do is to set M1  = I1

-1   and                                                        

M2  = I2
-1   and reverse the process of the proof of theorem 2.2. An arbitrary tuple T1i in  

< A1, T1>, with T1i  = < A11, ..., A1r, ..., A12> is matched with precisely one tuple  
h2 (T1i) = < A21, ..., A2k, ..., A22> with A21 = h1 (A11), A22 = h1 (A12) and A2k= h1 (A1r) with k ≠ 
1 and k ≠ 2 and k not necessaryly equal to r. Now apply I1

-1  to < A1, T1> and I2
-1 to < A2, T2>.  

T1i  = < A11, ..., A1r, ..., A12 > is mapped, by I1
-1, to the tuple set, E1i ∈ E1, of T1i  and a vertex 

adjacency  (I1
-1 (A11) , E1i, I1

-1 (A12)), and h2 (T1i) = < h1 (A11), ..., h1 (A12)>  ∈ T2 is mapped, 
by I2

-1, to the tuple set, E2j ∈ E2,  of h2 (T1i ) and a vertex adjacency   
(I2

-1 ( h1 (A11)) , E2j, I2
-1 ( h1 (A12)). Now it is easy to see that we can define a hypernet 

isomorphism < g1, g2 > from < A1, T1> onto < A2, T2> simply by setting 
I2

-1 ( h1 (A11)) = g1 ( I1
-1 (A11)), 

I2
-1 ( h1 (A12))= g1 ( I1

-1 (A12)),  
g2 (E1i) = E2j = g2 ( { A11, ..., A1r, ..., A12} ) = { g1(A11), ..., g1(A1r), ..., g1(A12)}, and E1i ≠ ∅.♦ 
 

These two theorems can be of considerable assistance. In particular, theorem 2.2 can help in 
finding relation net isomorphisms. 
 
Definition 2.18: Let <A1, E1>  and <A2 ,E2 > be hypernets, and  <A1,T1> and <A2,T2> be relation nets, 
and consider the following diagram: 
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   <A1, E1 >                                                              <A2, E2> 
                                               <β1,β2,> 
 
M1           I 1                                                                I 2         M2 

 

 

  <A1, T1>                                                                   <A2,T2> 
                                               LE 
 

Figure 2.4: Abstraction isomorphism 

 
Here the abstraction M1 is the inverse of the interpretation I1 and M2  the inverse of I2, and     
<β  1, β  2>  is a hypernet isomorphism. Each tuple T1i ∈ T1 is mapped to its tuple set M1 [T1i] in 
<A1, E1>, then by <β1, β2> to  the isomorphic tuple set < β1, β  2> (M1 [T1i]) in <A2, E2>, and 
thence by I2 to a tuple I2 (<β1, β2> (M1 [T1i])) = T2j, where if T1i is an n1i-tuple then             
I2(< β1,β  2>(M1 [T1i])) is an n2j – tuple with n1i and n2j  both at least  
| M1 [T1i] |  = | <  β1, β  2> (M1 [T1i])| and n1i and n2j are not necessarily equal, and  
T1i = I1 (< β  1, β  2> (M2[T2j])), and this holds for each T1i∈  T1 and each T2k∈ T2. We call  
<A1, T1> and <A2, T2> language equivalent (LE) relation nets iff for each T1i ∈ T1 there is at 
least one T2j = I2( <β1, β2>(M1[T1i])) ∈ T2 and for each T2j∈ T2 there exists at least one         
T1i = I1 (<β  1, β  2>(M2 [ T2j ])) ∈ T1. ♦  

 
Given a study material CRKS – see [GVS 99] – for which the statements are set out in 
language A, we can use the definition to find a “language equivalent” CRKS in which the 
statements are set out in another teaching language B. LE is an equivalence relation on the 
class of relation nets.  
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3. First intermission 
 

 
Suppose we think of a hypernet <A, E> in terms of its diagram. Let S ⊆  A, and let {a,b} ⊆ S, 
a, b ∈ A and | S | ≥ 2. Then a and b are potentially adjacent vertices by S. Now we should 
notice that if {a,b} is an actual vertex adjacency by S in <A, E>  then S ∈ λ({a,b}), and S can 
belong to the label of more than one vertex adjacency in <A, E>, and furthermore the set S 
can appear in a  given label such as λ({a,b}) more than once. To handle this we let every 
distinct occurence of S in any label or labels be entered as a separate member of the family E 
of edges of <A, E>. Thus, if set S occurs m times in vertex adjacency labels, some of these 
occurences perhaps in the same label, each label is indeed a set as S will appear m times in the 
family of edges E of <A, E>, i.e. 

En, En+1, ..., En+m-1 

all of which are entries of the same set S in the family E. If {a,b} is a vertex adjacency by  
Ei ∈ E then Ei ∈ λ({a,b}) and not Ei – {a,b}, a significant difference from the similar situation 
for relation nets – see [GVS99]. Here each edge characterizes one and only one vertex 
adjacency, except of course for singleton edges. 
 
Deleting an edge Ei ∈ E from <A, E> takes Ei out of one vertex adjacency label, λ({a,b}) for 
example. The arc between a and b will then disappear only if λ({a,b}) = {Ei}. Deleting a 
vertex adjacency (a, Ei, b) of a and b by Ei from <A, E> also means taking Ei out of               
λ({a,b}). We sometimes refer to “the vertex adjacency {a,b}”. Deleting a vertex v ∈ A from 
<A, E> entails removing v from <A, E> together with every Ei ∈ E that has v ∈ Ei.  
 
Much of the theory of relation nets covered in [GVS99] can be transcribed to hypernet theory. 
The key to such transcription is basically the following: 
 
 

Relation Nets Hypernets 
 
tuple occurence  a,i; j,b 
 
single (F(i))(j) 
 
set R of (F(i))(j)‘s 

 
vertex adjacency  (a, Ei, b) 
 
single edge Ei 
 
set R of edges 

 
Figure 3.1: Connection between relation nets and hypernets 

 
In this report we will be transcribing to hypernets only a selection of the theory of relation 
nets covered in [GVS99]. We begin with some general theory of hypernets and then move on 
to transcription of some of the theory of Concept-Relationship Knowledge Structures, bearing 
in mind our potential examples of hypernets as described in the first section of this report. 
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4. Introduction to a theory of general hypernets 
 
 
Definition 4.1: For Ai ∈ A of a hypernet <A, E> we define: 
(1) The set E(Ai) ⊆ E of all edges in the name of Ai by E(Ai) = { Ej ∈ E | for every vertex 

adjacency of the form (Ar, Ej , As ) in <A, E> we have Ai ∈ (Ej - { Ar, As }) }. 
(2) The set E [Ai] ⊆ E of all edges with Ai by E [Ai] = { Ej ∈ E | Ai  ∈ Ej }. 
(3) E(B) denotes the set of all E(Ai) with Ai ∈ B and a similar statement applies to E [B], with 

B ⊆ A.♦ 
 

Definition 4.2:  
(1) The meet  <A, E>  of two hypernets <B, F> and <C, G> is defined by <A, E> =                

< B ∩ C, F ∩ G > and <A, E> is a unique hypernet. 
(2) The join   <A, E>  of two hypernets <B, F> and <C, G> is defined by <A, E> =                  

< B ∪ C, F ∪ G > and <A, E> is a unique hypernet.  
(3) The meet of <B, F> anc <C, G> is written <B, F>  ∩ <C, G>, and their join is written   

<B, F> ∪ <C, G>.♦ 
 
In part (1) the only way in which F and G can share edges is that those shared edges are 
subsets of B ∩ C. Thus we have the following 
 
Theorem 4.1: If Ei ∈ E, and hypernet <A, E> = < B ∩ C, F ∩G > is the meet of hypernets 
<B, F> and <C, G> , then Ei  ⊆ (B ∩ C), but the converse is not necessarily true. ♦ 
 
Proof: The first part is trivial. For the converse, we notice that Ei  ⊆ (B ∩ C) can be true if Ei 
belongs to only one of F or G. ♦ 
 
The join and meet operations may of course be successfully applied to the sub-hypernets of a 
given hypernet. 
 
Definition 4.3: The adjacency function Γ: A → ℘(A) of a hypernet <A, E>  is defined by, 
for all Ar ∈A, Γ( Ar) = { As ∈ A | (Ar, Ej , As ) for some Ej ∈ E} ∪ {Ar}.♦ 
 
Definition 4.4: By a walk-family f (Ar  As ) in a hypernet <A, E>  we mean a non-empty 
set of walks between Ar and As  in <A, E>, the members of which all have the same 
subsequence over A while being pairwise distinct in edge subsequences over E. By a sub-
walk-family of f(Ar  As ), we mean a walk-family f (Am  An ), r ≤ m < n  ≤  s, for which 
every member is a subsequence of at least one member of f(Ar  As ). ♦ 
 
A walk family can have just one member. 
 
Definition 4.5:  
(1) Let Ar, Aj, As ∈A in a hypernet <A, E> , and let Ar  As be a given walk in <A, E>. Then 

Aj is said to be vertex between Ar and As on Ar  As iff Aj belongs to the vertex 
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subsequence of Ar  As or to at least one edge Ei that lies in the walk Ar  As, or both. 
(Of course both cases are covered if Aj belongs to at least one of the edges of the walk.) 

(2) Aj is said to be reachable from Ar in <A, E> iff there is a path between Ar and Aj in     
<A, E>. 

(3) The reachability function ℜ: A → ℘(A) of a hypernet <A, E>  is defined by, for all      
Ar ∈A, ℜ(Ar) = { As ∈ A | As is reachable from Ar in <A, E>}. 

(4) The meanings of Γ(B) and ℜ(B) for B ⊆ A are obvious. ♦ 

 
Next we tackle the notion of a cascade, starting with a revision of the definition for relation 
nets given in [GVS99]. 
 
Definition 4.6: The nested sequence {<Bk, Rk > | k  ≥  0} of subnets of a relation net <A, T> 
is called a fast access cascade from B0  iff 
(1) B0 ⊆ A and R0 = ∅, and 
(2) R1 ⊆ T is chosen in such a way that Ti  =  < A1, A2, ... , A

°
, ..., An(i) > ∈ T belongs to R1 

iff A1 ∈ B0, and 
(3) B1 = B0 ∪ (the union of the tuple sets of the members of R1), where the tuple set of Ti ∈ T 

is the set of all Ar ∈ A such that Ar is at least one entry in Ti, and in general for k = 2, 3, 
..., 

(4) Rk ∈ T is chosen in such a way that Ti  =  < A1, A2, ... , A
° , ..., An(i) > ∈ T belongs to Rk 

iff A1 ∈ Bk-1, so Rk-1 ⊆ Rk, and 
(5) Bk = Bk-1 ∪  (the union of the tuple sets of the members of Rk), so Bk-1 ⊆ Bk.  
  

Such a cascade is said to be a limited access cascade from B0 in <A, T>  iff at each step k = 1, 
2, ... we choose Ti  =  < A1, A2, ..., A

°
, ..., An(i) > ∈ T in such a way that Ti ∈ Rk iff  

{Ak ∈ A | k = 1, 2, ..., n(i)-1}⊆ Bk-1, and where An(i) ∈ A may or may not belong to Bk-1. ♦ 

 
A cascade will stop when <Bk, Rk > = <Bk-1, Rk-1 > or when <Bk, Rk > = <A, T>. 
 
For hypernets we have the following transcription. 
 
Definition 4.7: The nested sequence {<Bk, Dk > | k  ≥  0} of sub-hypernets of a hypernet  
<A, E> is called a fast access cascade from B0  iff 
(1) B0 ⊆ A and D0 = ∅, and 
(2) D1 ⊆ E is chosen in such a way that for each vertex adjacency (Ar, Ej , As ), Ej ∈ E, Ej 

belongs to D1 iff Ar or As belongs to B0, and 
(3) B1 = B0 ∪ (the union of  all the Ej that belong to D1), and in general for k = 2, 3, ... 
(4) Dk ∈ E is chosen in such a way that for each vertex adjacency (Ar, Ej , As ), Ej ∈ E, Ej 

belongs to Dk iff Ar or As belongs to Bk-1, so Dk-1 ⊆  Dk, and 
(5) Bk = Bk-1 ∪ (the union of all the Ej that belong to Dk), so Bk-1 ⊆ Bk.  
  

Such a cascade is said to be a limited access cascade from B0 in <A, E>  iff, at each step  
k = 1, 2, ..., we choose Ei ∈ Dk iff all, but possibly one, of the members of Ei belong to Bk-1, 
and that one is either Ar or As  in each vertex adjycency (Ar, Ei, As) used in choosing the        
Ei ∈ Dk, k = 1, 2, .... ♦ 
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Note that that particular one of Ar or As in each case does of course belong to A, but may or 
may not belong to Bk-1. Again such cascades stop on the same conditions as for relation net 
cascades. 
 
Hypernets all exhibit strong vulnerability: If we delete Ak ∈ A from a hypernet <A, E> then 
we delete every edge adjacency by Ak in <A, E>, and also every edge Ei ∈ E for which  
Ak ∈ Ei, i.e. we delete E [Ak]. Because strong vulnerability expresses context sensitivity in 
certain hypernets - see [GVS99] and later work in this report - we introduce the following 
notion. 
 
Definition 4.8: By the context hypernet <A, E>[Ak] of Ak ∈ A in a hypernet <A, E> we mean 
that sub-hypernet of <A, E> that consists of every Ei ∈ E that has Ak ∈ Ei , i.e. E [Ak] together 
with the set of vertices {Aj ∈ A| Aj ∈ Ei  and Ei ∈ E [Ak]}. <A, E>[Ak] is a hypernet. ♦  
 
We return to our example in figure 2.1 and illustrate the different notions defined so far in this 
section: 
• set E (Ak) and E [Ak]: E(3) = { E5} and E[3] = { E1, E6, E5, E4 }. 
• adjacency function: Γ(4) = {2, 3, 4, 5}, and Γ(5) = {5, 4}. 
• walk-family: f (2  5) = {(2, E5, 4, E7, 5), (2, E2, 2, E5, 4, E7, 5), (2, E5, 4, E7, 5, E6, 5),  

(2, E2, 2, E5, 4, E7, 5, E6, 5} or any non-empty subset of this set. 
• reachable: ℜ (2) = A - {6}, ℜ (2) = ℜ (1) = ℜ (3) = ℜ (4) = ℜ (5). 
• fast access cascade: B0 = {2}, B1 = {2, 1, 4, 3}, B2 = {2, 1, 4, 3, 5}. 
• limited access cascade: B0 = {1, 2}, B1 = {1, 2, 3}, B2 = {1, 2, 3, 4}, B3 = {1, 2, 3, 4}, 

stop. 
• context hypernet:  The context hypernet of 4 ∈ A, i.e. <A, E>[4] , has vertex set            

A[4] = {4, 2, 3, 5} and edge set E[4] = { E5, E4, E7}. 
 
We will see that the notion of a cascade, which may be regarded here as a controlled search 
technique, becomes an essential part of the theory of the hypernet equivalent of a CRKS. 
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5. Menger's theorem 
 
 
We will introduce the theorem, and state and prove it, stage by stage in parallel for relation 
nets and hypernets; (a) denotes the part for relation nets, (b) that for hypernets. 
 
Definition 5.1:  
(a) The path-net N(P) of a path P in a relation net <A, T> is the minimum subnet                

<B, U> ∠ <A, T> that contains P. By this we mean that U ⊆ T is the set of tuples that 
appear in P, and B is the union of all the tuple sets of the members of U. N(P) is a 
minimum subnet inasmuch as if we delete any member of U or any member of B then P 
no longer lies in the resulting relation net.  

(b) The path-hypernet N(P) of a path P in a hypernet <A, E> is the minimum sub-hypernet 
<B,  U> ∠ <A, E> that contains P. By this we mean that U ⊆ E is the set of edges that 
appear in P, and B is the union of all the members of U. N(P) is a minimum sub-hypernet 
inasmuch as if we delete any member of U or any member of B then P no longer lies in 
the resulting hypernet.♦ 

 
Definition 5.2:  
(a) Two u → v paths, Pk and Pm, in a relation net <A, T>, are said to be interdependent paths 

iff the meet N(Pk) ∩ N(Pm) of their path-nets has at least one vertex other than u and v in 
it. A set {P0, ..., Pn} of u → v paths in <A, T> is called an interdependent set iff  ∩ N(Pr), 
r = 0, 1, ..., n, has at least one vertex other than u and v in it, and it is a maximal 
interdependent set iff it is not a proper subset of any interdependent set of u → v paths in 
<A, T>. 

(b) Two u  v paths, Pk and Pm, in a hypernet <A, E>, are said to be interdependent paths iff 
the meet N(Pk) ∩ N(Pm) of their path-hypernets has at least one vertex other than u and v 
in it. A set {P0, ..., Pn} of  u  v paths in <A, E> is called an interdependent set iff            
∩ N(Pr), r = 0, 1, ..., n, has at least one vertex other than u and v in it, and it is a maximal 
interdependent set iff it is not a proper subset of any interdependent set of u  v paths in 
<A, E>.♦ 

 
Notice that the semi-paths in <A, T> are equivalent with the paths in <A, E> = M [<A,T>]. 
 
Theorem 5.1:(see theorem 12.6, p. 205 of [GVS99]) 
(a) Let {P0, ..., Pn} be any interdependent set of u → v paths in <A, T>. Deletion of any         

w ∈ (A - {u,v}) that belongs to the vertex set of  ∩ N(Pr) from <A, T> will “cut” all the 
paths Pr, i.e. none of the paths of the set exists in the subnet which results when w is 
deleted from <A, T>. 

(b) Let {P0, ..., Pn} be any interdependent set of u  v paths in <A, E>. Deletion of any        
w ∈ (A - {u,v}) that belongs to the vertex set of  ∩ N(Pr) from <A,E> will “cut” all the 
paths Pr, i.e. none of the paths of the set exists in the sub-hypernet which results when w is 
deleted from <A, E>.♦ 
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Proof:  
(a) for <A, T>: see [GVS99]. 
(b) for <A, E>: We must show that if w is a vertex, with w ≠ u and w ≠ v, of ∩ N(Pr), then it 

is between u and v on every Pr. Let w be a vertex of  ∩ N(Pr), and assume that w is not 
between u and v on some Pt. Then w does not belong to the vertex set of N(Pt), and hence 
it is not a vertex of  ∩ N(Pr), which contradicts the hypothesis. ♦ 

 
Theorem 5.2: (see theorem 12.7, p. 205 of [GVS99]) 
(a) Let S = {P0, ..., Pn} be a maximal interdependent set of u → v paths in  <A, T>. Deletion 

of any w ∈ (A - {u,v}) that belongs to the vertex set of  ∩  N(Pr) from <A,T> cuts 
precisely those u → v paths in <A, T> that belong to S.  

(b) Let S = {P0, ..., Pn} be a maximal interdependent set of u  v paths in <A, E>. Deletion 
of any w ∈ (A - {u,v}) that belongs to the vertex set of  ∩  N(Pr) from <A, E> cuts 
precisely those u  v paths in <A, E> that belong to S. ♦ 

 
Proof:   
(a) for <A, T>: see [GVS99]. 
(b) for <A, E>: From theorem 5.1 we know that deletion of w cuts all the Pr ∈ S. Assume that 

deletion of w from <A, E> cuts at least one u  v path P ∉ S. Then w is between u and v 
on P, so w belongs to the vertex set of N(P). But then, since w also belongs to the vertex 
set of every N(Pr) with Pr ∈ S, S is not a maximal interdependent set because the vertex 
set of  (∩  N(Pr)) ∩ N(P) contains {u,v,w}. The theorem follows. ♦ 

 
Theorem 5.3: (see theorem 12.8, p. 205 of [GVS99]) 
(a) The set of all u → v paths, in <A, T>, that are cut by the deletion of w ∈ (A - {u,v}) from 

<A, T> is an interdependent set of u → v paths in <A,T>, but it is not necessarily 
maximal. 

(b) The set of all u  v paths, in <A, E>, that are cut by the deletion of w ∈ (A - {u,v}) from 
<A, E> is an interdependent set of u   v paths in <A, E>, but it is not necessarily 
maximal. ♦ 

 
Proof:    
(a) for <A, T>: see [GVS99]. 
(b) for <A, E>: Let S = {P0, ..., Pn} be the set of all u   v paths, in <A, E>, that are cut by 

the deletion of a given w ∈ (A - {u,v}) from <A, E>. Then w is between u and v on every 
Pr ∈ S, and hence w belongs to the vertex set of every N(Pr), Pr ∈ S. It follows that            
∩ N(Pr) has at least one vertex w, other than u and v, in it, and hence S is an 
interdependent set. It is clear that S is not necessarily maximal. ♦ 

 
Just as for relation nets – see p. 206 of [GVS99] – it is always possible to partition the set of 
all u  v paths in a hypernet <A, E> by the following procedure.  
 
(1) Start with any u  v path P00, and develop a maximal interdependent set of u   v paths 

S0 = {P0k| k = 0, 1, ... , n0} in <A, E> to which P00 belongs.  
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(2) Delete any w0 ∈ (A - {u,v}) such that w0 belongs to the vertex set of  ∩ N(P0r),                    
r = 0, 1, 2, ..., n0  from <A, E>. This cuts all the u  v paths of S0, and only those u   v 
paths. 

(3) Start with any u  v path P10 in the sub-hypernet that results when w0 is deleted from  
<A, E>, i.e. < A - {w0}, E↑(A - { w0})>, and develop a maximal interdependent set             
S1 = { P1k| k = 0, 1, ..., n1}of u  v paths, in <A - {w0}, E↑(A - { w0})>, to which P10 
belongs. 

(4) Delete any w1 ∈ (A -{u, v, w0}) such that w1 belongs to the vertex set of  ∩ N(P1r),            
r = 0, 1, 2, .., n1 from < (A - {w0}), E↑(A - { w0})>. This cuts precisely those u  v paths 
that belong to S1. Further, w0 is not between u and v on any P1i, i  = 0, 1, 2, ..., n1. 

(5) Continuing in this way we get a partition {S0, ..., Sn} of the set of all u  v paths in      
<A, E> such that each Sr, r = 0, 1, 2, ..., n, is a maximal interdependent set of u   v paths 
in < (A - {w0, ..., wr-1}), E↑(A - {w0, ..., wr-1})>, r = 0, 1, 2, ..., n, and S0 is a maximal 
interdependent set of u  v paths in <A, E>. ♦ 

 
To see that such a partition is well defined we notice that every u  v path in <A, E> will 
belong to at least one Sr, and that if a particular u  v path P belongs to both. Sr and St with   
r < t, then it is a path in the sub-hypernet  
<A - {w0, ..., wr-1,wr, ..., wt-1}, E↑(A - {w0, ..., wr-1,wr, ..., wt-1})> 
which is impossible because, since P ∈ Sr, we have wr between u and v on every member of 
Sr and hence on P. 
 
Definition 5.3:  
(a) A subset B(u → v) ⊆ A of  <A, T> is called a separation for u and v in <A, T>  iff           

< A - B(u → v), T↑ (A - B(u → v))>, i.e.the maximum subnet of <A, T> that has vertex 
set A - B(u → v), has no u → v paths.  

(b) A subset B(u  v) ⊆ A of <A, E> is called a separation for u and v in <A, E > iff            
< A - B(u  v), E↑(A - B(u  v))> has no  u  v paths. ♦ 

 
Theorem 5.4: (see theorem 12.9, p. 206 of [GVS99]) 
(a) If {S0, ..., Sm} is a partition of the set of all u → v paths in <A, T> such that S0 is a 

maximal interdependent set of u → v paths in <A, T> and, for each r =  0, 1, ..., m, Sr is a 
maximal interdependent set of u → v paths in <A - {w0, ..., wr-1}, T↑(A - {w0, ..., wr-1})>, 
where w0 belongs to the vertex set of  ∩ N(Pt) over Pt ∈ So and wr  belongs to the vertex 
set of ∩ N(Pt) over Pt  ∈ Sr , then there exists a separation B(u → v) for u and v in <A, T> 
that has precisely m elements. 

(b) If {S0, ..., Sm} is a partition of the set of all u  v paths in <A, E> such that S0 is a 
maximal interdependent set of u  v paths in <A, E> and, for each r = 0, 1, ..., m, Sr is a 
maximal interdependent set of u  v paths in <A -{ w0, ..., wr-1}, E↑(A -{ w0, ..., wr-1})>, 
where w0 belongs to the vertex set of  ∩ N(Pt) over Pt ∈ So and wr belongs to the vertex 
set of ∩ N(Pt) over Pt ∈ Sr, then there exists a separation B(u  v) for u and v in <A, E> 
that has precisely m elements. ♦ 

 
Proof: See [GVS99]. Proof follows at once from the partitioning and previous theorems and 
definitions. ♦ 
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Corollary 5.1: (Corollary 12.1, p. 207 of GVS99]) 
(a) The minimum number of elements in a partition of the u → v paths in <A, T> into 

maximal interdependent sets, constructed as in Theorem 5.4, is equal to the minimum 
number of vertices in a separation B(u →v ) for u and v in <A, T>. 

(b) The minimum number of elements in a partition of the u  v paths in <A, E> into 
maximal interdependent sets, constructed as in Theorem 5.4, is equal to the minimum 
number of vertices in a separation B(u  v) for u and v in  <A, E>.♦ 

 
Corollary 5.2: (Corollary 12.2, p. 207 of [GVS99]) 
(a) Any separation for u and v in <A, T> can be used to generate a partition of the set of all     

u → v paths in <A, T> into interdependent sets which are not necessarily maximal.  
(b) Any separation for u and v in <A, E> can be used to generate a partition of the set of all     

u  v paths in <A, E> into interdependent sets which are not necessarily maximal. ♦ 
 
Proof:  
(a) for <A, T>: see [GVS99]. 
(b) for <A, E>: Suppose that we are given a separation B(u  v) = {w0, ..., wm}. Let S0 be the 

set of all u  v paths in <A, E> that are cut by the deletion of w0 from <A, E>. Next let 
S1 be the set of all     u  v paths in <A - {w0}, E↑(A - {w0})> that are cut by the deletion 
of w1 from <A - {w0}, E↑(A - {w0})>. Then let S2 be the set of all u  v paths in          
<A - {w0, w1}, E↑(A - {w0, w1})>  that are cut by the deletion of w2 from                       
<A - {w0, w1}, E↑(A - {w0, w1})>.                                                                                  
Proceeding in this way we develop sets S0, ..., Sm. It is clear that each Sr, r = 0, 1, ..., m, is 
an interdependent set of u  v paths, and if P is an arbitrary u  v path in <A, E> then at 
least one of w0, ..., wm is between u and v on P, so P belongs to at least one of the Sr, r = 0, 
1, ..., m. As we showed before, it is impossible for P to belong to more than one Sr, so the 
corollary follows because it is clear that the Sr are not necessarily maximal. ♦ 

 
Defintion 5.4:   
(a) Let Pr and Pt be u → v paths in <A, T>, where u ≠ v and the underlying sets of both N(Pr) 

and N(Pt) strictly contain {u,v}. Pr and Pt are said to be quasi-disjoint u → v paths in     
<A, T> iff they belong to distinct maximal interdependent sets of u → v paths in <A, T>.  

