
Relation nets and hypernets 1

Relation Nets and Hypernets

by

Hendrik O. van Rooyen, University of South Africa
Franz Stetter, Universität Mannheim

Aletta E. Geldenhuys, Boston Business College

June, 2001

Relation nets and hypernets 2

Table of contents

Prologue 3

1. Introduction 4
2. Relation nets, hypergraphs, and hypernets 8
3. First intermission 19
4. Introduction to a theory of general hypernets 20
5. Menger's theorem 23

6. Connectedness 28
7. Vertex bases 30
8. Introduction to vulnerability 32
9. Edge bases 35
10. Deletion of vertices 38

11. Hypertrees 42
12. Connectivity and cut-sets 46
13. Blocks 51
14. Second intermission 54
15. Concept-name relationship hypernets 55

16. Derivability in a formal hyperschema 57
17. CRKH theorems 61
18. Gauges of complexity 67
19. Structural analysis of a CRKH 70
20. Third intermission 78

21. An extended view of modelling study material 80
22. Accommodation and analogy 86
23. Isomorphism and structural analogy 88
24. Models of reasoning 90
25. An illustration of models of reasoning 92

Literature 103
Index 104

Acknowledgement: The authors wish to thank J D Brear of Progen in Cape Town, South
Africa for moral and financial support during the course of this work. Thanks also to Barbara
Stetter and Petro van Rooyen for their patience and courage while accomplishing the often
trying task of typing and correcting the manuscript. The authors take full responsibility for
any remaining errors.

Relation nets and hypernets 3

Prologue

In many respects this report is a companion work of [GVS99]. In some senses it runs parallel
to [GVS99], while in others it is a sequel to that book. Readers not familiar with [GVS99] will
find themselves refering back to it in several instances to follow some of the subtleties of this
work, as these are often bound with aspects of [GVS99], particularly in the case of concept-
relationship knowledge stuctures, abbreviated CRKS in what follows; they are not explicitly
repeated here.

Some small errors in [GVS99] are corrected in this report and certain additions to the theory
of CRKS's are dealt with in a way that covers both CRKS's and their hypernet equivalent. The
main application of CRKS's - namely modelling study material - is not explicitly transcribed
to this paper, but that whole notion is abstracted and made independent of any specific
teaching/learning metalanguage through the implications of this abstraction.

Two key factors emerge from this paper on hypernets. First, unlike the case for CRKS's in
which little of the general theory of relation nets - see Part III of [GVS99] - applies to
CRKS's, the broad theory of hypernets, as far as it is covered in this report, is often applicable
to the hypernet equivalent of a CRKS. Second, we will show a link between relation net
isomorphism and hypernet isomorphism which makes it considerably easier to deal with
CRKS isomorphism and, thus, with structural analogy as used in a modelling based approach
to teaching/learning/analogical reasoning [GVS99].

Finally, we must mention that it appears that the domain of potential practical applications of
hypernets must inevitably be wider than that for relation nets. In this connection, it should be
noted, however, that this report is written with applications in the field of education in mind,
specifically in the realm of the modelling of study material, the planned representation of that
material, problem representation and solution, analogical reasoning, and to assist in
curriculum planning and student registration, particularly in modelling small course unit
systems with relatively complex registration conditions. Such applications in education will
not be made explicit here, but are implied by the work in Parts I and II of [GVS99] and in this
extension of it.

Relation nets and hypernets 4

1. Introduction

In [GVS99] we developed the theory of relation nets. The main application was to the
representation of study material in terms of a model called a concept-relationship knowledge
structure, abbreviated CRKS, that is a special case of a relation net. Part I of [GVS99]
described the theory and an application of CRKS's in some detail, Part II was dedicated to a
special example of a CRKS, and Part III laid out the mathematical fundamentals of a theory of
relation nets proper.

Early work on the system that was to become known as a relation net introduced a relation net
representation of a specific curriculum that consisted of a number of interrelated "small
course units", known in that case as modules (see [VR76] and [Wei83] for example). In this
paper, we will be bearing in mind two similar systems upon which that part of hypernet theory
introduced is founded, in the sense that we will introduce no theory that does not have
potential application to this kind of system. We start by introducing these application systems
in abstract form.

First we present an description of a curriculum system in abstract form. Imagine, for example,
a "small course unit" curriculum that leads to degrees and diplomas. By a course unit we
mean any complete and interrelated section of study material. By a prerequisite unit for a
given course unit U we mean a course unit C, or a condition C, that must be completed or
fulfilled before course unit U can be entered. By a parallel unit for a course unit U we will
mean a course unit P that must be completed before, or simultaneously with, course unit U as
a requirement for obtaining credit for U. We may extend this by adding another form of
parallel for U, namely a course unit that may be entered at the same time as entering U, but is
not a necessary precondition for obtaining credit for completion of U.

We visualize such a curriculum system in the form of a labelled graph as follows: Plot a
vertex for each course unit in the curriculum, and label each vertex with the unique (code)
name of the relevant course unit. Each course unit U has at least one non-empty list of
prerequisites, and at least one list of parallels which may be empty. These prerequisite and
parallel units constitute a condition set for U, and U may have more than one condition set,
depending on the particular degree or diploma in which U is registered. In each condition set
we mark all the prerequisite units, for example with an underbar, and also mark all of the
parallel units of the first kind, for example with an overbar. We number each occurence of a
condition set uniquely, and notice that distinct condition sets need not be disjoint. From each
prerequisite in each condition set for U we draw an arc to U, and we label that arc with that
condition set and its number. We do this for all the condition sets for U, and repeat this for all
the course units in the curriculum. Such a labelled graph can be read hierarchically from
prerequisites to dependants, or vice versa, i.e. from bottom-to-top or from top-to-bottom. As
we will see, such a graph is an example of a hypernet.

Such a curriculum system for a host of "small" course units has pro's and con's. It's major
advantages are to allow more flexibility of topic choice and degree/diploma structure, easier

Relation nets and hypernets 5

changes of "direction" of study, and an ability to support multi-disciplinary studies. The major
disadvantage is the complexity of registration and administration.

We will see that, in combination with [GVS99], hypernet representation will enable
registration, administration, planning, alteration, and analysis of the whole structure or parts
thereof by means of formal theory and strong but relatively simple computer support. In the
relation net approach to curriculum systems of this nature, an order was forced on the
members of the condition sets, which was a handicap in the representation. We will see that
the hypernet model is more "natural" in this case.

A similar situation arises in [GVS99] when we introduce the notion of an action diagram in
the course of a discussion of problem formulation and solution by top-down algorithm (see
section 8.5 of [GVS99]). Here we leave out the directed arrows in the action diagram and the
arbitrary ordering of nodes on the arrow labels in the resulting relation net, producing instead
a hypernet associated with the action diagram. Consider, for instance, the diagram on p.139 of
[GVS99]; using arcs in place of arrows, we get the following version of that action diagram:

Figure 1.1: An example of a partial action diagram

Find

4

 1 2 3

Relation nets and hypernets 6

Part of the resulting hypernet is:

 1; [{Find..., 4 }]

 2; [{1,2,3,4,}] 3; [{1,2,3,4}] 4; [{1,2,3,4}]

Figure 1.2: A partial hypernet for figure 1.1

In this case there is one "condition set" in each label, and the set of vertices {1,2,3,4}
generates three edges, numbered 2;, 3;, and 4;.

There is a connection between our curriculum example and this one. Reading top-to-bottom
we see that "Find ..." is a prerequisite of 4, with no parallels, and 4 is a prerequisite of 1, for
example, with parallels 2 and 3. Reading bottom-to-top, we must be a bit careful. In this case,
1 is a prerequisite of 4 with 2 and 3 as other prerequisites of 4, and with no parallels , and 4 is
a prerequisite of "Find ..." with no other prerequisites and no parallels. It is the intended
interpretation which, in each individual case, will determine whether we read such hypernets
from top-to-bottom or from bottom-to-top. For the hypernets that arise from action diagrams,
top-to-bottom is interpreted as the specification of the top-down algorithm for the solution of
the problem(s) and bottom-to-top as the actual solution procedure for the relevant problem(s).

On page 141 of [GVS99] we meet a more general action diagram situation. The hypernet that
arises from the section of an action diagram shown there is:

 E11 E12 E13 E14 E41 E21 E22 E23

 E31

Figure 1.3: A hypernet from the partial action diagram on page 141 of [GVS99]

Find ...

4

2 1 3

1 2

3 9 4 5 6 7 8

Relation nets and hypernets 7

The first index characterises the set of vertices; the second the edge with that set. Here
E1={1,3,4,5,6}, E2={2,7,8,9}, E3={1,7}, E4={5,2}.
Reading top-to-bottom, we have for example:
• In E11, 1 is a prerequisite of 3 with 4, 5 and 6 as parallels.
• In E22, 2 is a prerequisite of 8 with 7 and 9 as parallels.
• In E31, 1 is a prerequisite of 7 with no parallels.
Reading bottom-to-top, these labels mean:
• In E11, 3 is a prerequisite of 1, as are 4, 5 and 6.
• In E22, 8 is a prerequisite of 2, as are 7 and 9.
• In E31, 7 is a prerequisite of 1 with no parallels, and in E21, 7 is a prerequisite of 2 as are 8

and 9.

Such hypernets can, as we will see, easily and formally be compared for common, i.e.
structurally analogous, substructures using hypernet isomorphism. This is a potentially
extremely useful technique in the development of general problem formulation and solution
skills. We note in passing that the same kind of hypernet can be used to display and analyse
the relationships between the subroutines that combine to form a program. We will also see
that there are some measures of the complexity of certain hypernets that can play a very
significant role in the analysis of such hypernets.

Relation nets and hypernets 8

2. Relation nets, hypergraphs, and hypernets

Relation nets have been introduced and fairly extensively covered in [GVS99]. The notation
used in Part III thereof is detailed and therefore quite complex, but in Part I (the theory of
CRKS's) a tuple table notation is used that is much more "user friendly". We begin this
section by changing the notation for general relation nets also to the tuple table approach, and
then go on to some basic definitions of a theory of hypernets, defining the notion of hypernet
in the process.

Definition 2.1: Consider a finite set

A = {A1, A2, ... , An }
and a family of relations

R = {Ri | i ∈ I, I a finite index set}
over A where all Ri have an arity of at least 2, i.e. card(Ri) ≥ 2, written | Ri | ≥ 2. We denote
such a system by <A, R, I>. By a relation net representation of <A, R, I> we mean a pair
<A, T> where T is the set of all tuples from all of the Ri .♦

Note that some of the Ri may be identical. Each tuple in T is given a unique code name,
generally of the form "i; x" where i indicates the Ri of origin of that tuple and x is usually the
number of the tuple in T. We will use only the unique tuple number x if we do not need to
take account of the particular Ri from which the relevant tuple arises. In that case we will
regard T as a single finite family of tuples T = { Tx }.

Definition 2.2: By a diagram of a relation net <A,T> we mean a representation drawn as
follows. Plot precisely one vertex for each member of A and label each such vertex with the
“name” of the appropriate member of A. Next, for each Tk ∈ T with Tk = <ao, ..., aj>, where j
is the arity of the relation Ri from which Tk arises, we draw an arrow from the ao vertex to the
aj vertex. Now label each such arrow <a,b> with a label λ(<a,b>) where λ(<a,b>) is defined
by λ(<a,b>) = {Tk ∈ T | Tk = <a, ..., b>}. There is no arrow from a ∈ A to b ∈ A iff λ(<a,b>)
= ∅.♦

The notion of a hypernet was inspired by that of a hypergraph [Ber73] and a desire to ignore
at least part of the ordering implied by the arrows and paths of a relation net, without moving
too far from either hypergraphs or relation nets.

Definition 2.3: By a hypernet <A, E> we mean a structure in which A= {A1, A2, ... , An } is a
finite set and E = { Ei | i ∈ I} is a family of non-empty subsets of A. |A |is called the order of
<A, E> and I the index set of <A, E>. Each Ai ∈ A is called a vertex of <A, E>, and each
Ei ∈ E is called an edge of <A, E>. Two edges Ei and Ej of <A, E> are distinct iff i ≠ j, even
though Ei and Ej may be the same set. ♦

Definition 2.4: Two vertices Ai , Aj ∈ A of a hypernet <A, E> are said to be potentially vertex
adjacent by edge Ei iff {Ai , Aj }is a subset of Ei. Two edges Ei, Ej ∈ E are said to be
potentially edge adjacent iff Ei ∩ Ej ≠ ∅, and for every Ak ∈ A with Ak ∈ Ei ∩ Ej we say
that Ei is potentially edge adjacent with Ej by Ak. ♦

Relation nets and hypernets 9

Now consider three distinct edges Ei, Ej, Ek ∈ E with Ei ∩Ej ≠ ∅ and Ek ∩Ej ≠ ∅. Then we
say that each Ar ∈ Ei ∩Ej is potentially vertex adjacent with each As ∈ Ek ∩Ej by Ej. We write
(Ar, Ej, As) for every pair {Ar, As} of vertices with Ar ∈ Ei ∩Ej and As ∈ Ek ∩Ej if Ar and As
are vertex adjacent by Ej in <A, E>. If Ei = { Ar } for some Ar ∈ A and some Ei ∈ E then we
call Ei a singleton edge. A singleton edge at Ar ∈ A is also called a loop edge at Ar.

Note well that a hypernet need not have in it all the potential vertex adjacencies, nor need it
have all the potential edge adjacencies; in each case it may have all, or some, or none of the
potential adjacencies.

Definition 2.5: Given a hypernet <A, E>, [if the edges Ei ∈ E are all non-empty distinct
subsets of A and] if ∪i Ei = A, and if two edges Ek, El are adjacent iff Ek ∩ El ≠ ∅, then
<A, E> is a [simple] hypergraph. ♦

We will ignore the standard diagrammatic representation of hypergraphs [Ber73] and draw
hypergraph diagrams as we do hypernet diagrams. The class of hypergraphs can be regarded
as a subclass of the class of hypernets.

Definition 2.6: Given any hypernet <A, E>, we produce a diagram of <A, E> as follows. Plot
precisely one vertex for each member of A and label each vertex with the relevant "name"
from A. Next, for every vertex adjacency of Ai ∈ A and Aj ∈ A in <A, E>, draw an arc
between Ai and Aj, and label that arc with all the members of λ({Ai, Aj}) =
{ Ek ∈ E | (Ai, Ek, Aj), where λ: A x A → ℘(E) is called the labelling function of <A, E>
and λ({Ai, Aj}) is defined for every pair of members {Ai, Aj}, and λ({Ai, Aj}) = ∅ iff there is
no arc between Ai and Aj in <A, E>, i.e. if Ai and Aj are not adjacent vertices in <A, E>.
Singleton edges are not usually represented by any arc. ♦

The definitions given above are illustrated in figure 2.1:

 E3, E8 E2

 E1 E5 E6

 E4 E7

Figure 2.1: An example of a hypernet <A, E>

where A = { 1, 2, 3, 4 5, 6}, E = { E1, E2, E3, E4, E5, E6, E7, E8 } with E1 = { 1, 2, 3 },
E2 = { 2}, E3 = { 1, 2 }, E4 = { 3, 4 }, E5 = { 2, 3, 4 }, E6 = { 5 }, E7 = { 4, 5, 6 }and

1 2

4 3 5

6

Relation nets and hypernets 10

E8 = { 1, 2, 3 }. Notice how we have chosen to deal with E7, between 4 and 5, and with E8,
between 1 and 2, in this particular hypernet.
• Vertex adjacency: vertices 1 and 2 by edge E3 and by edge E8 for example.
• Edge adjacency: edge E3 = { 1, 2 }and edge E5 = { 2, 3, 4} by vertex 2 for example.
• Singleton (loop) edge: edge E2 = { 2} and edge E6 = { 5 }for example.
Notice that a singleton edge {Ak }, Ak ∈ A, can only have label {Ak}. Singleton edges can be
thought of as representing predicates. Thus, for example, {Ak}could represent " Ak is red".

Definition 2.7: By the degree d (Ai) of a vertex Ai ∈ A in a hypernet <A, E> we mean the
sum of all the | λ({Ai, Aj}) | over all Aj ∈ A for which λ({Ai, Aj}) ≠ ∅. (Notice that we may
have Ai = Aj , but singleton edges are not usually included.) ♦

Definition 2.8: By an isolate of a hypernet <A, E> we mean an Ai ∈ A for which Ai is not
incident with any Aj ∈ A but Ai does belong to at least one vertex adjacency (Ar, Ej, As) in
<A, E> with Ar, As ∈ A, Ej ∈ E, and Ai ∈ (Ej -{ Ar, As }). By a complete isolate of <A, E>
we mean an Ai ∈ A which belongs to no edge in <A, E>.♦

Definition 2.9: By a walk in a hypernet <A, E> we mean an alternating sequence of vertices and edges,
 A1, E1, A2, E2, A3, ... , Aq, Eq, Aq+1, written A1  Aq+1,
of <A, E>, where for each k = 1, ..., q, Ak and Ak+1 are vertex adjacent by Ek in <A, E>. The length of a walk is
the number of edge entries in the sequence, in this case q. If all but possibly A1 and Aq+1 are distinct vertices and
all the Ek, k = 1, ..., q, are distinct edges, then
A1  Aq+1 is called a path. If A1 = Aq+1 for a path A1  Aq+1, and the length of that path is any number but 2,
then we call A1  Aq+1 a circuit. ♦

Closed paths of length 2 may exist, but we do not permit any traversal of them. Note that a
closed path has length 2 iff it uses two edges from the same label.

We go back to our example in figure 2.1 and illustrate the definitions above:
• degree: d(1) = 3 and d(2) = 4 for example.
• isolate: vertex 6 is an isolate, but, by virtue of E7 = { 4, 5, 6 }, 6 is not a complete isolate.

Notice that a vertex with only a singleton edge incident with it is taken to be an isolate,
even though the degree of such a vertex is 1.

• walk: 1, E3, 2, E2, 2, E5, 4, E7, 5, E7, 4 is an example for a walk of length 5.
• path: 1, E8, 2, E5,, 4.
• circuit: 1, E3, 2, E5, 4, E4, 3, E1, 1.

Notice that every edge Ei ∈ E labels one and only one vertex adjacency in <A, E>. The same
set may label several vertex adjacencies, but each occurrence of that set is a distinct member
of the family E. Further, any given vertex adjacency may be labelled with a number of distinct
edges. Next, the reason for the introduction of singleton edges, Ei = {Ar} for example, is to
cover cases in which there is no path “through” Ar but Ar is vertex adjacent to some As by Ej
for instance, so that Ei ∩Ej = {Ar } and, as a result, we can legitimately talk of a path Ar, Ej,
As incident with Ar. Finally, the reason for not regarding a closed path of length 2 as a circuit
is that we should ignore this situation, which arises every time | λ({Ar. As }) | ≥ 2.

Relation nets and hypernets 11

The kind of structure met in the introduction is a hypernet. We should note that the final
diagram in that section is that of a hypernet with circuits, but that reading such a hypernet
from top-to-bottom imposes a “downward” direction an all the arcs and that with this imposed
direction the circuits disappear in the sense that they become digraph semi-circuits. A similar
situation arises if we read that hypernet from bottom-to-top, and we will see that this potential
to rid this kind of hypernet of circuits by means of reading imposed direction can be a very
significant technique in the interpretation of such structures.

To further illustrate some of the definitions that we have met, we consider the following
example adapted from that given on page 110 of [Wei 83]. It deals with part of an actual
module system that once existed in the Faculty of Science at the University of South Africa.
The code of each module consists of a subject code of three letters followed by a level code of
three digits of which the first indicates the level of study towards a degree in the faculty and
the next two a module code. The modules concerned are as follows:
• Computer science: COS111, COS121, COS211, COS212, COS221, COS201, COS311,

COS321, COS322, COS331, COS351, COS301.
• Information Systems: INF101, INF201, INF303.
• Mathematics: MAT101, MAT102.

What we have here is the sub-hypernet retrieved from the hypernet for the whole module
system by selecting every condition set that involves COS211. As we will see, this sub-
hypernet is the “context hypernet” of COS211 in the whole module system: It represents all
the intermodule relational information about COS211 in that whole system. The set of module
codes generates, one for one, the set of vertices of our hypernet, and the condition sets
generate its edges. The parallels in each condition set are marked with an underline.

The condition sets are as follows.
1. {COS111, COS121, INF101, COS211}
2. {COS111, COS121, INF101, COS211, COS221, COS212}
3. {COS111, COS121, INF101, COS211, COS221}
4. {COS111, COS121, INF101, COS211, COS221, COS201}
5. {COS211, COS221, COS311}
6. {COS211, COS221, COS311, COS321}
7. {COS211, COS212, COS221, COS322}
8. {COS211, COS221, MAT101, MAT102, COS331}
9. {COS211, COS221, COS311, COS351}
10. {COS201, COS211, COS221, COS311, COS321, COS301}
11. {INF201, COS211, INF303}

The condition sets are those stipulated, in the system, for obtaining credit for the final module
in each membership list. We can choose any prerequisite from a list as the other end vertex of
that list. Bearing in mind potential edge adjacencies it is of course possible, then, to plot each
condition as a number of edges, but to avoid unnecessary repetition of condition sets we use
each condition set only once, and as a heuristic it is advisable to “start” each edge at a module
of lower level than that of the module for which the condition is stipulated, thus making the
interpretation of the diagram simpler.

Relation nets and hypernets 12

A diagram for these modules and these condition sets, a hypernet diagram, is given in figure
2.2. Note that there are four isolates, but none of them is a complete isolate.

Reading from left to right (bottom-to-top) we can determine how credit may be obtained for
an end vertex of each edge and of each path. Reading from right to left (top-to-bottom) we get
the same information in a different form. It will become clear later, when we deal with
"cascades", that this difference of form is not trivial.

 5

 6
 7
 8

 1 9

 2

 3

 4

 10

 11

Figure 2.2: A diagram for part of a module system

COS111

COS211

COS212

COS221

COS201

INF201

COS121

INF101

MAT101

MAT102

CO311

COS321

COS322

COS331

COS351

COS301

INF303

Relation nets and hypernets 13

Next we look at the connection between hypernets and the relation nets introduced and
explored in [GVS99].

Definition 2.10: By a tuple-specific relation net interpretation, or simply an interpretation,
of a hypernet <A, E> we mean a one-to-one correspondence I: A → A that maps <A, E> to a
relation net <A, T> as follows. For every vertex adjacency (Ar, Ei, As) in <A, E> with
Ei = {A1, A2, ... , A

° ,, An(i)} ⊆ A, Ar ∈ Ei, As ∈ Ei, (Ar, Ei, As) is mapped to at least one
tuple Ti ∈ T with Ti = < B1, B2, ... , Bk ,, Bm(i) > and with either B1 = Ar and Bm(i) = As or
B1 = As and Bm(i) = Ar and for every Bk, k = 2, ...m(i) - 1, Bk = I (A

°
) for some one A

° ∈ Ei,
° = 1, 2, ..., n(i), and every member of Ei is used at least once as an entry in Ti so Ei is the
tuple set of Ti, | Ti | = m(i) ≥ | Ei | = n(i), and this holds for each vertex adjacency by each
Ej ∈ E and for each Tj ∈ T. We write Tj = I [Ej] and <A, T> = I [<A, E>], and | Ti | is equal to
the number of distinct vertex adjacencies in <A, E>.♦

Definition 2.11: Each hypernet <A, E> has a countably infinite set of distinct interpretations,
and this set is called a realization of <A, E>.♦

Next we describe the move from relation nets to hypernets.