(b) Let Pr and Pt be of u  v paths in <A, E>, where u ≠ v and the underlying sets of both 
N(Pr) and N(Pt) strictly contain {u,v}. Pr and Pt are said to be quasi-disjoint u  v paths 
in <A, E> iff they belong to distinct maximal interdependent sets of u  v paths in       
<A, E>. ♦ 

 
We can now restate corollary 5.1 in Mengerian form. 
 
Corollary 5.3:  
(a) The maximum number of pairwise quasi-disjoint u → v paths in <A, T> is equal to min 

|B(u → v)|. 
(b) The maximum number of pairwise quasi-disjoint u  v paths in <A, E> is equal to min 

|B(u  v)|. ♦ 
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Proof: 
(a) for <A, T>: see p. 207/208 of [GVS99]. 
(b) for <A, E>: Assume that we have achieved a partition of the u  v paths in <A, E> into 

min |B(u → v)|  maximal interdependent sets as referred to in Corollary 5.1, and that      
B(u  v) is one of the corresponding separations. How many pairwise quasi-disjoint        
u  v paths can we find in <A, E>? Certainly we can find at least min |B(u → v)|  such 
paths, each in a distinct member of the partition, and each thus cut by a unique member of 
B(u  v), since if deletion of a given b ∈ B(u  v) cuts more than one of these paths 
then those paths cut are not pairwise quasi-disjoint paths. Further, we cannot find more  
than min |B(u → v)|  such paths, because in that case at least two of them must belong to 
the same maximal interdependent set of the partition, which violates the condition that 
they should be quasi-disjoint u  v paths. It follows that min |B(u → v)|  equals the 
minimum number of elements of a partition of the u  v paths in <A, E> into maximal 
interdependent sets, constructed as in theorem 5.4, which, in turn, is equal to the 
maximum number of pairwise quasi-disjoint u  v paths in <A, E>.♦ 

 
Menger’s theorem is important because examining “flow” through a hypernet can contribute 
to analysis of its structure. We will return to this point for a special kind of hypernet in a later 
section. 
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6. Connectedness 
 
 
Definition 6.1: A hypernet <A, E> is said to be connected iff for every a, b ∈ A there is at 
least one path a  b in <A, E>.♦ 
 
Theorem 6.1: A hypernet <A, E> is connected iff it has a closed spanning walk, i.e. a walk 
that meets every a ∈ A at least once or, in other words, a walk in which every a ∈ A occurs at 
least once in the subsequence over A. ♦ 
 
Proof: trivial. ♦ 
 
Definition 6.2: A sub-hypernet <B, U> of a hypernet <A, E> is called a component of  
<A, E> iff it is a maximal connected sub-hypernet of <A, E>, where by maximal we mean 
that to add any a ∈ (A - B) or any Ei ∈ (E-U) to <B, U> will result in a sub-hypernet of  
<A, E> that is not connected. ♦ 
 
Theorem 6.2: If  <B0, U0> and <B1, U1> are distinct components of a hypernet <A, E> then 
B0 and B1 are disjoint, i.e. B0  ∩ B1 = ∅.♦ 
 
Proof:  Suppose that b ∈ B0 ∩ B1, and let a ∈ B0 and c∈ B1. Then there is a path a  b in  
<B0, U0> and a path b  c in <B1, U1>, so there is a path from any vertex in <B0, U0> to any 
vertex in <B1, U1>, which means that <B0, U0> ∪ <B1, U1> lies in a single component of  
<A, E>. The theorem follows. ♦ 
 
Theorem 6.3: Let <A, E> be any hypernet. Then  
(1) every a ∈ A belongs to precisely one component of <A, E> and  
(2) every vertex adjacency, and hence also every edge Ei, belongs to at most one component. 

♦ 
 
Proof:  
(1) Assume that a ∈ A belongs to two distict components of <A, E>. Then, as in the proof of 

theorem 6.2 above, we reach a contradiction.  
(2) Suppose that vertex adjacency (a, Ei, b) is such that a is in a component <B0, U0> of     

<A, E> and that b is in a distinct component <B1, U1> of <A, E>. Then it is easy to see 
that since every vertex in <B0, U0> is reachable from a, and every vertex in <B1, U1> is 
reachable from b, every vertex in <B0, U0> is reachable from every vertex in <B1, U1>. 
The theorem follows from this contradiction. ♦ 

 
Theorem 6.4: The distinct components of a hypernet <A, E> induce an equivalence relation 
on A. ♦ 
 
Proof: It is easy to see that reachability is reflexive, as we regard each vertex as reachable 
from itself by a path of length zero, symmetric and transitive. ♦ 
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It follows immediately from theorem 6.4 that 
 
Corollary 6.1: Reachability in a hypernet <A, E> partitions A into equivalence classes that 
are precisely the vertex sets of the components of <A, E>.♦ 
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7. Vertex bases 
 
 
Definition 7.1: A vertex basis for a hypernet <A, E> is a set V ⊆ A such that every a ∈ A is 
reachable from at least one v ∈ V, and V is minimal in the sense that no proper subset of V 
has this property. ♦ 
 
Theorem 7.1: Every a ∈ A of a hypernet <A, E>, that has only a loop incident with it or is an 
isolate or a complete isolate in <A, E>, belongs to every vertex basis of <A, E>.♦ 
 
Proof :Follows from the fact that no such vertex is reachable from any vertex but itself. ♦ 
 
Theorem 7.2: V ⊆ A of a hypernet <A, E> is a vertex basis of <A, E> iff  
(1) every a ∈ A is reachable from at least one v ∈ V, i.e. ℜ(V) = A, and  
(2) no v ∈ V ⊆ A is reachable from any w ≠ v, w ∈ V, in <A, E>. ♦ 
 
Proof: We need only show that (ii) is equivalent to minimality of V. Suppose that V is a 
vertex basis of <A, E> and that w, v ∈ V and that w and v are mutually reachable in <A, E>. 
Then every a ∈ A that is reachable from v is also reachable from w, so v is not necessary in 
V, i.e.V is not minimal. The theorem follows. ♦ 
 
Corollary 7.1: No two members of V lie in the same component of <A, E>. ♦ 
 
Proof: Follows from the definitions of vertex basis and of component. ♦ 
 
Corollary 7.2:   Every hypernet <A, E> has at least one vertex basis. ♦ 
 
Proof: A certainly fulfills condition (1) of theorem 7.2, so we can find at least one V ⊆ A that 
fulfills condition (2) as well. ♦ 
 
Theorem 7.3: If V ⊆ A is a vertex basis of a hypernet <A, E> then there is precisely one  
v ∈ V in each component of <A, E>, and | V | is precisely the number of components of  
<A, E>.♦ 
 
Proof: Follows at once from the definition of component as we only need one vertex from 
each component to reach every a ∈ A. Suppose that v, w ∈ V lie in the same component of 
<A, E>. Then it is clear that we do not need both v and w in a vertex basis. V is not minimal, 
contradicting the given fact that V is a vertex basis of <A, E>.♦ 
 
Theorem 7.4: If <B, U> ∠ <A, E> then every vertex basis of <A, E> contains a vertex basis 
of <B, U>. ♦ 
 
Proof:  Let V ⊆ A be any vertex basis of the hypernet <A, E>. Then every a ∈ A is reachable 
from some one vertex v ∈ V. Since <B, U> ∠ <A, E> it is clear that every vertex b ∈ B ⊆ A 
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is reachable from at least one v ∈ V in <B, U>. Thus we can find a vertex basis of <B, U> 
inside V by applying the minimality condition to V inside <B, U>. ♦ 
 
Theorem 7.5: If hypernet <A, E> has no non-loop circuits and we ignore all closed paths of 
length 2, i.e. that use two edges from the same label, then <A, E> has a unique vertex basis 
that consists of precisely those a ∈ A at which there is only a loop or which are isolates or 
complete isolates. ♦ 
 
Proof: Let V1 ⊆ A of <A, E> be the set of all a ∈ A at which there is only a loop or are 
isolates or complete isolates in <A, E>, and let V2 ⊆ A be any vertex basis of <A, E>. By 
theorem 7.1, V1 ⊆ V2 . Now suppose that V2 is not included or equal to V1 , i.e                        
V = V1 – V2  ≠ φ.  Let v ∈ V.  Then v must be reachable from at least one a ∈ V2 because V2  

is a vertex basis of <A,E>.  But v ∈ V1, so v is only reachable from itself.  It follows that     
V2  ⊆ V1, and thus V1 = V2.  Finally, because <A,E> has no non-loop circuits and we ignore 
all closed paths of length 2, i.e. they may exist but we never traverse them,  we will never be 
faced with the possiblity of choosing any member of a circuit as the relevant member of a 
vertex basis for <A, E>, so V2 = V1 is a unique vertex basis for <A,E>.♦ 
 
Theorem 7.6: Given a ∈ A of a hypernet <A, E>, the hypernet < ℜ(a), E↑(ℜ (a))>, i.e. the 
maximum sub-hypernet of <A, E> that is generated by ℜ (a), is connected. ♦ 
 

Proof: Every b∈ ℜ (a) is reachable from a, and every Ei ∈ E↑(ℜ(a)) is a subset of ℜ (a). The 
theorem follows. ♦ 
 
We close that section with a few observations. Given a hypernet <A, E>, let U1 ⊆ U2 ⊆ E. 
Then 
(1) for all a ∈ A, d(a) in <A, U1>  ≤  d(a) in <A, U2>  ≤  d(a) in <A, E>. 
(2) For all a, b∈ A, if b is reachable from a in <A, U2> then it is reachable from a also in    

<A, U2> and in <A, E>. 
(3) For all a, b ∈ A, if a is adjacent to b in <A, U1> then it is also adjacent to b in  <A, U2> 

and in <A, E>. 
(4) If <A, U1> is connected then so are <A, U2> and <A, E>. 
(5) Every component of <A, U1> is a connected sub-hypernet of a component of <A, U2> 

which is, in turn, a connected sub-hypernet of a component of <A, E>.  
(6) If <A, E> has no circuits then <A, U2> has no circuits, and if <A, U2> has no circuits then 

<A, U1> has none.  
(7) Every vertex basis of <A, U1> contains a vertex basis of <A, U2>, which, in turn, contains 

a vertex basis of <A, E>.  
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8.  Introduction to Vulnerability 
 

 
Definition 8.1: Let a, b ∈ A of a hypernet <A, E>. We say that a and b are joined in <A, E> 
iff there is at least one path a  b in <A, E>. Otherwise a and b are said to be non-joined in 
<A, E>.♦ 
 
Definition 8.2: Let a, b ∈ A of a hypernet <A, E>, a ≠ b, and consider any edge Ei ∈ E. Ei is 
said to be between a and b in <A, E>, written (a - Ei - b), iff a and b are joined in <A, E> and 
every path a  b in <A, E> goes via Ei, i.e. Ei is a member of the edge subsequence of every 
path a  b in <A, E>. ♦ 
 
Note that we have defined "between" for vertices in a similar fashion – see definition 4.5 (i) . 
 
Theorem 8.1: Let a, b ∈ A of a hypernet <A, E>, a ≠ b, and let Ei ∈ E. We have (a - Ei - b) iff 
a and b are joined in <A, E> and every path a  b in <A, E> is such that at least one vertex 
adjacency by Ei is a subsequence, of length 1, of a  b. ♦ 
 
Proof: If a  b goes via Ei then there must be at least one vertex adjacency by Ei in a  b. ♦ 
 
Corollary 8.1: If a and b of the theorem are adjacent vertices then λ({a, b}) = {Ei}.♦ 
 
Corollary 8.2: If (a - Ei - b) then deletion of Ei from <A, E> deletes all a  b paths in        
<A, E>.♦ 
 
Note that deleting the vertex adjacency (a, Ei, b) does not necessarily mean that a and b are no 
longer adjacent: We may have {Ei} ⊂  λ({a,b}). 
 
Let C1 be the class of connected hypernets and C0 be the class of non-connected, i.e. 
disconnected, hypernets. 
 
Definition 8.3: Let <A, E> be a hypernet with Ei ∈ E. We write Ec

i for E - {Ei}. We call Ei an 
(x, y)- edge of <A, E> iff <A, E> is in Cx and <A, Ec

i > is in Cy. Ei is said to be a 
strengthening edge of  <A, E> iff Ei is ( x, y) with x > y, and a neutral edge of <A, E> iff  
x = y. ♦ 
 
Theorem 8.2: There is no (0,1)-edge in any hypernet. ♦ 
 
Proof: Every path in <A, Ec

i > is also in <A, E>, so the connected class of <A, Ec
i > is at most 

that of <A, E>, i.e. deleting Ei from <A, E> can not increase the connectedness of <A, E>.♦ 
 
At once, from theorem 8.2, there follows 
 
Corollary 8.3: Every Ei ∈ E of a disconnected hypernet <A, E> is a (0,0)-edge, i.e. is neutral. 
♦ 
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Theorem 8.3: Let Ei ∈ E of any hypernet <A, E>. Suppose that <A, E> is in C1. Then  
<A, Ec

i >  is in C0 iff every (closed) spanning walk in <A, E> goes via Ei. ♦ 
 
Proof: By theorem 6.1 <A, E> is connected iff <A, E> has a (closed) spanning walk. If every 
spanning walk goes via Ei then deletion of Ei from <A, E> leaves no spanning walk in         
<A, Ec

i >, so <A, Ec
i >  is in C0. If  <A, Ec

i >  is in C0 then every (closed) spanning walk in 
<A, E>, which is given to be in C1, must go via Ei. ♦  
 
Definition 8.4: Let Ei ∈ E be an edge of a connected hypernet <A, E>. Ei is called a bridge iff 
there exist a, b ∈ A with (a - Ei - b). ♦ 
 
Theorem 8.4: Ei ∈ E of a connected hypernet <A, E> is a bridge in <A, E> iff Ei is a (1, 0)-
edge. ♦ 
 
Proof:  If Ei is a bridge then (a - Ei - b) for some a, b in <A, E>. Thus a and b are joined in 
<A, E>, and if we delete Ei from <A, E> then a and b are non-joined in <A, Ec

i > so a and b 
lie in different components in <A, Ec

i > and thus <A, Ec
i > is in C0, and hence Ei is a (1, 0)-

edge. If Ei is a (1, 0)-edge then there must exist a, b ∈ A that are joined in <A, E> but non-
joined in <A, Ec

i >, so we  must have (a - Ei - b), i.e. Ei is a bridge, in <A, E>. ♦ 
 
Theorem 8.5: If Ei ∈ E of a connected hypernet <A, E> is a bridge in <A, E> then every 
subset U ⊆  E of edges with Ei ∈ U is a disconnecting set of edges in <A, E>, i.e. <A, E – U> 
is disconnected. ♦ 
 
The proof follows at once from the fact that Ei ∈ U is a bridge in <A, E>. Furthermore, it 
follows from the definition of a bridge and theorem 8.4 that we have  
 
Theorem 8.6: Every strengthening edge, i.e. (1, 0)-edge, in a connected hypernet <A, E> is a 
bridge in <A, E>.♦ 
 
Theorem 8.7: Let hypernet <A, E> be in C1, and let Ei ∈ E. Then Ei is (1, 1) in <A, E> iff Ei 
is not a bridge in <A, E>.♦ 
 
Proof: If Ei is a (1, 1)-edge then it is not a bridge in <A, E>, by the definition of a bridge. If Ei 
is not a bridge in <A, E> then Ei can only be a (1,1)-edge in <A, E> since it cannot be a (0, 1)-
edge by theorem 8.2. ♦ 
 
Theorem 8.8: Let <A, E> be a hypernet with Ei  ∈ Q  ⊆  E.  
(1) If Ei is a bridge in <A, E>, and <A, Q> is in C1, then Ei is a bridge in <A, Q>.  
(2) If Ei is strengthening in <A, E> then Ei is strengthening or neutral in <A, Q>.♦ 
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Proof:  
(1) Ei is a bridge in <A, E> but <A, Q> is connected, so deletion of Ei from <A, Q> must 

disconnect <A, Q> and so Ei must be a (1, 0)-edge, i.e. a bridge, in <A, Q> since            
<A, Q> ∠ <A, E> and both are connected. 

(2) Ei is strengthening in <A, E>, i.e. it is a (1, 0)-edge in <A, E>, so it is a bridge in <A, E>. 
Now if <A, Q> is in C1 then Ei is strengthening, i.e. a bridge, in <A, Q> by part (i). If   
<A, Q> is in C0 then, since there is no (0, 1)-edge in any hypernet, Ei must be neutral, i.e. 
a (0, 0)-edge, in <A, Q>. ♦ 

 
Corollary 8.4: If Ei ∈ E of a hypernet <A, E> with Ei ∈ Q  ⊆  E, and if Ei is a (1, 1)-edge in 
<A, Q>, then Ei is a (1, 1)-edge in <A, E>.♦ 
 
Proof: Follows since both <A, Q> and <A, E> are in C1, and because Ei cannot be a (0, 1)-
edge in any hypernet, Ei must be a (1, 1)-edge in <A, E>.♦ 
 
Corollary 8.5: Let <A, E> be a hypernet with Ei ∈ Q  ⊆  E. Let Ei be a (1, 0)-edge in <A, Q> 
and let <A, E> be in C1. If whenever Ei is between vertices a and b in <A, Q>  there is a path 
a  b in <A, E> that is not in <A, Q>, then Ei is neutral in <A, E>. The converse is also true. 
Next, if Ei is between a and b in <A, Q>, and there is no path a  b in <A, E> that is not in 
<A, Q>, then Ei is a (1, 0)-edge in <A, E>.♦ 
 
Proof: Both <A, Q> and <A, E> are in C1, and Ei is a bridge in <A, Q>. Thus there exist a, b 
∈ A such that Ei is between a and b in <A, Q>, i.e. every path a  b in <A, Q> goes via Ei. 
Now if there is at least one path a  b in <A, E> that does not go via Ei, then Ei is not 
between a and b in <A, E> so Ei is a (1, 1)-edge in <A, E>, i.e neutral in <A, E>. If Ei is 
neutral in <A, E> but a bridge in <A, Q>, and both <A, E> and <A, Q> are in C1, then there 
exist a, b ∈ A such that Ei is not between a and b in <A, E>, i.e. Ei is neutral in <A, E>, but  
(a - Ei - b) in <A, Q>. Thus there is at least one path a  b in <A, E> that does not go via Ei 
whenever we have (a - Ei - b) in <A, Q>. Finally, if (a - Ei - b) in <A, Q>, i.e. Ei is a bridge in 
<A, Q>, and there is no a  b path in <A, Qc >, that is not in <A, Q>, then deletion of Ei 
from <A, E> disconnects  <A, E>, i.e. Ei is a bridge in <A, E>, because every a  b path in 
<A, E> is in <A, Q>, and all such a  b paths go via Ei. ♦ 
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9. Edge bases 
 
 
Definition 9.1: Let <A, E> be any hypernet with B ⊆ E. B is called an edge basis of <A, E> 
iff for all a, b ∈ A we have a ∈ ℜ(b) iff a ∈ ℜB (b), where ℜB (b) is the reachability function 
of <A, B>, and no proper subset of B has this property. ♦ 
 
Theorem 9.1: Ei ∈ E of a hypernet <A, E> is between a and b in <A, E>, a, b ∈ A, i.e.          
(a - Ei - b), iff Ei belongs to every edge basis of <A, E>.♦    
 
Proof: If (a - E i- b) then we can only get a ∈ ℜ (b) in <A, E> by having Ei  in every edge 
basis of  <A, E>. If Ei belongs to every edge basis of <A, E> then there must exist a, b ∈ A 
such that a ∈ ℜ (b) and every path a  b goes via Ei, so (a - Ei - b). ♦ 
 
Theorem 9.2: If for a, b ∈ A of a hypernet <A, E> there is a unique path a  b in <A, E> 
then {Ei ∈ E a  b goes via Ei}is contained in every edge basis of <A, E>.♦ 
 
Proof: Every Ei via which a  b goes is such that (a - Ei - b), so by theorem 9.1 each such Ei 
belongs to every edge basis of <A, E>.♦ 
 
Theorem 9.3: Let <A, E> be any hypernet and let B ⊆ E. B is an edge basis of <A, E> iff  
(1) B preserves reachability in <A, E> and  
(2) for every Ei ∈ B there exist a, b ∈ A with (a - Ei - b). ♦ 
 
Proof: Preservation of reachability is one part of the definition of an edge basis. We must 
show that (2) is equivalent to minimality of B. Suppose that there is an edge Ej ∈ B for which 
there exist no a, b ∈ A with (a - Ej - b). Then we can preserve the reachabilty of a from b 
without Ej , so we do not need Ej in B, i.e. a proper subset (B - {Ej})  ⊆  B will preserve 
reachability, so B is not an edge basis. ♦ 
 
Theorem 9.4: B ⊆ E is an edge basis of a connected  hypernet <A, E> iff <A, B> is a 
minimal connected sub-hypernet of <A, E>, i.e. there is no connected sub-hypernet <A, D> 
with D ⊂ B. ♦ 
 
Proof: Let B be an edge basis of <A, E>. For every Ei ∈ B there exist a, b ∈ A with  
(a - Ei - b), and since <A, E> is connected Ei is a bridge in <A, E>. So we cannot leave any Ei 

∈ B out of B because we would then be left with a disconnected hypernet <A, B - { Ei}>. 
Thus <A, B> is minimal and it is connected because B preserves reachability in the connected 
hypernet <A, E>. Conversely, if <A, B> is a connected sub-hypernet of <A, E> then B must 
preserve reachability in <A, E>. Since <A, B> is minimal, B is a minimal set of edges that 
preserves reachability in <A, E>, so B is an edge basis of <A, E>.♦ 
 
Theorem 9.5: Let <A, E> be any hypernet. If W is a closed spanning walk of minimal length 
in <A, E> then Q = { Ei ∈ E W goes via Ei} ⊆  E contains an edge basis of <A, E>.♦ 
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Proof: If W is a closed spanning walk in <A, E> then <A, E> is connected. If W has minimal 
length then Q certainly preserves reachability in <A, E>, so Q must contain at least one edge 
basis of <A, E>.♦ 
 
Theorem 9.6: To find an edge basis for a hypernet <A, E> we may use the following 
constructional scheme. Let D be the set of all vertex adjacencies of all a and b, a ≠ b and        
a, b ∈ A. Each such vertex adjacency has one or more Ei ∈ E in l({a, b}), for each of which 
we have (a, Ei, b), so {a, b} ⊆  Ei. 
(1) Define a bipartite graph with vertex sets V1 and V2 where V1 = {{a, b} ∈℘(A)a and b 

are adjacent vertices in <A, E>} = D and V2 = E, and set V = V1 ∪ V2  for that bipartite 
graph. Join each {a, b} ∈ V1 to each Ei ∈ V2 = E for which (a, Ei, b), using an unoriented 
edge. These are all the vertices and edges of our bipartite graph. Let V2 = E = L(1) and set 
L(2) = ∅ and L'(2) = ∅ for future use. 

(2) Choose any r ∈ V1 that has degree d(r) = 1 in our bipartite graph. If there are no such 
vertices in V1 then proceed to (3) with L'(2) = ∅. If there is such a vertex, addend that 
vertex s ∈ V2 that is adjacent to r, in our bipartite graph, to L(2) ⊂ L(1). Next addend the 
vertex t ∈ V1 that is adjacent to s in our graph to L'(2) ⊂ V1. Now remove L(2)  ∪  L' (2)  

from V. Repeat (2) until V1 - L' (2) = ∅, in which case we have found a set of edges in E 
that “covers” all the vertex adjacencies in <A, E>, and which contains at least one edge 
basis of <A, E>, or until no more vertices with degree 1 remain in V1 -  L' (2). In the latter 
case, proceed to (3). 

(3) Choose any r ∈ V1 - L' (2) that has d(r) = 2 in our graph. If there is no such vertex then 
proceed to (4) with L' (2) as it is at the end of step (2). If there is such a vertex r, choose any 
s adjacent to r in our graph. Addend s to L(2), and addend the vertex adjacent to s in our 
graph to L' (2). Remove L(2) ∪ L' (2)  from V. Repeat (3) until V1 - L' (2) = ∅, in which case 
we have found a set of edges in E that ”covers” all the vertex adjacencies in <A, E>, and 
which contains at least one edge basis of <A, E>, or until no more vertices of degree 2 
remain in V1 -  L' (2). In the latter case, proceed to (4).  

(4) Repeat (3) successively with vertices r ∈ V1 -  L' (2)  that have degree 3, 4, ... . Eventually 
V1 = L' (2) and at that stage L(2) is such that {Ei ∈ E Ei ∈ L(2)} contains at least one edge 
basis of <A, E>, and L(2)≤ E. 

End of stage 1. ♦ 
 
Proof of stage 1: It is clear that L(2) contains at least one edge basis of <A, E> at this stage 
because L(2) “covers” every vertex adjacency in <A, E>. That L(2)≤ Efollows from the 
fact that every Ei ∈ L(2) “covers” one “new” vertex adjacency. Further, L(2) is a minimal set of 
edges that “covers” every vertex adjacency in <A, E>, because each Ei ∈ L(2) ⊆ E covers a 
vertex adjacency by Ei. ♦ 
 
(5) Examine L(2) as follows. Find an Ei ∈ L(2) that satisfies the following condition: For all    

a, b ∈ A, whenever there is a path a  b via Ei in <A, E> there is also a path a  b in  
<A, E> that goes via members of a subset of L(2) - {Ei} only. If there is no such Ei ∈ L(2) 
then {Ei ∈ EEi ∈ L(2)} is an edge basis of <A, E>. If there is such an Ei, set                  
L(3) = L(2) - {Ei}. Repeat the test on the members of L(3). Either {Ei ∈ EEi ∈ L(3)} is an 
edge basis for <A, E> or we define L(4) = L(3) - {Ei} for some Ei ∈ L(3). 
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Proceeding in this way we find an L(n) that is one of the edge bases of <A, E> for some 
natural number n with n ≤ E.  