Definition 2.12: Consider any given relation net <A, T>. By an edge-specific hypernet
abstraction, or simply an abstraction, of <A, T> we mean a one-to-one correspondence
M: A → A that maps <A, T> to a hypernet <A, E> and is defined as follows. For every tuple
Ti = < A1, A2, ... , A

° ,, An(i) > ∈ T in <A, T> the mapping M produces a set
Ei = {M(A1), ... , M(A

°
),, M(An(i))} ∈ E with | Ei | ≤ | Ti |, the tuple set of Ti, and a vertex

adjacency (M(A1), Ei, M(An(i))) in <A, E> for every Ti ∈ T. This results in the hypernet
<A, E> and we write Ei = M [Ti] and <A, E> = M [<A, T>] . ♦

Each relation net <A, T> has a unique abstraction M [<A, T>] but a countably infinite set of
distinct relation nets can all have the same abstraction. Obviously,

Theorem 2.1: Every abstraction M of a relation net <A, T> with M [<A, T>] = <A, E> is the
inverse of some interpretation I of <A, E> with I [<A, E>] = <A, T>, and the converse is also
true. ♦

In dealing with relation nets in [GVS99] we faced the problem (in Part I) that each tuple came
from a statement of relationship among concept-names, and could thus be permuted by re-
wording that statement without changing the relationship among those concept-names
involved in that statement. The following definition opens up all the possible permutations of
tuples in a CRKS for examination and choice of "appropriate" ones.

Definition 2.13: By the completion of a hypernet <A, E> we mean that unique hypernet that
is constructed from <A, E> by adding to <A, E> every potential edge adjacency, and hence
every potential vertex adjacency, of <A, E> that is not in <A, E>, i.e. we "fill in" all the sets
Ei ∩ Ej, and thus all the vertex adjacencies that then arise, for all distinct Ei and Ej, i.e.for all
i ≠ j. ♦

Relation nets and hypernets 14

For each Ar ∈ A for which we have (Ei, Ar, Ej) for some Ei and Ej, i.e. Ar ∈ (Ei ∩ Ej), i ≠ j, in
the completion of M [<A, T>], the tuples Ti and Tj with M [Ti] = Ei and M [Tj] = Ej can be
permuted so that they are adjacent at Ar in a new CRKS that models the same relationships as
does T.

Given the completion of an abstraction M [<A, T>], we can interpret sub-hypernets of that
completion to produce goal oriented application CRKS's from <A, T>. This leads to the
following definitions.

Definition 2.14: By a sub-hypernet of a hypernet <A, E> we mean a hypernet <B, U> with
B ⊆ A, U ⊆ E, and every Ei ∈ U is such that Ei ∈ E. Further, every vertex adjacency of
<B,U> by Ej is a vertex adjacency of <A, E> by Ej. If B = A then we call <B, U> a spanning
sub-hypernet of <A, E>. We write <B, U> ∠ <A, E>.♦

Definition 2.15: The maximum sub-hypernet <B, E↑B>, of a hypernet <A,E>, that is
induced by B ⊆ A, is such that Ei ∈ E belongs to E↑B iff Ei ⊆ B. ♦

Let <A,E> be any hypernet and let X be the set of all those sub-hypernets of <A,E> that are
of the form < A – B, E ↑(A – B) > where B ⊆ A. Then < X, ∠ > is a distributive lattice
under ∪ and ∩ of hypernets, with null element <φ ,φ> and universal element <A,E>. This
can be shown easily because ∪ and ∩ for hypernets are defined in terms of set ∪ and set ∩
respectively.

There is a one-to-one correspondence between the set of walks in a hypernet <A, E> and the
set of semi-walks in any given interpretation I [<A, E>] of <A, E>.

To close this section we turn our attention to the question of isomorphism. In Part I of
[GVS99] we defined structural analogy of CRKS's in terms of CRKS isomorphism, giving -
to the best of our knowledge - the first formal definition of analogy. The notion of formalized
analogical reasoning, and of teaching/learning by analogical modelling, is critical to the work
in Part I of [GVS99], and a key to the practical use of structural analogy is the rather complex
constructional scheme given there for finding isomorphic (sub-) relation nets. It appears that
we can do a little bit better, through the medium of hypernets, by side-stepping the problems
involved in relative permutation differences between potentially isomorphic (sub-) relation
nets. To begin, we revise the definition of isomorphism of relation nets.

Definition 2.16: Given two relation nets <A, S> and <B, T> with | A | = | B | and | S | = | T |,
we say that <A, S> and <B, T> are isomorphic iff there exists a pair of one-to-one
correspondences g: A→ B and h: S→ T which are such that tuple Ti = <A1,, Ar, ..., An>,
where each entry is an entry of a member of A, belongs to S iff tuple
h(Ti) = <B1,, Bs, ..., Bm>, belongs to T, where m = n and where each entry is an entry of a
member of B, and B1 = g(A1), Bm = g(An), and every entry Ar, r ≠ 1 and r ≠ n, in Ti is mapped
to some Bs = g(Ar) with r not necessarily equal to s. ♦

The equivalent for hypernets is rather less taxing, and is as follows.

Relation nets and hypernets 15

Definition 2.17: Two hypernets <A1, E1> and <A2, E2>, with | A1| = | A2| and | E1| = | E2|, are
said to be isomorphic iff there exists a pair of one-to-one correspondences g: A1 → A2
and h: E1 → E2 such that A1i ∈ A1 belongs to E1j ∈ E1 iff g(A1i) belongs to h(E1j) and
(A1i , E1j, A1k) is a vertex adjacency in <A1, E1> iff (g (A1i), h (E1j), g (A1k)) is a vertex
adjacency in <A2, E2>.♦

Given two hypernets <A1, E1> and <A2, E2>, how can we find an isomorphism between
them? We can use the following.

Constructional scheme 2.1

Step 1: Check that | A1| = | A2| and | E1| = | E2| . Indeed if | A1| < | A2| and/or | E1| < | E2| we
may be able to find an isomorphism between <A1, E1> and a sub-hypernet
<B, U> ∠ <A2, E2> with | A1| = | B| and | E1| = | U| .

Step 2: Let (A11, E1i, A12) be any vertex adjacency in < A1, E1>. Try to match (A11, E1i, A12)
with some vertex adjacency (A21, E2j, A22) in < A2, E2> for which we can begin to define g
and h by setting g(A11) = A21, g(A12) = A22, and h(E1i) = E2j ∈ E2 such that
E2j = {g(A11), g(A12)}∪ {g(A1k) ∈ A2 | A1k ∈ A1 and A1k ∈ (Ei -{ A11, A12}) and | E1j | = | E2j |
so that | E1i | = | h(E1i) = E2j | . If we can find no such matching then no isomorphism <g, h>
exists.

Step 3: If we can find one such partial matching of an (A11, E1i, A12) and some (A21, E2j, A22),
then the next step is as follows. Try to expand the present domains of g and h to incorporate
all vertex adjacencies that involve A11 and/or A12 in < A1, E1>. Do this for as many "new"
vertex adjacencies of this kind as possible. If there are "new" adjacencies that cannot be
covered, disregard them. Move to step 4. If there are no "new" vertex adjacencies that can be
covered in this step, return to step 2 and start over with another vertex adjacency in
< A1, E1>.

Step 4: Try, as in step 3, to expand the present domains of g and h to cover all vertex
adjacencies in < A1, E1> that involve at least one of the "already covered" vertices of
< A1, E1>. If no expansion is possible, return to step 2 and start over with another vertex
adjacency in < A1, E1>; otherwise move to step 5.

Step 5: Repeat step 4 until no more vertex adjacencies in < A1, E1> can be covered, or until
we get any contradiction. At that stage we have an isomorphism from a sub-hypernet of
< A1, E1> into < A2, E2>. If that sub-hypernet is not < A1, E1> then we store the isomorphism
and start over with step 2, eventually finding several hopefully non-trivial (i.e. not just a
single vertex adjacency that is isomorphic with some vertex adjacency in < A2, E2> sub-
hypernets of < A1, E1> that are isomorphic with some sub-hypernet of < A2, E2>. From those
isomorphisms that we find, we can choose the most appropriate for our purpose at the time of
choice. Recall from [GVS99] that several different sub-hypernets of < A1, E1> can serve as
isomorphic structural models/analogies of the same sub-hypernet of < A2, E2>, and one sub-
hypernet of < A1, E1> can serve as an isomorphic structural model/analogy for several
different sub-hypernets of < A2, E2>.♦

Relation nets and hypernets 16

In applying constructional scheme 2.1 we must take account of
• other edges in E1 by which A11and A12 are vertex adjacent,
• other edges in E2 that are "set equal" to E2j, and
• potential edge adjacencies by > 1vertices in < A1, E1>, when trying to find an initial vertex

adjacency match in step 2 of the scheme.

Now it appears that it may well be easier in general to automate the search for hypernet
isomorphisms than for relation net isomorphisms due to the necessity to take into account
matching tuples "modulo relative permutation" in the latter case. With this in mind, we
present the following two theorems.

To set the scene, let < A1, E1> and < A2, E2> be hypernets and let < A1, T1> and < A2, T2> be
relation nets and let | A1 | = | A2 |, | E1 | = | E2 |, and | T1 | = | T2 |. Further, let
D1 = {(A11, E1j, A12) | A11, A12 ∈ A1, E1i ∈ E1, and (A11, E1i, A12) is a vertex adjacency in
< A1, E1> },
D2 = {(A21, E2i, A22) | A21, A22 ∈ A2, E2i ∈ E2, and (A21, E2i, A22) is a vertex adjacency in
< A2, E2> },
and let | D1 | = | D2 | . Now consider the following diagram:

 < g1, g2 >
 < A1, E1> < A2, E2>

 I1 I1

-1 I2 I2
-1

 < A1, T1> < A2, T2>
 < h1, h2 >

Figure 2.3: Isomorphisms and interpretations

Here < g1, g2 > is a hypernet isomorphism and < h1, h2 > is a relation net isomorphism, I1 and
I2 are interpretations, and all these mappings are one-to one-correspondences, so their
inverses are well defined simple reversals.

Theorem 2.2: Let < A1, E1> and < A2, E2> in the diagram be isomorphic hypernets. Then
there exist interpretations I1 [< A1, E1>] = < A1, T1> and I2 [< A2, E2>] = < A2, T2> such
that < A1, T1> and < A2, T2> are isomorphic relation nets. ♦

Proof: Consider any vertex adjacency (A11, E1i, A12) in < A1, E1>. The matching vertex
adjacency is (g1(A11), g2(E1i), g1(A12)) in < A2, E2>. I1 is defined as follows. I1 takes
(A11, E1i, A12) to precisely one ni-tuple T1i ∈ T1 in < A1, T1>. Let
T1i = < I1 (A11), ..., I1 (A1r), ..., I1 (A12)> where the entries other than I1 (A11) and I1 (A12) consist
of ni - 2 entries of some I1 (A1r) with A1r ∈ E1i and A1r may be A11 or A12 and A11 may be
equal to A12, and where every member of E1i is mapped to at least one entry in T1i = I1 [E1i]. I2

Relation nets and hypernets 17

is now defined to map (g1(A11), g2(E1i), g1(A12)) in < A2, E2> to precisely one tuple T2j ∈ T2
where T2j = < I2 (A21), ..., I2 (A2k), ..., I2 (A22)> with A21 = g1(A11), A22 =g1(A12) and every
entry A2k = g1(A1r) with k not necessaryly equal to r, and where every member of g2(E1i) is
mapped to at least one entry in T2j = I2 [(g2(E1i))]. Now we define < h1, h2 > such that
h1: A1 → A2 and h2: T1 → T2 are both one-to-one correspondences, and for every
T1i = < I1 (A11), ..., I1 (A1r), ..., I1 (A12)> ∈ T1, h2 (T1i) ∈ T2 is given by
h2 (T1i) = < h1 (I1 (A11)), ..., h1 (I1 (A1r)), ..., h1 (I1 (A12)) > with
h1 (I1 (A11)) = I2 (A21) = I2 (g1(A11)),
h1 (I1 (A12)) = I2 (A22) = I2 (g1(A12)),
h1 (I1 (A1r)) = I2 (A2k) = I2 (g1(A1r))
where the number of entries in T1i and h2 (T1i) is clearly the same, and every I1 (A1r), r ≠ 1 and
r ≠ 2, in T1i is mapped to some I2 (A2k) with k not necessarily equal to r. Thus, < h1, h2 > is a
relation net isomorphism that maps < A1, T1> onto < A2, T2>.♦

Theorem 2.3: Let < A1, T1> and < A2, T2> in our diagram be isomorphic relation nets. Then
there exist abstractions M1[< A1, T1>] = < A1, E1> and M2[< A2, T2>] = < A2, E2 > such that
< A1, E1> and < A2, E2 > are isomorphic hypernets. ♦

Proof: In the proof of theorem 2.2 we constructed < h1, h2 >. Here we will construct < g1, g2 >,
given that < h1, h2 > is an isomorphism. Essentially, what we do is to set M1 = I1

-1 and

M2 = I2
-1 and reverse the process of the proof of theorem 2.2. An arbitrary tuple T1i in

< A1, T1>, with T1i = < A11, ..., A1r, ..., A12> is matched with precisely one tuple
h2 (T1i) = < A21, ..., A2k, ..., A22> with A21 = h1 (A11), A22 = h1 (A12) and A2k= h1 (A1r) with k ≠
1 and k ≠ 2 and k not necessaryly equal to r. Now apply I1

-1 to < A1, T1> and I2
-1 to < A2, T2>.

T1i = < A11, ..., A1r, ..., A12 > is mapped, by I1
-1, to the tuple set, E1i ∈ E1, of T1i and a vertex

adjacency (I1
-1 (A11) , E1i, I1

-1 (A12)), and h2 (T1i) = < h1 (A11), ..., h1 (A12)> ∈ T2 is mapped,
by I2

-1, to the tuple set, E2j ∈ E2, of h2 (T1i) and a vertex adjacency
(I2

-1 (h1 (A11)) , E2j, I2
-1 (h1 (A12)). Now it is easy to see that we can define a hypernet

isomorphism < g1, g2 > from < A1, T1> onto < A2, T2> simply by setting
I2

-1 (h1 (A11)) = g1 (I1
-1 (A11)),

I2
-1 (h1 (A12))= g1 (I1

-1 (A12)),
g2 (E1i) = E2j = g2 ({ A11, ..., A1r, ..., A12}) = { g1(A11), ..., g1(A1r), ..., g1(A12)}, and E1i ≠ ∅.♦

These two theorems can be of considerable assistance. In particular, theorem 2.2 can help in
finding relation net isomorphisms.

Definition 2.18: Let <A1, E1> and <A2 ,E2 > be hypernets, and <A1,T1> and <A2,T2> be relation nets,
and consider the following diagram:

Relation nets and hypernets 18

 <A1, E1 > <A2, E2>
 <β1,β2,>

M1 I 1 I 2 M2

 <A1, T1> <A2,T2>
 LE

Figure 2.4: Abstraction isomorphism

Here the abstraction M1 is the inverse of the interpretation I1 and M2 the inverse of I2, and
<β 1, β 2> is a hypernet isomorphism. Each tuple T1i ∈ T1 is mapped to its tuple set M1 [T1i] in
<A1, E1>, then by <β1, β2> to the isomorphic tuple set < β1, β 2> (M1 [T1i]) in <A2, E2>, and
thence by I2 to a tuple I2 (<β1, β2> (M1 [T1i])) = T2j, where if T1i is an n1i-tuple then
I2(< β1,β 2>(M1 [T1i])) is an n2j – tuple with n1i and n2j both at least
| M1 [T1i] | = | < β1, β 2> (M1 [T1i])| and n1i and n2j are not necessarily equal, and
T1i = I1 (< β 1, β 2> (M2[T2j])), and this holds for each T1i∈ T1 and each T2k∈ T2. We call
<A1, T1> and <A2, T2> language equivalent (LE) relation nets iff for each T1i ∈ T1 there is at
least one T2j = I2(<β1, β2>(M1[T1i])) ∈ T2 and for each T2j∈ T2 there exists at least one
T1i = I1 (<β 1, β 2>(M2 [T2j])) ∈ T1. ♦

Given a study material CRKS – see [GVS 99] – for which the statements are set out in
language A, we can use the definition to find a “language equivalent” CRKS in which the
statements are set out in another teaching language B. LE is an equivalence relation on the
class of relation nets.

Relation nets and hypernets 19

3. First intermission

Suppose we think of a hypernet <A, E> in terms of its diagram. Let S ⊆ A, and let {a,b} ⊆ S,
a, b ∈ A and | S | ≥ 2. Then a and b are potentially adjacent vertices by S. Now we should
notice that if {a,b} is an actual vertex adjacency by S in <A, E> then S ∈ λ({a,b}), and S can
belong to the label of more than one vertex adjacency in <A, E>, and furthermore the set S
can appear in a given label such as λ({a,b}) more than once. To handle this we let every
distinct occurence of S in any label or labels be entered as a separate member of the family E
of edges of <A, E>. Thus, if set S occurs m times in vertex adjacency labels, some of these
occurences perhaps in the same label, each label is indeed a set as S will appear m times in the
family of edges E of <A, E>, i.e.

En, En+1, ..., En+m-1

all of which are entries of the same set S in the family E. If {a,b} is a vertex adjacency by
Ei ∈ E then Ei ∈ λ({a,b}) and not Ei – {a,b}, a significant difference from the similar situation
for relation nets – see [GVS99]. Here each edge characterizes one and only one vertex
adjacency, except of course for singleton edges.

Deleting an edge Ei ∈ E from <A, E> takes Ei out of one vertex adjacency label, λ({a,b}) for
example. The arc between a and b will then disappear only if λ({a,b}) = {Ei}. Deleting a
vertex adjacency (a, Ei, b) of a and b by Ei from <A, E> also means taking Ei out of
λ({a,b}). We sometimes refer to “the vertex adjacency {a,b}”. Deleting a vertex v ∈ A from
<A, E> entails removing v from <A, E> together with every Ei ∈ E that has v ∈ Ei.

Much of the theory of relation nets covered in [GVS99] can be transcribed to hypernet theory.
The key to such transcription is basically the following:

Relation Nets Hypernets

tuple occurence a,i; j,b

single (F(i))(j)

set R of (F(i))(j)‘s

vertex adjacency (a, Ei, b)

single edge Ei

set R of edges

Figure 3.1: Connection between relation nets and hypernets

In this report we will be transcribing to hypernets only a selection of the theory of relation
nets covered in [GVS99]. We begin with some general theory of hypernets and then move on
to transcription of some of the theory of Concept-Relationship Knowledge Structures, bearing
in mind our potential examples of hypernets as described in the first section of this report.

Relation nets and hypernets 20

4. Introduction to a theory of general hypernets

Definition 4.1: For Ai ∈ A of a hypernet <A, E> we define:
(1) The set E(Ai) ⊆ E of all edges in the name of Ai by E(Ai) = { Ej ∈ E | for every vertex

adjacency of the form (Ar, Ej , As) in <A, E> we have Ai ∈ (Ej - { Ar, As }) }.
(2) The set E [Ai] ⊆ E of all edges with Ai by E [Ai] = { Ej ∈ E | Ai ∈ Ej }.
(3) E(B) denotes the set of all E(Ai) with Ai ∈ B and a similar statement applies to E [B], with

B ⊆ A.♦

Definition 4.2:
(1) The meet <A, E> of two hypernets <B, F> and <C, G> is defined by <A, E> =

< B ∩ C, F ∩ G > and <A, E> is a unique hypernet.
(2) The join <A, E> of two hypernets <B, F> and <C, G> is defined by <A, E> =

< B ∪ C, F ∪ G > and <A, E> is a unique hypernet.
(3) The meet of <B, F> anc <C, G> is written <B, F> ∩ <C, G>, and their join is written

<B, F> ∪ <C, G>.♦

In part (1) the only way in which F and G can share edges is that those shared edges are
subsets of B ∩ C. Thus we have the following

Theorem 4.1: If Ei ∈ E, and hypernet <A, E> = < B ∩ C, F ∩G > is the meet of hypernets
<B, F> and <C, G> , then Ei ⊆ (B ∩ C), but the converse is not necessarily true. ♦

Proof: The first part is trivial. For the converse, we notice that Ei ⊆ (B ∩ C) can be true if Ei
belongs to only one of F or G. ♦

The join and meet operations may of course be successfully applied to the sub-hypernets of a
given hypernet.

Definition 4.3: The adjacency function Γ: A → ℘(A) of a hypernet <A, E> is defined by,
for all Ar ∈A, Γ(Ar) = { As ∈ A | (Ar, Ej , As) for some Ej ∈ E} ∪ {Ar}.♦

Definition 4.4: By a walk-family f (Ar  As) in a hypernet <A, E> we mean a non-empty
set of walks between Ar and As in <A, E>, the members of which all have the same
subsequence over A while being pairwise distinct in edge subsequences over E. By a sub-
walk-family of f(Ar  As), we mean a walk-family f (Am  An), r ≤ m < n ≤ s, for which
every member is a subsequence of at least one member of f(Ar  As). ♦

A walk family can have just one member.

Definition 4.5:
(1) Let Ar, Aj, As ∈A in a hypernet <A, E> , and let Ar  As be a given walk in <A, E>. Then

Aj is said to be vertex between Ar and As on Ar  As iff Aj belongs to the vertex

Relation nets and hypernets 21

subsequence of Ar  As or to at least one edge Ei that lies in the walk Ar  As, or both.
(Of course both cases are covered if Aj belongs to at least one of the edges of the walk.)

(2) Aj is said to be reachable from Ar in <A, E> iff there is a path between Ar and Aj in
<A, E>.

(3) The reachability function ℜ: A → ℘(A) of a hypernet <A, E> is defined by, for all
Ar ∈A, ℜ(Ar) = { As ∈ A | As is reachable from Ar in <A, E>}.

(4) The meanings of Γ(B) and ℜ(B) for B ⊆ A are obvious. ♦

Next we tackle the notion of a cascade, starting with a revision of the definition for relation
nets given in [GVS99].

Definition 4.6: The nested sequence {<Bk, Rk > | k ≥ 0} of subnets of a relation net <A, T>
is called a fast access cascade from B0 iff
(1) B0 ⊆ A and R0 = ∅, and
(2) R1 ⊆ T is chosen in such a way that Ti = < A1, A2, ... , A

°
, ..., An(i) > ∈ T belongs to R1

iff A1 ∈ B0, and
(3) B1 = B0 ∪ (the union of the tuple sets of the members of R1), where the tuple set of Ti ∈ T

is the set of all Ar ∈ A such that Ar is at least one entry in Ti, and in general for k = 2, 3,
...,

(4) Rk ∈ T is chosen in such a way that Ti = < A1, A2, ... , A
° , ..., An(i) > ∈ T belongs to Rk

iff A1 ∈ Bk-1, so Rk-1 ⊆ Rk, and
(5) Bk = Bk-1 ∪ (the union of the tuple sets of the members of Rk), so Bk-1 ⊆ Bk.

Such a cascade is said to be a limited access cascade from B0 in <A, T> iff at each step k = 1,
2, ... we choose Ti = < A1, A2, ..., A

°
, ..., An(i) > ∈ T in such a way that Ti ∈ Rk iff

{Ak ∈ A | k = 1, 2, ..., n(i)-1}⊆ Bk-1, and where An(i) ∈ A may or may not belong to Bk-1. ♦

A cascade will stop when <Bk, Rk > = <Bk-1, Rk-1 > or when <Bk, Rk > = <A, T>.

For hypernets we have the following transcription.

Definition 4.7: The nested sequence {<Bk, Dk > | k ≥ 0} of sub-hypernets of a hypernet
<A, E> is called a fast access cascade from B0 iff
(1) B0 ⊆ A and D0 = ∅, and
(2) D1 ⊆ E is chosen in such a way that for each vertex adjacency (Ar, Ej , As), Ej ∈ E, Ej

belongs to D1 iff Ar or As belongs to B0, and
(3) B1 = B0 ∪ (the union of all the Ej that belong to D1), and in general for k = 2, 3, ...
(4) Dk ∈ E is chosen in such a way that for each vertex adjacency (Ar, Ej , As), Ej ∈ E, Ej

belongs to Dk iff Ar or As belongs to Bk-1, so Dk-1 ⊆ Dk, and
(5) Bk = Bk-1 ∪ (the union of all the Ej that belong to Dk), so Bk-1 ⊆ Bk.

Such a cascade is said to be a limited access cascade from B0 in <A, E> iff, at each step
k = 1, 2, ..., we choose Ei ∈ Dk iff all, but possibly one, of the members of Ei belong to Bk-1,
and that one is either Ar or As in each vertex adjycency (Ar, Ei, As) used in choosing the
Ei ∈ Dk, k = 1, 2, ♦

Relation nets and hypernets 22

Note that that particular one of Ar or As in each case does of course belong to A, but may or
may not belong to Bk-1. Again such cascades stop on the same conditions as for relation net
cascades.

Hypernets all exhibit strong vulnerability: If we delete Ak ∈ A from a hypernet <A, E> then
we delete every edge adjacency by Ak in <A, E>, and also every edge Ei ∈ E for which
Ak ∈ Ei, i.e. we delete E [Ak]. Because strong vulnerability expresses context sensitivity in
certain hypernets - see [GVS99] and later work in this report - we introduce the following
notion.

Definition 4.8: By the context hypernet <A, E>[Ak] of Ak ∈ A in a hypernet <A, E> we mean
that sub-hypernet of <A, E> that consists of every Ei ∈ E that has Ak ∈ Ei , i.e. E [Ak] together
with the set of vertices {Aj ∈ A| Aj ∈ Ei and Ei ∈ E [Ak]}. <A, E>[Ak] is a hypernet. ♦

We return to our example in figure 2.1 and illustrate the different notions defined so far in this
section:
• set E (Ak) and E [Ak]: E(3) = { E5} and E[3] = { E1, E6, E5, E4 }.
• adjacency function: Γ(4) = {2, 3, 4, 5}, and Γ(5) = {5, 4}.
• walk-family: f (2  5) = {(2, E5, 4, E7, 5), (2, E2, 2, E5, 4, E7, 5), (2, E5, 4, E7, 5, E6, 5),

(2, E2, 2, E5, 4, E7, 5, E6, 5} or any non-empty subset of this set.
• reachable: ℜ (2) = A - {6}, ℜ (2) = ℜ (1) = ℜ (3) = ℜ (4) = ℜ (5).
• fast access cascade: B0 = {2}, B1 = {2, 1, 4, 3}, B2 = {2, 1, 4, 3, 5}.
• limited access cascade: B0 = {1, 2}, B1 = {1, 2, 3}, B2 = {1, 2, 3, 4}, B3 = {1, 2, 3, 4},

stop.
• context hypernet: The context hypernet of 4 ∈ A, i.e. <A, E>[4] , has vertex set

A[4] = {4, 2, 3, 5} and edge set E[4] = { E5, E4, E7}.

We will see that the notion of a cascade, which may be regarded here as a controlled search
technique, becomes an essential part of the theory of the hypernet equivalent of a CRKS.

Relation nets and hypernets 23

5. Menger's theorem

We will introduce the theorem, and state and prove it, stage by stage in parallel for relation
nets and hypernets; (a) denotes the part for relation nets, (b) that for hypernets.

Definition 5.1:
(a) The path-net N(P) of a path P in a relation net <A, T> is the minimum subnet

<B, U> ∠ <A, T> that contains P. By this we mean that U ⊆ T is the set of tuples that
appear in P, and B is the union of all the tuple sets of the members of U. N(P) is a
minimum subnet inasmuch as if we delete any member of U or any member of B then P
no longer lies in the resulting relation net.

(b) The path-hypernet N(P) of a path P in a hypernet <A, E> is the minimum sub-hypernet
<B, U> ∠ <A, E> that contains P. By this we mean that U ⊆ E is the set of edges that
appear in P, and B is the union of all the members of U. N(P) is a minimum sub-hypernet
inasmuch as if we delete any member of U or any member of B then P no longer lies in
the resulting hypernet.♦

Definition 5.2:
(a) Two u → v paths, Pk and Pm, in a relation net <A, T>, are said to be interdependent paths

iff the meet N(Pk) ∩ N(Pm) of their path-nets has at least one vertex other than u and v in
it. A set {P0, ..., Pn} of u → v paths in <A, T> is called an interdependent set iff ∩ N(Pr),
r = 0, 1, ..., n, has at least one vertex other than u and v in it, and it is a maximal
interdependent set iff it is not a proper subset of any interdependent set of u → v paths in
<A, T>.

(b) Two u  v paths, Pk and Pm, in a hypernet <A, E>, are said to be interdependent paths iff
the meet N(Pk) ∩ N(Pm) of their path-hypernets has at least one vertex other than u and v
in it. A set {P0, ..., Pn} of u  v paths in <A, E> is called an interdependent set iff
∩ N(Pr), r = 0, 1, ..., n, has at least one vertex other than u and v in it, and it is a maximal
interdependent set iff it is not a proper subset of any interdependent set of u  v paths in
<A, E>.♦

Notice that the semi-paths in <A, T> are equivalent with the paths in <A, E> = M [<A,T>].

Theorem 5.1:(see theorem 12.6, p. 205 of [GVS99])
(a) Let {P0, ..., Pn} be any interdependent set of u → v paths in <A, T>. Deletion of any

w ∈ (A - {u,v}) that belongs to the vertex set of ∩ N(Pr) from <A, T> will “cut” all the
paths Pr, i.e. none of the paths of the set exists in the subnet which results when w is
deleted from <A, T>.

(b) Let {P0, ..., Pn} be any interdependent set of u  v paths in <A, E>. Deletion of any
w ∈ (A - {u,v}) that belongs to the vertex set of ∩ N(Pr) from <A,E> will “cut” all the
paths Pr, i.e. none of the paths of the set exists in the sub-hypernet which results when w is
deleted from <A, E>.♦

Relation nets and hypernets 24

Proof:
(a) for <A, T>: see [GVS99].
(b) for <A, E>: We must show that if w is a vertex, with w ≠ u and w ≠ v, of ∩ N(Pr), then it

is between u and v on every Pr. Let w be a vertex of ∩ N(Pr), and assume that w is not
between u and v on some Pt. Then w does not belong to the vertex set of N(Pt), and hence
it is not a vertex of ∩ N(Pr), which contradicts the hypothesis. ♦

Theorem 5.2: (see theorem 12.7, p. 205 of [GVS99])
(a) Let S = {P0, ..., Pn} be a maximal interdependent set of u → v paths in <A, T>. Deletion

of any w ∈ (A - {u,v}) that belongs to the vertex set of ∩ N(Pr) from <A,T> cuts
precisely those u → v paths in <A, T> that belong to S.

(b) Let S = {P0, ..., Pn} be a maximal interdependent set of u  v paths in <A, E>. Deletion
of any w ∈ (A - {u,v}) that belongs to the vertex set of ∩ N(Pr) from <A, E> cuts
precisely those u  v paths in <A, E> that belong to S. ♦

Proof:
(a) for <A, T>: see [GVS99].
(b) for <A, E>: From theorem 5.1 we know that deletion of w cuts all the Pr ∈ S. Assume that

deletion of w from <A, E> cuts at least one u  v path P ∉ S. Then w is between u and v
on P, so w belongs to the vertex set of N(P). But then, since w also belongs to the vertex
set of every N(Pr) with Pr ∈ S, S is not a maximal interdependent set because the vertex
set of (∩ N(Pr)) ∩ N(P) contains {u,v,w}. The theorem follows. ♦

Theorem 5.3: (see theorem 12.8, p. 205 of [GVS99])
(a) The set of all u → v paths, in <A, T>, that are cut by the deletion of w ∈ (A - {u,v}) from

<A, T> is an interdependent set of u → v paths in <A,T>, but it is not necessarily
maximal.

(b) The set of all u  v paths, in <A, E>, that are cut by the deletion of w ∈ (A - {u,v}) from
<A, E> is an interdependent set of u  v paths in <A, E>, but it is not necessarily
maximal. ♦

Proof:
(a) for <A, T>: see [GVS99].
(b) for <A, E>: Let S = {P0, ..., Pn} be the set of all u  v paths, in <A, E>, that are cut by

the deletion of a given w ∈ (A - {u,v}) from <A, E>. Then w is between u and v on every
Pr ∈ S, and hence w belongs to the vertex set of every N(Pr), Pr ∈ S. It follows that
∩ N(Pr) has at least one vertex w, other than u and v, in it, and hence S is an
interdependent set. It is clear that S is not necessarily maximal. ♦

Just as for relation nets – see p. 206 of [GVS99] – it is always possible to partition the set of
all u  v paths in a hypernet <A, E> by the following procedure.

(1) Start with any u  v path P00, and develop a maximal interdependent set of u  v paths

S0 = {P0k| k = 0, 1, ... , n0} in <A, E> to which P00 belongs.

Relation nets and hypernets 25

(2) Delete any w0 ∈ (A - {u,v}) such that w0 belongs to the vertex set of ∩ N(P0r),
r = 0, 1, 2, ..., n0 from <A, E>. This cuts all the u  v paths of S0, and only those u  v
paths.

(3) Start with any u  v path P10 in the sub-hypernet that results when w0 is deleted from
<A, E>, i.e. < A - {w0}, E↑(A - { w0})>, and develop a maximal interdependent set
S1 = { P1k| k = 0, 1, ..., n1}of u  v paths, in <A - {w0}, E↑(A - { w0})>, to which P10
belongs.

(4) Delete any w1 ∈ (A -{u, v, w0}) such that w1 belongs to the vertex set of ∩ N(P1r),
r = 0, 1, 2, .., n1 from < (A - {w0}), E↑(A - { w0})>. This cuts precisely those u  v paths
that belong to S1. Further, w0 is not between u and v on any P1i, i = 0, 1, 2, ..., n1.

(5) Continuing in this way we get a partition {S0, ..., Sn} of the set of all u  v paths in
<A, E> such that each Sr, r = 0, 1, 2, ..., n, is a maximal interdependent set of u  v paths
in < (A - {w0, ..., wr-1}), E↑(A - {w0, ..., wr-1})>, r = 0, 1, 2, ..., n, and S0 is a maximal
interdependent set of u  v paths in <A, E>. ♦

To see that such a partition is well defined we notice that every u  v path in <A, E> will
belong to at least one Sr, and that if a particular u  v path P belongs to both. Sr and St with
r < t, then it is a path in the sub-hypernet
<A - {w0, ..., wr-1,wr, ..., wt-1}, E↑(A - {w0, ..., wr-1,wr, ..., wt-1})>
which is impossible because, since P ∈ Sr, we have wr between u and v on every member of
Sr and hence on P.

Definition 5.3:
(a) A subset B(u → v) ⊆ A of <A, T> is called a separation for u and v in <A, T> iff

< A - B(u → v), T↑ (A - B(u → v))>, i.e.the maximum subnet of <A, T> that has vertex
set A - B(u → v), has no u → v paths.

(b) A subset B(u  v) ⊆ A of <A, E> is called a separation for u and v in <A, E > iff
< A - B(u  v), E↑(A - B(u  v))> has no u  v paths. ♦

Theorem 5.4: (see theorem 12.9, p. 206 of [GVS99])
(a) If {S0, ..., Sm} is a partition of the set of all u → v paths in <A, T> such that S0 is a

maximal interdependent set of u → v paths in <A, T> and, for each r = 0, 1, ..., m, Sr is a
maximal interdependent set of u → v paths in <A - {w0, ..., wr-1}, T↑(A - {w0, ..., wr-1})>,
where w0 belongs to the vertex set of ∩ N(Pt) over Pt ∈ So and wr belongs to the vertex
set of ∩ N(Pt) over Pt ∈ Sr , then there exists a separation B(u → v) for u and v in <A, T>
that has precisely m elements.

(b) If {S0, ..., Sm} is a partition of the set of all u  v paths in <A, E> such that S0 is a
maximal interdependent set of u  v paths in <A, E> and, for each r = 0, 1, ..., m, Sr is a
maximal interdependent set of u  v paths in <A -{ w0, ..., wr-1}, E↑(A -{ w0, ..., wr-1})>,
where w0 belongs to the vertex set of ∩ N(Pt) over Pt ∈ So and wr belongs to the vertex
set of ∩ N(Pt) over Pt ∈ Sr, then there exists a separation B(u  v) for u and v in <A, E>
that has precisely m elements. ♦

Proof: See [GVS99]. Proof follows at once from the partitioning and previous theorems and
definitions. ♦

Relation nets and hypernets 26

Corollary 5.1: (Corollary 12.1, p. 207 of GVS99])
(a) The minimum number of elements in a partition of the u → v paths in <A, T> into

maximal interdependent sets, constructed as in Theorem 5.4, is equal to the minimum
number of vertices in a separation B(u →v) for u and v in <A, T>.

(b) The minimum number of elements in a partition of the u  v paths in <A, E> into
maximal interdependent sets, constructed as in Theorem 5.4, is equal to the minimum
number of vertices in a separation B(u  v) for u and v in <A, E>.♦

Corollary 5.2: (Corollary 12.2, p. 207 of [GVS99])
(a) Any separation for u and v in <A, T> can be used to generate a partition of the set of all

u → v paths in <A, T> into interdependent sets which are not necessarily maximal.
(b) Any separation for u and v in <A, E> can be used to generate a partition of the set of all

u  v paths in <A, E> into interdependent sets which are not necessarily maximal. ♦

Proof:
(a) for <A, T>: see [GVS99].
(b) for <A, E>: Suppose that we are given a separation B(u  v) = {w0, ..., wm}. Let S0 be the

set of all u  v paths in <A, E> that are cut by the deletion of w0 from <A, E>. Next let
S1 be the set of all u  v paths in <A - {w0}, E↑(A - {w0})> that are cut by the deletion
of w1 from <A - {w0}, E↑(A - {w0})>. Then let S2 be the set of all u  v paths in
<A - {w0, w1}, E↑(A - {w0, w1})> that are cut by the deletion of w2 from
<A - {w0, w1}, E↑(A - {w0, w1})>.
Proceeding in this way we develop sets S0, ..., Sm. It is clear that each Sr, r = 0, 1, ..., m, is
an interdependent set of u  v paths, and if P is an arbitrary u  v path in <A, E> then at
least one of w0, ..., wm is between u and v on P, so P belongs to at least one of the Sr, r = 0,
1, ..., m. As we showed before, it is impossible for P to belong to more than one Sr, so the
corollary follows because it is clear that the Sr are not necessarily maximal. ♦

Defintion 5.4:
(a) Let Pr and Pt be u → v paths in <A, T>, where u ≠ v and the underlying sets of both N(Pr)

and N(Pt) strictly contain {u,v}. Pr and Pt are said to be quasi-disjoint u → v paths in
<A, T> iff they belong to distinct maximal interdependent sets of u → v paths in <A, T>.

(b) Let Pr and Pt be of u  v paths in <A, E>, where u ≠ v and the underlying sets of both
N(Pr) and N(Pt) strictly contain {u,v}. Pr and Pt are said to be quasi-disjoint u  v paths
in <A, E> iff they belong to distinct maximal interdependent sets of u  v paths in
<A, E>. ♦

We can now restate corollary 5.1 in Mengerian form.

Corollary 5.3:
(a) The maximum number of pairwise quasi-disjoint u → v paths in <A, T> is equal to min

|B(u → v)|.
(b) The maximum number of pairwise quasi-disjoint u  v paths in <A, E> is equal to min

|B(u  v)|. ♦

Relation nets and hypernets 27

Proof:
(a) for <A, T>: see p. 207/208 of [GVS99].
(b) for <A, E>: Assume that we have achieved a partition of the u  v paths in <A, E> into

min |B(u → v)| maximal interdependent sets as referred to in Corollary 5.1, and that
B(u  v) is one of the corresponding separations. How many pairwise quasi-disjoint
u  v paths can we find in <A, E>? Certainly we can find at least min |B(u → v)| such
paths, each in a distinct member of the partition, and each thus cut by a unique member of
B(u  v), since if deletion of a given b ∈ B(u  v) cuts more than one of these paths
then those paths cut are not pairwise quasi-disjoint paths. Further, we cannot find more
than min |B(u → v)| such paths, because in that case at least two of them must belong to
the same maximal interdependent set of the partition, which violates the condition that
they should be quasi-disjoint u  v paths. It follows that min |B(u → v)| equals the
minimum number of elements of a partition of the u  v paths in <A, E> into maximal
interdependent sets, constructed as in theorem 5.4, which, in turn, is equal to the
maximum number of pairwise quasi-disjoint u  v paths in <A, E>.♦

Menger’s theorem is important because examining “flow” through a hypernet can contribute
to analysis of its structure. We will return to this point for a special kind of hypernet in a later
section.

Relation nets and hypernets

28

6. Connectedness

Definition 6.1: A hypernet <A, E> is said to be connected iff for every a, b ∈ A there is at
least one path a  b in <A, E>.♦

Theorem 6.1: A hypernet <A, E> is connected iff it has a closed spanning walk, i.e. a walk
that meets every a ∈ A at least once or, in other words, a walk in which every a ∈ A occurs at
least once in the subsequence over A. ♦

Proof: trivial. ♦

Definition 6.2: A sub-hypernet <B, U> of a hypernet <A, E> is called a component of
<A, E> iff it is a maximal connected sub-hypernet of <A, E>, where by maximal we mean
that to add any a ∈ (A - B) or any Ei ∈ (E-U) to <B, U> will result in a sub-hypernet of
<A, E> that is not connected. ♦

Theorem 6.2: If <B0, U0> and <B1, U1> are distinct components of a hypernet <A, E> then
B0 and B1 are disjoint, i.e. B0 ∩ B1 = ∅.♦

Proof: Suppose that b ∈ B0 ∩ B1, and let a ∈ B0 and c∈ B1. Then there is a path a  b in
<B0, U0> and a path b  c in <B1, U1>, so there is a path from any vertex in <B0, U0> to any
vertex in <B1, U1>, which means that <B0, U0> ∪ <B1, U1> lies in a single component of
<A, E>. The theorem follows. ♦

Theorem 6.3: Let <A, E> be any hypernet. Then
(1) every a ∈ A belongs to precisely one component of <A, E> and
(2) every vertex adjacency, and hence also every edge Ei, belongs to at most one component.

♦

Proof:
(1) Assume that a ∈ A belongs to two distict components of <A, E>. Then, as in the proof of

theorem 6.2 above, we reach a contradiction.
(2) Suppose that vertex adjacency (a, Ei, b) is such that a is in a component <B0, U0> of

<A, E> and that b is in a distinct component <B1, U1> of <A, E>. Then it is easy to see
that since every vertex in <B0, U0> is reachable from a, and every vertex in <B1, U1> is
reachable from b, every vertex in <B0, U0> is reachable from every vertex in <B1, U1>.
The theorem follows from this contradiction. ♦

Theorem 6.4: The distinct components of a hypernet <A, E> induce an equivalence relation
on A. ♦

Proof: It is easy to see that reachability is reflexive, as we regard each vertex as reachable
from itself by a path of length zero, symmetric and transitive. ♦

Relation nets and hypernets

29

It follows immediately from theorem 6.4 that

Corollary 6.1: Reachability in a hypernet <A, E> partitions A into equivalence classes that
are precisely the vertex sets of the components of <A, E>.♦

Relation nets and hypernets 30

7. Vertex bases

Definition 7.1: A vertex basis for a hypernet <A, E> is a set V ⊆ A such that every a ∈ A is
reachable from at least one v ∈ V, and V is minimal in the sense that no proper subset of V
has this property. ♦

Theorem 7.1: Every a ∈ A of a hypernet <A, E>, that has only a loop incident with it or is an
isolate or a complete isolate in <A, E>, belongs to every vertex basis of <A, E>.♦

Proof :Follows from the fact that no such vertex is reachable from any vertex but itself. ♦

Theorem 7.2: V ⊆ A of a hypernet <A, E> is a vertex basis of <A, E> iff
(1) every a ∈ A is reachable from at least one v ∈ V, i.e. ℜ(V) = A, and
(2) no v ∈ V ⊆ A is reachable from any w ≠ v, w ∈ V, in <A, E>. ♦

Proof: We need only show that (ii) is equivalent to minimality of V. Suppose that V is a
vertex basis of <A, E> and that w, v ∈ V and that w and v are mutually reachable in <A, E>.
Then every a ∈ A that is reachable from v is also reachable from w, so v is not necessary in
V, i.e.V is not minimal. The theorem follows. ♦

Corollary 7.1: No two members of V lie in the same component of <A, E>. ♦

Proof: Follows from the definitions of vertex basis and of component. ♦

Corollary 7.2: Every hypernet <A, E> has at least one vertex basis. ♦

Proof: A certainly fulfills condition (1) of theorem 7.2, so we can find at least one V ⊆ A that
fulfills condition (2) as well. ♦

Theorem 7.3: If V ⊆ A is a vertex basis of a hypernet <A, E> then there is precisely one
v ∈ V in each component of <A, E>, and | V | is precisely the number of components of
<A, E>.♦

Proof: Follows at once from the definition of component as we only need one vertex from
each component to reach every a ∈ A. Suppose that v, w ∈ V lie in the same component of
<A, E>. Then it is clear that we do not need both v and w in a vertex basis. V is not minimal,
contradicting the given fact that V is a vertex basis of <A, E>.♦

Theorem 7.4: If <B, U> ∠ <A, E> then every vertex basis of <A, E> contains a vertex basis
of <B, U>. ♦

Proof: Let V ⊆ A be any vertex basis of the hypernet <A, E>. Then every a ∈ A is reachable
from some one vertex v ∈ V. Since <B, U> ∠ <A, E> it is clear that every vertex b ∈ B ⊆ A

Relation nets and hypernets 31

is reachable from at least one v ∈ V in <B, U>. Thus we can find a vertex basis of <B, U>
inside V by applying the minimality condition to V inside <B, U>. ♦

Theorem 7.5: If hypernet <A, E> has no non-loop circuits and we ignore all closed paths of
length 2, i.e. that use two edges from the same label, then <A, E> has a unique vertex basis
that consists of precisely those a ∈ A at which there is only a loop or which are isolates or
complete isolates. ♦

Proof: Let V1 ⊆ A of <A, E> be the set of all a ∈ A at which there is only a loop or are
isolates or complete isolates in <A, E>, and let V2 ⊆ A be any vertex basis of <A, E>. By
theorem 7.1, V1 ⊆ V2 . Now suppose that V2 is not included or equal to V1 , i.e
V = V1 – V2 ≠ φ. Let v ∈ V. Then v must be reachable from at least one a ∈ V2 because V2

is a vertex basis of <A,E>. But v ∈ V1, so v is only reachable from itself. It follows that
V2 ⊆ V1, and thus V1 = V2. Finally, because <A,E> has no non-loop circuits and we ignore
all closed paths of length 2, i.e. they may exist but we never traverse them, we will never be
faced with the possiblity of choosing any member of a circuit as the relevant member of a
vertex basis for <A, E>, so V2 = V1 is a unique vertex basis for <A,E>.♦

Theorem 7.6: Given a ∈ A of a hypernet <A, E>, the hypernet < ℜ(a), E↑(ℜ (a))>, i.e. the
maximum sub-hypernet of <A, E> that is generated by ℜ (a), is connected. ♦

Proof: Every b∈ ℜ (a) is reachable from a, and every Ei ∈ E↑(ℜ(a)) is a subset of ℜ (a). The
theorem follows. ♦

We close that section with a few observations. Given a hypernet <A, E>, let U1 ⊆ U2 ⊆ E.
Then
(1) for all a ∈ A, d(a) in <A, U1> ≤ d(a) in <A, U2> ≤ d(a) in <A, E>.
(2) For all a, b∈ A, if b is reachable from a in <A, U2> then it is reachable from a also in

<A, U2> and in <A, E>.
(3) For all a, b ∈ A, if a is adjacent to b in <A, U1> then it is also adjacent to b in <A, U2>

and in <A, E>.
(4) If <A, U1> is connected then so are <A, U2> and <A, E>.
(5) Every component of <A, U1> is a connected sub-hypernet of a component of <A, U2>

which is, in turn, a connected sub-hypernet of a component of <A, E>.
(6) If <A, E> has no circuits then <A, U2> has no circuits, and if <A, U2> has no circuits then

<A, U1> has none.
(7) Every vertex basis of <A, U1> contains a vertex basis of <A, U2>, which, in turn, contains

a vertex basis of <A, E>.