End of stage 2. ♦ 
 
Proof of stage 2: To show that L(n) ⊆ L(2) is an edge basis for <A, E> we must prove that      
Ei ∈ L(2) necessarily belongs to an edge basis of <A, E> iff there exist a, b ∈ A such that there 
is at least one path a  b in <A, E> that goes via Ei and that no path a  b in <A, E> goes 
via any non-empty subset of L(2) – {Ei}. First, if there is at least one path a  b in <A, E> that 
goes via Ei, and no path a  b in <A, E> goes via any non-empty subset of L(2) – {Ei}, then 
removal of Ei from L(2) means that a is not reachable from b in <A, L(2) – { Ei}>, so L(2) – {Ei} 
does not contain an edge basis of <A, E>. But L(2) does contain at least one edge basis of    
<A, E>, so Ei must belong to every edge basis of <A, E> that is contained in L(2). Conversely, 
if for all a, b ∈ A such that there is at least one path a  b via Ei ∈ L(2) in <A, E> there is a 
path a  b in <A, L(2)  - {Ei}> then L2 – {Ei} contains at least one edge basis of <A, E>, and 
so Ei does not necessarily belong to an edge basis B ⊆ L(2). Thus we have the correct criterion 
for rejecting an Ei ∈ L(2). ♦ 

 

To close this section we return to theorem 9.5. 
 
Definition 9.2: Let <A, E> be a connected hypernet. A connectedness preserving set of edges 
of <A, E> is a set Q ⊆ E which is such that <A, Q> is connected. ♦ 
 
How can we find a minimal connectedness preserving set Q ⊆  E in <A, E>? 
 
Theorem 9.7: Let <A, E> be a connected hypernet. W is a spanning walk of minimal length 
in <A, E> iff EW = { Ei ∈ E W goes via Ei} is a minimal set of edges that preserves the 
connectednes of <A, E>. ♦ 
 
Proof: If W is a spanning walk of minimal length in the connected hypernet <A, E> then 
every Ei such that W goes via Ei is needed to preserve the connectedness of <A, E>. 
Conversely, if E' ⊆  E is a minimal connectedness preserving set of edges for <A, E> then, 
since <A, E> is connected, it has at least one spanning walk, and at least one of these 
spanning walks will use all, and only, the members of E'. Since  E' is minimal, such a 
spanning walk will be of minimal length E'.♦ 
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10. Deletion of vertices 
 
 
We open this chapter with a comment in the form of a lemma. Let <A,E> be any hypernet, 
and let B ⊆ A. Consider the following sub-hypernets of <A,E>: 
• <B, E↑B>   -  see definition 2.15, 
• <A,E(B)>   -  see definition 4.1, (1), 
• <A,E[B]>   -  see definition 4.1, (2), 
• <A,E>[B]   -  see definition 4.8. 
If B = A  then all but possibly the second are precisely <A,E>. We see, from the definitions, 
that E ↑B ⊆ E (B) ⊆ E [B]. 
 
Lemma  10.1:   
(1)  <A, E (B)>  ∠  <A, E [B]>. 
(2)  <B, E↑B>   ∠   <A, E>[B]  ∠  <A,E[B]>.♦ 
                    
Proof:   
(1)  To construct <A, E [B]> from <A, E(B)> we must add zero or more edges to <A, E(B)>. 
(2) First notice that the context hypernet <A, E> [B] has vertex set at least B. To construct 

<A, E>[B]  from <B, E↑B>  we must add zero or more vertices to B, and also zero or 
more edges to E ↑ B.  Next notice that <A, E> [B] has edge set E [B], so to construct   
<A, E [B]> from <A, E> [B] we must add zero or more vertices. ♦ 

 
Next we recall definition 4.5 (1): If  a, b, c ∈ A of a hypernet <A, E>, then b is said to be 
vertex between a and c, written (a - b - c), iff a and c are joined in <A, E> and b ∈ Ei ∈ E for 
at least one edge on every path a  c in <A, E>. 
 
Theorem 10.1: Let a, b, c be distinct members of A in a hypernet <A, E>. Then (a - b - c) in 
<A, E> iff a and c are joined in <A, E> and non-joined in <A - {b}, E↑(A -{b})>.♦ 
 
Proof:  If we have (a - b - c), so a and c are joined in <A, E>, and we delete b from <A, E> to 
produce <A - {b}, E↑(A - {b})>, then all paths a  c disappear from <A, E>, so a and c are 
non-joined in <A - {b}, E↑(A - {b})>. Conversely, if a and c are non-joined in  
<A - {b}, E↑(A -{b})> but are joined in <A, E>, then joining the context hypernet of b to  
<A - {b}, E↑(A - {b})> to produce <A, E> must add in a set of at least one path a  c, and b 
will be between a and c on all those added a  c paths, i.e. we will have (a - b - c) in          
<A, E>.♦ 
 
Definition 10.1: A vertex b ∈ A of a hypernet <A, E> is called a cut-vertex of <A, E> iff 
there exist a, c ∈ A such that (a - b - c) in <A, E>.♦  
 
Theorem 10.2: Let <A, E> be a connected hypernet. The following statements are logically 
equivalent for every b ∈ A: 
(1) b is a cut-vertex in <A, E>. 
(2) <A - {b}, E↑(A -{b})> is disconnected . 
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(3) There exists a partition {A1, A2} of A - {b} such that for all a ∈ A1 and all c ∈ A2 we 
have (a - b - c) in <A, E>. 

(4) There exist a, c ∈ A such that (a-b-c) in <A, E>.♦ 
 
Proof: 
(1) ⇒ (2): If b is a cut-vertex of <A, E> then there exist a, c ∈ A such that (a - b - c) in      

<A, E>. But then a and c are not joined in <A - {b}, E↑(A -{b})> , so they belong to 
different components of <A - {b}, E↑(A -{b})>, and hence <A - {b}, E↑(A -{b})> is 
disconnected. 

(2) ⇒ (3): <A - {b}, E↑(A -{b})> is disconnected. Let A1 ⊂ A be the vertex set of a 
component of <A - {b}, E↑(A -{b})> and A2 be the vertex set of any other component of 
this hypernet. Let a ∈ A1 and c ∈ A2. Since <A - {b}, E↑(A -{b})> is disconnected there 
is no path a – c in <A - {b}, E↑(A -{b})> , but since <A, E> is connected there is at least 
one path a – c in <A, E>, and every such path has b vertex between a and c in <A, E>, so 
(a - b - c) in <A, E>. 

(3) ⇒ (4): Follows at once from (3). 
(4) ⇒ (1): Follows at once from the definition of a cut vertex. ♦ 
 
Corollary 10.1: Vertex b ∈ A of a connected hypernet <A, E> is a cut-vertex of <A, E> iff 
<A - {b}, E↑(A -{b})> has more components than <A, E>.♦ 
 
Proof : Follows from part (2) of theorem 10.2. ♦ 
 
Definition 10.2: Vertex b ∈ A of a hypernet <A, E> is called an (x, y)- vertex of <A, E> iff 
<A, E> is in Cx and <A - {b}, E↑(A -{b})> is in Cy. b is called an strengthening vertex iff  
x > y, a neutral vertex iff x = y, and a weakening vertex iff x < y. ♦ 
 
Theorem 10.3: If hypernet <A, E> is in Cx and hypernet <A, Ec(a)> is in Cy, where  
Ec(a) = E – E(a), then x  ≥ y. The theorem also holds for E[a]. ♦ 
 
Proof: Follows at once from the fact that deleting the edges E(a) ⊆ E, i.e. the edges in the 
name of a, from <A, E> to produce <A, Ec(a)> cannot increase the connectedness class of  
<A, E> as there are no (0,1)- edges in any hypernet. Thus x ≥ y. (See theorem 8.2). ♦ 
 
Note in passing that there can exist weakening vertices, i.e. (0, 1)-vertices, in a hypernet. 
Consider the following simple example 
 
a) <A, E> in C0:  
                            a              {a,c}           c                             b    
 
 
b) <A - {b}, E↑(A -{b})> in C1:  
 
                            a              {a,c}           c 
 



Relation nets and hypernets  40 

 
Theorem 10.4:  
(1) If b ∈ A is a (x, y)-vertex in <A, Ec(b)> then it is a (z, y)-vertex in <A, E> with z ≥ x. 
(2) If b ∈ A is a (z, y)-vertex in <A, E> then it is a (x, y)-vertex in <A, Ec(b)> with z ≥ x. ♦  
 
Proof: First notice that deleting b from <A, Ec(b)> yields  <A - {b}, Ec [b]>, as does deleting 
b from <A, E>, and we are given that <A - {b}, Ec [b]> is in Cy.  
(1) Starting with <A - {b}, Ec[b]> we get <A, Ec(b)> by adding b and all the edges of         

Ec(b) - E [b]. The result <A, Ec(b) > is in Cx. To get <A, E> from <A, Ec(b)> we must add 
all the edges of E – Ec (b), i.e. all the edges of E(b), and we get <A, E> which is in Cz. 
Now we cannot have z < x because adding edges to a hypernet can only strengthen its 
connectedness or leave it the same, so z ≥ x.  

(2) Starting with <A - {b}, Ec [b]>, which is in Cy, we get <A, E> by adding b and all the 
edges of E[b], and <A, E> is in Cz. Now to get <A, Ec(b)> from <A, E> we must delete all 
the edges of E(b). Let the connectedness class of <A, Ec(b)> be Cx. Then by theorem 10.3, 
z ≥ x. ♦ 

 
Corollary 10.2: For a hypernet <A, E> with b ∈ A, the particular cases of the theorem are:   
a) b is x, y in <A, Ec(b)>   ⇒  b is (z, y) in <A, E> with z ≥ x 
          1, 1                                           1, 1 
          1, 0                                           1, 0 
          0, 1                                           1, 1  or  0, 1 
          0, 0                                           1, 0  or  0, 0 
b) b is (z, y) in <A, E> ⇒ b is x, y in <A, Ec(b)> with z ≥ x. 
         1, 1                                           1, 1  or  0, 1 
         1, 0                                           1, 0  or  0, 0 
         0, 1                                           0,1 
         0, 0                                           0, 0    ♦ 
 
Theorem 10.5: Let B ⊆ A be an non-empty set for a hypernet <A, E>, and let B' = A – B. 
Further let E(B) = (∪ E(b) for b ∈ B) ⊆  E and E [B] = (∪ E [b] for b ∈ B)  ⊆  E. Then we 
have  
(1) Ec(B) = (∩ Ec (b) for b ∈ B) and Ec [B] = (∩ Ec [b] for b ∈ B). 
(2) <A-B, E↑(A-B)> =< B', E↑(B')> is a sub-hypernet of <A - {b}, E↑(A-{b})> for every     

b ∈ B. 
(3) <A, Ec(B) > is a sub-hypernet of <A, Ec (b)> for every b ∈ B. 
(4) <B', E [B′]> = ∩  <A - {b}, E [A - {b}]> for b ∈ B, so the order of the deletion of the       

b ∈ B ⊆ A does not affect the result. ♦ 
 
Proof: 
(2) and (3) follow at once because it is less “damaging” to <A, E> to remove one b ∈ B from 

<A, E> than it is to delete all the members of B from <A, E>.  
(4) We consider the case in which B = {a, b} ⊆ A since it is obvious if B = {a}, a ∈ A. First, 

<B', E [B']> = <A - {a, b}, E [A-{a, b}]>. Next we examine                                             
<A - {a}, E [A - {a}]> ∩ <A - {b}, E [A-{b}]>. Its underlying set is                                
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(A - {a}) ∩ (A - {b}) = (A - {a, b}). Its set of edges is E [A-{a}] ∩ (E [A-{b}], i.e. all the 
edges in E that do not involve a ∈ A and do not involve b ∈ A, i.e E [A-{a, b}].Thus     
<A - B, E [A - B]>  =  <B', E [B'] >   = ∩ <A – {b}, E [A – {b}]> in this case, and since      
<A - {b}, E [A - {b}], over all b ∈ B in this case, and since ∩ and ∪ are commutative, the 
order in which the members of B are deleted does not matter. ♦ 

 
Here follow some observations that are all relatively easy to prove. Consider a hypernet  
<A, E> with a, b ∈ A and a  ≠ b, and the list  
        <A, E>, <A - {a}, E↑(A-{a})>,  
        <A - {b}, E↑(A - {b})>,  
        <A - {a, b}, E↑(A - {a, b})>,  
        <A, Ec(a)>, <A, Ec(b)>, <A, Ec({a, b}) >  
of sub-hypernets of <A, E>. Then 
(1) Let s ∈ A - {a, b}. d(s) in <A, E> is ≥ its value in all the other members of the list. Its 

value in <A, Ec(a)> is ≥ its value in <A - {a}, E↑(A - {a})>, in <A - b}, E↑(A - {b})>, in 
<A - {a, b}, E↑(A - {a, b})> and in <A, Ec (a)>, <A, Ec (b)> and <A, Ec ({a, b})>. Its 
value in <A - {a}, E↑(A - {a})> is ≥ its value in <A - {a, b}, E↑(A - {a, b})>, and its 
value in <A, Ec ({a, b})> is ≥ its value in <A - {a, b}, E↑(A - {a, b})>. Further, its values 
in <A, Ec (a)>, <A, Ec (b)> and  <A,Ec({a.b})> are ≥ its values in <A, Ec [a]>, <A, Ec[b]> 
and <A, E c[{a, b}]> respectively. 

(2) Vertex adjacency and edge adjacency in <A - {a, b}, E↑(A - {a, b})> ensures these 
adjacencies in all the other members of the list.   

(3) For all s, t ∈ (A - {a, b}) the length of the shortest s  t path in                                       
<A - {a, b}, E↑(A-{a, b})> is ≥ the length of the shortest s  t path in each of the other 
members of the list.  

(4) If <A, Ec({a, b}) > is connected then so are <A, Ec(a) > , <A, Ec(b) > and <A, E>. Every 
component of <A, Ec({a, b}) > is a sub-hypernet of a component of <A, E>.  

(5) Every vertex basis of <A, Ec({a, b}) > contains a vertex basis of <A, Ec(a)>, of             
<A, Ec(b)>, and of <A, E>. ♦ 
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11.  Hypertrees 
 
 
Definition 11.1: A hypernet <A, ET> is called a hypertree iff <A, ET> is minimally connected 
in the sense that deletion of any Ei ∈ ET  will disconnect <A, ET>.♦  
 
As a direct consequence of the definition we see that  
• Every hypertree is connected. 
• A hypertree has no circuits, where, for the purposes of this chapter only, the term circuit 

includes closed paths of length 2.  
• For every a, b ∈ A of a hypertree <A, ET>, either λ({a, b}) = ∅ or λ({a, b}) is a singleton.  
• For every a, b ∈ A of a hypertree <A, ET>, there exists one and only one path a  b in 

<A, ET>. 
 
Theorem 11.1: The following statements are logically equivalent:  
(1) T = <A, ET> is a hypertree. 
(2) T is connected and has no circuits. 
(3) T is connected and has A- 1 edges each of which labels a distinct vertex adjacency. 
(4) T has no circuits, and has A - 1 vertex adjacencies each of which has a singleton label. 
(5) For all a, b ∈ A, there is precisely one path a  b in T. ♦ 
 
Proof:  
(1) ⇒ (2): If T is a hypertree then it is minimally connected, so it is connected. Assume that 

there is a circuit in T. Then deletion of any edge in this circuit cannot disconnect T, so T is 
not minimally connected. It follows that T has no circuits.  

(2) ⇒ (3): If T is connected then it has at least A - 1 edges, and thus vertex adjacencies 
with at least a singleton label on each. If T has more than A - 1 edges then it must have 
at least one circuit. It follows that T has precisely A - 1 edges. If two of these edges 
label any one vertex adjacency in T then T has a circuit. Since T has no circuits by (ii), 
each edge in T must belong to a singleton label on a vertex adjacency. 

(3) ⇒ (4): By the argument above, T can have no circuits as it is connected and has A - 1 
edges. Since each edge labels a single vertex adjacency there are A - 1 vertex 
adjacencies, and each of these has a singleton label consisting of a unique edge, though we 
may have edges that are equal sets of course, because T has no circuits. 

(4) ⇒ (5): T has no circuits, and has A - 1 vertex adjacencies each with a singleton label. It 
follows that T is connected, so for a, b ∈ A there is at least one path a  b in T. Suppose 
there was another distinct path between a and b in T. Then T would have at least one 
circuit. It follows that for all a, b ∈ A there is a unique path a  b in T.  

(5) ⇒ (1): T has precisely one path a  b for all a, b ∈ A, so T is connected. Deletion of any 
edge on such a path will disconnect T, so T is minimally connected, and hence T is a 
hypertree. ♦ 

 
Definition 11.2: A vertex a ∈ A of a hypertree T = <A, ET> is called a pendant of T iff      
d(a) = 1. Any a ∈ A that is not a pendant has d(a) ≥ 2 and is called an internal vertex of T. ♦ 
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Since a tree T = <A, ET> has A - 1 vertex adjacencies, each with a singleton label, 
summing over all a ∈ A yields Σ d(a) = 2 (A - 1), and this number is divided among the 
A vertices in such a way that no a ∈ A has d(a) = 0. If A ≥ 2, so that the sum of the 
degrees is ≥ 2, then T has at least two pendants. Deletion of any internal vertex from any 
hypertree T will disconnect T. ♦ 
 
Theorem 11.2: An element a ∈ A of a hypertree T = <A, ET> is a pendant of T iff there is 
precisely one edge Ei ∈ ET  with Ei = {a} and precisely one edge Ej ∈ ET  with {a} ⊂ Ej. ♦ 
 
Proof:  If a ∈ A is a pendant then we must have a single edge Ej ∈ ET  with {a} ⊂  Ej, and Ej 
must be adjacent to some Ei ∈ ET by a. This means that we must have Ei = {a} so that d(a) = 1 
(since Ei = {a} does not contribute an arc to <A, ET>: Ei is a dummy edge that is not counted 
in ET). Further, there can be no other Ek ∈ ET  that is adjacent to any other edge than Ei 
because then d(a) would not be 1 and so a would not be a pendant of T. Conversely, if we 
have precisely one Ei ∈ ET  with Ei = {a} and precisely one edge Ej ∈ ET  with {a} ⊂ Ej then it 
is clear that d(a) = 1, so a is a pendant of T. ♦ 
 
For every pendant a ∈ A of a hypertree T = <A, ET> we thus have a single singleton edge     
Ei ∈ ET  with Ei = {a}, not counted in ET. 
 
Theorem 11.3: Deletion of a pendant a ∈ A from a hypertree T = <A, ET> will disconnect T 
iff there is at least one vertex adjacency (c, Ei , d), c, d ∈ A and Ei ∈ ET , with a ≠ c and a ≠ d 
and a ∈ (Ei – {c, d}), and d(a) = 1.♦ 
 
Proof: If only a pendant a is deleted from T then this will not disconnect T, so if this deletion 
is to disconnect T then deletion of a must delete at least one edge not incident with a from T. 
Conversely, if a ∈ A and a ∈ (Ei – {c, d}) for some (c, Ei, d) in T then deletion of a from T 
will disconnect T, and since d(a) = 1, a is a pendant. ♦ 
 
Definition 11.3: Given any connected hypernet <A, E>, T = <A, ET> with ET  ⊆ E is said to 
be a spanning hypertree of <A, E> iff T is a minimally connected sub-hypernet of <A, E>.♦ 
 
Theorem 11.4: Every connected hypernet <A, E> has at least one spanning hypertree. ♦ 
 
Proof: <A, E> is connected. By part (ii) of theorem 11.1, if <A, E> has no circuits then it is a 
hypertree and is of course spanning. If <A, E> has a circuit, delete one edge on that circuit 
and test the result. Either it is connected and has no circuits, so it is a spanning hypertree, or it 
is connected and has a circuit. In the latter case, delete one edge on that circuit and test the 
result. Either it is connected and has no circuits, so it is a spanning hypertree, or it is 
connected and has a circuit. Proceeding in this manner we produce a spanning hypertree that 
is a sub-hypernet of <A, E>.♦ 
 
Let <A, E> be a hypernet and let T = <A, ET> be a spanning hypertree of <A, E>. The  
ET= A- 1 edges, not counting the singleton dummy pendant edges, are called branches 
of  <A, E> with respect to T, and the remaining | E – ET  | edges of <A, E> are called chords 
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of  <A, E> with respect to T. Since any hypernet <A, E> is such that A is partitioned by the 
components of <A, E>, and since each of these components has at least one spanning 
hypertree , <A, E> can be spanned by a forest of k spanning hypertrees where k is the number 
of components of <A, E>, and of course k = 1 iff <A, E> is connected.  
 
Consider a connected hypernet <A, E> and a spanning hypertree T = <A, ET> of <A, E>. 
Now there may be another spanning hypertree T´ = <A, E´T> of <A, E> that differs from T 
only inasmuch as for at least one vertex adjacency (a, Ei , b) in T, T´ has in it the vertex 
adjacency (a, Ej , b) with a, b ∈ A and Ei, Ej ∈ E, Ei ∈ ET , Ej ∈ E´T , and Ei ≠ Ej. This leads to 
the following definition.  
 
Definition 11.4: Let T = <A, ET> be a spanning hypertree of a connected hypernet <A, E>. 
The join of all the spanning hypertrees of <A, E> that have precisely the same vertex 
adjacencies {a, b}, a, b ∈ A, as T but are pairwise different in at least one vertex adjacency by 
virtue of containing that vertex adjacency by an edge Ej ∈ E different from the edge Ei ∈ ET  
by which the same two vertices are adjacent in T, is called a spinney of <A, E>. ♦ 
 
A spinney has no circuits.  
 
Theorem 11.5: Let <A, E> be a connected hypernet. A sub-hypernet <A, ET>, ET   ⊆ E, of 
<A, E> is a spanning hypertree of <A, E> iff, for all a, b ∈ A, transfering any                        
Ei ∈ (λ({a, b}) – λT({a, b})) to λT({a, b}), where λT  is the labelling function of T, yields a 
connected spanning sub-hypernet <A, (ET  ∪ {Ei})> of <A, E> such that <A, (ET ∪ {Ei})> has 
precisely one closed path of length 2. ♦ 
 
Proof: If transferring any edge from (λ({a, b}) – λT({a, b})) to λT({a, b}) yields a spanning 
sub-hypernet of <A, E> that has precisely one closed path of length 2 then <A, ET> is 
minimally connected and must be a spanning hypertree of <A, E>. Conversely, if <A, ET> is a 
spanning hypertree of <A, E> then transferring precisely one edge Ei from  
(λ({a, b}) –  λT({a, b})) to λT({a, b}) for any a, b ∈ A that are vertex adjacent in <A, ET> will 
yield at least one closed path, with vertices a and b in <A, (ET  ∪ {Ei})>, since <A, ET> is 
minimally connected. The transfer cannot yield more than one such closed path unless 
λT({a, b}) > 1 before the transfer, which is impossible since <A, ET> is a hypertree and 
thus λT({a, b}) = 1. ♦ 
 
Definition 11.5: Let <A, E> be a connected hypernet and let T = <A, ET> be a spanning 
hypertree of <A, E>. A closed path formed by transferring precisely one edge Ei  from           
(E – ET) to ET  to produce <A, (ET  ∪ {Ei})> is called a fundamental circuit of <A, E> with 
respect to T. The number of chords, and hence the number of fundamental circuits, of a 
connected hypernet <A, E> is the same with respect to every spanning hypertree <A, ET> of 
<A, E>. This number is called the cyclomatic number ν(<A, E>) of <A, E>, and is given by              
 ν(<A, E>) = E - (A - 1) = (E – ET) = E - ET.♦ 
 
We will not pursue a theory of circuits in this report.  
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It is clear that closed paths of length 2, not regarded as circuits in hypernets in general, are a 
source of some embarrassment when dealing with circuits in a hypernet. We will see, in later 
sections, that in certain hypernets the problem effectively disappears. 
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12. Connectivity and cut-sets 
 
 
Definition 12.1: Let <A, E> be a connected hypernet. R ⊆ E is an edge cut-set of <A, E> iff 
<A, (E – R)> is a disconnected sub-hypernet of <A, E> and no proper subset of R has this 
property. V ⊆ A is a vertex cut-set of <A, E> iff <A – V, E↑(A-V)> = <Vc, E↑ Vc > is a 
disconnected sub-hypernet of <A, E> and no proper subset of V has this property. ♦ 
 
Observations : Let <A, E> be a connected hypernet.  
(1) {a} ⊆ A is a vertex cut-set of <A, E> iff a is a cut-vertex in <A, E>. 
(2) If R ⊆ E is an edge cut-set of <A, E> and every Ei ∈ R is such that a ∈ Ei, a ∈ A, but is 

not adjacent with any vertex by Ei , then a is a cut-vertex in <A, E>. 
(3) If we partition A into two sets A1 and A2 then any minimal set of edges of <A, E> the 

deletion of which cuts all the paths a1  a2 with a1 ∈ A1 and a2 ∈ A2 is an edge cut-set of  
<A, E>. Any minimal set of vertices of <A, E> with the same property is a vertex cut-set 
of <A, E>. 

(4) T = <A, ET> is a hypertree iff every Ei ∈ ET  constitutes an edge cut-set {Ei} of T. Further, 
{c} ⊆ A is a vertex cut-set of <A, ET>, i.e. c is a cut-vertex of T, iff c is an internal vertex 
of T or c is such that c ∈ Ei – {a, b} for at least one vertex adjacency   (a, Ei , b) in T with 
a, b ∈ A and c ≠ a and c ≠ b and Ei ∈ ET . ♦ 

 
Definition 12.2: Let <A, E> be a connected hypernet. The smallest number of vertices that 
must be deleted from <A, E> to disconnect it is called the vertex connectivity vc <A, E> of 
<A, E>, and the smallest number of edges that must be deleted to disconnect <A, E> is called 
the edge connectivity ec <A, E> of  <A, E>. ♦ 
 
Recall that deleting a vertex adjacency (a, Ei , b) from a hypernet <A, E> means to delete Ei 
from λ({a, b}), and that this does not delete the arc between a and b unless λ({a, b}) = {Ei}. 
 