Relation nets and hypernets

32

8. Introduction to Vulnerability

Definition 8.1: Let a, b ∈ A of a hypernet <A, E>. We say that a and b are joined in <A, E>
iff there is at least one path a  b in <A, E>. Otherwise a and b are said to be non-joined in
<A, E>.♦

Definition 8.2: Let a, b ∈ A of a hypernet <A, E>, a ≠ b, and consider any edge Ei ∈ E. Ei is
said to be between a and b in <A, E>, written (a - Ei - b), iff a and b are joined in <A, E> and
every path a  b in <A, E> goes via Ei, i.e. Ei is a member of the edge subsequence of every
path a  b in <A, E>. ♦

Note that we have defined "between" for vertices in a similar fashion – see definition 4.5 (i) .

Theorem 8.1: Let a, b ∈ A of a hypernet <A, E>, a ≠ b, and let Ei ∈ E. We have (a - Ei - b) iff
a and b are joined in <A, E> and every path a  b in <A, E> is such that at least one vertex
adjacency by Ei is a subsequence, of length 1, of a  b. ♦

Proof: If a  b goes via Ei then there must be at least one vertex adjacency by Ei in a  b. ♦

Corollary 8.1: If a and b of the theorem are adjacent vertices then λ({a, b}) = {Ei}.♦

Corollary 8.2: If (a - Ei - b) then deletion of Ei from <A, E> deletes all a  b paths in
<A, E>.♦

Note that deleting the vertex adjacency (a, Ei, b) does not necessarily mean that a and b are no
longer adjacent: We may have {Ei} ⊂ λ({a,b}).

Let C1 be the class of connected hypernets and C0 be the class of non-connected, i.e.
disconnected, hypernets.

Definition 8.3: Let <A, E> be a hypernet with Ei ∈ E. We write Ec

i for E - {Ei}. We call Ei an
(x, y)- edge of <A, E> iff <A, E> is in Cx and <A, Ec

i > is in Cy. Ei is said to be a
strengthening edge of <A, E> iff Ei is (x, y) with x > y, and a neutral edge of <A, E> iff
x = y. ♦

Theorem 8.2: There is no (0,1)-edge in any hypernet. ♦

Proof: Every path in <A, Ec

i > is also in <A, E>, so the connected class of <A, Ec
i > is at most

that of <A, E>, i.e. deleting Ei from <A, E> can not increase the connectedness of <A, E>.♦

At once, from theorem 8.2, there follows

Corollary 8.3: Every Ei ∈ E of a disconnected hypernet <A, E> is a (0,0)-edge, i.e. is neutral.
♦

Relation nets and hypernets

33

Theorem 8.3: Let Ei ∈ E of any hypernet <A, E>. Suppose that <A, E> is in C1. Then
<A, Ec

i > is in C0 iff every (closed) spanning walk in <A, E> goes via Ei. ♦

Proof: By theorem 6.1 <A, E> is connected iff <A, E> has a (closed) spanning walk. If every
spanning walk goes via Ei then deletion of Ei from <A, E> leaves no spanning walk in
<A, Ec

i >, so <A, Ec
i > is in C0. If <A, Ec

i > is in C0 then every (closed) spanning walk in
<A, E>, which is given to be in C1, must go via Ei. ♦

Definition 8.4: Let Ei ∈ E be an edge of a connected hypernet <A, E>. Ei is called a bridge iff
there exist a, b ∈ A with (a - Ei - b). ♦

Theorem 8.4: Ei ∈ E of a connected hypernet <A, E> is a bridge in <A, E> iff Ei is a (1, 0)-
edge. ♦

Proof: If Ei is a bridge then (a - Ei - b) for some a, b in <A, E>. Thus a and b are joined in
<A, E>, and if we delete Ei from <A, E> then a and b are non-joined in <A, Ec

i > so a and b
lie in different components in <A, Ec

i > and thus <A, Ec
i > is in C0, and hence Ei is a (1, 0)-

edge. If Ei is a (1, 0)-edge then there must exist a, b ∈ A that are joined in <A, E> but non-
joined in <A, Ec

i >, so we must have (a - Ei - b), i.e. Ei is a bridge, in <A, E>. ♦

Theorem 8.5: If Ei ∈ E of a connected hypernet <A, E> is a bridge in <A, E> then every
subset U ⊆ E of edges with Ei ∈ U is a disconnecting set of edges in <A, E>, i.e. <A, E – U>
is disconnected. ♦

The proof follows at once from the fact that Ei ∈ U is a bridge in <A, E>. Furthermore, it
follows from the definition of a bridge and theorem 8.4 that we have

Theorem 8.6: Every strengthening edge, i.e. (1, 0)-edge, in a connected hypernet <A, E> is a
bridge in <A, E>.♦

Theorem 8.7: Let hypernet <A, E> be in C1, and let Ei ∈ E. Then Ei is (1, 1) in <A, E> iff Ei
is not a bridge in <A, E>.♦

Proof: If Ei is a (1, 1)-edge then it is not a bridge in <A, E>, by the definition of a bridge. If Ei
is not a bridge in <A, E> then Ei can only be a (1,1)-edge in <A, E> since it cannot be a (0, 1)-
edge by theorem 8.2. ♦

Theorem 8.8: Let <A, E> be a hypernet with Ei ∈ Q ⊆ E.
(1) If Ei is a bridge in <A, E>, and <A, Q> is in C1, then Ei is a bridge in <A, Q>.
(2) If Ei is strengthening in <A, E> then Ei is strengthening or neutral in <A, Q>.♦

Relation nets and hypernets

34

Proof:
(1) Ei is a bridge in <A, E> but <A, Q> is connected, so deletion of Ei from <A, Q> must

disconnect <A, Q> and so Ei must be a (1, 0)-edge, i.e. a bridge, in <A, Q> since
<A, Q> ∠ <A, E> and both are connected.

(2) Ei is strengthening in <A, E>, i.e. it is a (1, 0)-edge in <A, E>, so it is a bridge in <A, E>.
Now if <A, Q> is in C1 then Ei is strengthening, i.e. a bridge, in <A, Q> by part (i). If
<A, Q> is in C0 then, since there is no (0, 1)-edge in any hypernet, Ei must be neutral, i.e.
a (0, 0)-edge, in <A, Q>. ♦

Corollary 8.4: If Ei ∈ E of a hypernet <A, E> with Ei ∈ Q ⊆ E, and if Ei is a (1, 1)-edge in
<A, Q>, then Ei is a (1, 1)-edge in <A, E>.♦

Proof: Follows since both <A, Q> and <A, E> are in C1, and because Ei cannot be a (0, 1)-
edge in any hypernet, Ei must be a (1, 1)-edge in <A, E>.♦

Corollary 8.5: Let <A, E> be a hypernet with Ei ∈ Q ⊆ E. Let Ei be a (1, 0)-edge in <A, Q>
and let <A, E> be in C1. If whenever Ei is between vertices a and b in <A, Q> there is a path
a  b in <A, E> that is not in <A, Q>, then Ei is neutral in <A, E>. The converse is also true.
Next, if Ei is between a and b in <A, Q>, and there is no path a  b in <A, E> that is not in
<A, Q>, then Ei is a (1, 0)-edge in <A, E>.♦

Proof: Both <A, Q> and <A, E> are in C1, and Ei is a bridge in <A, Q>. Thus there exist a, b
∈ A such that Ei is between a and b in <A, Q>, i.e. every path a  b in <A, Q> goes via Ei.
Now if there is at least one path a  b in <A, E> that does not go via Ei, then Ei is not
between a and b in <A, E> so Ei is a (1, 1)-edge in <A, E>, i.e neutral in <A, E>. If Ei is
neutral in <A, E> but a bridge in <A, Q>, and both <A, E> and <A, Q> are in C1, then there
exist a, b ∈ A such that Ei is not between a and b in <A, E>, i.e. Ei is neutral in <A, E>, but
(a - Ei - b) in <A, Q>. Thus there is at least one path a  b in <A, E> that does not go via Ei
whenever we have (a - Ei - b) in <A, Q>. Finally, if (a - Ei - b) in <A, Q>, i.e. Ei is a bridge in
<A, Q>, and there is no a  b path in <A, Qc >, that is not in <A, Q>, then deletion of Ei
from <A, E> disconnects <A, E>, i.e. Ei is a bridge in <A, E>, because every a  b path in
<A, E> is in <A, Q>, and all such a  b paths go via Ei. ♦

Relation nets and hypernets 35

9. Edge bases

Definition 9.1: Let <A, E> be any hypernet with B ⊆ E. B is called an edge basis of <A, E>
iff for all a, b ∈ A we have a ∈ ℜ(b) iff a ∈ ℜB (b), where ℜB (b) is the reachability function
of <A, B>, and no proper subset of B has this property. ♦

Theorem 9.1: Ei ∈ E of a hypernet <A, E> is between a and b in <A, E>, a, b ∈ A, i.e.
(a - Ei - b), iff Ei belongs to every edge basis of <A, E>.♦

Proof: If (a - E i- b) then we can only get a ∈ ℜ (b) in <A, E> by having Ei in every edge
basis of <A, E>. If Ei belongs to every edge basis of <A, E> then there must exist a, b ∈ A
such that a ∈ ℜ (b) and every path a  b goes via Ei, so (a - Ei - b). ♦

Theorem 9.2: If for a, b ∈ A of a hypernet <A, E> there is a unique path a  b in <A, E>
then {Ei ∈ E a  b goes via Ei}is contained in every edge basis of <A, E>.♦

Proof: Every Ei via which a  b goes is such that (a - Ei - b), so by theorem 9.1 each such Ei
belongs to every edge basis of <A, E>.♦

Theorem 9.3: Let <A, E> be any hypernet and let B ⊆ E. B is an edge basis of <A, E> iff
(1) B preserves reachability in <A, E> and
(2) for every Ei ∈ B there exist a, b ∈ A with (a - Ei - b). ♦

Proof: Preservation of reachability is one part of the definition of an edge basis. We must
show that (2) is equivalent to minimality of B. Suppose that there is an edge Ej ∈ B for which
there exist no a, b ∈ A with (a - Ej - b). Then we can preserve the reachabilty of a from b
without Ej , so we do not need Ej in B, i.e. a proper subset (B - {Ej}) ⊆ B will preserve
reachability, so B is not an edge basis. ♦

Theorem 9.4: B ⊆ E is an edge basis of a connected hypernet <A, E> iff <A, B> is a
minimal connected sub-hypernet of <A, E>, i.e. there is no connected sub-hypernet <A, D>
with D ⊂ B. ♦

Proof: Let B be an edge basis of <A, E>. For every Ei ∈ B there exist a, b ∈ A with
(a - Ei - b), and since <A, E> is connected Ei is a bridge in <A, E>. So we cannot leave any Ei

∈ B out of B because we would then be left with a disconnected hypernet <A, B - { Ei}>.
Thus <A, B> is minimal and it is connected because B preserves reachability in the connected
hypernet <A, E>. Conversely, if <A, B> is a connected sub-hypernet of <A, E> then B must
preserve reachability in <A, E>. Since <A, B> is minimal, B is a minimal set of edges that
preserves reachability in <A, E>, so B is an edge basis of <A, E>.♦

Theorem 9.5: Let <A, E> be any hypernet. If W is a closed spanning walk of minimal length
in <A, E> then Q = { Ei ∈ E W goes via Ei} ⊆ E contains an edge basis of <A, E>.♦

Relation nets and hypernets 36

Proof: If W is a closed spanning walk in <A, E> then <A, E> is connected. If W has minimal
length then Q certainly preserves reachability in <A, E>, so Q must contain at least one edge
basis of <A, E>.♦

Theorem 9.6: To find an edge basis for a hypernet <A, E> we may use the following
constructional scheme. Let D be the set of all vertex adjacencies of all a and b, a ≠ b and
a, b ∈ A. Each such vertex adjacency has one or more Ei ∈ E in l({a, b}), for each of which
we have (a, Ei, b), so {a, b} ⊆ Ei.
(1) Define a bipartite graph with vertex sets V1 and V2 where V1 = {{a, b} ∈℘(A)a and b

are adjacent vertices in <A, E>} = D and V2 = E, and set V = V1 ∪ V2 for that bipartite
graph. Join each {a, b} ∈ V1 to each Ei ∈ V2 = E for which (a, Ei, b), using an unoriented
edge. These are all the vertices and edges of our bipartite graph. Let V2 = E = L(1) and set
L(2) = ∅ and L'(2) = ∅ for future use.

(2) Choose any r ∈ V1 that has degree d(r) = 1 in our bipartite graph. If there are no such
vertices in V1 then proceed to (3) with L'(2) = ∅. If there is such a vertex, addend that
vertex s ∈ V2 that is adjacent to r, in our bipartite graph, to L(2) ⊂ L(1). Next addend the
vertex t ∈ V1 that is adjacent to s in our graph to L'(2) ⊂ V1. Now remove L(2) ∪ L' (2)

from V. Repeat (2) until V1 - L' (2) = ∅, in which case we have found a set of edges in E
that “covers” all the vertex adjacencies in <A, E>, and which contains at least one edge
basis of <A, E>, or until no more vertices with degree 1 remain in V1 - L' (2). In the latter
case, proceed to (3).

(3) Choose any r ∈ V1 - L' (2) that has d(r) = 2 in our graph. If there is no such vertex then
proceed to (4) with L' (2) as it is at the end of step (2). If there is such a vertex r, choose any
s adjacent to r in our graph. Addend s to L(2), and addend the vertex adjacent to s in our
graph to L' (2). Remove L(2) ∪ L' (2) from V. Repeat (3) until V1 - L' (2) = ∅, in which case
we have found a set of edges in E that ”covers” all the vertex adjacencies in <A, E>, and
which contains at least one edge basis of <A, E>, or until no more vertices of degree 2
remain in V1 - L' (2). In the latter case, proceed to (4).

(4) Repeat (3) successively with vertices r ∈ V1 - L' (2) that have degree 3, 4, Eventually
V1 = L' (2) and at that stage L(2) is such that {Ei ∈ E Ei ∈ L(2)} contains at least one edge
basis of <A, E>, and L(2)≤ E.

End of stage 1. ♦

Proof of stage 1: It is clear that L(2) contains at least one edge basis of <A, E> at this stage
because L(2) “covers” every vertex adjacency in <A, E>. That L(2)≤ Efollows from the
fact that every Ei ∈ L(2) “covers” one “new” vertex adjacency. Further, L(2) is a minimal set of
edges that “covers” every vertex adjacency in <A, E>, because each Ei ∈ L(2) ⊆ E covers a
vertex adjacency by Ei. ♦

(5) Examine L(2) as follows. Find an Ei ∈ L(2) that satisfies the following condition: For all

a, b ∈ A, whenever there is a path a  b via Ei in <A, E> there is also a path a  b in
<A, E> that goes via members of a subset of L(2) - {Ei} only. If there is no such Ei ∈ L(2)
then {Ei ∈ EEi ∈ L(2)} is an edge basis of <A, E>. If there is such an Ei, set
L(3) = L(2) - {Ei}. Repeat the test on the members of L(3). Either {Ei ∈ EEi ∈ L(3)} is an
edge basis for <A, E> or we define L(4) = L(3) - {Ei} for some Ei ∈ L(3).

Relation nets and hypernets 37

Proceeding in this way we find an L(n) that is one of the edge bases of <A, E> for some
natural number n with n ≤ E.

End of stage 2. ♦

Proof of stage 2: To show that L(n) ⊆ L(2) is an edge basis for <A, E> we must prove that
Ei ∈ L(2) necessarily belongs to an edge basis of <A, E> iff there exist a, b ∈ A such that there
is at least one path a  b in <A, E> that goes via Ei and that no path a  b in <A, E> goes
via any non-empty subset of L(2) – {Ei}. First, if there is at least one path a  b in <A, E> that
goes via Ei, and no path a  b in <A, E> goes via any non-empty subset of L(2) – {Ei}, then
removal of Ei from L(2) means that a is not reachable from b in <A, L(2) – { Ei}>, so L(2) – {Ei}
does not contain an edge basis of <A, E>. But L(2) does contain at least one edge basis of
<A, E>, so Ei must belong to every edge basis of <A, E> that is contained in L(2). Conversely,
if for all a, b ∈ A such that there is at least one path a  b via Ei ∈ L(2) in <A, E> there is a
path a  b in <A, L(2) - {Ei}> then L2 – {Ei} contains at least one edge basis of <A, E>, and
so Ei does not necessarily belong to an edge basis B ⊆ L(2). Thus we have the correct criterion
for rejecting an Ei ∈ L(2). ♦

To close this section we return to theorem 9.5.

Definition 9.2: Let <A, E> be a connected hypernet. A connectedness preserving set of edges
of <A, E> is a set Q ⊆ E which is such that <A, Q> is connected. ♦

How can we find a minimal connectedness preserving set Q ⊆ E in <A, E>?

Theorem 9.7: Let <A, E> be a connected hypernet. W is a spanning walk of minimal length
in <A, E> iff EW = { Ei ∈ E W goes via Ei} is a minimal set of edges that preserves the
connectednes of <A, E>. ♦

Proof: If W is a spanning walk of minimal length in the connected hypernet <A, E> then
every Ei such that W goes via Ei is needed to preserve the connectedness of <A, E>.
Conversely, if E' ⊆ E is a minimal connectedness preserving set of edges for <A, E> then,
since <A, E> is connected, it has at least one spanning walk, and at least one of these
spanning walks will use all, and only, the members of E'. Since E' is minimal, such a
spanning walk will be of minimal length E'.♦

Relation nets and hypernets 38

10. Deletion of vertices

We open this chapter with a comment in the form of a lemma. Let <A,E> be any hypernet,
and let B ⊆ A. Consider the following sub-hypernets of <A,E>:
• <B, E↑B> - see definition 2.15,
• <A,E(B)> - see definition 4.1, (1),
• <A,E[B]> - see definition 4.1, (2),
• <A,E>[B] - see definition 4.8.
If B = A then all but possibly the second are precisely <A,E>. We see, from the definitions,
that E ↑B ⊆ E (B) ⊆ E [B].

Lemma 10.1:
(1) <A, E (B)> ∠ <A, E [B]>.
(2) <B, E↑B> ∠ <A, E>[B] ∠ <A,E[B]>.♦

Proof:
(1) To construct <A, E [B]> from <A, E(B)> we must add zero or more edges to <A, E(B)>.
(2) First notice that the context hypernet <A, E> [B] has vertex set at least B. To construct

<A, E>[B] from <B, E↑B> we must add zero or more vertices to B, and also zero or
more edges to E ↑ B. Next notice that <A, E> [B] has edge set E [B], so to construct
<A, E [B]> from <A, E> [B] we must add zero or more vertices. ♦

Next we recall definition 4.5 (1): If a, b, c ∈ A of a hypernet <A, E>, then b is said to be
vertex between a and c, written (a - b - c), iff a and c are joined in <A, E> and b ∈ Ei ∈ E for
at least one edge on every path a  c in <A, E>.

Theorem 10.1: Let a, b, c be distinct members of A in a hypernet <A, E>. Then (a - b - c) in
<A, E> iff a and c are joined in <A, E> and non-joined in <A - {b}, E↑(A -{b})>.♦

Proof: If we have (a - b - c), so a and c are joined in <A, E>, and we delete b from <A, E> to
produce <A - {b}, E↑(A - {b})>, then all paths a  c disappear from <A, E>, so a and c are
non-joined in <A - {b}, E↑(A - {b})>. Conversely, if a and c are non-joined in
<A - {b}, E↑(A -{b})> but are joined in <A, E>, then joining the context hypernet of b to
<A - {b}, E↑(A - {b})> to produce <A, E> must add in a set of at least one path a  c, and b
will be between a and c on all those added a  c paths, i.e. we will have (a - b - c) in
<A, E>.♦

Definition 10.1: A vertex b ∈ A of a hypernet <A, E> is called a cut-vertex of <A, E> iff
there exist a, c ∈ A such that (a - b - c) in <A, E>.♦

Theorem 10.2: Let <A, E> be a connected hypernet. The following statements are logically
equivalent for every b ∈ A:
(1) b is a cut-vertex in <A, E>.
(2) <A - {b}, E↑(A -{b})> is disconnected .

Relation nets and hypernets 39

(3) There exists a partition {A1, A2} of A - {b} such that for all a ∈ A1 and all c ∈ A2 we
have (a - b - c) in <A, E>.

(4) There exist a, c ∈ A such that (a-b-c) in <A, E>.♦

Proof:
(1) ⇒ (2): If b is a cut-vertex of <A, E> then there exist a, c ∈ A such that (a - b - c) in

<A, E>. But then a and c are not joined in <A - {b}, E↑(A -{b})> , so they belong to
different components of <A - {b}, E↑(A -{b})>, and hence <A - {b}, E↑(A -{b})> is
disconnected.

(2) ⇒ (3): <A - {b}, E↑(A -{b})> is disconnected. Let A1 ⊂ A be the vertex set of a
component of <A - {b}, E↑(A -{b})> and A2 be the vertex set of any other component of
this hypernet. Let a ∈ A1 and c ∈ A2. Since <A - {b}, E↑(A -{b})> is disconnected there
is no path a – c in <A - {b}, E↑(A -{b})> , but since <A, E> is connected there is at least
one path a – c in <A, E>, and every such path has b vertex between a and c in <A, E>, so
(a - b - c) in <A, E>.

(3) ⇒ (4): Follows at once from (3).
(4) ⇒ (1): Follows at once from the definition of a cut vertex. ♦

Corollary 10.1: Vertex b ∈ A of a connected hypernet <A, E> is a cut-vertex of <A, E> iff
<A - {b}, E↑(A -{b})> has more components than <A, E>.♦

Proof : Follows from part (2) of theorem 10.2. ♦

Definition 10.2: Vertex b ∈ A of a hypernet <A, E> is called an (x, y)- vertex of <A, E> iff
<A, E> is in Cx and <A - {b}, E↑(A -{b})> is in Cy. b is called an strengthening vertex iff
x > y, a neutral vertex iff x = y, and a weakening vertex iff x < y. ♦

Theorem 10.3: If hypernet <A, E> is in Cx and hypernet <A, Ec(a)> is in Cy, where
Ec(a) = E – E(a), then x ≥ y. The theorem also holds for E[a]. ♦

Proof: Follows at once from the fact that deleting the edges E(a) ⊆ E, i.e. the edges in the
name of a, from <A, E> to produce <A, Ec(a)> cannot increase the connectedness class of
<A, E> as there are no (0,1)- edges in any hypernet. Thus x ≥ y. (See theorem 8.2). ♦

Note in passing that there can exist weakening vertices, i.e. (0, 1)-vertices, in a hypernet.
Consider the following simple example

a) <A, E> in C0:
 a {a,c} c b

b) <A - {b}, E↑(A -{b})> in C1:

 a {a,c} c

Relation nets and hypernets 40

Theorem 10.4:
(1) If b ∈ A is a (x, y)-vertex in <A, Ec(b)> then it is a (z, y)-vertex in <A, E> with z ≥ x.
(2) If b ∈ A is a (z, y)-vertex in <A, E> then it is a (x, y)-vertex in <A, Ec(b)> with z ≥ x. ♦

Proof: First notice that deleting b from <A, Ec(b)> yields <A - {b}, Ec [b]>, as does deleting
b from <A, E>, and we are given that <A - {b}, Ec [b]> is in Cy.
(1) Starting with <A - {b}, Ec[b]> we get <A, Ec(b)> by adding b and all the edges of

Ec(b) - E [b]. The result <A, Ec(b) > is in Cx. To get <A, E> from <A, Ec(b)> we must add
all the edges of E – Ec (b), i.e. all the edges of E(b), and we get <A, E> which is in Cz.
Now we cannot have z < x because adding edges to a hypernet can only strengthen its
connectedness or leave it the same, so z ≥ x.