Theorem 12.1: Let <A, E> be a connected hypernet. Then  
vc <A, E> ≤ ec <A, E> = minimum degree min d(a) of all the a ∈ A in <A, E> when loops 
are disregarded. ♦ 
 
Proof: We can clearly disconnect <A, E> by deleting min d(a) edges from <A, E>, thereby 
cutting off vertex a. Deletion of these edges Ei can be achieved by deleting one vertex from 
each of these edges Ei other than vertices adjacent by that Ei (one of which is of course a). It 
follows that, since these vertices need not all be distinct for distinct edges,                             
vc <A, E> ≤ ec <A, E>. It is clear that ec <A, E> = min d(a). ♦ 
 
Theorem 12.2: R ⊆ E is an edge cut-set of a spinney S = <A, E> iff there is at least one pair 
{a, b} ⊆ A for which R = λ({a, b}). ♦ 
 
Proof: If R = λ({a, b}) then deletion of R from S will disconnect S and no proper subset of R 
will ”cut” a from b, so R is an edge cut-set of S. If R is an edge cut-set of S then deletion of R 



Relation nets and hypernets  47 

from S must ”cut” the arc between two vertices a, b ∈ A in S. It follows that R = λ({a, b}) 
and no proper subset of R will ”cut” a from b. ♦ 
 
Theorem 12.3: Every edge cut-set R ⊆ E of a connected hypernet <A, E> is such that at least 
one edge from every spanning hypertree of <A, E> belongs to R. ♦ 
 
Proof: If deletion of R from <A, E> does not entail deletion of at least one edge from each 
spanning hypertree of <A, E> then there will remain in <A, E – R> at least one spanning 
hypertree of <A, E>. But then <A, E – R> is connected, so R cannot be an edge cut-set of  
<A, E>. It follows that deletion of an edge cut-set from <A, E> ”cuts” every spanning 
hypertree of <A, E>.♦ 
 
Theorem 12.4: Every closed path of length > 1, in a connected hypernet <A, E>, has an even 
number of edges in common with every edge cut-set of <A, E>.♦ 
 
Proof: Let R ⊆ E be an edge cut-set of <A, E>. Deletion of R from <A, E> will partition A 
into two subsets, A1 and A2, in <A, E – R> in such a way that for any a1 ∈ A1 and any a2 ∈ A2 
there is no path a1  a2 in <A, E – R> because there is at least one member of R on every 
such path. Consider any closed path P in <A, E>. If all the vertices that lie on this closed path 
belong to A1, or if they all belong to A2, then R has zero edges in common with that path. If 
some of the vertices on P belong to A1 and others to A2, then P must cross back and forth 
between A1 and A2. Start tracing P at a1 ∈ A1 for example. P must end at a1, so, in tracing P, 
every time we move to A2 with an edge on P we must move back to A1 with another edge on 
P (since P is a path). Thus P shares an even number of edges with R. ♦ 
 
Definition 12.3: An edge cut-set R of a connected hypernet <A, E> is said to be a 
fundamental edge cut-set with respect to a spanning hypertree T = <A, ET> of <A, E> iff one 
and only one edge of T belongs to R. ♦ 
 
The number of fundamental edge cut-sets of <A, E> with respect to T is (A-1), regardless 
of which spanning tree T of <A, E> is chosen. Recall that the pendants of a hypertree (or 
spinney) T = <A, ET> each belong to a singleton edge, but such edges are dummy edges that 
allow us to have a path incident with a pendant and are not counted among the edges of ET . 
 
Theorem12.5: With respect to a given spanning hypertree T = <A, ET> of a connected 
hypernet <A, E>, a chord edge of <A, E> that determines a fundamental circuit P of <A, E>, 
when transfered to T, belongs to every fundamental edge cut-set of <A, E> associated with 
those branches of <A, E>, i.e. edges of T, that belong to P, and that chord belongs to no other 
fundamental circuit, in <A, E>, with respect to T. ♦    
 
Proof: Consider the branches of <A, E>, with respect to T, that lie in P. Associated with each 
of these branches there is a fundament edge cut-set of <A, E> that has the relevant branch as a 
member. Now the chord presents, with other branches in P, a “way round” the branch that 
determines this fundamental edge cut-set, so to disconnect <A, E> our chord must belong to 
this fundamental edge cut–set. Next, suppose that our chord belongs to both fundamental 
circuit P and to another distinct fundamental circuit P`, both in <A, E> and with respect to T. 
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Now our chord then lies on both P and P`, and all the other edges in P and P` are branches of 
<A, E> with respect to the same spanning hypertree T = <A, ET>, i.e. they are members of ET . 
Now we can move from one end vertex of our chord through P to the other end vertex of our 
chord, and then back through P` to where we started. Then we have traced a walk that is either 
a closed path, or which determines more than one closed path, using only edges in ET . This 
contradicts the fact that T = <A, ET> is a given hypertree in <A, E>.♦ 
 
Theorem12.6: A set R ⊆ E is an edge cut-set of a connected hypernet <A, E> iff <A, E – R> 
= <A, Rc> is a maximal disconnected spanning sub-hypernet of <A, E> in the sense that for 
all R` with Rc ⊆  R` ⊆ E, <A, R`> is a connected hypernet. ♦    
 
Proof: If R ⊆ E is an edge cut-set of <A, E> then <A, Rc> is a disconnected sub-hypernet of 
<A, E>, and no Rs ⊂ R has this property, so if R` is such that Rc ⊂ R` then <A, R`> is 
connected, i.e. <A, Rc > is a maximal disconnected spanning sub-hypernet of <A, E>. 
Conversely, if <A, Rc > is a maximal disconnected spanning sub-hypernet of <A, E> then 
deletion of R from <A, E> disconnects <A, E>, and deletion of  any R' ⊂  R will not 
disconnect <A, E>, i.e. <A, (R' )c > is connected. It follows that no proper subset of R will, 
when deleted, disconnect <A, E>, so R is an edge cut-set of <A, E>.♦ 
 
Constructional Scheme 12.1: Let R ⊆ E be any disconnecting set of edges of a connected 
hypernet <A, E>. To find an edge cut-set included in R we may proceed as follows.  
(1) Find any Ek ∈ R such that Ek is a bridge in <A, E>. Then {Ek} ⊆ R is an edge cut-set of 

<A, E>. If there is no such member of R, proceed to (2). 
(2) Choose any Ek ∈ R and form <A, E – {Ek}>. Find any El ∈ R – {Ek} such that El is a 

bridge in <A, E – {Ek}>. Then {Ek, El} ⊆ R is an edge cut-set of <A, E>. If there is no 
such member of R – {Ek}, set Rt

1 = {Ek} and proceed to (3).  
(3) Choose any Em ∈ R - Rt

1 and set Rt
2 = {Em} ∪ Rt

1. Form <A, E - Rt
2 > (which is           

<A, E – {Em, Ek}> here). Find any El ∈ R - Rt
2 such that El is a bridge in <A, E - Rt

2 >. 
Then Rt

2 ∪ {El} is an edge cut-set of <A, E>. If there is no such member of R - Rt
2, repeat 

(3) defining Rt
m = {El} ∪ Rt

m-1, m = 3, 4, ..., successively. Eventually we find an edge cut-
set Rt

n, or we find Rt
n = R, for some n, in which case R is an edge cut-set of <A, E>.♦ 

 
The scheme works because we know that R is a disconnecting set so there must be an edge 
cut-set included in R, and we keep “weakening” <A, E> by taking out members of R from 
<A, E> successively until we find, in R, a bridge of <A, E - Rt

m> in which case                    
Rt

m ∪ {bridge} is an edge cut-set of <A, E>, or we do not find a bridge in any step in which 
case R is an edge cut-set of <A, E>. 
 
Theorem 12.7: B ⊆ A is a vertex cut-set of a connected hypernet <A, E> iff B is a minimal 
set of vertices such that for every spinney S of <A, E> there is at least one internal vertex of S 
that belongs to B, or there is at least one vertex adjacency {a, b} in S such that a ∉ B and       
b ∉ B and every Ei ∈ λ({a, b}) has (Ei – {a, b}) ∩ B ≠ ∅, or both. ♦ 
 
Proof: Suppose that B is a vertex cut-set. Then if the condition does not hold deletion of B 
from <A, E> will leave at least one hypertree T ∠ <A, E>, so <A – B, E ↑(A – B) will be 
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connected, contradicting the fact that B is a vertex cut-set of <A, E>. Conversely, if the 
condition holds then deletion of B from <A, E> disconnects every spinney S ∠ <A, E>, and 
thus also <A, E>. Since B is minimal, B is a vertex cut-set of <A, E>.♦ 
 
Theorem 12.8: Let <A, E> be a connected hypernet and B ⊆ A be a vertex cut-set of <A, E>, 
and let S be any spinney in <A, E>. 
(1) Suppose that <A, E – E↑B> is connected, and let T = <A, ET> be a spanning hypertree in 

S. T = <A, ET> is a spanning hypertree of <A, E – E↑B> iff every Ei ∈ ET  is such that     
Ei ∩ B = ∅.  

(2) If T = <A, ET> is a spanning hypertree in <A, E – E(B) > then at least one internal vertex 
of S belongs to B. ♦ 

 
Proof: Recall that E↑B = {Ei ∈ E  Ei  ⊆ B ≠ ∅}. 
(1) If T is a spanning hypertree of <A, E – E↑B > then every Ei ∈ ET  has Ei ∩ B because if 

this were not so then Ei would not be a member of E – E↑B but would belong to E↑B and 
could thus not belong to a spanning hypertree in <A, E – E↑B >. Conversely, if every      
Ei ∈ ET  has Ei ∩ B = ∅ then every Ei ∈ ET  belongs to E – E↑B, so deletion of E↑B ⊆ E 
from <A, B> does not affect T = <A, ET>. T is a spanning hypertree of S ∠ <A, E>, so T 
is a spanning hypertree of <A, E – E↑B>.  

(2) Recall that E(B) ⊆ E, B ⊆A, of <A, E> is the set E(B) = {Ei ∈ E (a, Ei, b), a, b ∈ A and 
(Ei – {a, b}) ∩ B ≠ ∅}, i.e. the set of all edges in the name of at least one member of B. 
Now  T = <A, ET> is a spanning hypertree in <A, E – E(B)>, and B is a vertex cut-set of 
<A, E> so <A – B, E↑(A – B)> is disconnected. Thus deletion of all the edges of E(B) 
leaves <A, E – E(B)> connected, so <A, E – E(B)> has a spanning hypertree T, but 
deletion of B from <A, E> leaves <A – B, E↑(A – B)> disconnected, and this can only 
happen if B contains at least one internal vertex of T so that deletion of B from <A, E> 
will disconnect <A, E> but deletion of E(B) from <A, E> will not disconnect <A, E>.♦ 

 
Corollary 12.1: Let T be a spanning hypertree of a connected hypernet <A, E>, and let      
<A, E> be disconnected by deleting the vertex cut-set B from <A, E> by virtue of deletion of 
internal vertices of T only. Then T is a spanning hypertree of <A, E – E(B)>. ♦ 
 
Proof: follows at once from the fact that deletion of E(B), only, from <A, E> will not 
disconnect <A, E> but deletion of B, and thus E(B), and in fact E [B], from <A, E> will 
indeed disconnect <A, E> because at least one internal vertex of T belongs to B. ♦ 
 
Theorem 12.9: Let B ⊆ A be a vertex cut-set of a connected hypernet <A, E>. Then           
<A, E – E(B)> is disconnected iff every spinney S of <A, E> has at least one vertex adjacency 
{a, b}, a, b ∈ A, such that every Ei ∈ λS({a, b}) has (Ei – {a, b}) ∩ B ≠ ∅, where λS is the 
labelling function of S. ♦ 
 
Proof: If <A, E – E(B)> is disconnected, by deleting only E(B) from <A, E>, then every 
spinney S of <A, E> is disconnected by the deletion of E(B) from <A, E>. To do this, deletion 
of E(B) from any spinney S must involve deletion of at least one arc in S. Thus there must be 
an {a, b} in S such that λS({a, b}) ⊆ E(B), so for each Ei ∈ λS({a, b}) we must have               
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(Ei – {a, b}) ∩ B ≠ ∅. Conversely, if every spinney S in <A, E> has at least one vertex 
adjacency {a, b} such that every Ei ∈ λS({a, b}) has (Ei – {a, b}) ∩ B ≠ ∅, i.e.                  
λS({a, b}) ⊆ E(B), then <A, E – E(B)> is disconnected. ♦ 
 
Theorem 12.10: If a ∈ A is a cut-vertex of a connected hypernet <A, E>, but not of            
<A, E – E(a)>, then  
E(a) = {Ei ∈ E  (c, Ei, d) is a vertex adjacency by Ei in <A, E> and  a ∈ (Ei – {c, d})} 
includes an edge cut-set of <A, E>.♦ 
 
Proof: Deletion of a ∈ A from <A, E> leaves us with a disconnected hypernet        
<A – {a}, E↑(A – {a})>, but deletion of a from <A, E – E(a)> leaves it connected, i.e.           
<A – {a}, E – E(a)> is connected. Note that E – E(a) is the set of all the edges of E that are 
not in the name of a, while E↑(A – {a}) is the set of all edges that do not have a in them, so 
E↑(A – {a}) ⊆ (E – E(a)). In theorem 10.4 on deletion of vertices we showed that if a is a cut-
vertex of <A, E>, i.e. is (1, 0) in <A, E>, then it is (1, 0) or ( 0, 0) in <A, (E(a))c> =                
<A, E – E(a)>. Now a is not a cut-vertex in <A, E – E(a)>, so it is not (1, 0) in <A, E – E(a)> 
and must thus be (0, 0). Thus <A, E – E(a)> is disconnected, so E(a) must be a disconnecting 
set of edges in <A, E> and hence E(a) includes an edge cut-set of <A, E>. ♦ 
 
Finally, we notice that if <A,E> is connected but <A,E – E (a)> is disconnected, then a is a cut-vertex of <A,E>. 
The contrapositive is:  If a is not a cut-vertex of <A,E> then  

<A, E – E (a) > is connected.  
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13. Blocks 
 
 
Definition 13.1: By a block <B, G> of a hypernet <A, E> we mean a maximal connected sub-
hypernet, of <A, E>, that has no cut-vertex. ♦ 
 
Any block of <A, E> is a sub-hypernet of a component of <A, E>. 
 
Theorem 13.1: If <B, R> is a block of a hypernet <A, R> then <B, R> is a sub-hypernet of 
some block of a hypernet <A, E> with R ⊆ E. ♦ 
 
Proof: If <B, R> is a block of <A, R> then it is a sub-hypernet of <A, E>. Since <B, R> must 
then be a connected sub-hypernet, of <A, E>, with no cut-vertex, it is a sub-hypernet of some 
maximal connected sub-hypernet, of <A, E>, that has no cut-vertex, so <B, R> is a sub-
hypernet of some block of <A, E>.♦ 
 
Theorem 13.2: Let <B, G> be a block of a hypernet <A, E>, with B≥ 3. Then  
(1) there is no b ∈ B such that <B, G – G(b)> or <B – {b}, G↑(B – {b})> is in C0, and  
(2) there is no bridge in <B, G>, and  
(3) if every Ei ∈ G has Ei > 2 then there is no bridge in <B, G>. ♦ 
 
Proof:  
(1) <B, G> is connected. If there were some b ∈ B such that <B, G – G(b)> or <B – {b}, 

G↑(B – {b})> were disconnected then b would be a cut-vertex of <B, G>, so <B, G> 
would not be a block.  

(2) Suppose that Ei ∈ G is a bridge in <B, G>. Then there is a vertex adjacency (a, Ei, b),      
a, b ∈ B, that provides the only path between a and b in <B, G>. Since <B, G> is 
connected, and B≥ 3, it follows that at least one of a and b is a cut-vertex of <B, G>. 
This contradicts the given fact that <B, G> is a block. 

(3) If every Ei ∈ G of the block <B, G> has Ei> 2, then consider a vertex adjacency         
(a, Ei, b), a, b ∈ Ei ∈ G. If Ei is a bridge in <B, G> then deletion of any c ∈ (Ei – {a, b}) 
will disconnect <B, G>, so c would be a cut-vertex of <B, G>, which is impossible. It 
follows that there is no bridge in <B, G>. ♦ 

 
Corollary 13.1:  
(1) If a and b are distinct vertices of <B, G> then, for all c ∈ B, c ≠ a and c ≠ b, there is at 

least one path a  b that does not go via any Ei ∈ G for which c ∈ Ei. 
(2) If Ei ∈ G is a bridge in <B, G> then Ei =  2. 
(3) For all a ∈ B, there are no two distinct vertices b, c ∈ B such that every path b  c in   

<B, G> goes via some vertex adjacency (d, Ei, f) with a ∈(Ei – {d, f}).♦ 
 
Proof:  
(1) Follows from the fact that c is not a cut-vertex of <B, G>, so <B, G – G(c)> is connected.  
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(2) If Ei ∈ G withEi > 2 were a bridge in <B, G> then, given any vertex adjacency             
(a, Ei, b) by  Ei in <B, G>, a, b ∈ B, each c ∈ B with c ∈ (Ei – {a, b}) would be a cut-
vertex of <B, G>.  

(3) If there were such an a ∈ B it would be a cut-vertex of the block <B, G>.♦ 
 
Theorem 13.3: The following assertions are logically equivalent: 
(1) <B, G> is a block, of hypernet <A, E>, with B≥ 3. 
(2) For all distinct a, b, c ∈ B of a hypernet <B, G> ∠ <A, E> there exists at least one path          

a – c, in <B, G>, which is such that b is not between a and c on a – c, and <B, G> is a 
maximal such sub-hypernet. 

(3) For all distinct a, b, c ∈ B of a block <B, G>  ∠ <A, E>, there exists a path P1 joining  
 a and c in <B, G> that satifies the following conditions: 
 a) P1 has length ≥ 2. 
 b) Given any b ∈ (B – {a, b}) such that b is between a and c on P1, it is always possible to 
  find a path P2 joining a and c in <B, G> such that b is not between a and c on P2, and  
 <B, G> is a maximal such sub-hypernet of <A, E>.♦ 
 
Proof:  
(1) ⇒ (2): There certainly exists a path a – c in <B, G> because <B, G> is a block with 

B ≥ 3. Now b is not a cut-vertex of <B, G>, so we do not have (a - b - c), i.e. b is not 
between a and c on every path a – c in <B, G>. It follows that there is at least one path       
a – c in <B, G> such that b is not between a and c on that path. Because <B, G> is a 
block it is a maximal such sub-hypernet of <A, E>. 

(2) ⇒ (3): There is a path joining a and c in <B, G> such that b is not between a and c on that 
path. Let P1 be the path a – b – c, so P1 has length ≥ 2, and P1 exists because, from 
(2), every pair of vertices in B are joined in <B, G>. Further, we know from (2) that there 
exists a path a – c, in <B, G>, which is such that b is not between a and c on that path. 
Any such path will do for P2. Finally, maximality of <B, G> from part (2) remains valid 
because we have only used (2) to derive (3). 

(3) ⇒ (1): We know that B ≥ 3 because the length of P1 is at least 2. Further, all distinct a 
and c in B are joined in <B, G>, so <B, G> is connected. Now there are no distinct           
a, b, c ∈ B such that (a - b - c), for in choosing P1 as the concatenation of paths                  
a – b – c we would then not be able to find a path P2 joining a and c such that b is not 
between a and c on P2. Thus <B, G> also has no cut-vertices, and we have derived (1). ♦ 

 
Theorem 13.4: Let <B0, G0> and <B1, G1> be distinct blocks, of a hypernet <A, E>, for 
which B0 ∩ B1 = B01 ≠ ∅. Then B01 = {b}, a singleton, and given any a ∈ (B0 – B01) and any 
c ∈ (B1 – B01), b is between a and c on every path a – c in <B0 ∪ B1, G0 ∪ G1>, i.e.           
(a - b - c) in <B0 ∪ B1, G0 ∪ G1>.♦ 
 
Proof:  <B0 ∪ B1, G0 ∪ G1> is clearly not a block in <A, E>, and B01 ≠ ∅, which means that 
<B0 ∪ B1, G0 ∪ G1> is a connected sub-hypernet of <A, E>, so there exists at least one          
b ∈ B0 ∪ B1 such that b is a cut-vertex of <B0 ∪ B1, G0 ∪ G1>. Now b ∉ (B0 – B01) for, if it 
were, then b would be a cut-vertex of <B0, G0>, but <B0, G0> is a block. Similarly                  
b ∉ (B1 – B01), so we have b ∈ B01. Let p ∈ B01, with p ≠ b. Then we can find a path a – p 
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in <B0, G0> such that b is not between a and p on a – p because b is not a cut-vertex of  
<B0, G0>. Similarly we can find a path p – c in <B1, G1> such that b is not between p and c 
on p – c because b is not a cut-vertex of <B1, G1>. But then b is not between a and c on the 
concatenation of paths a – p – c, which contradicts the fact that b must be a cut-vertex of 
<B0 ∪ B1, G0 ∪ G1>. Thus there is no such p ∈ B01, so B01 = {b}, and since b is a cut-vertex 
of <B0 ∪ B1, G0 ∪ G1> it follows that b must be between a and c on every path a – c in  
<B0 ∪ B1, G0 ∪ G1> where a ∈ B0 and c ∈ B1 and a ≠ b and c ≠ b. ♦ 
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14. Second intermission 
 
 
We now move to transcription of some of the theory of Concept-Relationship Knowledge 
Structures (CRKS’s) developed in Part I of [GVS99], describing the hypernet equivalent of  a 
CRKS and examining some of its features. We will let the vertices of such hypernets 
represent concept-names as for CRKS’s. In a CRKS each tuple of concept-names comes from 
a statement of relationship between the concept-names in that tuple. Two main features arise: 
First the occurrences of concept-names are ordered by the relevant statement of relationship, 
thus giving rise to a tuple of those concept-names and hence a direction from the first 
concept-name in the tuple to the last, and second, a given concept-name can appear more than 
once in a tuple. 
 
In the hypernet equivalent of a CRKS each tuple of the CRKS is represented by an edge that 
is precisely the tuple set of, i.e. the set of concept-names of, that tuple. As a result we lose all 
direction – arrows become arcs – and a concept-name can only occur once in the edge 
equivalent to the relevant tuple. Thus a given set S ⊆ A of a hypernet <A, E> can be 
associated with several different tuples all of which have the same tuple set, but there is a       
1 – 1 correspondence between the set of tuples of a given CRKS and the set of edges, and 
therefore the set of vertex adjacencies, of the equivalent hypernet.   
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15. Concept-Name Relationship Hypernets 
 
 
Definition 15.1: By a concept-name relationship hypernet, or CNR-hypernet, we mean a 
hypernet <A, E> in which  
(1) A is a set of concept-names and 
(2) each edge Ei  ∈ E  can be regarded as the tuple set of a tuple of concept-names that arises 

from a statement of relationship among those concept-names. ♦ 
 
Definition 15.2: A CNR-hypernet <A E> is called a formal hyperschema iff 
(1) for all a ∈ A, a ∈ Ei ∈ E for at least one non-singleton edge Ei, so E [a] ≠ ∅ when we 

disregard singleton edges. Thus each a ∈ A is associated with at least one other vertex of 
<A, E>. 

(2) <A, E> has no circuits, i.e. no closed paths of any length other than 2.  
(3) There is at least one p ∈ A at which there is a special singleton edge Ep ∈ E with             

Ep = {p}, and p also belongs to at least one other Ei ∈ E. Each such p is called a primary 
of <A, E>.  

(4) There is at least one g ∈ A at which there is a special singleton edge Eg ∈ E with             
Eg = {g}, and g also belongs to at least one other Ej ∈ E. Each such g is called a goal of 
<A, E>. (We will distinguish primaries from goals later.) 

(5) There are no singleton edges in <A, E> other than those at primaries and goals, and no 
singleton edge is used on any path in <A, E>. ♦ 

 
The reason for the singleton edges is that paths in <A, E> can “start” at primaries and 
“terminate” at goals. We will show later how it is possible to regard all paths as having a fixed 
direction in certain CNR-hypernets. 
 
Definition 15.3: A formal hyperschema <A, E> is said to be complete iff it has no isolates. ♦ 
 
Note that no formal hyperschema can have complete isolates. 
 
Theorem 15.1: If a formal hyperschema <A, E> is connected then it is complete, but the 
converse is not always true. ♦ 
 
Proof: If <A, E> is connected then it has no isolates, so <A, E> is complete. To prove that the 
converse is not always true we exhibit the following formal hyperschema, which is complete 
but not connected 
                              c                                                         d 
 
                 λ ({a, c})                                              λ({b, d}) 
 
                             a                                                          b 
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where λ({a, c}) = {Ei} and Ei = {a, b, c} and where λ({b, d}) = {Ej} and Ej = {b, d} for 
example. Notice in passing that if we delete b, for example, then we get  
 
                    c                                          a                              d                                  ♦ 
 
Definition 15.4: The context-hyperschema of a ∈ A in a formal hyperschema <A, E> is a 
hypernet <A, E>[a] = <A[a], E[a]> ∠ <A, E> that is defined as follows. E[a] is, as defined 
before, the set of all Ei ∈ E that have a ∈ Ei, and A[a] = {b ∈ A b belongs to at least one of 
the Ei ∈ E[a] }. ♦ 
 
Thus we can write A[a] = {∪ Ei  Ei ∈ E[a]}. Since E[a] = E↑A [a], because E↑A[a] is the 
set of all Ei ∈ E with Ei  ⊆ A[a] and each such Ei must have a ∈ Ei  given that                       
A[a] = {∪ EiEi ∈ E[a]}, we can also write <A,E>[a] = <A[a], E↑A[a]>, the maximum sub-
hypernet of <A,E> that is induced by A[a] ⊆ A. So <A,E>[a] = <A[a], E[a]> = 
<A[a], E↑A[a]>. (See definitons 2.15, 4.1, and 4.8) 
 
Definition 15.5: A betweenness sequence for a path-family f(a1  an) in a formal 
hyperschema <A, E> is found as follows. First, for all the members of λ({ai, ai+1}), i = 1, 2, ..., 
n - 1, for each vertex adjacency in f(a1   an), by which ai and ai+1 are adjacent in f(a1   an), 
we list  

ai, Ei1, Ei2, ..., Eim(i), ai+1. 
We then chain these lists together in succession from a1 to an for f(a1   an). Next we write 
out each Eix in the sequence, i.e. we replace each Eix by the members of the set                      
{v ∈ A v ∈ Eix}, getting a sequence of members of A starting with a1 and ending with an. 
This is a betweenness sequence for f(a1   an) in <A, E>. Such a betweenness sequence is 
clearly not unique. (Note that a path-family is not empty, and it may only have one member.) 
♦ 
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16. Derivability in a Formal Hyperschema 
 
 
Definition 16.1: 
(1) Given any formal hyperschema <A, E> and a set X ⊆ A, we say that a ∈ A is immediately 

derived from hypothesis X iff there is at least one x ∈ X and at least one Ei ∈ E by which 
there is a vertex adjacency (x, Ei, an(i) = a), with every member of  (Ei – {x, an(i)}) a 
member of X.  

(2) Given any formal hyperschema <A, E> and a set X ⊆ A, we say that a ∈ A is derivable in 
terms of hypothesis X in <A, E> iff there is a path p  a, p ∈ A, in <A, E> such that 
there exists at least one betweenness sequence S for p   a with the property that for 
every t ∈ S we have                                                                                                               
a) t is a primary of <A, E> or                                                                                                 
b) t ∈ X or                                                                                                                                     
c) t is immediately derived from a subset of St, where St is the set of all predecessors of t 
in S. 

(3) We say that a ∈ A is derivable from P in <A, E>, or simply derivable in <A, E>, where P 
is the set of all primaries of <A, E>, iff a is derivable in terms of some X ⊆ A, by virtue of 
at least one path p  a and a betweenness sequence S for p  a, with either X = ∅ or 
such that every x ∈ X is derivable in terms of ∅. 

(4)  If a ∈ A is derivable in <A, E>, by virtue of a path p  a , p a primary of <A, E>, then   
p  a is called a derivation path for a in <A, E> and each such path p  a is called a 
derivation path for a in <A, E>, and a is said to be a derived vertex of  <A, E>.♦  

 
Definition 16.2: A complete formal hyperschema <A, E> is called a Concept-Relationship 
Knowledge Hypernet, or simply a CRKH, iff every vertex of <A, E> is derivable in <A, E>. ♦ 
 
Consider any CRKH <A, E>. Derivability in <A, E> induces a certain sense of direction on a 
CRKH in the following way. Given any part of a derivation path, p  a, of length ≥ 1, a is 
derived in terms of some of its predecessors in a betweenness sequence Sa for p  a that 
starts with p and ends with a. 
 
Now we can specify, in a (complete) formal hyperschema <A, E> that is a CRKH, how to 
determine which of the a ∈ A with an Ei ∈ E such that Ei = {a} are primaries of <A, E> and 
which are goals.  
 
Simply stated, p is a primary of <A, E> iff there is a singleton edge Ei = {p}∈ E and every 
vertex adjacency {p, b} by one or more Ej ∈ E that belong to λ({p, b}) is such that  
(1) p has a trivial derivation by a path of length zero and a set of hypothesis X = ∅ and  
(2) b is derivable by virtue of an X that is a betweenness sequence, for the vertex adjacency 

{p, b}, that starts with p and ends with b.  
 
Next, g is a goal of <A, E> iff g has a singleton edge Ek = {g}at it, and g is not a primary of 
<A, E>, and there is no vertex adjacency {g, a} on any derivation path for any vertex a ∈ A in 
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<A, E>. It is evident that, since every vertex of a CRKH <A, E> is a derived vertex, we must 
have the following. 
(1) There is at least one primary p ∈ A of <A, E> for which there exists at least one vertex 

adjacency (p, Ei, b), b ∈ A, in <A, E> for which every member of (Ei – {b}) is a primary 
of  <A, E>. 

(2) There is at least one goal g ∈ A of <A, E> that is not in any betweennness sequence in 
any but the last position. 

 
We are now in a position to redefine circuits in the case of a CRKH: A closed derivation path, 
of any length whatsoever, is called a circuit, and  a CRKH has no circuits of any length (since 
singelton edges do not generate an arc at any vertex; here the primaries and goals of a 
CRKH).  
 
From this point on we can visualize a direction for every vertex adjacency {a, b}, a, b ∈ A, in 
any CRKH <A, E>, the direction imposed by derivation. Thus we may replace arcs with 
arrows in each CRKH. 
 
Theorem 16.1: Let <A, E> be a CRKH. There is at least one path that joins each primary of 
<A, E> to some goal of <A, E> in <A, E>, and there is at least one path that joins each goal of 
<A, E> to some primary of <A, E> in <A, E>. ♦ 
 
Proof: Let p be any primary of <A, E>. There is at least one derivation path incident with p. 
Follow that path incident with  p. <A, E> has no circuits, and thus this path must have a finite  
length and can only be incident with a goal on the end of the path because no derivation path 
can end with another primary of <A, E>. Let g be any goal of <A, E>. There is at least one 
derivation path incident with g. Again <A, E> has no circuits so this path, which we follow in 
the reverse derivation mode, must have finite length and must end with a primary on the other 
end because it could not end with another goal of <A, E> unless we go with a derivation path 
to that goal, thus mixing forward and reverse directions along that path, and thus generating a 
semi-path that is not a path. ♦ 
 
Theorem 16.2: Let <A, E> be a CRKH, and let a ∈ A be neither a primary nor a goal of    
<A, E>. Then there is at least one path p  g in <A, E>, p some primary of <A, E> and g 
some goal of <A, E>, such that a lies on p g, i.e. a is a member of the vertex subsequence of 
p  g. ♦ 
 
Proof: Since <A, E> is a CRKH, a is a derived vertex in <A, E>. Since a is a derivable, there 
is a derivation path p  a, p ∈ A, in <A, E>. By theorem 16.1 this path must continue on to 
some goal of <A, E>.♦ 
 
We now need to say something about paths in a CRKH. 
 
Constructional Scheme 16.1: To construct a path tree, for a CRKH <A, E>, displaying and 
distinguishing every path from each primary of <A, E>. We will refer to vertices and edges of 
<A, E> and nodes and branches of the tree.  
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Note that we should bear in mind that derivation imposes directionality on a CRKH. It is clear 
that if we follow paths in a CRKH only in the “derivation direction” we will have no circuits 
in any CRKH. This directional ordering on paths in a CRKH may appear just to reduce a 
CRKH to a CRKS, but in the case of a CRKH we have  
(1) a choice of the vertex by which two edges are adjacent in general and  
(2) no ordering, and no repetition, of vertices in the edges by which vertices are adjacent.  
 
This degree of choice gives us the potential, for example, to use any teaching metalanguage 
when we pick an interpretation of an CRKH in the educational applications mentioned in 
[GVS99]. The CRKH model is more flexible than the CRKS one in applications, and we have 
a strong link between the two models, to which link we will add more detail at a later stage of 
this report.  
 
One final point before we tackle the constructional scheme: Derivability of a vertex b by 
virtue of a path a  b in a formal hyperscheme depends, for the induced direction of 
derivation onto a  b, on the existence of at least one appropriate betweenness sequence for  
a  b. We will see, in the following section, that there is a very specific characterization of 
appropriate betweenness sequences. Now for the scheme. 
 
First we introduce an unlabelled dummy node to serve as the root of the path tree, and one 
only node for each primary of <A, E>. Connect each such node to the root with an unlabelled 
branch, and label each non-root node with the appropriate primary concept-name from A. 
From each node for a vertex v ∈ A the tree now develops as follows. Find every vertex 
adjacency (v, Ei, w) in <A, E> for which w is derived through v and Ei, and suppose that       
Ei = {v = c1, c2, ..., ck, ..., cn-1, cn}, and let cn = w. Thus we find all such edges Ei with            
Ei = {v = c1, c2, ..., ck, ..., cn(i)-1, cn(i)} for some n(i). We now plot a new node for each such 
cn(i), and insert a branch between each node for v and every node for each of these cn(i). Each 
such branch is now labelled with the edge Ei that generates it, and each node for a given cn(i) is 
labelled with the concept-name for that cn(i). Repeat this for every Ei ∈ E. The resulting tree 
exhibits, along the paths from the root, every path from a primary to a goal in <A, E>, and 
distinguishes these paths. Each primary of <A, E> is represented by one only node, and every 
goal of <A, E> by at least one node. ♦  
 
Constructional Scheme 16.2: Find all the paths between vertex u and vertex v in a CRKH 
<A, E>. Because of the derivation induced directionality in <A, E>, we can think of ourselves 
looking for all paths “from” a given u ∈ A “to” a given v ∈ A. 
First we should note that we can run a fast access cascade against the derivational direction in 
any CRKH just as easily as with this direction or without direction – see definition 4.7.  
(1) Run a fast access cascade backward from A0 = {v} in <A, E>. Let the resulting hypernet 

be <A´, E´>. If u ∉ A´ then there are no u  v paths in <A, E>. 
(2) If u ∈ A´, then proceed as follows in <A´, E´>. Find all the edges that label a vertex 

adjacency which “starts” with u. Let these edges be E1, E2, ..., Em, and let their “end” 
vertices be v1, v2, ..., vk, ..., vm-1, vm respectively.Each time vk = v, k = 1, ..., m, we have 
found a path u v of length 1. Mark each such edge and its vertex adjacency in E´ as a    
u  v path edge. 
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(3) Find all the unmarked edges in <A´, E´> that “start” with any vk ≠ v among the vertex 
adjacencies found and marked in step (2). We now plot a tree as follows  

 
                                                                       u 
 
 
                             E1            E2                  Ek                       Em 
 
 
          v1                            v2            .......                 vk                         .......                               vm 
 
       from step (2), and then continue the development of the tree by inserting a separate branch 
      between each vk ≠ v of step (2) and the vertex wh ∈ A´ for each edge by which vk is     
      adjacent with wh.          
      If any of these vertices wh = v then we have now found all the u  v paths of length 2 in 
     <A´, E´> ∠ <A, E>. Again mark all the edges and  vertex adjacencies used in this step to  
     find u  v paths of length 2, and proceed to step (4) with all the unmarked edges in E´and  
     all those wh ∈ A´ with wh ≠ v. 
(4) Repeat step (3) for the next level of the tree, marking the edges and vertex adjacencies 

used in each stage of the generation of u  v paths of lengths 3, 4, ..., if any, until all the 
usable edges in E´ and their vertex adjacencies in <A´, E´> have been marked by this 
procedure. ♦ 
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17. CRKH Theorems 
 

 
Theorem 17.1: Any complete formal hyperschema <A, E> can be generated by a limited 
access cascade fom the set B0 ⊆ A of all the primaries of <A, E> iff every a ∈ A is derivable 
in <A, E>, i.e. <A, E> is a CRKH. ♦  
 
Proof: If <A, E> is generated from B0 by a limited access cascade then, in each step of the 
cascade, every new vertex generated belongs to an edge Ei ∈ E which is such that every 
vertex in Ei but the single new vertex, if any, is a primary or a vertex generated in a previous 
step. Thus for every new vertex v generated in step n of the cascade there is, at that stage, at 
least one path p  v, of length n, in <Bn, En>, and each such path has a betweenness sequence 
S in which every t ∈ S is derived in terms of X ⊆  A with t primary, or t ∈ X, or t 
immediately derived from a subset of St. Now if t is primary then t is trivially derivable from 
a set of hypotheses X = ∅ by a path of length zero. Next we notice that X ⊆  Bn-1 , so if t ∈ X, 
and t is not primary here, then there is a path p´ t in <Bn-1, En-1 >  because <A, E> is a 
complete formal hyperschema, so t is not newly generated in <Bn, En> and this holds for all n 
= 2, 3, ---, so t is never generated. Thus we cannot have t ∈ X. Finally, if t is immediately 
derived from a subset of St then there is an s ∈ St and an edge Ei ∈En  ⊆ E such that we have, 
somewhere in <Bn-1, En-1>, a vertex adjacency (s, Ei, t) with every member of  (Ei – {t}) a 
member of St ⊆ (Bn-1 – {t}).  
We have seen that every member of B0 is a derived vertex. Suppose that every member of Bn-1 
in <Bn-1, En-1>, for all n = 1, 2, ..., n – 1, is a derived vertex in <A, E> and consider <Bn, En>. 
Now our set Ei – {t} is such that every one of its members is derivable by the induction 
hypothesis. But then, with (s, Ei, t), t is derivable in terms of hypotheses X = (Ei – {t}), and 
every member of X is derivable by the induction hypothesis, so t is derivable, and so every 
member of Bn is derivable in <Bn, En>. It follows that, because <Bn, En> = <A, E> for some n, 
every vertex a ∈ A is derivable in <A, E>. 
Conversely, suppose that every a ∈ A is derivable in <A, E>. Then <A, E> can be generated 
by a limited access cascade from its set of primaries B0 as follows. B0 is the set of primaries 
of <A, E>, and E0 = ∅. E1 is the set of all edges Ei ∈ E such that every member of Ei but one 
is a primary of <A, E>, i.e. a member of B0. B1 is the union of B0 and all the new (non-
primary) vertices generated in step 1 of the cascade. In general Ek, k = 2, 3, ..., is chosen in 
such a way that Ei ∈ Ek ⊆ E iff all but possibly one member of Ei belong to Bk-1. Bk is Bk-1, in 
which every member is derivable in <Bk-1, Ek-1>, together with the set of all new vertices 
generated in step k. Eventually, for some n ∈ û, <Bn, En> = <A, E> because every a ∈ A is 
derivable in <A, E> and the cascade generates only derivable new vertices in each step. ♦ 
 
Theorem 17.2: If a ∈ A of a complete formal hyperschema <A, E> is derivable in terms of   
X ⊆ A, with X = ∅ or every x ∈ X derivable in <A, E>, by virtue of a derivation path p  a, 
p a primary of <A, E>, and a betweenness sequence S for p  a, then every t ∈ S is derivable 
in <A, E>. ♦ 
 
Proof: Since p is a primary it is derived by a derivation path of length zero with betweenness 
sequence S = X = ∅. Run a limited access cacade from the set B0 of all primaries of <A, E> 
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in <A, E>. If p  a is a path of length n then we must “find” p  a in <Bn, En> because a is 
derivable. Let an appropriate betweenness sequence for p  a, i.e. one which makes p  a    
a derivation path, be S and set X = S. Then, since a is derivable and S = X ≠ ∅, we see that 
every member of S is derivable in <A, E>. ♦ 
 
Theorem 17.3: Let <A, E> be a formal hyperschema with a ∈ A any non-primary vertex of 
<A, E>. If a is derivable in <A, E>, by virtue of a path p  a, then p is a primary vertex of 
<A, E>. ♦ 
 
Proof: We know that p  a is a derivation path. Let S be a betweenness sequence for p  a, 
and set X = S. Then a is derivable in terms of X, with X ≠ ∅ because a is non-primary, and 
every x ∈ X is derivable in <A, E>. For every t ∈ S = X, t is a primary or t ∈ X or t is 
immediately derived from a subset of St. In this case we clearly have t ∈ X trivially. Consider 
p. We have p is a primary in <A, E>, or p is immediately derived from a subset of Sp = ∅. 
Only primaries and isolates are immediately derivable from hypotheses ∅, by a trivial 
derivation path of length zero. Now p is certainly not an isolate, so in either case we have that 
p is a primary of <A, E>.♦ 
 
We now set out some corollaries of theorems 17.1, 17.2, and 17.3. 
 
Corollary 17.1: If every t ∈ S in the proof of the theorem is derivable then every t ∈ S is 
immediately derived from some X ⊆ A in <A, E>. ♦ 
 
Proof: There are two cases to consider.  
a) If t is on p  a then there is a vertex adjacency (x, Ei, t) on p  a, and then t is 
immediately derived from X = (Ei – {t}) ⊆ A. 
b) If t does not lie on p  a, but is between p and a on p  a, we know that t is derivable 
from theorem 17.2. Thus there is at least one derivation path p´ t, p´ a primary of  <A, E>, 
in <A, E>, and p´ t “ends” with a vertex adjacency (u, Ej, t). Let X = Ej – {t}, and we see 
that t is immediately derived from X. ♦ 
 
Corollary 17.2: If vertex a ∈ A of a complete formal hyperschema <A, E> is derivable in  
<A, E> then a  is immediately derived from some X ⊆ A. ♦ 
 
Proof: If a is derivable in <A, E> then there must be some derivation path p  a for a, p 
primary, in <A, E>. Let the vertex adjacency with a on p  a be (x, Ei, a), x ∈ A and Ei ∈ E, 
and set X = (Ei – {a}). Then a is immediately derived from hypotheses X in <A, E>.♦ 
 
Corollary 17.3: A path p  a, a, p ∈ A, in a CRKH <A, E> is a derivation path for a iff p is a 
primary of <A, E>.♦ 
 
Proof: If p  a is a derivation path for a in <A, E> then p is a primary by theorem 17.3. 
Conversely, if p is a primary then any path p  a is a derivation path for a because, if S is a 
betweenness sequence for p  a then every member of S is derivable in <A, E> since <A, E> 
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is a CRKH, so we can see that a is derivable in <A, E> by p  a if we set X = S (=∅  if         
p = a). ♦ 
 
Corollary 17.4: If every path incident with a primary of a complete formal hyperschema   
<A, E> is a derivation path in <A, E>, then every a ∈ A is derivable in <A, E> and so <A, E> 
is a CRKH. ♦ 
 
Proof:Follows at once from the definitions of derivation path, derivable and CRKH. ♦ 
 
Corollary 17.5: Let <A, E> be a complete formal hyperschema, and let p be any primary of 
<A, E> and a be any non-primary of <A, E> such that there is a path p  a in <A, E>. Then  
p  a is a derivation path in <A, E>, i.e. a is derivable in <A, E>, iff every b ∈ A, b ≠ a, that 
is between p and a on p  a is derivable in <A, E>.♦ 
 
Proof: Let p  a be a derivation path with betweenness sequence S for p  a. b ∈ A, b ≠ a, 
is between p and a on p  a iff b ∈ S, and by theorem 17.2 every b ∈ S is derivable in       
<A, E>. Conversely, let every b ≠ a that is between p and a on p  a be derivable in <A, E>. 
Then b ∈ S, and if every member of S is derivable in <A, E> then a is derivable. But this 
means that a is derivable in terms of at least one X ⊆ A with X = ∅ or every member of X 
derivable in <A, E>, and at least one path from a primary to a must be a derivation path for a 
in <A, E>. Choose X = S ≠ ∅ for our path p  a and it follows that p  a is a derivation path 
for a in <A, E>.♦  
 
Corollary 17.6: Let <A, E> be a complete formal hyperschema. Every a ∈ A is derivable in 
<A, E> iff every path p  a, p primary and a ∈ A, in <A, E> is a derivation path. ♦ 
 
Proof: The reverse implication is corollary 17.4. If every a ∈ A is derivable then there exists, 
by definition of the term derivable (from the set P of all primaries of <A, E>), at least one 
derivation path p  a, p primary, in <A, E>.♦ 
 
Corollary 17.7: A complete formal hyperschema <A, E> can be generated by a limited access 
cascade from the set of all its primaries iff every path incident with a primary of <A, E> is a 
derivation path. ♦ 
 
Proof: Follows at once from therem 17.1 and Corollary 17.6. ♦ 
 
Corollary 17.8: Let <A, E> be a complete formal hyperschema. Every a ∈ A is derivable in 
<A, E>, i.e. <A, E> is a CRKH, iff every a ∈ A is immediately derived from some set Xa of 
hypotheses which is such that every x ∈ Xa is a derived vertex in <A, E>.♦ 
 
Proof: If every a ∈ A is derivable then there is at least one derivation path p  a for a in     
<A, E>. Let (x, Ei, a) be the vertex adjacency with a that lies on such a path p  a, Ei ∈ E. 
Then a is immediately derived from Xa = (Ei – {a}). Conversely, let every a ∈ A be 
immediately derived from some set Xa of hypotheses such that every x ∈ X0 is a derived 
vertex in <A, E>. Then there exists at least one vertex adjacency (x, Ej, a), Ej ∈ E, with         
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(Ej – {a}) ⊆ Xa. Now x is a derived vertex, as is every other member of Xa. Thus there is at 
least one derivation path p  x for some primary p, and we can concatenate p  x and         
(x, Ej, a) to make up a path p  a. Since every member of Ej – {a} is derivable in <A, E>, we 
see by Corollary 17.5 that every b ≠ a in p  a is derivable. 
Let S be an appropriate betwenness sequence for p  a, and set X = Sa. Then a is derivable in 
terms of X, i.e. derivable, because X ≠ ∅ but every x ∈X is derivable in <A, E>.♦ 
 
Collecting some of the results of this section together, we have proved the following. 
 
Theorem 17.4: Let <A, E> be a complete formal hyperschema. Then precisely the whole of 
<A, E> can be generated by a limited access cascade from the set B0 of all the primaries of 
<A, E> 
(1) iff every a ∈ A is derivable in <A, E>, which is true  
(2) iff <A, E> is a CRKH, which is true  
(3) iff every path p  a, p a primary and a ∈ A, is a derivation path in <A, E>, which is true 
(4) iff every a ∈ A is immediately derived from some set Xa ⊆ A of hypotheses which is such 

that every x ∈ Xa is a derived vertex in <A, E>, which is true 
(5) iff every b ≠ a that is between p and a, p a primary and a ∈ A, on every path p  a in    

<A, E> is derivable in <A, E>.♦ 
 
Running a limited access cascade from the set of all primaries in a complete formal 
hyperschema <A, E> provides an automated method of testing <A, E> for CRKH status. 
 
Theorem 17.5: Let <A, E> be any hypernet, and let I [<A, E>] = <A, T>. <A, E> is a CRKH 
iff <A, T> is a CRKS. ♦ 
 
Proof: Let <A, E> be a CRKH, and consider a specific interpretation I [<A, E>] = <A, T>. 
Since I preserves vertex adjacencies, I will preserve all paths in <A, E>, mapping each path in 
<A, E> to a semi-path in <A, T>. Thus I preserves all derivation paths p  a, p a primary and 
a ∈ A, and each derivation path p  a is mapped to precisely one derivation path p → a in 
<A, T>. It follows that <A, T> is a CRKS. Conversely, let <A, T> be a CRKS with             
<A, T> = I [<A, E>] for some hypernet <A, E>. Let M be the inverse of  I, so that                 
M [<A, T>] =  <A, E>. Then, since M preserves all vertex adjacencies in <A, T>, it preserves 
all semi-paths, mapping each semi-path in <A, T> to precisely one path in <A, E>. It follows 
that every derivation path p → a, p a primary and a ∈ A in <A, T> is mapped to precisely one 
derivation path p  a in <A, E>. It follows that <A, E> is a CRKH. ♦ 
 
The theorem is essential to a generalization of Part I of [GVS99]. 
 
Definition 17.1: By a derivation adjacency in a formal hyperschema <A, E> we mean a 
vertex adjacency (a, Ei, b), a, b ∈ A and Ei ∈ E, that lies on a derivation path for b in <A, E> 
and is such that every x ∈ (Ei – {b}) is either a primary of <A, E> or belongs to a derivation 
adjacency (y, Ej, x) that lies on a derivation path for x in <A, E>, i.e. every x ∈ (Ei – {b}) is 
derivable in <A, E>.♦ 
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Theorem 17.6: Let <A, E> be a CRKH. Then every vertex adjacency (a, Ei, b), a, b ∈ A and 
Ei ∈ E, in <A, E> is a derivation adjacency of <A, E>. ♦ 
 
Proof: Consider an arbitrary vertex adjacency (a, Ei, b) in <A, E>. Since <A, E> is a CRKH 
both a and b are derivable in <A, E>. Then either (a, Ei, b) is on a derivation path for a in   
<A, E>, or it is on a derivation path for b in <A, E>. Suppose, without loss of generality, that 
(a, Ei, b) lies on a derivation path for b. Then (a, Ei, b) is a derivation adjacency because every 
x ∈ (Ei – {b}) is derivable in <A, E>.♦ 
 
We now begin to turn our attention to the sort of uses of CRKH’s outlined for CRKS’s in 
[GVS99]. 
 
Definition 17.2: Given a CRKH <A, E> and any non-primary a ∈ A, we define a derivation 
path hyperschema D(p  a) for a derivation path p  a in <A, E> to be a sub-hypernet of 
<A, E> that  
(1) contains p – a and  
(2) is a formal hyperschema in which the only primaries and isolates are all primaries of    

<A, E> and in which every non-isolate is derivable, and   
(3) is minimal in the sense that p  a is not a derivation path in any sub-hypernet produced 

from D(p  a) by deleting from it any vertex or any edge. ♦  
 
The primaries and isolates of D(p  a) are all regarded as singleton edges in D(p  a). We 
should notice that a derivation path hyperschema for a ∈ A in <A, E> is not generally unique 
because there may be several derivation paths for a in <A, E>. 
 
Definition 17.3: Given a CRKH <A, E> with a ∈ A, we define the predecessor hyperschema 
P(a) of a in <A, E> to be that sub-hypernet of <A, E> that is generated by running a fast 
access cascade in the reverse of the direction of derivation from B0 = {a} in <A, E> as 
follows: E0 = ∅. <B1, E1> contains all the derivation adjacencies, incident with a, through 
which a is derived, i.e. that lie on any derivation path for a in <A, E>. This fixes E1, and B1 is 
a together with the set of all the vertices in all the members of E1. <B2, E2> contains all the 
derivation adjacencies incident with each b ∈ B1 and through which b is derived in <A, E>, 
which specifies E2, and B2 is B1 together with the set of all vertices in all the members of E2, 
and so on. The cascade will stop with a primary, or primaries, of <A, E>. It is clear that P(a) 
is a CRKH with goal a and set of primaries a subset of the set of primaries of <A, E>.♦ 
 
It is easy to show that the next theorem follows from the definitions above. 
 