(2) Starting with <A - {b}, Ec [b]>, which is in Cy, we get <A, E> by adding b and all the
edges of E[b], and <A, E> is in Cz. Now to get <A, Ec(b)> from <A, E> we must delete all
the edges of E(b). Let the connectedness class of <A, Ec(b)> be Cx. Then by theorem 10.3,
z ≥ x. ♦

Corollary 10.2: For a hypernet <A, E> with b ∈ A, the particular cases of the theorem are:
a) b is x, y in <A, Ec(b)> ⇒ b is (z, y) in <A, E> with z ≥ x
 1, 1 1, 1
 1, 0 1, 0
 0, 1 1, 1 or 0, 1
 0, 0 1, 0 or 0, 0
b) b is (z, y) in <A, E> ⇒ b is x, y in <A, Ec(b)> with z ≥ x.
 1, 1 1, 1 or 0, 1
 1, 0 1, 0 or 0, 0
 0, 1 0,1
 0, 0 0, 0 ♦

Theorem 10.5: Let B ⊆ A be an non-empty set for a hypernet <A, E>, and let B' = A – B.
Further let E(B) = (∪ E(b) for b ∈ B) ⊆ E and E [B] = (∪ E [b] for b ∈ B) ⊆ E. Then we
have
(1) Ec(B) = (∩ Ec (b) for b ∈ B) and Ec [B] = (∩ Ec [b] for b ∈ B).
(2) <A-B, E↑(A-B)> =< B', E↑(B')> is a sub-hypernet of <A - {b}, E↑(A-{b})> for every

b ∈ B.
(3) <A, Ec(B) > is a sub-hypernet of <A, Ec (b)> for every b ∈ B.
(4) <B', E [B′]> = ∩ <A - {b}, E [A - {b}]> for b ∈ B, so the order of the deletion of the

b ∈ B ⊆ A does not affect the result. ♦

Proof:
(2) and (3) follow at once because it is less “damaging” to <A, E> to remove one b ∈ B from

<A, E> than it is to delete all the members of B from <A, E>.
(4) We consider the case in which B = {a, b} ⊆ A since it is obvious if B = {a}, a ∈ A. First,

<B', E [B']> = <A - {a, b}, E [A-{a, b}]>. Next we examine
<A - {a}, E [A - {a}]> ∩ <A - {b}, E [A-{b}]>. Its underlying set is

Relation nets and hypernets 41

(A - {a}) ∩ (A - {b}) = (A - {a, b}). Its set of edges is E [A-{a}] ∩ (E [A-{b}], i.e. all the
edges in E that do not involve a ∈ A and do not involve b ∈ A, i.e E [A-{a, b}].Thus
<A - B, E [A - B]> = <B', E [B'] > = ∩ <A – {b}, E [A – {b}]> in this case, and since
<A - {b}, E [A - {b}], over all b ∈ B in this case, and since ∩ and ∪ are commutative, the
order in which the members of B are deleted does not matter. ♦

Here follow some observations that are all relatively easy to prove. Consider a hypernet
<A, E> with a, b ∈ A and a ≠ b, and the list
 <A, E>, <A - {a}, E↑(A-{a})>,
 <A - {b}, E↑(A - {b})>,
 <A - {a, b}, E↑(A - {a, b})>,
 <A, Ec(a)>, <A, Ec(b)>, <A, Ec({a, b}) >
of sub-hypernets of <A, E>. Then
(1) Let s ∈ A - {a, b}. d(s) in <A, E> is ≥ its value in all the other members of the list. Its

value in <A, Ec(a)> is ≥ its value in <A - {a}, E↑(A - {a})>, in <A - b}, E↑(A - {b})>, in
<A - {a, b}, E↑(A - {a, b})> and in <A, Ec (a)>, <A, Ec (b)> and <A, Ec ({a, b})>. Its
value in <A - {a}, E↑(A - {a})> is ≥ its value in <A - {a, b}, E↑(A - {a, b})>, and its
value in <A, Ec ({a, b})> is ≥ its value in <A - {a, b}, E↑(A - {a, b})>. Further, its values
in <A, Ec (a)>, <A, Ec (b)> and <A,Ec({a.b})> are ≥ its values in <A, Ec [a]>, <A, Ec[b]>
and <A, E c[{a, b}]> respectively.

(2) Vertex adjacency and edge adjacency in <A - {a, b}, E↑(A - {a, b})> ensures these
adjacencies in all the other members of the list.

(3) For all s, t ∈ (A - {a, b}) the length of the shortest s  t path in
<A - {a, b}, E↑(A-{a, b})> is ≥ the length of the shortest s  t path in each of the other
members of the list.

(4) If <A, Ec({a, b}) > is connected then so are <A, Ec(a) > , <A, Ec(b) > and <A, E>. Every
component of <A, Ec({a, b}) > is a sub-hypernet of a component of <A, E>.

(5) Every vertex basis of <A, Ec({a, b}) > contains a vertex basis of <A, Ec(a)>, of
<A, Ec(b)>, and of <A, E>. ♦

Relation nets and hypernets 42

11. Hypertrees

Definition 11.1: A hypernet <A, ET> is called a hypertree iff <A, ET> is minimally connected
in the sense that deletion of any Ei ∈ ET will disconnect <A, ET>.♦

As a direct consequence of the definition we see that
• Every hypertree is connected.
• A hypertree has no circuits, where, for the purposes of this chapter only, the term circuit

includes closed paths of length 2.
• For every a, b ∈ A of a hypertree <A, ET>, either λ({a, b}) = ∅ or λ({a, b}) is a singleton.
• For every a, b ∈ A of a hypertree <A, ET>, there exists one and only one path a  b in

<A, ET>.

Theorem 11.1: The following statements are logically equivalent:
(1) T = <A, ET> is a hypertree.
(2) T is connected and has no circuits.
(3) T is connected and has A- 1 edges each of which labels a distinct vertex adjacency.
(4) T has no circuits, and has A - 1 vertex adjacencies each of which has a singleton label.
(5) For all a, b ∈ A, there is precisely one path a  b in T. ♦

Proof:
(1) ⇒ (2): If T is a hypertree then it is minimally connected, so it is connected. Assume that

there is a circuit in T. Then deletion of any edge in this circuit cannot disconnect T, so T is
not minimally connected. It follows that T has no circuits.

(2) ⇒ (3): If T is connected then it has at least A - 1 edges, and thus vertex adjacencies
with at least a singleton label on each. If T has more than A - 1 edges then it must have
at least one circuit. It follows that T has precisely A - 1 edges. If two of these edges
label any one vertex adjacency in T then T has a circuit. Since T has no circuits by (ii),
each edge in T must belong to a singleton label on a vertex adjacency.

(3) ⇒ (4): By the argument above, T can have no circuits as it is connected and has A - 1
edges. Since each edge labels a single vertex adjacency there are A - 1 vertex
adjacencies, and each of these has a singleton label consisting of a unique edge, though we
may have edges that are equal sets of course, because T has no circuits.

(4) ⇒ (5): T has no circuits, and has A - 1 vertex adjacencies each with a singleton label. It
follows that T is connected, so for a, b ∈ A there is at least one path a  b in T. Suppose
there was another distinct path between a and b in T. Then T would have at least one
circuit. It follows that for all a, b ∈ A there is a unique path a  b in T.

(5) ⇒ (1): T has precisely one path a  b for all a, b ∈ A, so T is connected. Deletion of any
edge on such a path will disconnect T, so T is minimally connected, and hence T is a
hypertree. ♦

Definition 11.2: A vertex a ∈ A of a hypertree T = <A, ET> is called a pendant of T iff
d(a) = 1. Any a ∈ A that is not a pendant has d(a) ≥ 2 and is called an internal vertex of T. ♦

Relation nets and hypernets 43

Since a tree T = <A, ET> has A - 1 vertex adjacencies, each with a singleton label,
summing over all a ∈ A yields Σ d(a) = 2 (A - 1), and this number is divided among the
A vertices in such a way that no a ∈ A has d(a) = 0. If A ≥ 2, so that the sum of the
degrees is ≥ 2, then T has at least two pendants. Deletion of any internal vertex from any
hypertree T will disconnect T. ♦

Theorem 11.2: An element a ∈ A of a hypertree T = <A, ET> is a pendant of T iff there is
precisely one edge Ei ∈ ET with Ei = {a} and precisely one edge Ej ∈ ET with {a} ⊂ Ej. ♦

Proof: If a ∈ A is a pendant then we must have a single edge Ej ∈ ET with {a} ⊂ Ej, and Ej
must be adjacent to some Ei ∈ ET by a. This means that we must have Ei = {a} so that d(a) = 1
(since Ei = {a} does not contribute an arc to <A, ET>: Ei is a dummy edge that is not counted
in ET). Further, there can be no other Ek ∈ ET that is adjacent to any other edge than Ei
because then d(a) would not be 1 and so a would not be a pendant of T. Conversely, if we
have precisely one Ei ∈ ET with Ei = {a} and precisely one edge Ej ∈ ET with {a} ⊂ Ej then it
is clear that d(a) = 1, so a is a pendant of T. ♦

For every pendant a ∈ A of a hypertree T = <A, ET> we thus have a single singleton edge
Ei ∈ ET with Ei = {a}, not counted in ET.

Theorem 11.3: Deletion of a pendant a ∈ A from a hypertree T = <A, ET> will disconnect T
iff there is at least one vertex adjacency (c, Ei , d), c, d ∈ A and Ei ∈ ET , with a ≠ c and a ≠ d
and a ∈ (Ei – {c, d}), and d(a) = 1.♦

Proof: If only a pendant a is deleted from T then this will not disconnect T, so if this deletion
is to disconnect T then deletion of a must delete at least one edge not incident with a from T.
Conversely, if a ∈ A and a ∈ (Ei – {c, d}) for some (c, Ei, d) in T then deletion of a from T
will disconnect T, and since d(a) = 1, a is a pendant. ♦

Definition 11.3: Given any connected hypernet <A, E>, T = <A, ET> with ET ⊆ E is said to
be a spanning hypertree of <A, E> iff T is a minimally connected sub-hypernet of <A, E>.♦

Theorem 11.4: Every connected hypernet <A, E> has at least one spanning hypertree. ♦

Proof: <A, E> is connected. By part (ii) of theorem 11.1, if <A, E> has no circuits then it is a
hypertree and is of course spanning. If <A, E> has a circuit, delete one edge on that circuit
and test the result. Either it is connected and has no circuits, so it is a spanning hypertree, or it
is connected and has a circuit. In the latter case, delete one edge on that circuit and test the
result. Either it is connected and has no circuits, so it is a spanning hypertree, or it is
connected and has a circuit. Proceeding in this manner we produce a spanning hypertree that
is a sub-hypernet of <A, E>.♦

Let <A, E> be a hypernet and let T = <A, ET> be a spanning hypertree of <A, E>. The
ET= A- 1 edges, not counting the singleton dummy pendant edges, are called branches
of <A, E> with respect to T, and the remaining | E – ET | edges of <A, E> are called chords

Relation nets and hypernets 44

of <A, E> with respect to T. Since any hypernet <A, E> is such that A is partitioned by the
components of <A, E>, and since each of these components has at least one spanning
hypertree , <A, E> can be spanned by a forest of k spanning hypertrees where k is the number
of components of <A, E>, and of course k = 1 iff <A, E> is connected.

Consider a connected hypernet <A, E> and a spanning hypertree T = <A, ET> of <A, E>.
Now there may be another spanning hypertree T´ = <A, E´T> of <A, E> that differs from T
only inasmuch as for at least one vertex adjacency (a, Ei , b) in T, T´ has in it the vertex
adjacency (a, Ej , b) with a, b ∈ A and Ei, Ej ∈ E, Ei ∈ ET , Ej ∈ E´T , and Ei ≠ Ej. This leads to
the following definition.

Definition 11.4: Let T = <A, ET> be a spanning hypertree of a connected hypernet <A, E>.
The join of all the spanning hypertrees of <A, E> that have precisely the same vertex
adjacencies {a, b}, a, b ∈ A, as T but are pairwise different in at least one vertex adjacency by
virtue of containing that vertex adjacency by an edge Ej ∈ E different from the edge Ei ∈ ET
by which the same two vertices are adjacent in T, is called a spinney of <A, E>. ♦

A spinney has no circuits.

Theorem 11.5: Let <A, E> be a connected hypernet. A sub-hypernet <A, ET>, ET ⊆ E, of
<A, E> is a spanning hypertree of <A, E> iff, for all a, b ∈ A, transfering any
Ei ∈ (λ({a, b}) – λT({a, b})) to λT({a, b}), where λT is the labelling function of T, yields a
connected spanning sub-hypernet <A, (ET ∪ {Ei})> of <A, E> such that <A, (ET ∪ {Ei})> has
precisely one closed path of length 2. ♦

Proof: If transferring any edge from (λ({a, b}) – λT({a, b})) to λT({a, b}) yields a spanning
sub-hypernet of <A, E> that has precisely one closed path of length 2 then <A, ET> is
minimally connected and must be a spanning hypertree of <A, E>. Conversely, if <A, ET> is a
spanning hypertree of <A, E> then transferring precisely one edge Ei from
(λ({a, b}) – λT({a, b})) to λT({a, b}) for any a, b ∈ A that are vertex adjacent in <A, ET> will
yield at least one closed path, with vertices a and b in <A, (ET ∪ {Ei})>, since <A, ET> is
minimally connected. The transfer cannot yield more than one such closed path unless
λT({a, b}) > 1 before the transfer, which is impossible since <A, ET> is a hypertree and
thus λT({a, b}) = 1. ♦

Definition 11.5: Let <A, E> be a connected hypernet and let T = <A, ET> be a spanning
hypertree of <A, E>. A closed path formed by transferring precisely one edge Ei from
(E – ET) to ET to produce <A, (ET ∪ {Ei})> is called a fundamental circuit of <A, E> with
respect to T. The number of chords, and hence the number of fundamental circuits, of a
connected hypernet <A, E> is the same with respect to every spanning hypertree <A, ET> of
<A, E>. This number is called the cyclomatic number ν(<A, E>) of <A, E>, and is given by
 ν(<A, E>) = E - (A - 1) = (E – ET) = E - ET.♦

We will not pursue a theory of circuits in this report.

Relation nets and hypernets 45

It is clear that closed paths of length 2, not regarded as circuits in hypernets in general, are a
source of some embarrassment when dealing with circuits in a hypernet. We will see, in later
sections, that in certain hypernets the problem effectively disappears.

Relation nets and hypernets 46

12. Connectivity and cut-sets

Definition 12.1: Let <A, E> be a connected hypernet. R ⊆ E is an edge cut-set of <A, E> iff
<A, (E – R)> is a disconnected sub-hypernet of <A, E> and no proper subset of R has this
property. V ⊆ A is a vertex cut-set of <A, E> iff <A – V, E↑(A-V)> = <Vc, E↑ Vc > is a
disconnected sub-hypernet of <A, E> and no proper subset of V has this property. ♦

Observations : Let <A, E> be a connected hypernet.
(1) {a} ⊆ A is a vertex cut-set of <A, E> iff a is a cut-vertex in <A, E>.
(2) If R ⊆ E is an edge cut-set of <A, E> and every Ei ∈ R is such that a ∈ Ei, a ∈ A, but is

not adjacent with any vertex by Ei , then a is a cut-vertex in <A, E>.
(3) If we partition A into two sets A1 and A2 then any minimal set of edges of <A, E> the

deletion of which cuts all the paths a1  a2 with a1 ∈ A1 and a2 ∈ A2 is an edge cut-set of
<A, E>. Any minimal set of vertices of <A, E> with the same property is a vertex cut-set
of <A, E>.

(4) T = <A, ET> is a hypertree iff every Ei ∈ ET constitutes an edge cut-set {Ei} of T. Further,
{c} ⊆ A is a vertex cut-set of <A, ET>, i.e. c is a cut-vertex of T, iff c is an internal vertex
of T or c is such that c ∈ Ei – {a, b} for at least one vertex adjacency (a, Ei , b) in T with
a, b ∈ A and c ≠ a and c ≠ b and Ei ∈ ET . ♦

Definition 12.2: Let <A, E> be a connected hypernet. The smallest number of vertices that
must be deleted from <A, E> to disconnect it is called the vertex connectivity vc <A, E> of
<A, E>, and the smallest number of edges that must be deleted to disconnect <A, E> is called
the edge connectivity ec <A, E> of <A, E>. ♦

Recall that deleting a vertex adjacency (a, Ei , b) from a hypernet <A, E> means to delete Ei
from λ({a, b}), and that this does not delete the arc between a and b unless λ({a, b}) = {Ei}.

Theorem 12.1: Let <A, E> be a connected hypernet. Then
vc <A, E> ≤ ec <A, E> = minimum degree min d(a) of all the a ∈ A in <A, E> when loops
are disregarded. ♦

Proof: We can clearly disconnect <A, E> by deleting min d(a) edges from <A, E>, thereby
cutting off vertex a. Deletion of these edges Ei can be achieved by deleting one vertex from
each of these edges Ei other than vertices adjacent by that Ei (one of which is of course a). It
follows that, since these vertices need not all be distinct for distinct edges,
vc <A, E> ≤ ec <A, E>. It is clear that ec <A, E> = min d(a). ♦

Theorem 12.2: R ⊆ E is an edge cut-set of a spinney S = <A, E> iff there is at least one pair
{a, b} ⊆ A for which R = λ({a, b}). ♦

Proof: If R = λ({a, b}) then deletion of R from S will disconnect S and no proper subset of R
will ”cut” a from b, so R is an edge cut-set of S. If R is an edge cut-set of S then deletion of R

Relation nets and hypernets 47

from S must ”cut” the arc between two vertices a, b ∈ A in S. It follows that R = λ({a, b})
and no proper subset of R will ”cut” a from b. ♦

Theorem 12.3: Every edge cut-set R ⊆ E of a connected hypernet <A, E> is such that at least
one edge from every spanning hypertree of <A, E> belongs to R. ♦

Proof: If deletion of R from <A, E> does not entail deletion of at least one edge from each
spanning hypertree of <A, E> then there will remain in <A, E – R> at least one spanning
hypertree of <A, E>. But then <A, E – R> is connected, so R cannot be an edge cut-set of
<A, E>. It follows that deletion of an edge cut-set from <A, E> ”cuts” every spanning
hypertree of <A, E>.♦

Theorem 12.4: Every closed path of length > 1, in a connected hypernet <A, E>, has an even
number of edges in common with every edge cut-set of <A, E>.♦

Proof: Let R ⊆ E be an edge cut-set of <A, E>. Deletion of R from <A, E> will partition A
into two subsets, A1 and A2, in <A, E – R> in such a way that for any a1 ∈ A1 and any a2 ∈ A2
there is no path a1  a2 in <A, E – R> because there is at least one member of R on every
such path. Consider any closed path P in <A, E>. If all the vertices that lie on this closed path
belong to A1, or if they all belong to A2, then R has zero edges in common with that path. If
some of the vertices on P belong to A1 and others to A2, then P must cross back and forth
between A1 and A2. Start tracing P at a1 ∈ A1 for example. P must end at a1, so, in tracing P,
every time we move to A2 with an edge on P we must move back to A1 with another edge on
P (since P is a path). Thus P shares an even number of edges with R. ♦

Definition 12.3: An edge cut-set R of a connected hypernet <A, E> is said to be a
fundamental edge cut-set with respect to a spanning hypertree T = <A, ET> of <A, E> iff one
and only one edge of T belongs to R. ♦

The number of fundamental edge cut-sets of <A, E> with respect to T is (A-1), regardless
of which spanning tree T of <A, E> is chosen. Recall that the pendants of a hypertree (or
spinney) T = <A, ET> each belong to a singleton edge, but such edges are dummy edges that
allow us to have a path incident with a pendant and are not counted among the edges of ET .

Theorem12.5: With respect to a given spanning hypertree T = <A, ET> of a connected
hypernet <A, E>, a chord edge of <A, E> that determines a fundamental circuit P of <A, E>,
when transfered to T, belongs to every fundamental edge cut-set of <A, E> associated with
those branches of <A, E>, i.e. edges of T, that belong to P, and that chord belongs to no other
fundamental circuit, in <A, E>, with respect to T. ♦

Proof: Consider the branches of <A, E>, with respect to T, that lie in P. Associated with each
of these branches there is a fundament edge cut-set of <A, E> that has the relevant branch as a
member. Now the chord presents, with other branches in P, a “way round” the branch that
determines this fundamental edge cut-set, so to disconnect <A, E> our chord must belong to
this fundamental edge cut–set. Next, suppose that our chord belongs to both fundamental
circuit P and to another distinct fundamental circuit P`, both in <A, E> and with respect to T.

Relation nets and hypernets 48

Now our chord then lies on both P and P`, and all the other edges in P and P` are branches of
<A, E> with respect to the same spanning hypertree T = <A, ET>, i.e. they are members of ET .
Now we can move from one end vertex of our chord through P to the other end vertex of our
chord, and then back through P` to where we started. Then we have traced a walk that is either
a closed path, or which determines more than one closed path, using only edges in ET . This
contradicts the fact that T = <A, ET> is a given hypertree in <A, E>.♦

Theorem12.6: A set R ⊆ E is an edge cut-set of a connected hypernet <A, E> iff <A, E – R>
= <A, Rc> is a maximal disconnected spanning sub-hypernet of <A, E> in the sense that for
all R` with Rc ⊆ R` ⊆ E, <A, R`> is a connected hypernet. ♦

Proof: If R ⊆ E is an edge cut-set of <A, E> then <A, Rc> is a disconnected sub-hypernet of
<A, E>, and no Rs ⊂ R has this property, so if R` is such that Rc ⊂ R` then <A, R`> is
connected, i.e. <A, Rc > is a maximal disconnected spanning sub-hypernet of <A, E>.
Conversely, if <A, Rc > is a maximal disconnected spanning sub-hypernet of <A, E> then
deletion of R from <A, E> disconnects <A, E>, and deletion of any R' ⊂ R will not
disconnect <A, E>, i.e. <A, (R')c > is connected. It follows that no proper subset of R will,
when deleted, disconnect <A, E>, so R is an edge cut-set of <A, E>.♦

Constructional Scheme 12.1: Let R ⊆ E be any disconnecting set of edges of a connected
hypernet <A, E>. To find an edge cut-set included in R we may proceed as follows.
(1) Find any Ek ∈ R such that Ek is a bridge in <A, E>. Then {Ek} ⊆ R is an edge cut-set of

<A, E>. If there is no such member of R, proceed to (2).
(2) Choose any Ek ∈ R and form <A, E – {Ek}>. Find any El ∈ R – {Ek} such that El is a

bridge in <A, E – {Ek}>. Then {Ek, El} ⊆ R is an edge cut-set of <A, E>. If there is no
such member of R – {Ek}, set Rt

1 = {Ek} and proceed to (3).
(3) Choose any Em ∈ R - Rt

1 and set Rt
2 = {Em} ∪ Rt

1. Form <A, E - Rt
2 > (which is

<A, E – {Em, Ek}> here). Find any El ∈ R - Rt
2 such that El is a bridge in <A, E - Rt

2 >.
Then Rt

2 ∪ {El} is an edge cut-set of <A, E>. If there is no such member of R - Rt
2, repeat

(3) defining Rt
m = {El} ∪ Rt

m-1, m = 3, 4, ..., successively. Eventually we find an edge cut-
set Rt

n, or we find Rt
n = R, for some n, in which case R is an edge cut-set of <A, E>.♦

The scheme works because we know that R is a disconnecting set so there must be an edge
cut-set included in R, and we keep “weakening” <A, E> by taking out members of R from
<A, E> successively until we find, in R, a bridge of <A, E - Rt

m> in which case
Rt

m ∪ {bridge} is an edge cut-set of <A, E>, or we do not find a bridge in any step in which
case R is an edge cut-set of <A, E>.