Theorem 17.7: Given a CRKH <A, E> with a ∈ A, the join of all the D(p  a) in <A, E>, p 
some primary of <A, E>, is a sub-hyperschema of P(a). ♦ 
 
The converse of the theorem is not generally true, as can be shown by simple counter 
examples – see [GVS99]. 
 
Definition 17.4: Let <A, E> be a CRKH and Ei ∈ E an edge of <A, E>. By a hypercluster for 
Ei we mean any minimal sub-CRKH, of <A, E>, that has Ei as one of its edges, where by 
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minimal we mean that if we delete any vertex or edge from a hypercluster then the resulting 
hypernet does not have Ei in it. ♦ 
 
A hypercluster for a given Ei ∈ E in a CRKH <A, E> is not generally unique. 
 
Constructional schemes to find the D(p  a), and P(a), in a CRKH <A, E> are easily adapted 
from [GVS99]. Definitions 17.2, 17.3 and 17.4 are important in the modelling of study 
material, as can be seen from [GVS99]. In this case, the case of hypernets, their application 
potential is broader than for the CRKS’s of [GVS99]. 
 
Theorem 17.8: C is a cluster for Ti ∈ T in a CRKS <A, T> iff D is a hypercluster for            
Ei = I [Ti] in a CRKH <A, E>, where <A, T> = I [<A, E>] and C = I [D] for some 
interpretation I. ♦ 
 
Proof: Follows easily from the definition of an interpretation and its inverse. ♦ 
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18.  Gauges of complexity 
 
 
In this section we present some ways to gauge the complexity of a CRKH. 
 
Definition 18.1: The vertex context number of a ∈ A in a CRKH <A, E> is given by        
Vc(a) = A[a] and the edge context number of a is given by Ec(a) = E[a], where    
<A[a], E[a]> = <A,E>[a] is the context hyperschema of a in <A, E>.♦ 
 
Definition 18.2: By the degree d(a) of a ∈ A in a CRKH <A, E> we mean the sum of all 
theλ({a, b}) over all b ∈ A for which λ({a, b}) ≠ ∅. By the in-degree id(a) of a we mean 
the sum of all the λ({a, b}) over all b ∈ A for which λ({a, b}) ≠ ∅ and (a, Ei, b), Ei some 
edge of <A, E> which is such that (a, Ei, b) lies on a derivation path for a in <A, E>. By the 
out-degree od(a) of a we mean the difference od(a) = d(a) – id(a). ♦ 
 
Definition 18.3: By the flow at a ∈ A in a CRKH <A, E> we mean the number  
f(a) = min{id(a), od(a)}. ♦ 
 
Definition 18.4: By the path-multiplicity at a ∈ A in a CRKH <A, E> we mean the number 
p(a) = id(a) ∗ od(a). ♦ 
 
Definition 18.5: By the local context number of a ∈ A in a CRKH <A, E> we mean  
| ∪ ( Ei - {a}) | where the union is taken over all Ei ∈ E with Ei ∈ λ({a, b}) and b ∈ A. ♦ 
 
So far all our gauges should have relatively high values in any CRKH model of a “real world” 
situation. Relatively low values will indicate a weakness of association among vertices. 
 
Definition 18.6: Let <A, E> be a CRKH, and let S ⊆ A with S ≠ ∅. The rank of S, r(S), in 
<A, E> is defined by r(S) = max S ∩ Ei over all the Ei ∈ E. The number r(A) is called the 
rank of <A, E>. ♦ 
 
Definition 18.7: Let <A, E> be a CRKH. A sub-family EM ⊆ E is called a matching if the 
edges of EM are pairwise disjoint. ♦ 
 
Definition 18.8: A transversal of a CRKH <A, E> is a set T ⊆  A such that T ∩ Ei ≠ ∅ for all 
Ei ∈ E. The transversal number of <A, E> is the minimum number of vertices in any 
transversal of <A, E>.♦ 
 
Of interest for CRKH’s are maximum matchings, which tell us something about “essential” 
edges in the case in which “knowledge” is being modelled and we have ∪ Ei = A where the 
union is taken over the edges of EM, and the transversal number which tells us how many 
“essential” vertices belong to A.  
 
Definition 18.9: Let <A, E> be a CRKH, and consider a limited access cascade from the set 
of all primaries of <A, E>. The deductive distance dd(a) of a ∈ A from the primaries of    
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<A, E> is n iff a is first found in <Bn, En>, i.e. in the (n+1) ‘ th step of the cascade, i.e.             
a ∉ Bn-1. By an n-slice of <A, E> we mean the set of all a ∈ A that are first found in <Bn, En>, 
i.e. in the (n+1) ‘ th step of the cascade, i.e. a ∈ (Bn – Bn-1). Let Nn ⊆ A be an n-slice of <A, 
E>, and let a ∈ Nn. Then the weighted deductive distance, wd(a), of a from the primaries of 
<A, E> is defined by wdd(a) = ∪ Ni  where the union is taken over                                            
i ∈ {0, 1, ..., n - 1}= n ∈ û. ♦ 
 
We would, in most applications, not want dd(a) or wdd(a) to be relatively large compared to 
their values for other vertices of <A, E>. 
 
Definition 18.10: Let a ∈ A of a CRKH <A, E> belong to an n-slice Nn in <A, E> for some   
n ∈ û. Then Nn is called the width W(a) of <A, E> at a. ♦ 
 
Associated with the rank of a set S ⊆ A of a CRKH <A, E> is the following. 
 
Definition 18.11: Let <A, E> be a CRKH, and let P ⊆ A be the set of primaries of <A, E>. By 
the scope of a set B ⊆ A in <A, E> we mean the set S(B) ⊆ E defined by  
S(B) = {Ei ∈ E  S ∩ Ei ≠ ∅}. By the scope number of B ⊆ A in <A, E> we mean S(B). 
S(P) is called the primary scope of <A, E>, and S(P)the primary scope number. ♦ 
 
We would like the primary scope number to be relatively high – it is at least P -, and if 
S(B) is relatively low then B is relatively weakly associated with other members of A. If        
B = {a} then S({a}) = E[a]. 
 
Definition 18.12: Let <A, E> be a CRKH with Ei ∈ E and S ⊆ A. The edge rank Er(S) of Ei 
with respect to S is defined by r(S, Ei) = S ∩ Ei. ♦ 
 
Definition 18.13: By a vertex covering C of a CRKH <A, E> we mean a sub-family C ⊆ E 
such that the union of all the edges in C is A. ♦    
 
We would be interested in minimal vertex coverings, again a measure of “essential” vertices 
in <A, E>. 
 
Minimum traversals and maximum matchings are fairly closely related – see [Ber73]. 
 
Next we turn to analysis of a CRKH <A, E> by means of edge ranks in order to illustrate one 
use of some of our gauges. Run a limited access cascade from the set B0 of all the primaries of 
<A, E>, setting E0 = ∅ as usual. Suppose we have completed step n of the cascade, i.e. we 
have <Bn, En> ∠ <A, E>. (Bn – Bn-1) is an n-slice, of <A, E>, with width Bn – Bn-1. Now 
complete step n+1 of the cascade, producing <Bn+1, En+1>, and consider (En+1 – En). Let         
Ei ∈ (En+1 – En) and let edge rank 1 be given by r1((Bn+1 - Bn), Ei) = (Bn+1 - Bn ) ∩ Ei. This 
is the number of “new” vertices found in step (n+1) that belong to Ei, a “new” edge found in 
step (n+1). Let the equivalence class of Ei in (En+1 - En ) induced by the rank 1 value of Ei be 
denoted by  r1[(Bn+1 - Bn), Ei]. We now partially order these equivalence classes, from the 
smallest to the largest, by r1 value. Call the r1 value of each class the r1-difficulty of that class.  
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Next consider any one of these classes. Inside r1[(Bn+1 - Bn), Ei] we define another 
equivalence relation on this set of edges, all of which have the same edge rank 1 value, as 
follows, looking now at the “dependence” of these edges on the vertices in (Bn – B0). Let edge 
rank 2 be r2((Bn – B0), Ej), where Ej ∈ r1[(Bn+1 - Bn), Ei]. The r2 values specify equivalence 
classes r2[(Bn – B0), Ej] ⊆ r1[(Bn+1 - Bn), Ei]. Every member of any of these equivalence 
classes has the same r2 value, and we partially order these r2 equivalence classes, inside 
r1[(Bn+1 - Bn), Ei], from smallest to largest r2 value, the relevant r2 value being called the  
r2-difficulty of the associated equivalence class.  
 
Next consider an r2[(Bn – B0), Ej]. Inside this eqivalence class we define a third equivalence 
relation as follows. Let edge rank 3 be defined by r3(B0, Ek), with Ek ∈ r2[(Bn – B0), Ej]. This 
specifies eqivalence classes r3[B0, Ek] ⊆ r2 [(Bn – B0), Ej]. Again of course every member of 
r3[B0, Ek] has the same r3 value, and again we partially order these edge rank 3 eqivalence 
classes from smallest to largest r3 value. This r3 value is called the r3-difficulty of the relevant 
class. 
 
Now we can choose an equivalence class of minimal r1 value, then one, inside that class, of 
minimal r2 value, and then one, in that r2 class, of minimal r3 value. This allows us to choose 
those Ei ∈ En+1 of minimal difficulty (to learn – see [GVS99]) and work through each r1 
eqivalence class from minimal to maximal difficulty in <Bn+1, En+1>. 
 
Finally, consider any given interpretation I [<A, E>] = <A, T> of the CRKH <A, E>. Clearly 
<A, T> is a CRKS (from the definition of interpretation). Now consider I (Ei) = Ti, Ei ∈ E and 
Ti ∈ T. The number of entries in Ti, call it the length of Ti, is at least Ei. We partially order 
the edges of each r3[B0, Ek] from smallest to largest tuple length of the I [E

°
], E

°
 ∈ r3[B0, Ek], 

regarding those edges corresponding with minimal length tuples to be the least difficult in  
r3[B0, Ek]. This defines eqivalence classes in each r3[B0, Ek], each being characterized by a 
tuple length value called the r4-difficulty of the class. We do the same in each r2[(Bn – B0), Ej] 
⊇ r3[B0, Ek], and then in each r1[(Bn+1 - Bn), Ei] ⊇ r2[(Bn – B0), Ej], using r4-difficulty to 
partially order edges in each equivalence class at each r3, r2 and r1 level in turn. We can use 
the values of all four gauges, r1, r2, r3 and r4, to partially order all the tuples in any CRKS   
<A, T> =  I [<A, E>] from “least difficult” subset of T to “most difficult” subset of T, 
providing us with a tuple-ordering strategy in presenting <A, T> - see [GVS99].  
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19.  Structural analysis of a CRKH 
 
 
We now turn to structural characteristics of CRKH’s. These are similar to those exposed in 
the chapter on presentation strategies in [GVS99]. 
 
(1) The most basic structural characteristics of a CRKH are its vertex basis and its edge bases. 

The set of primaries of a CRKH is its unique vertex basis, and, in the terminology of 
graph theory, the set of goals of a CRKH is its unique vertex contrabasis. 

 
(2) Application of Menger’s Theorem in a CRKH yields two interesting insights into the 

structure of a CRKH. Let K = <A, E> be a CRKH with set of primaries P and set of goals 
G. Convert K to a CRKH  Z as follows: Delete from K all egdes that consist of only a 
primary and a goal or that consist of only primaries and a goal. Next add dummy vertices 
π  and γ to K, and add new dummy edges {π , p} for each p ∈ P and {γ, g} for each g ∈ G. 
This completes the construction of  Ζ = Ζ0. The set of all π   γ paths, in Ζ, that have a 
given vertex v0 of K between π  and γ is called a bundle of π   γ paths and is denoted by 
S0. Every member of S0 is cut by deletion of v0 from K. Consider a minimal separation 
B(π   γ) for π  and γ in K and let B(π   γ) = {v0, v1, ..., vn}. Deleting the context-
hyperschema of v0 from K deletes all the members of bundle S0, deleting that of v1 deletes 
the set S1 of all π   γ  paths in what remains of K from that remaining hypernet, i.e. all 
the π   γ paths in  <A – {v0}, E↑(A - {v0})>  that have v1 between π   and γ  in K, and so 
on, producing a partition of all the π   γ paths in Z into n bundles. Two π   γ paths Pr 
and Pt are said to be quasi-disjoint iff they belong to two distinct bundles. Then Menger’s 
Theorem states that the maximum number of quasi-disjoint  π   γ paths in Z  is equal to 
min B(π   γ)| - see the chapter on Menger’s Theorem in this report, and the chapter on 
presentation strategies and section 12.5 in [GVS99].                                                         
The paths deleted from K in constructing Z are all of length 1 and are easy to deal with 
separately. Since two quasi-disjoint π   γ paths can share a vertex v of K, i.e. some v 
may be between π  and γ on both paths, we introduce the following. Two π   γ paths are 
said to be independent iff (i) they are quasi-disjoint and (ii) no vertex v of K is between π  
and γ on both paths. It is easy to see that if the two paths are independent then they are 
quasi-disjoint, but a simple counter example will show that the converse is not generally 
true. ♦ 

 
Definition 19.1: A set of pairwise independent π   γ paths in Z is called a flow, and the 
measure of a flow is defined to be the number of paths of the flow. ♦  
 
Theorem 19.1: The measure of a maximum flow for π  and γ through Z is less than or equal to 
min B(π   γ).♦ 
 
Proof: Follows from Menger’s Theorem for Z  and the fact that independent paths are quasi-
disjoint, but the converse is not necessarily true, so there cannot be more paths in a flow than 
there are pairwise quasi-disjoint π   γ paths in Z. ♦ 
. 
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The members of a minimal vertex separation B(π γ) in Z are critical in K, as are the paths in 
a maximim flow, in some applications. Dealing with the paths of length 1 that were deleted 
from K to produce Z, if any, is easy after applying the theorem. 
 
Menger’s Theorem also applies in edge form, as briefly outlined below. By an edge 
separation  E (πγ) for π  and γ in Z  we mean a set of edges of K which, if deleted from Z, 
will leave no π γ paths in Z. By an edge-bundle in Z we mean the set of all π   γ paths that 
use a particular edge of K. Pick an edge e0 of K. Let edge-bundle S0 be the set of all π γ 
paths in Z that use e0. Delete from Z  the common edge, e0, of each of the members of S0. 
Repeat this process in what remains of Z, defining bundle S1 for edge e1. Continue until no 
more π   γ paths remain. Two π   γ paths are said to be quasi-edge-disjoint iff they belong 
to two distinct edge-bundles. Now Menger’s Theorem states that the maximum number of 
pairwise quasi-edge-disjoint π   γ paths in Z is equal to the minimum number of members in 
an edge separation E(πγ) in Z, i.e. minE(π   γ).  
 
Since two quasi-edge-disjoint paths can share an egde of K, we define the following notion. 
Two π   γ paths in K are said to be edge-independent iff  
(1) they are quasi-edge-disjoint and  
(2) no edge of K lies on both π   γ paths. If two π   γ paths are edge-independent then they 

are quasi-edge-disjoint, but the converse is not generally true. 
 
Definition 19.2: A set of pairwise edge-independent π   γ paths in Z  is called an edge-flow, 
and the measure of an edge-flow is defined to be the number of π   γ paths in the edge-flow. 
♦ 
 
Theorem 19.2: The measure of a maximum edge-flow for π  and γ through K is less than or 
equal to min E(πγ).♦ 
 
Proof: Follows from the edge version of Menger’s Theorem for Z  and the fact that edge-
independent π   γ paths are quasi-edge-disjoint but the converse is not necessarily true, so 
there cannot be more paths in an edge-flow than there are pairwise quasi-disjoint π   γ paths 
in Z. ♦ 
 
Can we get closer to the measure of a flow? Consider Z, and partition the set of all π   γ 
paths in Z as follows. Delete any vertex v0 of K from Z, and let S0 be the set of all π   γ  
paths in Z  that are cut by that deletion. Let <B0, E0> ∠ K be the hypernet that is defined to be 
the context hyperschema of all the vertices of K that are between π  and γ on any  π   γ path 
in S0, i.e. <B0, E0> is the join of all the context hyperschemas of each vertex of K that is 
between π  and γ on any π   γ path in S0. Delete <B0, E0> from Z, and let <B1, E1> be the 
sub-hypernet of Z that remains after this deletion. Choose any v1 ∈ (B1 – {π , γ}), delete v1 
from <B1, E1>, and let S1 be the set of all π   γ paths in <B1, E1> that are cut by that deletion. 
Now delete from <B1, E1> the context-hyperschema of all the vertices of <B1, E1> that are 
between π  and γ on any π   γ path in S1. Continue in this way, defining Sr for r = 0, 1, ..., t, 
until St+1 is empty. Then a flow of measure (t + 1) can be found by choosing precisely one        
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π   γ  path from each Sr. The set of vertices vr, r = 0, 1, ..., t is an example of what is said to 
constitute a flow-separation F(π   γ) for π  and γ in Z,  and we clearly have: 
 
Theorem 19.3: The measure of a maximum flow for π  and γ through K is equal to               
min F(π   γ). ♦ 
 
Can we do a similar thing for edge-flows? We can indeed. Delete every edge of every 
member of S´0, where S´0 is the set of all π   γ paths of Z that are cut by the deletion of edge 
e0 from K. Next choose any edge e1 of K that remains after the deletion of all edges of all the 
paths in S´0. Let S´1 be the set of all π   γ paths, in what remains of Z, if any, that are cut by 
the deletion of e1 from the remaining hypernet, and then delete from that remaining hypernet 
all the edges of every member of S´1. Continuing in this way we partition all the π   γ paths 
in Z into sets S´0, S´1, ..., S´n.  Now two π   γ paths are edge-independent iff they belong to 
two distinct S í, because the two paths are certainly quasi-edge-disjoint and they can share no 
edge of K. 
 
Thus we have 
 
Theorem 19.4: The meaure of a maximum edge-flow for π  and γ  through Z  is equal to min 
G(π   γ), where G(π   γ) is an edge-flow-separation for π  and γ in Z, i.e. G(π   γ  ) is a 
set of edges such as e0, e1, ..., en that generate a partition of π   γ paths such as S´0, S´1, ..., S´n 

respectively. ♦ 
 
Since deletion of vertices of K is more destructive than deletion of edges from K in general, 
because of strong vulnerability, we have the following. 
 
Theorem 19.5: If two π   γ paths P1 and P2 in Z  are independent then they are edge-
independent, but the converse is not generally true. ♦ 
 
Proof: Since P1 is independent of P2, P1 and P2 are quasi-disjoint, and P1 and P2 share no 
vertex of K, i.e. no vertex of K is between π  and γ on both P1 and P2. Since P1 and P2 are then 
vertex-disjoint, they must clearly be edge-disjoint, so they are edge-independent because they 
belong to different edge bundles: Edge-disjoint implies quasi-edge-disjoint, but  the converse 
is not true in general. If P1 and P2 are edge-independent then they may clearly share a vertex 
of K, so they are not, in general, independent π   γ paths. ♦ 
 
Corollary 19.1: min F(π   γ) ≤ G(π   γ) in Z. ♦ 
 
Proof: Follows at once from Theorem 19.5. ♦ 
 
Since deleting the context-hyperschema of all vertices in all the π   γ paths on which some 
vertex v lies is more destructive than deleting only the context-hyperschema of v, we have: 
 
Theorem 19.6: min F(π   γ ) ≤ B(π   γ). ♦ 
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Since deleting all the edges of S í is more destructive than deleting just the generating edge ei, 
we have: 
 
Theorem 19.7: min G (π   γ) ≤ E (π   γ).♦ 
 
Finally, for the same reason, we have  
 
Theorem 19.8: min B(π   γ ) ≤ min E (π   γ ). ♦ 
 
Thus we have 
 
Corollary 19.2: 

min F(π   γ) ≤ min G (π   γ ) ≤ minE (π   γ ) 
and 

min F(π   γ) ≤ min B(π   γ ) ≤ min E (π   γ ). ♦ 
 
Facets of Menger’s Theorem will be useful in some applications inasmuch as they separate 
out certain vertices, edges and derivation paths for special attention. 
 
(3) Matchings and Coverings re-visited. In Chapter 5 of [GVS99] we discussed a variety of 

presentation strategies, and this section of the report picks up some of that work, but with 
a different emphasis. Before continuing with this section, we look again at matchings and 
coverings as both are important facets of the structure of a CRKH. One of the key 
approaches to finding matchings is the construction of a bipartite graph G from a CRKH 
<A, E> as follows. Order the edges of <A, E> in any way, and plot them as vertices of G 
in two columns E1 = E and E2 = E, each in the defined order. Join two distinct vertices of 
G, v1 ∈ E1 and v2 ∈ E2, that are adjacent by at least one vertex a ∈ A in <A, E>. From this 
graph G one can write an algorithm to find a matching in <A, E>, where we recall that a 
matching is defined as follows. 

 
Definition 19.3: A matching M ⊆ E in a CRKH <A, E> is a set of edges of <A, E> that are 
pairwise (potentially) non-adjacent. M is a maximal matching iff we can add no edge of <A, 
E> to M without destroying the matching property. ♦ 
 
It is easy to find a maximal matching, in <A, E>, using G – see [GVS99] p. 74 for example. 
The members of a maximal matching are pairwise “independent” edges inasmuch as no two 
of them are adjacent edges in <A, E>. A relatively large value of M compared with E 
will indicate a certain poverty of derivation paths, so maximal matching can be important in 
analysing the structure of <A, E>. Now recall vertex covering. 
 
Definition 19.4: A vertex cover of a CRKH <A, E> is a set of edges Ec ⊆ E which is such that 
∪ Ei, Ei ∈ Ec, is equal to A. A minimal vertex cover of <A, E> is a set of edges that, together, 
involve each a ∈ A at least once, and from which we may delete no edge without destroying 
the covering property. ♦ 
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If we find a maximal matching in <A, E> then we can convert it to a minimal vertex cover – 
see [Ber89]. A minimum cover will tell us the minimum number of edges that “say 
something” about each a ∈ A in <A, E>, and presents us with a set of edges that actually does 
this. Constructional Scheme 5.4 in [GVS99] can easily be re-written to find a minimal vertex 
cover for <A, E>. 
 
(4) Next we turn to the CRKH equivalent of a tuple oriented partial presentation strategy, 

not dealt with in [GVS99] but sometimes relevant for structural analysis of a CRKH. Let 
<A, E> be any CRKH. 

 
Definition 19.5: By a primary edge of <A, E> we mean an Ei ∈ E such that every member of 
Ei, but precisely one, is primary in <A, E>, and that one other vertex is non-primary in        
<A, E>.♦ 
 
(1) Let L0 be the set of all primary edges of <A, E>, and there must of course be at least one. 

Now we start to describe a procedure in terms of our bi-partite graph G. Mark the 
members of L0, in E1 and in E2, in G, and then delete all edges of G that link members of 
L0, i.e. represent adjacencies of members of L0. 

(2) Define L1 ⊆ E as follows. A vertex Ei ∈ E1 (and of E2) in G belongs to L1 iff it is adjacent 
with at least one member of L0 in G. Delete all edges of G that link members of L1, i.e. 
represent adjacencies of members of L1. Now partially order the members of L1 as 
follows.Let the order of each l1 ∈ L1 be l1, and arrange the members of L1 in partial 
order of decreasing order, those with maximum order being said to be closest to L0 
because they are, among the members of L1, most closely associated with the vertices 
involved in the members of L0. 

(3) Repeat step 2 with L0 replaced by L1 and L1 replaced by L2, then with L2 and L3, and so 
on until Lk has been defined and we then find Lk+1 = ∅. We have then dealt with some of 
the edges of <A, E> in a partial order that consists of succesive steps with a partial 
ordering of edges in each step. 

(4) Finding the “strongest” associations of edges, in each step, with edges in all the previous 
steps can be another indication of the strength of association in a CRKH. It is clear that 
one can define a partial presentation strategy, i.e. a hierarchy of nested sub-hypernets of 
<A, E>, along these lines. In practice ∪ Li ⊆ E may constitute only a very small subset of 
E, but we can condsider it as displaying “core associations” among (some of) the vertices 
of <A, E>. 

 
Another indication of the kind of association that should be examined in a CRKH <A, E> is 
the case of spiralling – see [GVS99]. Here we can regard this as a way of sorting knowledge 
about a ∈ A if spiralling occurs for a (as it often does). Suppose that we have, in the 
predecessor hyperschema P(a) of a ∈ A, a sub-hyperschema that contains at least one 
derivation path for a that does not use a, i.e. a is not between the relevant primary and a on 
this path other than as the “end” vertex of that path, and at least one derivation path for a that 
does use a “on the way to a”. The minimum sub-hyperschema of P(a) that contains the join of 
the derivation path hyperschemas of all such paths in P(a) is then said to constitute a 
recursive, or bootstrap, approach to a in P(a), and thus in <A, E>. It is called the recursive 
sub-hyperschema of a in <A, E>, and it contains at least one derivation path hyperschema, for 
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a, that does not use a, and at least one that does. Knowledge about a ∈ A in <A, E> is first to 
be found in the recursive sub-hyperschema for a in <A, E>, if one exists, starting with those 
derivation paths that terminate at a but do not use a anywhere else in them, thus establishing 
preliminary knowledge of a in <A, E>. Then the other derivation paths in the recursive sub-
hyperschema can be dealt with, and then P(a), and then finally the context hyperschema of a 
in <A, E>. This provides us with a graded approach to finding all the knowledge about a in 
<A, E>. Constructional Scheme 5.5 in [GVS99] can easily be transcribed to provide a way of 
finding the recursive sub-hyperschema of a ∈ A in <A, E>. A recursive sub-hyperschema is 
unique. 
 
Deductive Complexity of a CRKS – see [GVS99] – can be usefully transcribed to a CRKH. 
It is clear that a limited access cascade from the primaries of a CRKH <A, E> generates a 
hierarchy, in <A, E>, in the form of a nested sequence of sub-hypernets of <A, E>. We will 
be concerned with that hierarchy and the notion of deductive distances in <A, E>, which we 
recall here. 
 