Theorem 12.7: B ⊆ A is a vertex cut-set of a connected hypernet <A, E> iff B is a minimal
set of vertices such that for every spinney S of <A, E> there is at least one internal vertex of S
that belongs to B, or there is at least one vertex adjacency {a, b} in S such that a ∉ B and
b ∉ B and every Ei ∈ λ({a, b}) has (Ei – {a, b}) ∩ B ≠ ∅, or both. ♦

Proof: Suppose that B is a vertex cut-set. Then if the condition does not hold deletion of B
from <A, E> will leave at least one hypertree T ∠ <A, E>, so <A – B, E ↑(A – B) will be

Relation nets and hypernets 49

connected, contradicting the fact that B is a vertex cut-set of <A, E>. Conversely, if the
condition holds then deletion of B from <A, E> disconnects every spinney S ∠ <A, E>, and
thus also <A, E>. Since B is minimal, B is a vertex cut-set of <A, E>.♦

Theorem 12.8: Let <A, E> be a connected hypernet and B ⊆ A be a vertex cut-set of <A, E>,
and let S be any spinney in <A, E>.
(1) Suppose that <A, E – E↑B> is connected, and let T = <A, ET> be a spanning hypertree in

S. T = <A, ET> is a spanning hypertree of <A, E – E↑B> iff every Ei ∈ ET is such that
Ei ∩ B = ∅.

(2) If T = <A, ET> is a spanning hypertree in <A, E – E(B) > then at least one internal vertex
of S belongs to B. ♦

Proof: Recall that E↑B = {Ei ∈ E  Ei ⊆ B ≠ ∅}.
(1) If T is a spanning hypertree of <A, E – E↑B > then every Ei ∈ ET has Ei ∩ B because if

this were not so then Ei would not be a member of E – E↑B but would belong to E↑B and
could thus not belong to a spanning hypertree in <A, E – E↑B >. Conversely, if every
Ei ∈ ET has Ei ∩ B = ∅ then every Ei ∈ ET belongs to E – E↑B, so deletion of E↑B ⊆ E
from <A, B> does not affect T = <A, ET>. T is a spanning hypertree of S ∠ <A, E>, so T
is a spanning hypertree of <A, E – E↑B>.

(2) Recall that E(B) ⊆ E, B ⊆A, of <A, E> is the set E(B) = {Ei ∈ E (a, Ei, b), a, b ∈ A and
(Ei – {a, b}) ∩ B ≠ ∅}, i.e. the set of all edges in the name of at least one member of B.
Now T = <A, ET> is a spanning hypertree in <A, E – E(B)>, and B is a vertex cut-set of
<A, E> so <A – B, E↑(A – B)> is disconnected. Thus deletion of all the edges of E(B)
leaves <A, E – E(B)> connected, so <A, E – E(B)> has a spanning hypertree T, but
deletion of B from <A, E> leaves <A – B, E↑(A – B)> disconnected, and this can only
happen if B contains at least one internal vertex of T so that deletion of B from <A, E>
will disconnect <A, E> but deletion of E(B) from <A, E> will not disconnect <A, E>.♦

Corollary 12.1: Let T be a spanning hypertree of a connected hypernet <A, E>, and let
<A, E> be disconnected by deleting the vertex cut-set B from <A, E> by virtue of deletion of
internal vertices of T only. Then T is a spanning hypertree of <A, E – E(B)>. ♦

Proof: follows at once from the fact that deletion of E(B), only, from <A, E> will not
disconnect <A, E> but deletion of B, and thus E(B), and in fact E [B], from <A, E> will
indeed disconnect <A, E> because at least one internal vertex of T belongs to B. ♦

Theorem 12.9: Let B ⊆ A be a vertex cut-set of a connected hypernet <A, E>. Then
<A, E – E(B)> is disconnected iff every spinney S of <A, E> has at least one vertex adjacency
{a, b}, a, b ∈ A, such that every Ei ∈ λS({a, b}) has (Ei – {a, b}) ∩ B ≠ ∅, where λS is the
labelling function of S. ♦

Proof: If <A, E – E(B)> is disconnected, by deleting only E(B) from <A, E>, then every
spinney S of <A, E> is disconnected by the deletion of E(B) from <A, E>. To do this, deletion
of E(B) from any spinney S must involve deletion of at least one arc in S. Thus there must be
an {a, b} in S such that λS({a, b}) ⊆ E(B), so for each Ei ∈ λS({a, b}) we must have

Relation nets and hypernets 50

(Ei – {a, b}) ∩ B ≠ ∅. Conversely, if every spinney S in <A, E> has at least one vertex
adjacency {a, b} such that every Ei ∈ λS({a, b}) has (Ei – {a, b}) ∩ B ≠ ∅, i.e.
λS({a, b}) ⊆ E(B), then <A, E – E(B)> is disconnected. ♦

Theorem 12.10: If a ∈ A is a cut-vertex of a connected hypernet <A, E>, but not of
<A, E – E(a)>, then
E(a) = {Ei ∈ E  (c, Ei, d) is a vertex adjacency by Ei in <A, E> and a ∈ (Ei – {c, d})}
includes an edge cut-set of <A, E>.♦

Proof: Deletion of a ∈ A from <A, E> leaves us with a disconnected hypernet
<A – {a}, E↑(A – {a})>, but deletion of a from <A, E – E(a)> leaves it connected, i.e.
<A – {a}, E – E(a)> is connected. Note that E – E(a) is the set of all the edges of E that are
not in the name of a, while E↑(A – {a}) is the set of all edges that do not have a in them, so
E↑(A – {a}) ⊆ (E – E(a)). In theorem 10.4 on deletion of vertices we showed that if a is a cut-
vertex of <A, E>, i.e. is (1, 0) in <A, E>, then it is (1, 0) or (0, 0) in <A, (E(a))c> =
<A, E – E(a)>. Now a is not a cut-vertex in <A, E – E(a)>, so it is not (1, 0) in <A, E – E(a)>
and must thus be (0, 0). Thus <A, E – E(a)> is disconnected, so E(a) must be a disconnecting
set of edges in <A, E> and hence E(a) includes an edge cut-set of <A, E>. ♦

Finally, we notice that if <A,E> is connected but <A,E – E (a)> is disconnected, then a is a cut-vertex of <A,E>.
The contrapositive is: If a is not a cut-vertex of <A,E> then

<A, E – E (a) > is connected.

Relation nets and hypernets 51

13. Blocks

Definition 13.1: By a block <B, G> of a hypernet <A, E> we mean a maximal connected sub-
hypernet, of <A, E>, that has no cut-vertex. ♦

Any block of <A, E> is a sub-hypernet of a component of <A, E>.

Theorem 13.1: If <B, R> is a block of a hypernet <A, R> then <B, R> is a sub-hypernet of
some block of a hypernet <A, E> with R ⊆ E. ♦

Proof: If <B, R> is a block of <A, R> then it is a sub-hypernet of <A, E>. Since <B, R> must
then be a connected sub-hypernet, of <A, E>, with no cut-vertex, it is a sub-hypernet of some
maximal connected sub-hypernet, of <A, E>, that has no cut-vertex, so <B, R> is a sub-
hypernet of some block of <A, E>.♦

Theorem 13.2: Let <B, G> be a block of a hypernet <A, E>, with B≥ 3. Then
(1) there is no b ∈ B such that <B, G – G(b)> or <B – {b}, G↑(B – {b})> is in C0, and
(2) there is no bridge in <B, G>, and
(3) if every Ei ∈ G has Ei > 2 then there is no bridge in <B, G>. ♦

Proof:
(1) <B, G> is connected. If there were some b ∈ B such that <B, G – G(b)> or <B – {b},

G↑(B – {b})> were disconnected then b would be a cut-vertex of <B, G>, so <B, G>
would not be a block.

(2) Suppose that Ei ∈ G is a bridge in <B, G>. Then there is a vertex adjacency (a, Ei, b),
a, b ∈ B, that provides the only path between a and b in <B, G>. Since <B, G> is
connected, and B≥ 3, it follows that at least one of a and b is a cut-vertex of <B, G>.
This contradicts the given fact that <B, G> is a block.

(3) If every Ei ∈ G of the block <B, G> has Ei> 2, then consider a vertex adjacency
(a, Ei, b), a, b ∈ Ei ∈ G. If Ei is a bridge in <B, G> then deletion of any c ∈ (Ei – {a, b})
will disconnect <B, G>, so c would be a cut-vertex of <B, G>, which is impossible. It
follows that there is no bridge in <B, G>. ♦

Corollary 13.1:
(1) If a and b are distinct vertices of <B, G> then, for all c ∈ B, c ≠ a and c ≠ b, there is at

least one path a  b that does not go via any Ei ∈ G for which c ∈ Ei.
(2) If Ei ∈ G is a bridge in <B, G> then Ei = 2.
(3) For all a ∈ B, there are no two distinct vertices b, c ∈ B such that every path b  c in

<B, G> goes via some vertex adjacency (d, Ei, f) with a ∈(Ei – {d, f}).♦

Proof:
(1) Follows from the fact that c is not a cut-vertex of <B, G>, so <B, G – G(c)> is connected.

Relation nets and hypernets 52

(2) If Ei ∈ G withEi > 2 were a bridge in <B, G> then, given any vertex adjacency
(a, Ei, b) by Ei in <B, G>, a, b ∈ B, each c ∈ B with c ∈ (Ei – {a, b}) would be a cut-
vertex of <B, G>.

(3) If there were such an a ∈ B it would be a cut-vertex of the block <B, G>.♦

Theorem 13.3: The following assertions are logically equivalent:
(1) <B, G> is a block, of hypernet <A, E>, with B≥ 3.
(2) For all distinct a, b, c ∈ B of a hypernet <B, G> ∠ <A, E> there exists at least one path

a – c, in <B, G>, which is such that b is not between a and c on a – c, and <B, G> is a
maximal such sub-hypernet.

(3) For all distinct a, b, c ∈ B of a block <B, G> ∠ <A, E>, there exists a path P1 joining
 a and c in <B, G> that satifies the following conditions:
 a) P1 has length ≥ 2.
 b) Given any b ∈ (B – {a, b}) such that b is between a and c on P1, it is always possible to
 find a path P2 joining a and c in <B, G> such that b is not between a and c on P2, and
 <B, G> is a maximal such sub-hypernet of <A, E>.♦

Proof:
(1) ⇒ (2): There certainly exists a path a – c in <B, G> because <B, G> is a block with

B ≥ 3. Now b is not a cut-vertex of <B, G>, so we do not have (a - b - c), i.e. b is not
between a and c on every path a – c in <B, G>. It follows that there is at least one path
a – c in <B, G> such that b is not between a and c on that path. Because <B, G> is a
block it is a maximal such sub-hypernet of <A, E>.

(2) ⇒ (3): There is a path joining a and c in <B, G> such that b is not between a and c on that
path. Let P1 be the path a – b – c, so P1 has length ≥ 2, and P1 exists because, from
(2), every pair of vertices in B are joined in <B, G>. Further, we know from (2) that there
exists a path a – c, in <B, G>, which is such that b is not between a and c on that path.
Any such path will do for P2. Finally, maximality of <B, G> from part (2) remains valid
because we have only used (2) to derive (3).

(3) ⇒ (1): We know that B ≥ 3 because the length of P1 is at least 2. Further, all distinct a
and c in B are joined in <B, G>, so <B, G> is connected. Now there are no distinct
a, b, c ∈ B such that (a - b - c), for in choosing P1 as the concatenation of paths
a – b – c we would then not be able to find a path P2 joining a and c such that b is not
between a and c on P2. Thus <B, G> also has no cut-vertices, and we have derived (1). ♦

Theorem 13.4: Let <B0, G0> and <B1, G1> be distinct blocks, of a hypernet <A, E>, for
which B0 ∩ B1 = B01 ≠ ∅. Then B01 = {b}, a singleton, and given any a ∈ (B0 – B01) and any
c ∈ (B1 – B01), b is between a and c on every path a – c in <B0 ∪ B1, G0 ∪ G1>, i.e.
(a - b - c) in <B0 ∪ B1, G0 ∪ G1>.♦

Proof: <B0 ∪ B1, G0 ∪ G1> is clearly not a block in <A, E>, and B01 ≠ ∅, which means that
<B0 ∪ B1, G0 ∪ G1> is a connected sub-hypernet of <A, E>, so there exists at least one
b ∈ B0 ∪ B1 such that b is a cut-vertex of <B0 ∪ B1, G0 ∪ G1>. Now b ∉ (B0 – B01) for, if it
were, then b would be a cut-vertex of <B0, G0>, but <B0, G0> is a block. Similarly
b ∉ (B1 – B01), so we have b ∈ B01. Let p ∈ B01, with p ≠ b. Then we can find a path a – p

Relation nets and hypernets 53

in <B0, G0> such that b is not between a and p on a – p because b is not a cut-vertex of
<B0, G0>. Similarly we can find a path p – c in <B1, G1> such that b is not between p and c
on p – c because b is not a cut-vertex of <B1, G1>. But then b is not between a and c on the
concatenation of paths a – p – c, which contradicts the fact that b must be a cut-vertex of
<B0 ∪ B1, G0 ∪ G1>. Thus there is no such p ∈ B01, so B01 = {b}, and since b is a cut-vertex
of <B0 ∪ B1, G0 ∪ G1> it follows that b must be between a and c on every path a – c in
<B0 ∪ B1, G0 ∪ G1> where a ∈ B0 and c ∈ B1 and a ≠ b and c ≠ b. ♦

Relation nets and hypernets 54

14. Second intermission

We now move to transcription of some of the theory of Concept-Relationship Knowledge
Structures (CRKS’s) developed in Part I of [GVS99], describing the hypernet equivalent of a
CRKS and examining some of its features. We will let the vertices of such hypernets
represent concept-names as for CRKS’s. In a CRKS each tuple of concept-names comes from
a statement of relationship between the concept-names in that tuple. Two main features arise:
First the occurrences of concept-names are ordered by the relevant statement of relationship,
thus giving rise to a tuple of those concept-names and hence a direction from the first
concept-name in the tuple to the last, and second, a given concept-name can appear more than
once in a tuple.

In the hypernet equivalent of a CRKS each tuple of the CRKS is represented by an edge that
is precisely the tuple set of, i.e. the set of concept-names of, that tuple. As a result we lose all
direction – arrows become arcs – and a concept-name can only occur once in the edge
equivalent to the relevant tuple. Thus a given set S ⊆ A of a hypernet <A, E> can be
associated with several different tuples all of which have the same tuple set, but there is a
1 – 1 correspondence between the set of tuples of a given CRKS and the set of edges, and
therefore the set of vertex adjacencies, of the equivalent hypernet.

Relation nets and hypernets 55

15. Concept-Name Relationship Hypernets

Definition 15.1: By a concept-name relationship hypernet, or CNR-hypernet, we mean a
hypernet <A, E> in which
(1) A is a set of concept-names and
(2) each edge Ei ∈ E can be regarded as the tuple set of a tuple of concept-names that arises

from a statement of relationship among those concept-names. ♦

Definition 15.2: A CNR-hypernet <A E> is called a formal hyperschema iff
(1) for all a ∈ A, a ∈ Ei ∈ E for at least one non-singleton edge Ei, so E [a] ≠ ∅ when we

disregard singleton edges. Thus each a ∈ A is associated with at least one other vertex of
<A, E>.

(2) <A, E> has no circuits, i.e. no closed paths of any length other than 2.
(3) There is at least one p ∈ A at which there is a special singleton edge Ep ∈ E with

Ep = {p}, and p also belongs to at least one other Ei ∈ E. Each such p is called a primary
of <A, E>.

(4) There is at least one g ∈ A at which there is a special singleton edge Eg ∈ E with
Eg = {g}, and g also belongs to at least one other Ej ∈ E. Each such g is called a goal of
<A, E>. (We will distinguish primaries from goals later.)

(5) There are no singleton edges in <A, E> other than those at primaries and goals, and no
singleton edge is used on any path in <A, E>. ♦

The reason for the singleton edges is that paths in <A, E> can “start” at primaries and
“terminate” at goals. We will show later how it is possible to regard all paths as having a fixed
direction in certain CNR-hypernets.

Definition 15.3: A formal hyperschema <A, E> is said to be complete iff it has no isolates. ♦

Note that no formal hyperschema can have complete isolates.

Theorem 15.1: If a formal hyperschema <A, E> is connected then it is complete, but the
converse is not always true. ♦

Proof: If <A, E> is connected then it has no isolates, so <A, E> is complete. To prove that the
converse is not always true we exhibit the following formal hyperschema, which is complete
but not connected
 c d

 λ ({a, c}) λ({b, d})

 a b

Relation nets and hypernets 56

where λ({a, c}) = {Ei} and Ei = {a, b, c} and where λ({b, d}) = {Ej} and Ej = {b, d} for
example. Notice in passing that if we delete b, for example, then we get

 c a d ♦

Definition 15.4: The context-hyperschema of a ∈ A in a formal hyperschema <A, E> is a
hypernet <A, E>[a] = <A[a], E[a]> ∠ <A, E> that is defined as follows. E[a] is, as defined
before, the set of all Ei ∈ E that have a ∈ Ei, and A[a] = {b ∈ A b belongs to at least one of
the Ei ∈ E[a] }. ♦

Thus we can write A[a] = {∪ Ei  Ei ∈ E[a]}. Since E[a] = E↑A [a], because E↑A[a] is the
set of all Ei ∈ E with Ei ⊆ A[a] and each such Ei must have a ∈ Ei given that
A[a] = {∪ EiEi ∈ E[a]}, we can also write <A,E>[a] = <A[a], E↑A[a]>, the maximum sub-
hypernet of <A,E> that is induced by A[a] ⊆ A. So <A,E>[a] = <A[a], E[a]> =
<A[a], E↑A[a]>. (See definitons 2.15, 4.1, and 4.8)

Definition 15.5: A betweenness sequence for a path-family f(a1  an) in a formal
hyperschema <A, E> is found as follows. First, for all the members of λ({ai, ai+1}), i = 1, 2, ...,
n - 1, for each vertex adjacency in f(a1  an), by which ai and ai+1 are adjacent in f(a1  an),
we list

ai, Ei1, Ei2, ..., Eim(i), ai+1.
We then chain these lists together in succession from a1 to an for f(a1  an). Next we write
out each Eix in the sequence, i.e. we replace each Eix by the members of the set
{v ∈ A v ∈ Eix}, getting a sequence of members of A starting with a1 and ending with an.
This is a betweenness sequence for f(a1  an) in <A, E>. Such a betweenness sequence is
clearly not unique. (Note that a path-family is not empty, and it may only have one member.)
♦

Relation nets and hypernets 57

16. Derivability in a Formal Hyperschema

Definition 16.1:
(1) Given any formal hyperschema <A, E> and a set X ⊆ A, we say that a ∈ A is immediately

derived from hypothesis X iff there is at least one x ∈ X and at least one Ei ∈ E by which
there is a vertex adjacency (x, Ei, an(i) = a), with every member of (Ei – {x, an(i)}) a
member of X.

(2) Given any formal hyperschema <A, E> and a set X ⊆ A, we say that a ∈ A is derivable in
terms of hypothesis X in <A, E> iff there is a path p  a, p ∈ A, in <A, E> such that
there exists at least one betweenness sequence S for p  a with the property that for
every t ∈ S we have
a) t is a primary of <A, E> or
b) t ∈ X or
c) t is immediately derived from a subset of St, where St is the set of all predecessors of t
in S.

(3) We say that a ∈ A is derivable from P in <A, E>, or simply derivable in <A, E>, where P
is the set of all primaries of <A, E>, iff a is derivable in terms of some X ⊆ A, by virtue of
at least one path p  a and a betweenness sequence S for p  a, with either X = ∅ or
such that every x ∈ X is derivable in terms of ∅.

(4) If a ∈ A is derivable in <A, E>, by virtue of a path p  a , p a primary of <A, E>, then
p  a is called a derivation path for a in <A, E> and each such path p  a is called a
derivation path for a in <A, E>, and a is said to be a derived vertex of <A, E>.♦

Definition 16.2: A complete formal hyperschema <A, E> is called a Concept-Relationship
Knowledge Hypernet, or simply a CRKH, iff every vertex of <A, E> is derivable in <A, E>. ♦

Consider any CRKH <A, E>. Derivability in <A, E> induces a certain sense of direction on a
CRKH in the following way. Given any part of a derivation path, p  a, of length ≥ 1, a is
derived in terms of some of its predecessors in a betweenness sequence Sa for p  a that
starts with p and ends with a.

Now we can specify, in a (complete) formal hyperschema <A, E> that is a CRKH, how to
determine which of the a ∈ A with an Ei ∈ E such that Ei = {a} are primaries of <A, E> and
which are goals.

Simply stated, p is a primary of <A, E> iff there is a singleton edge Ei = {p}∈ E and every
vertex adjacency {p, b} by one or more Ej ∈ E that belong to λ({p, b}) is such that
(1) p has a trivial derivation by a path of length zero and a set of hypothesis X = ∅ and
(2) b is derivable by virtue of an X that is a betweenness sequence, for the vertex adjacency

{p, b}, that starts with p and ends with b.

Next, g is a goal of <A, E> iff g has a singleton edge Ek = {g}at it, and g is not a primary of
<A, E>, and there is no vertex adjacency {g, a} on any derivation path for any vertex a ∈ A in

Relation nets and hypernets 58

<A, E>. It is evident that, since every vertex of a CRKH <A, E> is a derived vertex, we must
have the following.
(1) There is at least one primary p ∈ A of <A, E> for which there exists at least one vertex

adjacency (p, Ei, b), b ∈ A, in <A, E> for which every member of (Ei – {b}) is a primary
of <A, E>.

(2) There is at least one goal g ∈ A of <A, E> that is not in any betweennness sequence in
any but the last position.

We are now in a position to redefine circuits in the case of a CRKH: A closed derivation path,
of any length whatsoever, is called a circuit, and a CRKH has no circuits of any length (since
singelton edges do not generate an arc at any vertex; here the primaries and goals of a
CRKH).

From this point on we can visualize a direction for every vertex adjacency {a, b}, a, b ∈ A, in
any CRKH <A, E>, the direction imposed by derivation. Thus we may replace arcs with
arrows in each CRKH.

Theorem 16.1: Let <A, E> be a CRKH. There is at least one path that joins each primary of
<A, E> to some goal of <A, E> in <A, E>, and there is at least one path that joins each goal of
<A, E> to some primary of <A, E> in <A, E>. ♦

Proof: Let p be any primary of <A, E>. There is at least one derivation path incident with p.
Follow that path incident with p. <A, E> has no circuits, and thus this path must have a finite
length and can only be incident with a goal on the end of the path because no derivation path
can end with another primary of <A, E>. Let g be any goal of <A, E>. There is at least one
derivation path incident with g. Again <A, E> has no circuits so this path, which we follow in
the reverse derivation mode, must have finite length and must end with a primary on the other
end because it could not end with another goal of <A, E> unless we go with a derivation path
to that goal, thus mixing forward and reverse directions along that path, and thus generating a
semi-path that is not a path. ♦

Theorem 16.2: Let <A, E> be a CRKH, and let a ∈ A be neither a primary nor a goal of
<A, E>. Then there is at least one path p  g in <A, E>, p some primary of <A, E> and g
some goal of <A, E>, such that a lies on p g, i.e. a is a member of the vertex subsequence of
p  g. ♦

Proof: Since <A, E> is a CRKH, a is a derived vertex in <A, E>. Since a is a derivable, there
is a derivation path p  a, p ∈ A, in <A, E>. By theorem 16.1 this path must continue on to
some goal of <A, E>.♦

We now need to say something about paths in a CRKH.