Definition 19.6: The deductive distance from the primaries of a CRKH <A, E> of a ∈ A is 
defined by dd(a) is the level of a in <A, E>, where that level is the step number in a limited 
access cascade from the primaries of <A, E>, in <A, E>, in which a is first encountered in that 
cascade. ♦ 
 
The primaries of <A, E> constitute B0, so they are in level zero of the cascade, so dd(p) = 0 
for every primary of <A, E>. Next we recall constructional scheme 16.1. In it we showed how 
to construct a tree that displays every path from each primary of <A, E> as a unique path in 
that tree. Now we label that tree, as we construct it, by marking all its branches and nodes in a 
way that allows us to compute what we call the deductive complexities DCOM. Again we 
refer to vertices and edges of  <A, E>, and to nodes and branches of the path tree. 
 
First we introduce an unlabelled dummy node to serve as the root of the tree, and one only 
node for each primary of <A, E>. Each such node is joined to the root by an unlabelled 
branch. Every node, other than the root, is labelled with (concept-name, deductive distance of 
the vertex represented by that node, deductive complexity DCOM of that node). So far we 
have  
 
                                                                     root 
 
 
 
 
                                                                                      ........... 
 
                    p1, 0 , 1               p2, 0 , 1                             .......                        pn, 0 , 1 
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for the n primaries of <A, E>, where dd(pi) = 0 for every primary and we set DCOM (pi) = 1 
for every primary. For each node for a vertex u ∈ A, the path tree now develops as follows. 
Find every edge Ei by which there is a vertex adjacency (u, Ei, v) where  
Ei = {u = c1, c2, ..., cm = v}. We plot a new node for vertex v for each edge Ej ∈ E by which 
there is a vertex adjacency (u, Ej, v) for this u and v, and insert a branch from each node for u 
to every node for v. Each such branch is labelled with the index k of the edge Ek that 
generates it, together with all the members of Ek other than the two vertices which are 
adjacent by Ek in <A, E>. Thus, for our example Ei above, we would get a branch from each 
node for u to every node for v in the path tree, and that branch would have label i; c2, c3, ..., 
cm-1, where any order of the cs will do. Each new node for v is labelled with its concept-name, 
its deductive distance from the primaries of <A, E>, and the node value of DCOM. The node 
value of DCOM is computed from the edge that generates the particular, unique, branch to 
that node by setting DCOM = DCOM for the “beginning” node of that branch + Σ  (DCOM of 
the node for cs) from s = 2 to m-1 over all the cs written along that branch in the branch label. 
We set dcom(cs) equal to any minimal value of DCOM of a node for the vertex cs. In the case 
of an edge {u, v}, the branches between u and v for this edge are all labelled with the index of 
this edge and the set ∅ of vertices, and for such a branch we set DCOM for the end node of 
the branch, i.e. the one furthest from the root, to DCOM for the beginning node of that branch 
+1. 
 
Next we number the nodes of the path tree. Number the root zero, and then number all sons 
from left to right. Now we assign a value of dcom for each concept-name that appears in any 
branch label as follows. Fill in DCOM for each node that has dd = 1. Certainly this is possible 
because all the primaries have dd = 0 and every node at dd = 1 represents a vertex that was 
derived in terms of primaries only. Next, proceed to nodes for vertices at dd = 2, then at       
dd = 3, and so on in turn, using the following method. For each concept-name v in a branch 
label, look in the path tree for any node for v that has a minimal value of DCOM among those 
nodes. Suppose that we choose node number n for v: Then dcom(v) = DCOM(n), and 
wherever v occurs in any branch label we enter dcom(v) and (n) next to v in that label. To see 
that this assignment of values of DCOM is possible for all the non-root nodes of the path tree, 
consider the following informal argument. In level 0 we have all the primaries, and each 
primary has a node for which DCOM = 1. Since each primary is trivially derived by a 
derivation path of length zero, we must set dcom = DCOM = 1 for each node for a primary. 
This takes care of the first stage of filling in DCOM and dcom. We now temporarily define a 
first derivation path for any non-primary vertex v of <A, E>, in <A, E>, as follows. Suppose 
that v is in level n, n ≥ 1, in <A, E>. A first derivation path for v is any derivation path for v, 
in <A, E>, for which every vertex u used on that derivation, i.e. in an edge of that derivation 
path, is in a level m < n. 
 
Let v be any vertex, of <A, E>, that lies in level 1, and let D(v) be any first derivation path for 
v in <A, E>. Then the only vertices of <A, E> that are used in reaching v by means of D(v) 
are primaries of <A, E>, and this includes the case of ∅ labels. It follows that we can assign a 
value of DCOM to that node copy of v that lies at the “end” of the unique path, in the path 
tree for <A, E>, which corresponds with this first derivation path D(v) for v. Notice that there 
must be at least one first derivation path in <A, E> for every v ∈ A in any given level, 
because <A, E> can be precisely generated by a limited access cascade from its primaries. We 
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now assign a value of DCOM to the relevant node copy of v for every first derivation path for 
v. Any minimal value of DCOM assigned to a node copy of v in the path tree using this 
procedure for v ∈ A can be chosen to be the value of dcom for v, and this value is now fixed 
for v so we fill it in, together with the number of the chosen node copy of v, at every 
occurrence of v in a label in the path tree. We do this for every v ∈ A that lies in level 1, and 
this is possible because each such vertex has at least one first derivation path, in <A, E>, that 
involves only primaries, possibly with a ∅ label, in reaching that vertex.  
 
Next suppose that we are done with all level n vertices of <A, E> for some n ≥ 1. Thus every 
vertex of <A, E> that lies in level m ≤ n has been associated with at least one value of DCOM 
and with a single value of dcom. Let v now be any vertex of <A, E> that lies in level (n+1) in 
<A, E>, and let D(v) be any first derivation path for v in <A, E>. The only vertices of <A, E> 
that are used in reaching v by means of D(v) are vertices u in levels m ≤ n, so each such 
vertex u is associated with some node copies for each of which we have a value of DCOM, 
and all those copies have the same previously chosen value of dcom. It follows that we can 
now compute a value of DCOM for that node copy of v which lies at the “end” of the unique 
path, in the path tree of <A, E>, that corresponds with this first derivation path D(v) for v. We 
do this for each first derivation path for v. Any minimal value of DCOM associated with some 
node copy of v in the path tree using this first derivation path procedure for v can be chosen to 
be the value of dcom for v and attached to every occurrence of v in a branch label of the path 
tree, together with the number of the node copy of v which was chosen in assigning the value 
of dcom to v. We repeat this for every vertex of <A, E> that lies in level (n+1): This is 
possible because each such vertex has at least one first derivation path that involves only 
vertices in levels m ≤ n, and possibly ∅ labels, in reaching that vertex, and at least one such 
path must exist because <A, E> can be precisely generated by a limited access cascade from 
its primaries. Since <A, E> and its path tree are finite, it follows that the assignment of 
DCOM and dcom values for every node in that path tree can be achieved: DCOM(n) can be 
computed for every node n in the path tree of <A, E>. 
 
Using the path tree of a CRKH <A, E> we can, by combining the DCOM and deductive 
distance values for each leaf (pendant) of the path tree, where each leaf is a copy of some goal 
of <A, E>, assign a complexity value to each derivation path in <A, E>, thereby establishing a 
partial order of the derivation paths in <A, E> from the least complex to the most complex. 
This leads to a presentation strategy – see [GVS99]. We make some brief comments on this 
situation in our third intermission. 
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20. Third intermission 
.   

 
This intermission is very speculative, and is partly for the amusement of frustrated theoretical 
physicists like one of the authors (HO van Rooyen), but also contains some serious 
suggestions about the use of CRKS’s and CRKH’s in the representation of study material – 
see Parts I and II of [GVS99]. In such a representation, the notion of a CRKH frees the 
designer from specific statements of relationship in a particular teaching metalanguage, 
opening the way to “language free” design. 
 
Hamilton’s Principle of Least Action appears to be a potential unifying principle for the 
theories of relativity, electromagnetic theory and quantum mechanics: All we need seems to 
be the appropriate definition of “action” in each case. In this author’s view, it is unfortunate 
that the principle is formulated in a number continuum that is a wholly human invention and 
has little to do with the “real world”, thus constituting a fundamental a priori flaw in the 
models used in these fields of theoretical physics. Discrete models would be more suitable, 
both for (partial) representation and for computation, and also for simulation, but are slow to 
appear, partly probably due to the overwhelming concentration on the apparent success of real 
and complex number modelling in Physics in general and a concurrent and appalling neglect 
of basic scientific method in several fields of the physical “sciences” in recent years. 
 
Where shall we look for potential “discrete versions” of Hamilton’s Principle? Let me suggest 
here that we have indeed uncovered something, in the very unlikely field of education, that 
looks suspiciously like a discrete version of Hamilton’s Principle and is also lightly attached 
to probability, depending of course on ones enthusiasm for that Principle, which can make 
one see ghosts where there may not be any! 
 
We have seen that deductive complexity can be used to partially order the set of all derivation 
paths in a CRKH, and of course in a CRKS. By partially ordering the members of each of 
these “deductive complexity equivalence classes” by means of the deductive distances of the 
leaves of our path tree from the primaries, we can define an overall complexity for each 
derivation path of the relevant CRKH (or CRKS). Now consider any one of these “complexity 
equivalence classes”, and let it have n members, each of which is a derivation path with the 
same complexity. (One might suppose that a teacher/learner would start with the class of 
lowest complexity!). The a priori probability that the teacher/learner will choose to start with 
any one of these derivation paths is 1 in n, and the moment one is chosen the probability of 
choice of all the rest in the equivalence class becomes 1 in (n-1). Of  course the 
teacher/learner will often make these choices on the basis of personal familiarity with the 
“subsidiary” derivations involved in teaching/learning a given derivation path, but to some 
extent this heuristic, and subjective, influence on the order of choice of derivation paths has 
been built into the complexity measure of those paths. What is asking to be recognised here is 
a sort of “least action” principle to be adhered to by “good” teachers/learners: The 
teacher/learner must follow a derivation path of minimum complexity every time s(he) has a 
choice, and the probability of choice varies with every choice actually made, indicating a 
clear influence of the chooser on the whole of the remaining CRKH (CRKS) every time a 
choice is made. The situation is of course actually more complicated than this simple choice 
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of derivation path indicates, because in choosing a derivation path we are in fact choosing a 
whole sub-hypernet (sub-net) in which at least one derivation of each vertex between p and g, 
p a primary and g a goal, on the chosen derivation path p  g must exist. One such sub-
hypernet (sub-net) for p  g can easily be constructed from the labelling of p  g on our 
path tree, so all the information is available for our chosen path p  g. One can see quite 
plainly how this works in the example that constitutes Part II of [GVS99].  
 
If we define the complexity of a flow to be the sum of the derivation path complexities over 
all the independent derivation path sections of the paths in the flow, then the same thing can 
be said about the choice of a particular flow: A flow of lowest complexity can be found by 
selecting a derivation path of lowest capacity from each of the sets of paths from which one 
member is chosen, from each set, to make up a flow. 
 
Again we may have several distinct flows with the same flow complexity, so we meet the 
same situation as with the choice of individual derivation paths, and a similar Principle 
applies. One may ask, incidentally, why a teacher/learner would wish to teach flows. The 
answer is that it makes some good sense as the various paths belonging to any given flow 
each go through a “region” of the relevant CRKH (CRKS) that is unrelated to the “region” 
through which any other path in that flow goes. 
 
Our principle of least complexity can be worded in a fairly evokative way. The “movement” 
of a teacher/learner “through” a CRKH (CRKS) will always be along a derivation path of 
minimum complexity in the current CRKH (CRKS), or, more succinctly: The Principle of 
Least Complexity for “Good” Teachers/Learners. Given a choice of (derivation) paths (or of 
flows) from one (primary) vertex to another (goal) vertex in (CRKH/CRKS) space, a path that 
is of least complexity under the current conditions in that space will be followed. 
 
While this intermission is likely to evoke a few chuckles over a cocktail there is, hidden 
behind it, a serious appeal to give more consideration to the marvellous Principle of Hamilton 
and to free it, if possible, from its original home in the calculus. As discrete modelling, the 
natural field of the digital computer, becomes ever more important we may find much wider 
use of such theorems as that of Menger in its various formats, and perhaps too of general 
principles such as that of Hamilton’s “Least Action”. 
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21. An Extended View of Modelling Study Material 
 
 

Before continuing with the development of CRKH theory, we will use a simple example to 
show how the use of the representation of study material in CRKS form is linked with, and is 
extended by, the notion of a CRKH. Our illustration is the partial model of CRKS theory 
itself, as given in Appendix A of [GVS99], in the form of a CRKS. For convenience, we 
repeat the statements of Appendix A here. The CRKS is rather trivial, but is an adequate 
illustration of the point that we wish to make in this section. 
 
The concept-names in the statements are those printed in bold. Here are the statements, made 
on the basis of part of Part 1 of [GVS99]. 
1. The problem of devising a science of teaching has a potential solution in terms of vee 

diagrams . 
2. The problem of devising a science of teaching has a potential solution in terms of 

concept circle diagrams . 
3. The problem of devising a science of teaching has a potential solution in terms of 

concept maps . 
4. The problem of devising a science of teaching has a potential solution in terms of 

semantic networks. 
5. The problem of devising a science of teaching has a potential solution in terms of 

conceptual graphs . 
6. The problem of devising a science of teaching has a potential solution in terms of CNR-

nets. 
7. Concept maps  deal with concept-names and relationships  among them, as do CNR-

nets. 
8. Concept-names are represented by the vertices in a CNR-net. 
9. Relationships  are represented by the tuples in a CNR-net. 
10. Tuples represent relationships  in a CNR-net.  
11. A CNR-net has subnets. 
12. The set of all subnets of a CNR-net, with meet and join defined on it, forms a 

distributive lattice. 
13. A concept-name, in a CNR-net, represented by a vertex with in-degree zero and out- 
      degree ≥ 1, is called a primary. 
14. A concept-name, in a CNR-net, represented by a vertex with out-degree zero and in- 
      degree ≥ 1, is called a goal. 
15. A primary is a vertex with in-degree zero and out-degree ≥ 1 in a CNR-net. 
16. A goal is a vertex with out-degree zero and in-degree ≥ 1 in a CNR-net. 
17. A CNR-net with at least one primary, at least one goal, and no circuits, and in which  
      each concept-name is related to at least one other concept-name, is called a formal  
      schema.  
18. A formal schema that consists of all the tuples that involve a given concept-name  
      constitutes, for that concept-name, its context-schema. 
19. A formal schema in which every vertex has degree ≥ 1 is said to be complete. 
20. A formal schema may have the property that every one of its vertices is derivable. 
21. A complete  formal schema in which every vertex is derivable is called a CRKS. 
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22. Derivability and completeness of a formal schema characterizes a CRKS. 
23. A primary in a CRKS is trivially derivable.  
24. Every statement of relationship in a CRKS is treated as an inference rule: This leads to  
      the notion of derivability. 
25. A formal schema that is complete and in which every vertex is derivable is called a  
      CRKS. 
26. Tuples in a CRKS are preserved by CRKS  isomorphism. 
27. Isomorphism of CRKS’s expresses structural analogy. 
28. Structural analogy is expressed in terms of isomorphic (sub-) CRKS’s. 
29. Isomorphism is used to express structural analogy among (sub-) CRKS’s. 
30. Derivability is realized in a CRKS by means of derivation paths . 
31. Derivation paths  express derivability in a CRKS. 
32. Derivability is realized in terms of derivation paths  in a CRKS. 
33. A formal schema can be searched for relevant subnets using cascades. 
34. A cascade  from the primaries of a formal schema can be used to test a formal schema  
      for CRKS form. 
35. In a formal schema we can use a cascade  from the primaries to test for CRKS form. 
 
These statements do not tell us much about CRKS’s, but we can continue to design more 
statements until we “cover” CRKS theory. This is just a simple illustration after all! 
 
The Tuples Table is as follows, with the tuple set for each. 
 
1. <problem, vee diagram> {problem, vee diagram} 
2. <problem, concept circle diagram> {problem, concept circle diagram} 
3. <problem, concept map> {problem, concept map} 
4. <problem, semantic network> {problem, semantic network} 
5. <problem, conceptual graph> {problem, conceptual graph} 
6. <problem, CNR-net> {problem, CNR-net} 
7. <concept map, concept-name, 

relationship, CNR-net> 
{concept map, concept-name, relationship, 
CNR-net} 

8. <concept-name, CNR-net> {concept-name, CNR-net} 
9. <relationship, tuple, CNR-net> {relationship, tuple, CNR-net} 
10. <tuple, relationship, CNR-net> {tuple, relationship, CNR-net} 
11. <CNR-net, subnet> {CNR-net, subnet} 
12. <subnet, CNR-net, distributive lattice> {subnet, CNR-net, distributive lattice} 
13. <concept-name, CNR-net, primary> {concept-name, CNR-net, primary} 
14. <concept-name, CNR-net, goal> {concept-name, CNR-net, goal} 
15. <primary, CNR-net> {primary, CNR-net} 
16. <goal, CNR-net> {goal, CNR-net} 
 
So far the difference is that the entries in the tuples are in a strict order, but those in the edges 
are unordered. 
 
17. <CNR-net, primary, goal, concept-name, 

relationship, concept-name, formal 
schema> 

{CNR-net, primary, goal, concept-name, 
relationship, formal schema} 
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18. <formal schema, tuples, concept-name, 
concept-name, context-schema> 

{formal schema, tuples, concept-name, 
context-schema} 

19. <formal schema, complete> {formal schema, complete} 
20. <formal schema, derivable> {formal schema, derivable} 
21. <complete, formal schema, derivable, 

CRKS> 
{complete, formal schema, derivable, CRKS} 

22. <derivability, complete, formal schema, 
CRKS> 

{derivability, complete, formal schema, 
CRKS} 

23. <primary, CRKS, derivability> {primary, CRKS, derivability} 
24. <relationship, CRKS, derivability> {relationship, CRKS, derivability} 
25. <formal schema, complete, derivable, 

CRKS> 
{formal schema, complete, derivable, CRKS} 

26. <tuple, CRKS, CRKS, isomorphism> {tuple, CRKS, isomorphism} 
27. <isomorphism, CRKS, structural 

analogy> 
{isomorphism, CRKS, structural analogy} 

28. <structural analogy, isomorphic, CRKS> {structural analogy, isomorphic, CRKS} 
29. <isomorphism, structural analogy, 

CRKS> 
{isomorphism, structural analogy, CRKS} 

30. <derivability, CRKS, derivation path> {derivability, CRKS, derivation path} 
31. <derivation path, derivability, CRKS> {derivation path, derivability, CRKS} 
32. <derivability, derivation path, CRKS> {derivability, derivation path, CRKS} 
33. <formal schema, subnet, cascade> {formal schema, subnet, cascade} 
34. <cascade, primary, formal schema, formal 

schema, CRKS> 
{cascade, primary, formal schema, CRKS} 

35. <formal schema, cascade, primary, 
CRKS> 

{formal schema, cascade, primary, CRKS} 

 
In designing a CRKS we need to decide on the primaries, the goals, and the concept-names, 
and then write out statements and permutations (re-statements) of relationships, constructing 
the diagram at every step as the developing diagram often indicates what kind of statements 
need to be made in order to archieve derivability of every vertex. A useful hint is to run a 
limited access cascade from the primaries at each stage of the design, getting each step of the 
cascade complete before moving to the following step of the cascade. The diagrams are given 
in figure 21.1 (CRKS) and figure 21.2 (CRKH). In labelling the diagrams we use some 
obvious abbreviations of concept-names and the edges of the CRKH are labelled by the index 
number of the statements. 
 
In the diagram of the CRKS we have entered tuple numbers on the arrows. Thus for example, 
3 arises from <problem, concept map> and  the complete label is 3; ∅.  17 arises from  
<CNR-net, primary, goal, concept-name, relationship, concept-name, formal schema> and the 
complete label has only one member, 17; <primary, goal, concept-name, relationship, 
concept-name>. In Figure 21.2  the corresponding complete label is 17; {CNR-net, primary, 
goal, concept-name, relationship, formal schema}. In the diagram of the CRKH for this 
knowledge about CRKS’s, we have entered only the edge index numbers. Thus, for example, 
the label l({derivable, CRKS}) is made up of E22 and E32, so, in full, we have l({derivable, 
CRKS}) = {{derivability, complete, formal schema, CRKS}, {derivability, derivation path, 
CRKS}}.
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Figure 21.1: CRKS where a circle indicates a primary and a square indicates a goal 
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Figure 21.2: CRKH where a circle indicates a primary and a square indicates a goal 
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Starting with a CRKS <A1, T1> with the statements of relationship among its concept-names 
in a teaching metalanguage L1, we can easily abstract the unique corresponding CRKH      
<A1, E1> = M [<A1, T1>]. Now we can translate the concept-names to another teaching 
metalanguage L2, bearing in mind that a concept-name can even be a phrase in L1 and/or L2, 
producing a 1-1 correspondence between A1 and the set of translated names A2. Next we 
construct a CRKH  <A2, E2>  that is isomorphic with <A1, E1>. Then we write statements of 
relationship in L2 using, for each edge Ei ∈ E1, all and only the translations of the members of 
Ei as the L2 concept-names in the relevant statement in L2, where we can use the translated 
members of Ei in any order, and each can be used any number of times in the statement in L2. 
The relationships, as opposed to the statements of relationship, should remain unchanged. 
This now defines a set T2 of tuples, and we have <A2, T2> =  I [<A2, E2>] for some 
interpretation I of <A2, E2>. 
 
Thus <A1, T1>  and <A2, T2> may be made isomorphic by appropriate choice of interpretation 
of <A2, E2>, but such a choice may be impractical.  Indeed, we may not want to be restricted 
to having <A2, E2> isomorphic with <A1, E1> as this forces one to preserve vertex 
adjacencies.  In that case <A2, T2> = I [<A2, E2>] must be chosen in such a way that the 
relationships expressed by the members of T1 are preserved by the members of T2 in teaching 
language L2.  We refer the reader to Definition 2.18. 
 
In summary, the second diagram is that of the unique CRKH which is the abstraction of the 
CRKS represented by the first diagram, though many distinct CRKS’s can of course have this 
same CRKH as abstraction. The concept-names involved in the CRKS can be translated to, or 
constructed in, another teaching metalanguage, and from these we could build a CRKH that is 
isomorphic with the English language (in this case) CRKH represented by the second 
diagram. The new CRKH can now be interpreted as a CRKS in the ”new” language in a 
number of ways, where we recall that Theorem 17.5 asserts that if that ”new” hypernet is a 
CRKH then each and every interpretation of it is a CRKS. Such a CRKS can now be used to 
teach/learn the knowledge represented by our English language CRKS in the ”new” language. 
Heuristically, the statements from which the tuples arise in the ”new” language should be 
chosen, from the alternatives for each CRKH edge, in a manner that best suits the 
teachers/learners in that language. It may be that the vertex adjacencies forced upon the 
designer are inappropriate in the ”new” language. 
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22. Accommodation and analogy 
 
 
Definition 22.1: By an accommodation of a CRKH <A, E> we mean any restructuring of     
<A, E>, for example adding 1 to the weight of an edge Ei ∈ E every time that Ei is used in any 
way, thereby emphasizing certain edges of <A, E> in the sense that the higher the weight of 
an edge in the current, accommodated hypernet, the greater the ”user familiarity” with that 
edge. By a unit edge accommodation we mean adding one edge to <A, E>. By a unit vertex 
accommodation we mean adding one vertex to <A, E>. By a hypercluster accommodation 
we mean adding a hypercluster for some new edge to <A, E>.♦ 
 
Definition 22.2: In the case of unit accommodations and hypercluster accommodations of a 
CRKH <A, E>, we say that the accommodation is assimilated by <A, E> iff the restructured 
hypernet that results is itself a CRKH. ♦ 
 
It is clear that a unit edge accommodation  of a CRKH <A, E> in which all the members of 
the new edge are elements of A is the simplest form of accommodation. A unit vertex 
accommodation of a vertex v ∉ A will of course never be assimilated: We need to add in, as 
well, appropriate associations with members of A, in the form of new edges, to produce a 
context hyperschema for v that is assimilated by <A, E> if our objective is to construct 
CRKH’s from simple structures. If a unit edge accommodation involves an edge in which 
there is at least one vertex v ∉ A then we have a slightly less complex problem, because here 
we introduce both v and an edge that has v as a member.  
 
As was indicated in [GVS99], the most ”natural” kind of accommodation  is (hyper) cluster 
accommodation, because of the key role of (hyper) clusters in teaching/learning and in finding 
(CRKH) CRKS isomorphisms in practical situations in which analogy modelling is used. We 
will return to this point in the later section on isomorphism and structural analogy for 
CRKH’s.  
 
Finally, let us point out that even though a hypercluster is, by definition, a (minimal) CRKH 
for a given edge, accommodating a hypercluster into a CRKH does not always lead to 
effective assimilation of that hypercluster. Certainly the join of the CRKH <A, E> and a 
hypercluster that is disjoint from <A, E> will yield a CRKH, so that hypercluster is 
assimilated by <A, E>, but this is a trivial situation of no importance: What we need to do is 
consider only such hyperclusters that are not disjoint from <A, E>, i.e. the meet of <A, E> 
and the hypercluster in question has at least one vertex, and here there may be real problems 
that require to be dealt with to achieve assimilation of the hypercluster by <A, E>. If we deal 
with the case in which the meet is < ∅, ∅> then the accommodation and assimilation is 
useless in restructuring <A, E> in practice. What we need for effective assimilation is that we 
add to <A, E> and the hypercluster in question enough vertices and edges to end up with a 
restructured hypernet <A’, E’> that is a CRKH and is such that the hypercluster introduced 
belongs to a component of <A’, E’>. 
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Combining unit and hypercluster accommodations can always produce, with enough 
perseverance, an (effective) assimilation. Some brief comments on accommodations in the 
case of CRKS’s are presented in [GVS99].  
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23. Isomorphism and Structural Analogy 
 
 
To see if two given CRKS’s, or two given CRKH’s, are isomorphic we can use constructional 
scheme 6.2 of [GVS99], which easily transcribes to the CRKH case. If two CRKH’s 
(CRKS’s) are isomorphic then we say that they are structurally analogous. The use of 
structural analogy in teaching/learning by virtue of the use of ”modelling” has been discussed, 
in the case of CRKS’s, in [GVS99], and the discussion applies to CRKH’s as well. Further, an 
example of structural analogy is presented in Chapter 7 of [GVS99],  and again that work can 
be transcribed to the case of CRKH’s. Also covered in that chapter of [GVS99], and also 
smoothly transcribable to CRKH’s by simply replacing tuple labels with tuple-set (edge) 
labels on the arcs, even leaving arc directions unchanged for ease of reading, is the section on 
theorem proofs.  
 
What, then, is the reason for introducing CRKH’s in this connection? Well, the central 
problem is that of finding, if possible, an isomorphism between two sub-CRKS’s: Given   
<A1, T1> and <A2, T2>, how can we find and construct an isomorphism between them? In 
[GVS99] a rather complex constructional scheme to do this, if possible, was presented. We 
now wish to point out that an easier solution appears from the notions of interpretation and 
abstraction. Setting up the problem in the field of teaching/learning ”new” knowledge by 
refering to given knowledge, i.e. in the sphere of teaching by the use of a ”model” of new 
knowledge in terms of given knowledge, we visualize the following situation in which we 
need to construct an isomorphism, i.e. a structural analogy, to compare new, developing 
knowledge with given knowledge. 
 
We start with existing knowledge in the form of a CRKS  K = <A, T> and some ”new” 
observations in the form of a cluster K’ = <A’, T’> for some tuple of ”new” concept-names. 
Now in seeking a match, in K, for K’, we meet the first, and greatest, problem in trying to set 
up an isomorphism/structural analogy between a sub-CRKS of K and the cluster K’: That of 
relative permutations. How do we recognise a match between a tuple in K and a tuple in K’ 
when we have to take account of all possible permutations of both tuples? Bearing in mind 
that the whole procedure is a trial-and-error attempt to find the ”best” structural analogy – see 
Chapter 8 in [GVS99] – we side-step this problem while maintaining the basic approach used 
in [GVS99], as outlined briefly below. 
 
First we abstract K = <A, T> and K’ = <A’, T’>, producing CRKH  <A, E> and the 
hypercluster CRKH  <A’, E’> respectively. Now relative permutations are irrelevant. Next we 
look at the member or members of E’, assuming that not all members of E and of E’ are 
unordered pairs, and find a matching of <A’, E’> in <A, E> by matching all the sets in E’ 
with a collection of the same number of sets in E that form a hypercluster in <A, E>, if 
possible. There may be several such matchings, so it is better, but not essential, to start with a 
number of ”new” hyperclusters and try to match them simultaneously. Even then there may be 
more than one possible initial matching, but continuing with the construction will show which 
initial matching is ”best”. (Of course one can also apply heuristics in deciding between 
several possible matchings, but our formal measure of relative success is the number of 
vertices and edges in the final matching.)  
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Next we turn the isomorphism found from <A’, E’> into a hypercluster in <A, E> round, and 
expand its domain in <A, E> one edge at a time, each edge having as ”large” a meet with the 
current domain of the growing isomorphism in <A, E> as possible. Each edge projected by 
the tentative expansion of the domain of our CRKH isomorphism is tested as follows. We 
define, at each stage of the ”prediction” from <A, E>, an interpretation of the ”predicted” 
CRKH, based on expanding the inverse of the abstraction of <A’, E’>, and producing for each 
predicted edge a tuple from that edge. What tuple? Well, combining the abstraction of <A, T> 
with the potential CRKH isomorphism and the developing interpretation we can identify the 
potential matching tuple in <A, T>, so we can construct a matching tuple in the growing new 
knowledge CRKS that contains <A’, E’>.  
 
Now try to provide semantics for that predicted new tuple by trying to write an appropriate 
and consistent statement of relationship for that tuple, identifying the relevant ”new” concept-
names in that tuple. If this effort is ”acceptable”, and judging that may require some empirical 
work suggested by the predicted tuple, then we accept the ”prediction”; if not then we move 
on to another ”prediction”. Eventually we will have found no isomorphism, or several from 
which to choose,  and can use the matching sub-hypernet of <A, E> as a ”model” of the 
”new” knowledge for use in presenting the ”new” knowledge. There is just one further 
stipulation: The matching relation nets must be CRKS’s, and thus the matching hypernets 
must be CRKH’s, in the case of teaching/learning applications, but in other applications we 
can broaden the approach to isomorphic matching of general hypernets. To write a 
constructional scheme for the procedure briefly outlined above is easy. 
 
Finally, the section on the use of abstraction isomorphism and algorithmic isomorphism in the 
field of problem solving - section 8.5 in [GVS99] - is easily transcribable to CRKH 
representations of top-down algorithms. In fact, as pointed out in section 1 of this report, the 
entire treatment of problem solving in [GVS99] is best done in terms of CRKH’s because in 
[GVS99] we forced an arbitrary order onto the members of the edges. Either top-down 
direction, with a singleton vertex basis, or bottom-up direction, with a non-empty, non-
singleton vertex basis, can be ”read into” the hypernet. If read top-to-bottom we have a 
(usually connected) hypernet; if read bottom-to-top we have derivation path ordering in a 
(usually connected) CRKH. In the case of connectedness, which is clearly desireable, a fairly 
generous slice of the theory of hypernets presented in this report is applicable in the analysis 
of the structure of the kind of hypernets refered to in section 1, and considerable simple 
computer support for such analysis can easily be made available. 
 
As pointed out in [GVS99], the isomorphism finding procedure can also be used in other 
education oriented applications for example, such as in finding and analysing ”common 
ground” for the current study material among the CRKS’s/CRKH’s drawn up by the members 
of a class of learners. 
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24. Models of Reasoning 
   
 

CRKS models of reasoning were introduced in Chapter 9 of [GVS99], and all that is said 
there can be transcribed to CRKH models. Models of intuitive and deductive reasoning are 
based upon sequences of fast access and limited access cascades respectively. Inductive 
reasoning is based on finding what is common among a number of CRKS’s by means of 
abstraction isomorphisms, and then projecting this structure into (partially) similar new 
CRKS’s by means of algorithmic isomorphism, thereby describing common inductive 
reasoning formally. If only two CRKS’s are involved we describe one as a structural analogue 
of the other. We are of course assuming that all these CRKS’s can have disjoint vertex sets. 
 
Deductive reasoning may be described as ”vertical reasoning” and is geared to developing the 
consequences of a set of primary concept-names or, in general, certain ”basic facts”. This 
might also be described as ”male reasoning”, and is predominant in basic education in many 
fields. In contrast, inductive reasoning  may be described as ”lateral reasoning” with some 
justification, and can also be described as analogical reasoning on the formal basis of CRKS 
isomorphism. We may also assert that this ”analogical association” can be described as 
”female reasoning”. Though we do not of course claim that all males reason vertically and all 
females laterally, since many people are adept at both methods of reasoning, there seems to be 
cause to claim that many female learners have more difficulty than males in certain fields of 
education as the result of the ”male orientation” of organization and presentation of study 
material. We believe that much more emphasis should be placed on analogical reasoning in 
teaching and research if we want to achieve a balance between establishing new concepts and 
the development of their consequences.  
 
In [GVS99] we introduced the notion of cluster sets, and from this the notion of cluster 
associations. In the CRKH approach to reasoning, this is the precise equivalent of plotting a 
graph in which each vertex represents the cluster set of a hypercluster, i.e. the union of the 
edges from which the relevant hypercluster is defined, and two vertices are joined iff the two 
relevant cluster sets have a non-empty intersection. Notice that we are implying that this edge 
is included in the vertex set of the (hyper) cluster for that edge. If necessary, permutations of 
the defining tuple for the (hyper) cluster can be used to construct the (hyper) cluster. 
Labelling each arc in this graph with the relevant intersection set produces a graph of the 
cluster associations involved, and following walks in this graph is our model of associative 
reasoning. 
 
At the other extreme from associative reasoning, among our five CRKS models of reasoning, 
is constructive reasoning. This is dependent upon the associations described above. In the 
other three models we assume that already constructed CRKS’s (or CRKH’s) exist. In the 
association model only individual observations, each represented by a (hyper) cluster, exist. 
The question then is how to order at least some of those (hyper) clusters, using some or all of 
the associations in our association graph, into a body of knowledge in the form of a CRKS on 
the basis of (part of) the data displayed in that graph. How do we effectively combine 
clusters? The process of joining (hyper) clusters together to produce a CRKS (or CRKH) is 
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termed constructive reasoning. Some mainly heuristic guidelines for this task are set out in 
Chapter 9 of [GVS99]. 
 
In the following section of this report we set out a brief example of models of reasoning. We 
do this in terms of CRKH’s rather than CRKS’s because of the flexibility of interpretation 
into CRKS format. We must however bear in mind that we have always to start all but the 
association model with specific statements of relationship, thus giving rise to CRKS’s from 
which we abstract to CRKH’s for a range of specific interpretations, one of which is that 
CRKS of origin.  
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 25. An Illustration of Models of Reasoning 
 
 
In this simple example, in terms of CRKH models, we start by assuming that the properties of 
addition of integers are discovered by induction from a number of (good and bad) examples, 
such as the notion of a ”number line” for instance, by the use of (partial) abstraction 
isomorphisms. Notice that we could opt for the ”common ground” of the ranges of these 
abstraction isomorphisms, or for the ”best” one. 
 
We take ”integer” to be the only primary concept-name, and we assume that the properties of 
the relationship of equality are known. Equality is represented by the symbol =, and addition 
of integers by +. Zero is represented by the symbol 0. All concept-names about which we 
wish to say something are marked in the statements of relationship given. In order to 
demonstrate analogical reasoning, in a very small way, we distinguish between the word 
”zero” and the symbol ”0” in the sense that we treat ”0” as a concept-name in the statements 
of relationship, but ”zero” as a non-concept-name word. This trick enables us to find a non-
trivial isomorphism between two sub-CRKH’s of the CRKH that we construct from our 
statements of relationship.  
 
The statements that arise from our ”observed” clusters, and the diagram of each cluster, and, 
implicitly, the hypercluster abstracted from it, follow. We would show directions, imposed by 
derivation paths, in the CRKH’s, these being those shown in the clusters. We attempt to build 
a cluster for each tuple defined by using only previously met tuples/statements with the 
defining tuple of that cluster. For each cluster we define a complexity measure as follows. 
 
Definition 25.1: Given any cluster K, the cluster complexity of K is given by  
CCOM(K) =  Σ  ni where the sum is taken over all the ni-tuples of K. Given a hypercluster     
M [K], the hypercluster complexity HCOM(M [K]) = ΣEi where the sum is taken over all 
the edges Ei of M [K]. ♦ 
 
It is clear that HCOM([K]) ≤ CCOM(K).  
  
For each of the statements below, we give a cluster K which can easily be converted to the 
abstracted hypercluster M [K], together with the value of  CCOM(K) and the value of 
HCOM(M [K]). These two values give us one kind of estimate of the relative difficulty of 
learning the cluster, and hypercluster, respectively. 
 
1.  Addition of integers  is represented by the symbol Q.  
      A cluster for 1 is 
                                           
                                          int                   1; ∅                        Q 

 
     CCOM = 2 and HCOM = 2. 
 
2.  For every integer x there is a unique negation that is also an integer and is represented by     
     the symbol ¬  x. 
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     A cluster for 2 is 
                                       int                   2; <int>                   ¬  

 
     CCOM = 3 and HCOM = 2. 
 
3.  ¬  (¬  x), the negative of ¬ x, for every integer x, is �  x.  
     A cluster for 3 is 
                                    ¬                    3; <¬ , ¬ , int>            �  

 
 
                                2; <int> 
 
                             int 
 
      CCOM = 3 + 5 = 8 and HCOM = 2 + 3 = 5. 
 
4.  There is a special unique integer, for Q, called zero and represented by the symbol 0. 
     A cluster for 4 is 
                                    int                   4; <+>                  0 

 
 
                                1; ∅ 

 
                                  Q 

        CCOM = 2 + 3 = 5 and HCOM = 2 + 3 = 5 
 
5. �  holds between ¬  0 and 0. 
 A cluster for 5 is    
                                    �                    5; <¬ , 0>                  0 

 
 
                                3; <¬ , ¬ , int>                                       4; < + > 

 
                                   
                              ¬                             Q       1; ∅          int 

  
       CCOM = 5 + 4 + 3 + 2 = 14 and HCOM = 3 + 3 + 3 + 2 = 11 
 
6.  The only integer that is its own negative is 0, i.e. ¬  0 �   0.  
 A cluster for 6 is     
 
                                    int      6; <0, ¬ , 0, 0, �  > | 4; <+>     0 

 
 
            2; <int>           1; ∅                                                    5; < ¬ , 0 > 

 
                                   
                              ¬                               Q                      �   
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       CCOM = 3 + 6 + 3 + 4 + 2 = 18 and HCOM = 2 + 4 + 3 + 3 + 2 = 14   
       (note:  4; <+> is necessary so as to reach 0 for use in 6). 
 
7.  �   holds, for any integers  x and y, between x Q y and y Q x.  
 A cluster for 7 is 
 
                                    �                    7; <int, +>                  Q 

 
 
                                                                                 1; ∅ 

 
                                    
                                                                             int 

 
      CCOM = 4 + 2 = 6 and HCOM = 3 + 2 = 5. 

 
8.  0 Q x � x for every integer x with 0 under the operation Q. 
 A cluster for 8 is 
 
                                   0          8; <+, � , int, 0>                    Q  

 
 
                                    7; <int, +>                                     1; ∅ 

 
                                    
                                    �                                                        int 

 
    CCOM = 6 + 4 + 2 = 12 and HCOM = 4 + 3 + 2 = 9. 
 
9.  x �  x Q 0 for every integer x with 0 under the operation Q. 
 A cluster for 9 is 
 
                                    �                    9; <+, 0, int, 0>           Q 

 
 
                                                                                                1; ∅ 

                                                                
                                   
                                                            0       4; <+ >       int 

 
      CCOM = 6 + 2 + 3 = 11 and HCOM = 4 + 2 + 3 = 9. 
 
10. From statements 8 and 9 we have that �  holds, for every integer x, between x Q 0 and         
      0 Q x, which conforms with statement 7. 
 A cluster for 10 is 
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                                    �                    10; <int, +, 0, 0>         Q 

 
 
                                                                                                1; ∅ 

                                                                
                                   
                                                            0       4; <+>       int 
 
     CCOM = 6 + 2 + 3 = 11 and HCOM = 4 + 2 + 3 = 9. 
 
11. ¬  x Q x � zero for every integer x with ¬  x under the operation Q. 
 A cluster for 11 is  
 
                                   ¬                    11; < +, � , int, ¬>         Q 

 
 
                                         3; <¬ , ¬ , int>                                    1; ∅ 

                                                                
                                   
                             �                                                       int 

 
      CCOM = 5 + 6 + 2 = 13 and HCOM 3 + 5 + 2 = 10 
 
12. Zero � x Q (¬  x) for every integer x with ¬  x under the operation Q. 
 A cluster for 12 is 
                                    �              12; <+, ¬  , int, ¬  >         Q 

 
 
                                                                                                1; ∅ 

                                                                
                                   
                                                                ¬        2; <int>     int 

 
    CCOM = 6 + 2 + 3 = 11 and HCOM = 4 + 2 + 2 = 8. 
 
13. From statements 11 and 12 we have that � holds, for every integer x, between x Q (¬  x)  
 and ¬  x Q x. This conforms with statement 7. 
 A cluster for 13 is 
 
                                    �              13; <int, +, -, ¬ >           Q 

 
 
                                                                                                1; ∅ 

                                                                
                                   
                                                            ¬        2; <int>     int 
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    CCOM = 6 + 2 + 3 = 11 and HCOM = 4 + 2 + 2 = 8. 
 
14. For any integers  x, y and z, � holds between x Q (y Q z) and (x Q y) Q z.  
 A cluster for 14 is 
 
                                    int      14; <� , +, +, +>  |  1; ∅         Q 

 
 
                                                                                                7; < int, +> 

                                                                
                                   
                                                                                            �  

     
CCOM = 6 + 2 + 4 = 12 and HCOM = 3 + 2 + 3 = 8. 
 
Notice that we must reach + by means of 1; ∅  before we can use 14. It is easy to verify that 
each of our clusters is indeed a minimal CRKS for the tuple in question. 
 
Even this simple example is rich in associations, so the associations graph will be only 
partially presented: In figure 25.1 we show only those cluster associations that involve ”0”. 
Each vertex of the graph is labelled with the tuple number of its cluster set, and its cluster set .  
 
Next, we construct a CRKS / CRKH from the given clusters. Because we have simplified the 
construction by using only previously defined tuples in the cluster for a particular tuple, we 
can simply start with cluster 1 and then join it with cluster 2, 3, …, 14, in that order, with no 
problem. The process will not always be so straightforward! Notice that only selected 
associations are used in constructing the CRKS/CRKH. Some choices of association are as 
follows. Tuple 4 is associated, via ”0”, only with tuples 5, 6 and 8. Tuple 10 is associated with 
tuple 5 via ”=”, and tuples 9 and 10 are associated with tuple 8 via ”+”, where our choices are 
the concept-names at which we make these tuples adjacent and are among a host of such 
choices which can be made. The CRKS is shown in figure 25.2. 
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                                                                      {+, int, 0} 

 
                                                                    
                                                                           
                                                                                                                                                          {�, +, int, 0}    
                                               {+, int, 0}     {+, int, 0}                        {�, 0, int, +}     
                   
  
 
         {+, int, 0}          {+, int, 0}   {¬ , int, +, 0, +} 
 
 
 
                                                                                   {int, +, 0, �} 

 
                        {int, +, 0, �} 
                                       {�, +, int, 0}                                                            {�, +, int, 0} 
 
                                                                             {int, +, 0, �} 
       
                                               {�, +, int, 0}    
 
 
                                                                      {�, +, int, 0} 
 
 

Figure 25.1: Cluster associations involving "0" 

 
 
 
 
                                        4; <+>                      1; ∅                                                2; <int>                       
                                                                                                                     - 
 
                                                                                               
                 6; < 0, ¬ , 0, �>                 14; < �, +, +, +>      11; < +,�, int, ¬>                 3; <¬ , ¬  int > 

                                                                                         
                          0                                                                                            � 
                                                           5; < ¬ , 0> 
 
                       8; < +, �, int, 0 >                                                                                                      
                                                                                                                           7; < int, +> 
                                                                                                                           9; < +, 0, int, 0> 
                                                                                                                          10; <int, +, 0, 0> 
                                                                                                                    12; <+,¬ , int,¬> 
                                                                                                                          13; <int, +,¬ ,¬> 
                                                                                           + 
                                                                        

Figure 25.2: CRKS/CRKH 

         4 
{ +, int, 0} 

         5 
{ ¬ , =, 0, int, +} 

         8 
{ 0,+,�, int} 

         9 
{ �,+, int, 0} 

         10 
{�,+, int, 0} 

         6 
{¬-, int, +, 0, �} 

integer 
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To illustrate our model of intuitive reasoning in this CRKS - figure 25.1 - we run a fast access 
cascade from B1

0 = {int}, the only primary. At each step we show only what is newly found in 
that step. 
 
Step 1:                                                               int 

                                                                                                                                                               
                                                                                                                                   2; <int > 
                                         6; <0, ¬ , 0, � >                             1; ∅                                        
                                                  4; <+>                                  14; <�, +, +, +>                     ¬ 
 
 
 
 
                           0                                                          +                                                � 

 

 
 
Step 2:  
                                      0                                              int                                                         ¬  

 
 
                     8; <+, �, int, 0>                                           11; <+, � int, ¬>                     3; <¬ ,¬ , int> 
                                                                                        + 

                                                                                          
 
 
                                                         5; <¬ , 0>                                       3; <¬ , ¬  int> 

 
7; <int, +>               | 12; <+, ¬ , int, ¬> 
9; <+, 0, int, 0>       | 13; <int, +, ¬,¬>                            � 
10; <int, +, 0, 0>                                                  

 
 
After two steps the whole CRKS has been accessed. Suppose that after step 1 we decide to 
explore further only the concept-name ”�”. We start a new cascade with B2

0 = {�}.          T2
0 

= ∅, and for T2
1 we have a choice of tuples that start with ”�”, i.e. tuples 5, 7, 9, 10, 12 and 

13. If we choose only 5, then this step 2 yields 
 
                                           0                        5; <¬ , 0>                    � 

 
 
 
                                                                     ¬  
 
a formal schema. For the next cascade, let’s choose B3

0 = {0, �}, and T3
1 = {5} again. We get, 

in this step 3, the newly found data 
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Step 3:  
                                            0                                                                   � 

 
 
                                   8; <+, � int, 0>         3; <¬ ,¬ , int>       
                                                                                 - 
                                                                                                                        7; <int, +>              | 12; <+, ¬ , int, ¬> 
                                                                                                                         9; <+, 0, int, 0>     | 13; <int, +,¬ , ¬>                                 
                                                                  11; <+, �, int,¬>                         10; <int, +, 0, 0>                                                  
                                                      
                                                                                                                     + 
                               
 
Joining these formal schemas, leaving out the previous step 2, we see that this ”controlled” 
chain of fast access cascades has generated the given CRKS. The power of this view of 
intuitive reasoning by means of a sequence of ”directed” fast access cascades will only 
become apparent when the given CRKS is very large. 
 
To illustrate our model of deductive reasoning in this CRKS we run a limited access cascade 
from its primary, i.e. B1

0 = {int}, in steps, showing what is newly derived in each step. 
    
 
Step 1:                  int                                 2; <int>             ¬  
 
 
 
                                     1; ∅ 

 
 
                                    + 

 
 
Step 2:                       int                                                      ¬  

 
                    4; <+>                                     3; <¬ , ¬ , int> 

 
 
                                      0                                                         � 
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Step 3:  
 
                                                                                   int                                                   ¬ 
 
                                 6; <0,¬ , 0, �>                         14; <�, +, +, +>            11; <+, �, int,¬> 

 
     

                                                                                      
                             0             8; <+, �, int, 0>            + 

 
                               5; <¬ , 0>                        
                                                                  7; <int, +>               | 12; <+,¬ , int, ¬> 
                                                                  9; <+, 0, int, 0>       | 13; <int, +, ¬ , ¬>       | 10; <int, +, 0, 0> 
                                          � 

 
 
The join of these three formal schemas is precisely our given CRKS. Suppose that after step 2 
we decide to continue with a new limited access cascade from B2

0 = {int, +, �}. In the first 
step of this cascade we get 
 
 
                                      int                                                                     � 
                                           14; <� +, +, +> 
 
       4; <+>                   2; <int>                  1; ∅                        7; <int, +> 

 
 
            0                                               ¬                      + 

 
 
The next step, 2’, of this second cascade yields 
 
                                      ¬                                                                   int 

 
 
                3; <¬ , ¬ , int>            11; <+, �, int, ¬>                                     6; <0, ¬ , 0, �> 
 
 
                                �                                5; <¬ , 0>                               0 

 
 
 
 9; <+, 0, int, 0>  | 10; <int, +, 0, 0>                                     8; <+, � int, 0> 
12; <+, ¬, int,¬ >  |  13; <int, +,¬,¬->  
 
                                                                         + 

 
 
Joining < B1

1, T1
1>, < B2

1, T2
1> and step 2’ above yields the entire CRKH. 
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Finally, we point out that it is easy to show that clusters 8 and 11 can be adjusted to be 
isomorphic. We change to an alternative cluster for 11, for the tuple <¬ , +, �, int, ¬, +>, as 
shown below. 
 
                                 ¬                  11; <+,� int, ¬>             + 

 
 
                                              7; <int, +>                                  1; ∅ 

 
 
                                �                                                          int 

 
 
We have deleted 3 and added 7. This does not affect the construction of the CRKS from the 
clusters. This alternative cluster and that for statement 8 are isomorphic, where ”-” and ”0” 
are matched, so, for example we can use this structural analogy between the two clusters to 
teach/learn cluster 11 by referring to cluster 8, previously learned, as a model of cluster 11. 
Further, it is easy to extend this isomorphism by joining cluster 9, and then cluster 10, to 
cluster 8, deleting tuple 4, and isomorphically mapping this domain onto the join of cluster 12 
and 13, without tuple 2, with our revised cluster for tuple 11. 
 
Joining clusters 8, 9 and 10 yields the CRKS 
 
                              �        7;<int, +> |   9; <+, 0, int, 0>           + 

 
                                           10; <int, +, 0, 0> 
 
                              8; <+, � int, 0>>                                            1;∅ 

 
                                            
                           0                         4; <+>                                 int 

 
 
 
Joining clusters 12 and 13 to our alternative cluster for 11 yields the CRKS 
 
                            �       7; <int, +> |    12; <+, ¬, int, ¬>         + 
 
                                             13; <int, +,¬, ¬> 

 
                           11; <+, �, int, ¬>                                             1;∅ 

 
                                            
                            ¬                         2; <int>                                 int 
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Ignoring 2 and 4, it is easy to find the isomorphism between these two CRKS’s – we can go 
via the equivalent CRKH’s. Expansion of the domain of the mapping one tuple at a time, 
starting with the isomorphism between clusters 8 and 11 (revised), will break down when we 
try to map 4; <+>. In most cases isomorphic (sub-) CRKS’s/CRKH’s will share no vertices. 
 
We refer the reader to Chapters 9 and 10 of [GVS99N] for comments on structural analogy 
and the uses of CRKS’s/CRKH’s in education. 
 
Closing comment: It is clear that the digraphs constitute a sub-class of the class of relation 
nets, and it appears that relation nets have, potentially, a wider domain of practical 
applications when used as models in such applications.  It is also apparent that the graphs 
form a sub-class of the class of hypernets, as do the hypergraphs.  Thus, in general, hypernets 
should have a wider domain of practical applications, when used as models in such 
applications, than either of these two sub-classes.  
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concept-relationship knowledge structure  4 
condition set   4 
connected   28 
connectedness preserving set of edges   37 
constructive reasoning   91 
context hypernet   22 
context hyperschema   56 
course unit   4 
covering   73 
CRKH   57 
CRKS   4 
cut-vertex   38 
cyclomatic number   44 
deductive complexity   75 
deductive reasoning   90 
deductive distance   67, 75 
degree   10, 67 
derivable (from)   57 
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