Constructional Scheme 16.1: To construct a path tree, for a CRKH <A, E>, displaying and
distinguishing every path from each primary of <A, E>. We will refer to vertices and edges of
<A, E> and nodes and branches of the tree.

Relation nets and hypernets 59

Note that we should bear in mind that derivation imposes directionality on a CRKH. It is clear
that if we follow paths in a CRKH only in the “derivation direction” we will have no circuits
in any CRKH. This directional ordering on paths in a CRKH may appear just to reduce a
CRKH to a CRKS, but in the case of a CRKH we have
(1) a choice of the vertex by which two edges are adjacent in general and
(2) no ordering, and no repetition, of vertices in the edges by which vertices are adjacent.

This degree of choice gives us the potential, for example, to use any teaching metalanguage
when we pick an interpretation of an CRKH in the educational applications mentioned in
[GVS99]. The CRKH model is more flexible than the CRKS one in applications, and we have
a strong link between the two models, to which link we will add more detail at a later stage of
this report.

One final point before we tackle the constructional scheme: Derivability of a vertex b by
virtue of a path a  b in a formal hyperscheme depends, for the induced direction of
derivation onto a  b, on the existence of at least one appropriate betweenness sequence for
a  b. We will see, in the following section, that there is a very specific characterization of
appropriate betweenness sequences. Now for the scheme.

First we introduce an unlabelled dummy node to serve as the root of the path tree, and one
only node for each primary of <A, E>. Connect each such node to the root with an unlabelled
branch, and label each non-root node with the appropriate primary concept-name from A.
From each node for a vertex v ∈ A the tree now develops as follows. Find every vertex
adjacency (v, Ei, w) in <A, E> for which w is derived through v and Ei, and suppose that
Ei = {v = c1, c2, ..., ck, ..., cn-1, cn}, and let cn = w. Thus we find all such edges Ei with
Ei = {v = c1, c2, ..., ck, ..., cn(i)-1, cn(i)} for some n(i). We now plot a new node for each such
cn(i), and insert a branch between each node for v and every node for each of these cn(i). Each
such branch is now labelled with the edge Ei that generates it, and each node for a given cn(i) is
labelled with the concept-name for that cn(i). Repeat this for every Ei ∈ E. The resulting tree
exhibits, along the paths from the root, every path from a primary to a goal in <A, E>, and
distinguishes these paths. Each primary of <A, E> is represented by one only node, and every
goal of <A, E> by at least one node. ♦

Constructional Scheme 16.2: Find all the paths between vertex u and vertex v in a CRKH
<A, E>. Because of the derivation induced directionality in <A, E>, we can think of ourselves
looking for all paths “from” a given u ∈ A “to” a given v ∈ A.
First we should note that we can run a fast access cascade against the derivational direction in
any CRKH just as easily as with this direction or without direction – see definition 4.7.
(1) Run a fast access cascade backward from A0 = {v} in <A, E>. Let the resulting hypernet

be <A´, E´>. If u ∉ A´ then there are no u  v paths in <A, E>.
(2) If u ∈ A´, then proceed as follows in <A´, E´>. Find all the edges that label a vertex

adjacency which “starts” with u. Let these edges be E1, E2, ..., Em, and let their “end”
vertices be v1, v2, ..., vk, ..., vm-1, vm respectively.Each time vk = v, k = 1, ..., m, we have
found a path u v of length 1. Mark each such edge and its vertex adjacency in E´ as a
u  v path edge.

Relation nets and hypernets 60

(3) Find all the unmarked edges in <A´, E´> that “start” with any vk ≠ v among the vertex
adjacencies found and marked in step (2). We now plot a tree as follows

 u

 E1 E2 Ek Em

 v1 v2 vk vm

 from step (2), and then continue the development of the tree by inserting a separate branch
 between each vk ≠ v of step (2) and the vertex wh ∈ A´ for each edge by which vk is
 adjacent with wh.
 If any of these vertices wh = v then we have now found all the u  v paths of length 2 in
 <A´, E´> ∠ <A, E>. Again mark all the edges and vertex adjacencies used in this step to
 find u  v paths of length 2, and proceed to step (4) with all the unmarked edges in E´and
 all those wh ∈ A´ with wh ≠ v.
(4) Repeat step (3) for the next level of the tree, marking the edges and vertex adjacencies

used in each stage of the generation of u  v paths of lengths 3, 4, ..., if any, until all the
usable edges in E´ and their vertex adjacencies in <A´, E´> have been marked by this
procedure. ♦

Relation nets and hypernets 61

17. CRKH Theorems

Theorem 17.1: Any complete formal hyperschema <A, E> can be generated by a limited
access cascade fom the set B0 ⊆ A of all the primaries of <A, E> iff every a ∈ A is derivable
in <A, E>, i.e. <A, E> is a CRKH. ♦

Proof: If <A, E> is generated from B0 by a limited access cascade then, in each step of the
cascade, every new vertex generated belongs to an edge Ei ∈ E which is such that every
vertex in Ei but the single new vertex, if any, is a primary or a vertex generated in a previous
step. Thus for every new vertex v generated in step n of the cascade there is, at that stage, at
least one path p  v, of length n, in <Bn, En>, and each such path has a betweenness sequence
S in which every t ∈ S is derived in terms of X ⊆ A with t primary, or t ∈ X, or t
immediately derived from a subset of St. Now if t is primary then t is trivially derivable from
a set of hypotheses X = ∅ by a path of length zero. Next we notice that X ⊆ Bn-1 , so if t ∈ X,
and t is not primary here, then there is a path p´ t in <Bn-1, En-1 > because <A, E> is a
complete formal hyperschema, so t is not newly generated in <Bn, En> and this holds for all n
= 2, 3, ---, so t is never generated. Thus we cannot have t ∈ X. Finally, if t is immediately
derived from a subset of St then there is an s ∈ St and an edge Ei ∈En ⊆ E such that we have,
somewhere in <Bn-1, En-1>, a vertex adjacency (s, Ei, t) with every member of (Ei – {t}) a
member of St ⊆ (Bn-1 – {t}).
We have seen that every member of B0 is a derived vertex. Suppose that every member of Bn-1
in <Bn-1, En-1>, for all n = 1, 2, ..., n – 1, is a derived vertex in <A, E> and consider <Bn, En>.
Now our set Ei – {t} is such that every one of its members is derivable by the induction
hypothesis. But then, with (s, Ei, t), t is derivable in terms of hypotheses X = (Ei – {t}), and
every member of X is derivable by the induction hypothesis, so t is derivable, and so every
member of Bn is derivable in <Bn, En>. It follows that, because <Bn, En> = <A, E> for some n,
every vertex a ∈ A is derivable in <A, E>.
Conversely, suppose that every a ∈ A is derivable in <A, E>. Then <A, E> can be generated
by a limited access cascade from its set of primaries B0 as follows. B0 is the set of primaries
of <A, E>, and E0 = ∅. E1 is the set of all edges Ei ∈ E such that every member of Ei but one
is a primary of <A, E>, i.e. a member of B0. B1 is the union of B0 and all the new (non-
primary) vertices generated in step 1 of the cascade. In general Ek, k = 2, 3, ..., is chosen in
such a way that Ei ∈ Ek ⊆ E iff all but possibly one member of Ei belong to Bk-1. Bk is Bk-1, in
which every member is derivable in <Bk-1, Ek-1>, together with the set of all new vertices
generated in step k. Eventually, for some n ∈ û, <Bn, En> = <A, E> because every a ∈ A is
derivable in <A, E> and the cascade generates only derivable new vertices in each step. ♦

Theorem 17.2: If a ∈ A of a complete formal hyperschema <A, E> is derivable in terms of
X ⊆ A, with X = ∅ or every x ∈ X derivable in <A, E>, by virtue of a derivation path p  a,
p a primary of <A, E>, and a betweenness sequence S for p  a, then every t ∈ S is derivable
in <A, E>. ♦

Proof: Since p is a primary it is derived by a derivation path of length zero with betweenness
sequence S = X = ∅. Run a limited access cacade from the set B0 of all primaries of <A, E>

Relation nets and hypernets 62

in <A, E>. If p  a is a path of length n then we must “find” p  a in <Bn, En> because a is
derivable. Let an appropriate betweenness sequence for p  a, i.e. one which makes p  a
a derivation path, be S and set X = S. Then, since a is derivable and S = X ≠ ∅, we see that
every member of S is derivable in <A, E>. ♦

Theorem 17.3: Let <A, E> be a formal hyperschema with a ∈ A any non-primary vertex of
<A, E>. If a is derivable in <A, E>, by virtue of a path p  a, then p is a primary vertex of
<A, E>. ♦

Proof: We know that p  a is a derivation path. Let S be a betweenness sequence for p  a,
and set X = S. Then a is derivable in terms of X, with X ≠ ∅ because a is non-primary, and
every x ∈ X is derivable in <A, E>. For every t ∈ S = X, t is a primary or t ∈ X or t is
immediately derived from a subset of St. In this case we clearly have t ∈ X trivially. Consider
p. We have p is a primary in <A, E>, or p is immediately derived from a subset of Sp = ∅.
Only primaries and isolates are immediately derivable from hypotheses ∅, by a trivial
derivation path of length zero. Now p is certainly not an isolate, so in either case we have that
p is a primary of <A, E>.♦

We now set out some corollaries of theorems 17.1, 17.2, and 17.3.

Corollary 17.1: If every t ∈ S in the proof of the theorem is derivable then every t ∈ S is
immediately derived from some X ⊆ A in <A, E>. ♦

Proof: There are two cases to consider.
a) If t is on p  a then there is a vertex adjacency (x, Ei, t) on p  a, and then t is
immediately derived from X = (Ei – {t}) ⊆ A.
b) If t does not lie on p  a, but is between p and a on p  a, we know that t is derivable
from theorem 17.2. Thus there is at least one derivation path p´ t, p´ a primary of <A, E>,
in <A, E>, and p´ t “ends” with a vertex adjacency (u, Ej, t). Let X = Ej – {t}, and we see
that t is immediately derived from X. ♦

Corollary 17.2: If vertex a ∈ A of a complete formal hyperschema <A, E> is derivable in
<A, E> then a is immediately derived from some X ⊆ A. ♦

Proof: If a is derivable in <A, E> then there must be some derivation path p  a for a, p
primary, in <A, E>. Let the vertex adjacency with a on p  a be (x, Ei, a), x ∈ A and Ei ∈ E,
and set X = (Ei – {a}). Then a is immediately derived from hypotheses X in <A, E>.♦

Corollary 17.3: A path p  a, a, p ∈ A, in a CRKH <A, E> is a derivation path for a iff p is a
primary of <A, E>.♦

Proof: If p  a is a derivation path for a in <A, E> then p is a primary by theorem 17.3.
Conversely, if p is a primary then any path p  a is a derivation path for a because, if S is a
betweenness sequence for p  a then every member of S is derivable in <A, E> since <A, E>

Relation nets and hypernets 63

is a CRKH, so we can see that a is derivable in <A, E> by p  a if we set X = S (=∅ if
p = a). ♦

Corollary 17.4: If every path incident with a primary of a complete formal hyperschema
<A, E> is a derivation path in <A, E>, then every a ∈ A is derivable in <A, E> and so <A, E>
is a CRKH. ♦

Proof:Follows at once from the definitions of derivation path, derivable and CRKH. ♦

Corollary 17.5: Let <A, E> be a complete formal hyperschema, and let p be any primary of
<A, E> and a be any non-primary of <A, E> such that there is a path p  a in <A, E>. Then
p  a is a derivation path in <A, E>, i.e. a is derivable in <A, E>, iff every b ∈ A, b ≠ a, that
is between p and a on p  a is derivable in <A, E>.♦

Proof: Let p  a be a derivation path with betweenness sequence S for p  a. b ∈ A, b ≠ a,
is between p and a on p  a iff b ∈ S, and by theorem 17.2 every b ∈ S is derivable in
<A, E>. Conversely, let every b ≠ a that is between p and a on p  a be derivable in <A, E>.
Then b ∈ S, and if every member of S is derivable in <A, E> then a is derivable. But this
means that a is derivable in terms of at least one X ⊆ A with X = ∅ or every member of X
derivable in <A, E>, and at least one path from a primary to a must be a derivation path for a
in <A, E>. Choose X = S ≠ ∅ for our path p  a and it follows that p  a is a derivation path
for a in <A, E>.♦

Corollary 17.6: Let <A, E> be a complete formal hyperschema. Every a ∈ A is derivable in
<A, E> iff every path p  a, p primary and a ∈ A, in <A, E> is a derivation path. ♦

Proof: The reverse implication is corollary 17.4. If every a ∈ A is derivable then there exists,
by definition of the term derivable (from the set P of all primaries of <A, E>), at least one
derivation path p  a, p primary, in <A, E>.♦

Corollary 17.7: A complete formal hyperschema <A, E> can be generated by a limited access
cascade from the set of all its primaries iff every path incident with a primary of <A, E> is a
derivation path. ♦

Proof: Follows at once from therem 17.1 and Corollary 17.6. ♦

Corollary 17.8: Let <A, E> be a complete formal hyperschema. Every a ∈ A is derivable in
<A, E>, i.e. <A, E> is a CRKH, iff every a ∈ A is immediately derived from some set Xa of
hypotheses which is such that every x ∈ Xa is a derived vertex in <A, E>.♦

Proof: If every a ∈ A is derivable then there is at least one derivation path p  a for a in
<A, E>. Let (x, Ei, a) be the vertex adjacency with a that lies on such a path p  a, Ei ∈ E.
Then a is immediately derived from Xa = (Ei – {a}). Conversely, let every a ∈ A be
immediately derived from some set Xa of hypotheses such that every x ∈ X0 is a derived
vertex in <A, E>. Then there exists at least one vertex adjacency (x, Ej, a), Ej ∈ E, with

Relation nets and hypernets 64

(Ej – {a}) ⊆ Xa. Now x is a derived vertex, as is every other member of Xa. Thus there is at
least one derivation path p  x for some primary p, and we can concatenate p  x and
(x, Ej, a) to make up a path p  a. Since every member of Ej – {a} is derivable in <A, E>, we
see by Corollary 17.5 that every b ≠ a in p  a is derivable.
Let S be an appropriate betwenness sequence for p  a, and set X = Sa. Then a is derivable in
terms of X, i.e. derivable, because X ≠ ∅ but every x ∈X is derivable in <A, E>.♦

Collecting some of the results of this section together, we have proved the following.

Theorem 17.4: Let <A, E> be a complete formal hyperschema. Then precisely the whole of
<A, E> can be generated by a limited access cascade from the set B0 of all the primaries of
<A, E>
(1) iff every a ∈ A is derivable in <A, E>, which is true
(2) iff <A, E> is a CRKH, which is true
(3) iff every path p  a, p a primary and a ∈ A, is a derivation path in <A, E>, which is true
(4) iff every a ∈ A is immediately derived from some set Xa ⊆ A of hypotheses which is such

that every x ∈ Xa is a derived vertex in <A, E>, which is true
(5) iff every b ≠ a that is between p and a, p a primary and a ∈ A, on every path p  a in

<A, E> is derivable in <A, E>.♦

Running a limited access cascade from the set of all primaries in a complete formal
hyperschema <A, E> provides an automated method of testing <A, E> for CRKH status.

Theorem 17.5: Let <A, E> be any hypernet, and let I [<A, E>] = <A, T>. <A, E> is a CRKH
iff <A, T> is a CRKS. ♦

Proof: Let <A, E> be a CRKH, and consider a specific interpretation I [<A, E>] = <A, T>.
Since I preserves vertex adjacencies, I will preserve all paths in <A, E>, mapping each path in
<A, E> to a semi-path in <A, T>. Thus I preserves all derivation paths p  a, p a primary and
a ∈ A, and each derivation path p  a is mapped to precisely one derivation path p → a in
<A, T>. It follows that <A, T> is a CRKS. Conversely, let <A, T> be a CRKS with
<A, T> = I [<A, E>] for some hypernet <A, E>. Let M be the inverse of I, so that
M [<A, T>] = <A, E>. Then, since M preserves all vertex adjacencies in <A, T>, it preserves
all semi-paths, mapping each semi-path in <A, T> to precisely one path in <A, E>. It follows
that every derivation path p → a, p a primary and a ∈ A in <A, T> is mapped to precisely one
derivation path p  a in <A, E>. It follows that <A, E> is a CRKH. ♦

The theorem is essential to a generalization of Part I of [GVS99].

Definition 17.1: By a derivation adjacency in a formal hyperschema <A, E> we mean a
vertex adjacency (a, Ei, b), a, b ∈ A and Ei ∈ E, that lies on a derivation path for b in <A, E>
and is such that every x ∈ (Ei – {b}) is either a primary of <A, E> or belongs to a derivation
adjacency (y, Ej, x) that lies on a derivation path for x in <A, E>, i.e. every x ∈ (Ei – {b}) is
derivable in <A, E>.♦

Relation nets and hypernets 65

Theorem 17.6: Let <A, E> be a CRKH. Then every vertex adjacency (a, Ei, b), a, b ∈ A and
Ei ∈ E, in <A, E> is a derivation adjacency of <A, E>. ♦

Proof: Consider an arbitrary vertex adjacency (a, Ei, b) in <A, E>. Since <A, E> is a CRKH
both a and b are derivable in <A, E>. Then either (a, Ei, b) is on a derivation path for a in
<A, E>, or it is on a derivation path for b in <A, E>. Suppose, without loss of generality, that
(a, Ei, b) lies on a derivation path for b. Then (a, Ei, b) is a derivation adjacency because every
x ∈ (Ei – {b}) is derivable in <A, E>.♦

We now begin to turn our attention to the sort of uses of CRKH’s outlined for CRKS’s in
[GVS99].

Definition 17.2: Given a CRKH <A, E> and any non-primary a ∈ A, we define a derivation
path hyperschema D(p  a) for a derivation path p  a in <A, E> to be a sub-hypernet of
<A, E> that
(1) contains p – a and
(2) is a formal hyperschema in which the only primaries and isolates are all primaries of

<A, E> and in which every non-isolate is derivable, and
(3) is minimal in the sense that p  a is not a derivation path in any sub-hypernet produced

from D(p  a) by deleting from it any vertex or any edge. ♦

The primaries and isolates of D(p  a) are all regarded as singleton edges in D(p  a). We
should notice that a derivation path hyperschema for a ∈ A in <A, E> is not generally unique
because there may be several derivation paths for a in <A, E>.

Definition 17.3: Given a CRKH <A, E> with a ∈ A, we define the predecessor hyperschema
P(a) of a in <A, E> to be that sub-hypernet of <A, E> that is generated by running a fast
access cascade in the reverse of the direction of derivation from B0 = {a} in <A, E> as
follows: E0 = ∅. <B1, E1> contains all the derivation adjacencies, incident with a, through
which a is derived, i.e. that lie on any derivation path for a in <A, E>. This fixes E1, and B1 is
a together with the set of all the vertices in all the members of E1. <B2, E2> contains all the
derivation adjacencies incident with each b ∈ B1 and through which b is derived in <A, E>,
which specifies E2, and B2 is B1 together with the set of all vertices in all the members of E2,
and so on. The cascade will stop with a primary, or primaries, of <A, E>. It is clear that P(a)
is a CRKH with goal a and set of primaries a subset of the set of primaries of <A, E>.♦

It is easy to show that the next theorem follows from the definitions above.

Theorem 17.7: Given a CRKH <A, E> with a ∈ A, the join of all the D(p  a) in <A, E>, p
some primary of <A, E>, is a sub-hyperschema of P(a). ♦

The converse of the theorem is not generally true, as can be shown by simple counter
examples – see [GVS99].

Definition 17.4: Let <A, E> be a CRKH and Ei ∈ E an edge of <A, E>. By a hypercluster for
Ei we mean any minimal sub-CRKH, of <A, E>, that has Ei as one of its edges, where by

Relation nets and hypernets 66

minimal we mean that if we delete any vertex or edge from a hypercluster then the resulting
hypernet does not have Ei in it. ♦

A hypercluster for a given Ei ∈ E in a CRKH <A, E> is not generally unique.

Constructional schemes to find the D(p  a), and P(a), in a CRKH <A, E> are easily adapted
from [GVS99]. Definitions 17.2, 17.3 and 17.4 are important in the modelling of study
material, as can be seen from [GVS99]. In this case, the case of hypernets, their application
potential is broader than for the CRKS’s of [GVS99].

Theorem 17.8: C is a cluster for Ti ∈ T in a CRKS <A, T> iff D is a hypercluster for
Ei = I [Ti] in a CRKH <A, E>, where <A, T> = I [<A, E>] and C = I [D] for some
interpretation I. ♦

Proof: Follows easily from the definition of an interpretation and its inverse. ♦

Relation nets and hypernets 67

18. Gauges of complexity

In this section we present some ways to gauge the complexity of a CRKH.

Definition 18.1: The vertex context number of a ∈ A in a CRKH <A, E> is given by
Vc(a) = A[a] and the edge context number of a is given by Ec(a) = E[a], where
<A[a], E[a]> = <A,E>[a] is the context hyperschema of a in <A, E>.♦

Definition 18.2: By the degree d(a) of a ∈ A in a CRKH <A, E> we mean the sum of all
theλ({a, b}) over all b ∈ A for which λ({a, b}) ≠ ∅. By the in-degree id(a) of a we mean
the sum of all the λ({a, b}) over all b ∈ A for which λ({a, b}) ≠ ∅ and (a, Ei, b), Ei some
edge of <A, E> which is such that (a, Ei, b) lies on a derivation path for a in <A, E>. By the
out-degree od(a) of a we mean the difference od(a) = d(a) – id(a). ♦

Definition 18.3: By the flow at a ∈ A in a CRKH <A, E> we mean the number
f(a) = min{id(a), od(a)}. ♦

Definition 18.4: By the path-multiplicity at a ∈ A in a CRKH <A, E> we mean the number
p(a) = id(a) ∗ od(a). ♦

Definition 18.5: By the local context number of a ∈ A in a CRKH <A, E> we mean
| ∪ (Ei - {a}) | where the union is taken over all Ei ∈ E with Ei ∈ λ({a, b}) and b ∈ A. ♦

So far all our gauges should have relatively high values in any CRKH model of a “real world”
situation. Relatively low values will indicate a weakness of association among vertices.

Definition 18.6: Let <A, E> be a CRKH, and let S ⊆ A with S ≠ ∅. The rank of S, r(S), in
<A, E> is defined by r(S) = max S ∩ Ei over all the Ei ∈ E. The number r(A) is called the
rank of <A, E>. ♦

Definition 18.7: Let <A, E> be a CRKH. A sub-family EM ⊆ E is called a matching if the
edges of EM are pairwise disjoint. ♦

Definition 18.8: A transversal of a CRKH <A, E> is a set T ⊆ A such that T ∩ Ei ≠ ∅ for all
Ei ∈ E. The transversal number of <A, E> is the minimum number of vertices in any
transversal of <A, E>.♦

Of interest for CRKH’s are maximum matchings, which tell us something about “essential”
edges in the case in which “knowledge” is being modelled and we have ∪ Ei = A where the
union is taken over the edges of EM, and the transversal number which tells us how many
“essential” vertices belong to A.

Definition 18.9: Let <A, E> be a CRKH, and consider a limited access cascade from the set
of all primaries of <A, E>. The deductive distance dd(a) of a ∈ A from the primaries of

Relation nets and hypernets 68

<A, E> is n iff a is first found in <Bn, En>, i.e. in the (n+1) ‘ th step of the cascade, i.e.
a ∉ Bn-1. By an n-slice of <A, E> we mean the set of all a ∈ A that are first found in <Bn, En>,
i.e. in the (n+1) ‘ th step of the cascade, i.e. a ∈ (Bn – Bn-1). Let Nn ⊆ A be an n-slice of <A,
E>, and let a ∈ Nn. Then the weighted deductive distance, wd(a), of a from the primaries of
<A, E> is defined by wdd(a) = ∪ Ni where the union is taken over
i ∈ {0, 1, ..., n - 1}= n ∈ û. ♦

We would, in most applications, not want dd(a) or wdd(a) to be relatively large compared to
their values for other vertices of <A, E>.

Definition 18.10: Let a ∈ A of a CRKH <A, E> belong to an n-slice Nn in <A, E> for some
n ∈ û. Then Nn is called the width W(a) of <A, E> at a. ♦

Associated with the rank of a set S ⊆ A of a CRKH <A, E> is the following.

Definition 18.11: Let <A, E> be a CRKH, and let P ⊆ A be the set of primaries of <A, E>. By
the scope of a set B ⊆ A in <A, E> we mean the set S(B) ⊆ E defined by
S(B) = {Ei ∈ E  S ∩ Ei ≠ ∅}. By the scope number of B ⊆ A in <A, E> we mean S(B).
S(P) is called the primary scope of <A, E>, and S(P)the primary scope number. ♦

We would like the primary scope number to be relatively high – it is at least P -, and if
S(B) is relatively low then B is relatively weakly associated with other members of A. If
B = {a} then S({a}) = E[a].

Definition 18.12: Let <A, E> be a CRKH with Ei ∈ E and S ⊆ A. The edge rank Er(S) of Ei
with respect to S is defined by r(S, Ei) = S ∩ Ei. ♦

Definition 18.13: By a vertex covering C of a CRKH <A, E> we mean a sub-family C ⊆ E
such that the union of all the edges in C is A. ♦

We would be interested in minimal vertex coverings, again a measure of “essential” vertices
in <A, E>.

Minimum traversals and maximum matchings are fairly closely related – see [Ber73].

Next we turn to analysis of a CRKH <A, E> by means of edge ranks in order to illustrate one
use of some of our gauges. Run a limited access cascade from the set B0 of all the primaries of
<A, E>, setting E0 = ∅ as usual. Suppose we have completed step n of the cascade, i.e. we
have <Bn, En> ∠ <A, E>. (Bn – Bn-1) is an n-slice, of <A, E>, with width Bn – Bn-1. Now
complete step n+1 of the cascade, producing <Bn+1, En+1>, and consider (En+1 – En). Let
Ei ∈ (En+1 – En) and let edge rank 1 be given by r1((Bn+1 - Bn), Ei) = (Bn+1 - Bn) ∩ Ei. This
is the number of “new” vertices found in step (n+1) that belong to Ei, a “new” edge found in
step (n+1). Let the equivalence class of Ei in (En+1 - En) induced by the rank 1 value of Ei be
denoted by r1[(Bn+1 - Bn), Ei]. We now partially order these equivalence classes, from the
smallest to the largest, by r1 value. Call the r1 value of each class the r1-difficulty of that class.

Relation nets and hypernets 69

Next consider any one of these classes. Inside r1[(Bn+1 - Bn), Ei] we define another
equivalence relation on this set of edges, all of which have the same edge rank 1 value, as
follows, looking now at the “dependence” of these edges on the vertices in (Bn – B0). Let edge
rank 2 be r2((Bn – B0), Ej), where Ej ∈ r1[(Bn+1 - Bn), Ei]. The r2 values specify equivalence
classes r2[(Bn – B0), Ej] ⊆ r1[(Bn+1 - Bn), Ei]. Every member of any of these equivalence
classes has the same r2 value, and we partially order these r2 equivalence classes, inside
r1[(Bn+1 - Bn), Ei], from smallest to largest r2 value, the relevant r2 value being called the
r2-difficulty of the associated equivalence class.

Next consider an r2[(Bn – B0), Ej]. Inside this eqivalence class we define a third equivalence
relation as follows. Let edge rank 3 be defined by r3(B0, Ek), with Ek ∈ r2[(Bn – B0), Ej]. This
specifies eqivalence classes r3[B0, Ek] ⊆ r2 [(Bn – B0), Ej]. Again of course every member of
r3[B0, Ek] has the same r3 value, and again we partially order these edge rank 3 eqivalence
classes from smallest to largest r3 value. This r3 value is called the r3-difficulty of the relevant
class.

Now we can choose an equivalence class of minimal r1 value, then one, inside that class, of
minimal r2 value, and then one, in that r2 class, of minimal r3 value. This allows us to choose
those Ei ∈ En+1 of minimal difficulty (to learn – see [GVS99]) and work through each r1
eqivalence class from minimal to maximal difficulty in <Bn+1, En+1>.

Finally, consider any given interpretation I [<A, E>] = <A, T> of the CRKH <A, E>. Clearly
<A, T> is a CRKS (from the definition of interpretation). Now consider I (Ei) = Ti, Ei ∈ E and
Ti ∈ T. The number of entries in Ti, call it the length of Ti, is at least Ei. We partially order
the edges of each r3[B0, Ek] from smallest to largest tuple length of the I [E

°
], E

°
 ∈ r3[B0, Ek],

regarding those edges corresponding with minimal length tuples to be the least difficult in
r3[B0, Ek]. This defines eqivalence classes in each r3[B0, Ek], each being characterized by a
tuple length value called the r4-difficulty of the class. We do the same in each r2[(Bn – B0), Ej]
⊇ r3[B0, Ek], and then in each r1[(Bn+1 - Bn), Ei] ⊇ r2[(Bn – B0), Ej], using r4-difficulty to
partially order edges in each equivalence class at each r3, r2 and r1 level in turn. We can use
the values of all four gauges, r1, r2, r3 and r4, to partially order all the tuples in any CRKS
<A, T> = I [<A, E>] from “least difficult” subset of T to “most difficult” subset of T,
providing us with a tuple-ordering strategy in presenting <A, T> - see [GVS99].

Relation nets and hypernets 70

19. Structural analysis of a CRKH

We now turn to structural characteristics of CRKH’s. These are similar to those exposed in
the chapter on presentation strategies in [GVS99].

(1) The most basic structural characteristics of a CRKH are its vertex basis and its edge bases.

The set of primaries of a CRKH is its unique vertex basis, and, in the terminology of
graph theory, the set of goals of a CRKH is its unique vertex contrabasis.

(2) Application of Menger’s Theorem in a CRKH yields two interesting insights into the

structure of a CRKH. Let K = <A, E> be a CRKH with set of primaries P and set of goals
G. Convert K to a CRKH Z as follows: Delete from K all egdes that consist of only a
primary and a goal or that consist of only primaries and a goal. Next add dummy vertices
π and γ to K, and add new dummy edges {π , p} for each p ∈ P and {γ, g} for each g ∈ G.
This completes the construction of Ζ = Ζ0. The set of all π  γ paths, in Ζ, that have a
given vertex v0 of K between π and γ is called a bundle of π  γ paths and is denoted by
S0. Every member of S0 is cut by deletion of v0 from K. Consider a minimal separation
B(π  γ) for π and γ in K and let B(π  γ) = {v0, v1, ..., vn}. Deleting the context-
hyperschema of v0 from K deletes all the members of bundle S0, deleting that of v1 deletes
the set S1 of all π  γ paths in what remains of K from that remaining hypernet, i.e. all
the π  γ paths in <A – {v0}, E↑(A - {v0})> that have v1 between π and γ in K, and so
on, producing a partition of all the π  γ paths in Z into n bundles. Two π  γ paths Pr
and Pt are said to be quasi-disjoint iff they belong to two distinct bundles. Then Menger’s
Theorem states that the maximum number of quasi-disjoint π  γ paths in Z is equal to
min B(π  γ)| - see the chapter on Menger’s Theorem in this report, and the chapter on
presentation strategies and section 12.5 in [GVS99].
The paths deleted from K in constructing Z are all of length 1 and are easy to deal with
separately. Since two quasi-disjoint π  γ paths can share a vertex v of K, i.e. some v
may be between π and γ on both paths, we introduce the following. Two π  γ paths are
said to be independent iff (i) they are quasi-disjoint and (ii) no vertex v of K is between π
and γ on both paths. It is easy to see that if the two paths are independent then they are
quasi-disjoint, but a simple counter example will show that the converse is not generally
true. ♦

Definition 19.1: A set of pairwise independent π  γ paths in Z is called a flow, and the
measure of a flow is defined to be the number of paths of the flow. ♦

Theorem 19.1: The measure of a maximum flow for π and γ through Z is less than or equal to
min B(π  γ).♦

Proof: Follows from Menger’s Theorem for Z and the fact that independent paths are quasi-
disjoint, but the converse is not necessarily true, so there cannot be more paths in a flow than
there are pairwise quasi-disjoint π  γ paths in Z. ♦
.

Relation nets and hypernets 71

The members of a minimal vertex separation B(π γ) in Z are critical in K, as are the paths in
a maximim flow, in some applications. Dealing with the paths of length 1 that were deleted
from K to produce Z, if any, is easy after applying the theorem.

Menger’s Theorem also applies in edge form, as briefly outlined below. By an edge
separation E (πγ) for π and γ in Z we mean a set of edges of K which, if deleted from Z,
will leave no π γ paths in Z. By an edge-bundle in Z we mean the set of all π  γ paths that
use a particular edge of K. Pick an edge e0 of K. Let edge-bundle S0 be the set of all π γ
paths in Z that use e0. Delete from Z the common edge, e0, of each of the members of S0.
Repeat this process in what remains of Z, defining bundle S1 for edge e1. Continue until no
more π  γ paths remain. Two π  γ paths are said to be quasi-edge-disjoint iff they belong
to two distinct edge-bundles. Now Menger’s Theorem states that the maximum number of
pairwise quasi-edge-disjoint π  γ paths in Z is equal to the minimum number of members in
an edge separation E(πγ) in Z, i.e. minE(π  γ).

Since two quasi-edge-disjoint paths can share an egde of K, we define the following notion.
Two π  γ paths in K are said to be edge-independent iff
(1) they are quasi-edge-disjoint and
(2) no edge of K lies on both π  γ paths. If two π  γ paths are edge-independent then they

are quasi-edge-disjoint, but the converse is not generally true.

Definition 19.2: A set of pairwise edge-independent π  γ paths in Z is called an edge-flow,
and the measure of an edge-flow is defined to be the number of π  γ paths in the edge-flow.
♦

Theorem 19.2: The measure of a maximum edge-flow for π and γ through K is less than or
equal to min E(πγ).♦

Proof: Follows from the edge version of Menger’s Theorem for Z and the fact that edge-
independent π  γ paths are quasi-edge-disjoint but the converse is not necessarily true, so
there cannot be more paths in an edge-flow than there are pairwise quasi-disjoint π  γ paths
in Z. ♦

Can we get closer to the measure of a flow? Consider Z, and partition the set of all π  γ
paths in Z as follows. Delete any vertex v0 of K from Z, and let S0 be the set of all π  γ
paths in Z that are cut by that deletion. Let <B0, E0> ∠ K be the hypernet that is defined to be
the context hyperschema of all the vertices of K that are between π and γ on any π  γ path
in S0, i.e. <B0, E0> is the join of all the context hyperschemas of each vertex of K that is
between π and γ on any π  γ path in S0. Delete <B0, E0> from Z, and let <B1, E1> be the
sub-hypernet of Z that remains after this deletion. Choose any v1 ∈ (B1 – {π , γ}), delete v1
from <B1, E1>, and let S1 be the set of all π  γ paths in <B1, E1> that are cut by that deletion.
Now delete from <B1, E1> the context-hyperschema of all the vertices of <B1, E1> that are
between π and γ on any π  γ path in S1. Continue in this way, defining Sr for r = 0, 1, ..., t,
until St+1 is empty. Then a flow of measure (t + 1) can be found by choosing precisely one

Relation nets and hypernets 72

π  γ path from each Sr. The set of vertices vr, r = 0, 1, ..., t is an example of what is said to
constitute a flow-separation F(π  γ) for π and γ in Z, and we clearly have:

Theorem 19.3: The measure of a maximum flow for π and γ through K is equal to
min F(π  γ). ♦

Can we do a similar thing for edge-flows? We can indeed. Delete every edge of every
member of S´0, where S´0 is the set of all π  γ paths of Z that are cut by the deletion of edge
e0 from K. Next choose any edge e1 of K that remains after the deletion of all edges of all the
paths in S´0. Let S´1 be the set of all π  γ paths, in what remains of Z, if any, that are cut by
the deletion of e1 from the remaining hypernet, and then delete from that remaining hypernet
all the edges of every member of S´1. Continuing in this way we partition all the π  γ paths
in Z into sets S´0, S´1, ..., S´n. Now two π  γ paths are edge-independent iff they belong to
two distinct S í, because the two paths are certainly quasi-edge-disjoint and they can share no
edge of K.

Thus we have

Theorem 19.4: The meaure of a maximum edge-flow for π and γ through Z is equal to min
G(π  γ), where G(π  γ) is an edge-flow-separation for π and γ in Z, i.e. G(π  γ) is a
set of edges such as e0, e1, ..., en that generate a partition of π  γ paths such as S´0, S´1, ..., S´n

respectively. ♦

Since deletion of vertices of K is more destructive than deletion of edges from K in general,
because of strong vulnerability, we have the following.

Theorem 19.5: If two π  γ paths P1 and P2 in Z are independent then they are edge-
independent, but the converse is not generally true. ♦

Proof: Since P1 is independent of P2, P1 and P2 are quasi-disjoint, and P1 and P2 share no
vertex of K, i.e. no vertex of K is between π and γ on both P1 and P2. Since P1 and P2 are then
vertex-disjoint, they must clearly be edge-disjoint, so they are edge-independent because they
belong to different edge bundles: Edge-disjoint implies quasi-edge-disjoint, but the converse
is not true in general. If P1 and P2 are edge-independent then they may clearly share a vertex
of K, so they are not, in general, independent π  γ paths. ♦

Corollary 19.1: min F(π  γ) ≤ G(π  γ) in Z. ♦

Proof: Follows at once from Theorem 19.5. ♦

Since deleting the context-hyperschema of all vertices in all the π  γ paths on which some
vertex v lies is more destructive than deleting only the context-hyperschema of v, we have:

Theorem 19.6: min F(π  γ) ≤ B(π  γ). ♦

Relation nets and hypernets 73

Since deleting all the edges of S í is more destructive than deleting just the generating edge ei,
we have:

Theorem 19.7: min G (π  γ) ≤ E (π  γ).♦

Finally, for the same reason, we have

Theorem 19.8: min B(π  γ) ≤ min E (π  γ). ♦

Thus we have

Corollary 19.2:

min F(π  γ) ≤ min G (π  γ) ≤ minE (π  γ)
and

min F(π  γ) ≤ min B(π  γ) ≤ min E (π  γ). ♦

Facets of Menger’s Theorem will be useful in some applications inasmuch as they separate
out certain vertices, edges and derivation paths for special attention.

(3) Matchings and Coverings re-visited. In Chapter 5 of [GVS99] we discussed a variety of

presentation strategies, and this section of the report picks up some of that work, but with
a different emphasis. Before continuing with this section, we look again at matchings and
coverings as both are important facets of the structure of a CRKH. One of the key
approaches to finding matchings is the construction of a bipartite graph G from a CRKH
<A, E> as follows. Order the edges of <A, E> in any way, and plot them as vertices of G
in two columns E1 = E and E2 = E, each in the defined order. Join two distinct vertices of
G, v1 ∈ E1 and v2 ∈ E2, that are adjacent by at least one vertex a ∈ A in <A, E>. From this
graph G one can write an algorithm to find a matching in <A, E>, where we recall that a
matching is defined as follows.

Definition 19.3: A matching M ⊆ E in a CRKH <A, E> is a set of edges of <A, E> that are
pairwise (potentially) non-adjacent. M is a maximal matching iff we can add no edge of <A,
E> to M without destroying the matching property. ♦

It is easy to find a maximal matching, in <A, E>, using G – see [GVS99] p. 74 for example.
The members of a maximal matching are pairwise “independent” edges inasmuch as no two
of them are adjacent edges in <A, E>. A relatively large value of M compared with E
will indicate a certain poverty of derivation paths, so maximal matching can be important in
analysing the structure of <A, E>. Now recall vertex covering.

Definition 19.4: A vertex cover of a CRKH <A, E> is a set of edges Ec ⊆ E which is such that
∪ Ei, Ei ∈ Ec, is equal to A. A minimal vertex cover of <A, E> is a set of edges that, together,
involve each a ∈ A at least once, and from which we may delete no edge without destroying
the covering property. ♦

Relation nets and hypernets 74

If we find a maximal matching in <A, E> then we can convert it to a minimal vertex cover –
see [Ber89]. A minimum cover will tell us the minimum number of edges that “say
something” about each a ∈ A in <A, E>, and presents us with a set of edges that actually does
this. Constructional Scheme 5.4 in [GVS99] can easily be re-written to find a minimal vertex
cover for <A, E>.

(4) Next we turn to the CRKH equivalent of a tuple oriented partial presentation strategy,

not dealt with in [GVS99] but sometimes relevant for structural analysis of a CRKH. Let
<A, E> be any CRKH.

Definition 19.5: By a primary edge of <A, E> we mean an Ei ∈ E such that every member of
Ei, but precisely one, is primary in <A, E>, and that one other vertex is non-primary in
<A, E>.♦

(1) Let L0 be the set of all primary edges of <A, E>, and there must of course be at least one.

Now we start to describe a procedure in terms of our bi-partite graph G. Mark the
members of L0, in E1 and in E2, in G, and then delete all edges of G that link members of
L0, i.e. represent adjacencies of members of L0.

(2) Define L1 ⊆ E as follows. A vertex Ei ∈ E1 (and of E2) in G belongs to L1 iff it is adjacent
with at least one member of L0 in G. Delete all edges of G that link members of L1, i.e.
represent adjacencies of members of L1. Now partially order the members of L1 as
follows.Let the order of each l1 ∈ L1 be l1, and arrange the members of L1 in partial
order of decreasing order, those with maximum order being said to be closest to L0
because they are, among the members of L1, most closely associated with the vertices
involved in the members of L0.

(3) Repeat step 2 with L0 replaced by L1 and L1 replaced by L2, then with L2 and L3, and so
on until Lk has been defined and we then find Lk+1 = ∅. We have then dealt with some of
the edges of <A, E> in a partial order that consists of succesive steps with a partial
ordering of edges in each step.

(4) Finding the “strongest” associations of edges, in each step, with edges in all the previous
steps can be another indication of the strength of association in a CRKH. It is clear that
one can define a partial presentation strategy, i.e. a hierarchy of nested sub-hypernets of
<A, E>, along these lines. In practice ∪ Li ⊆ E may constitute only a very small subset of
E, but we can condsider it as displaying “core associations” among (some of) the vertices
of <A, E>.

Another indication of the kind of association that should be examined in a CRKH <A, E> is
the case of spiralling – see [GVS99]. Here we can regard this as a way of sorting knowledge
about a ∈ A if spiralling occurs for a (as it often does). Suppose that we have, in the
predecessor hyperschema P(a) of a ∈ A, a sub-hyperschema that contains at least one
derivation path for a that does not use a, i.e. a is not between the relevant primary and a on
this path other than as the “end” vertex of that path, and at least one derivation path for a that
does use a “on the way to a”. The minimum sub-hyperschema of P(a) that contains the join of
the derivation path hyperschemas of all such paths in P(a) is then said to constitute a
recursive, or bootstrap, approach to a in P(a), and thus in <A, E>. It is called the recursive
sub-hyperschema of a in <A, E>, and it contains at least one derivation path hyperschema, for

Relation nets and hypernets 75

a, that does not use a, and at least one that does. Knowledge about a ∈ A in <A, E> is first to
be found in the recursive sub-hyperschema for a in <A, E>, if one exists, starting with those
derivation paths that terminate at a but do not use a anywhere else in them, thus establishing
preliminary knowledge of a in <A, E>. Then the other derivation paths in the recursive sub-
hyperschema can be dealt with, and then P(a), and then finally the context hyperschema of a
in <A, E>. This provides us with a graded approach to finding all the knowledge about a in
<A, E>. Constructional Scheme 5.5 in [GVS99] can easily be transcribed to provide a way of
finding the recursive sub-hyperschema of a ∈ A in <A, E>. A recursive sub-hyperschema is
unique.

Deductive Complexity of a CRKS – see [GVS99] – can be usefully transcribed to a CRKH.
It is clear that a limited access cascade from the primaries of a CRKH <A, E> generates a
hierarchy, in <A, E>, in the form of a nested sequence of sub-hypernets of <A, E>. We will
be concerned with that hierarchy and the notion of deductive distances in <A, E>, which we
recall here.

Definition 19.6: The deductive distance from the primaries of a CRKH <A, E> of a ∈ A is
defined by dd(a) is the level of a in <A, E>, where that level is the step number in a limited
access cascade from the primaries of <A, E>, in <A, E>, in which a is first encountered in that
cascade. ♦

The primaries of <A, E> constitute B0, so they are in level zero of the cascade, so dd(p) = 0
for every primary of <A, E>. Next we recall constructional scheme 16.1. In it we showed how
to construct a tree that displays every path from each primary of <A, E> as a unique path in
that tree. Now we label that tree, as we construct it, by marking all its branches and nodes in a
way that allows us to compute what we call the deductive complexities DCOM. Again we
refer to vertices and edges of <A, E>, and to nodes and branches of the path tree.

First we introduce an unlabelled dummy node to serve as the root of the tree, and one only
node for each primary of <A, E>. Each such node is joined to the root by an unlabelled
branch. Every node, other than the root, is labelled with (concept-name, deductive distance of
the vertex represented by that node, deductive complexity DCOM of that node). So far we
have

 root

 p1, 0 , 1 p2, 0 , 1 pn, 0 , 1

Relation nets and hypernets 76

for the n primaries of <A, E>, where dd(pi) = 0 for every primary and we set DCOM (pi) = 1
for every primary. For each node for a vertex u ∈ A, the path tree now develops as follows.
Find every edge Ei by which there is a vertex adjacency (u, Ei, v) where
Ei = {u = c1, c2, ..., cm = v}. We plot a new node for vertex v for each edge Ej ∈ E by which
there is a vertex adjacency (u, Ej, v) for this u and v, and insert a branch from each node for u
to every node for v. Each such branch is labelled with the index k of the edge Ek that
generates it, together with all the members of Ek other than the two vertices which are
adjacent by Ek in <A, E>. Thus, for our example Ei above, we would get a branch from each
node for u to every node for v in the path tree, and that branch would have label i; c2, c3, ...,
cm-1, where any order of the cs will do. Each new node for v is labelled with its concept-name,
its deductive distance from the primaries of <A, E>, and the node value of DCOM. The node
value of DCOM is computed from the edge that generates the particular, unique, branch to
that node by setting DCOM = DCOM for the “beginning” node of that branch + Σ (DCOM of
the node for cs) from s = 2 to m-1 over all the cs written along that branch in the branch label.
We set dcom(cs) equal to any minimal value of DCOM of a node for the vertex cs. In the case
of an edge {u, v}, the branches between u and v for this edge are all labelled with the index of
this edge and the set ∅ of vertices, and for such a branch we set DCOM for the end node of
the branch, i.e. the one furthest from the root, to DCOM for the beginning node of that branch
+1.

Next we number the nodes of the path tree. Number the root zero, and then number all sons
from left to right. Now we assign a value of dcom for each concept-name that appears in any
branch label as follows. Fill in DCOM for each node that has dd = 1. Certainly this is possible
because all the primaries have dd = 0 and every node at dd = 1 represents a vertex that was
derived in terms of primaries only. Next, proceed to nodes for vertices at dd = 2, then at
dd = 3, and so on in turn, using the following method. For each concept-name v in a branch
label, look in the path tree for any node for v that has a minimal value of DCOM among those
nodes. Suppose that we choose node number n for v: Then dcom(v) = DCOM(n), and
wherever v occurs in any branch label we enter dcom(v) and (n) next to v in that label. To see
that this assignment of values of DCOM is possible for all the non-root nodes of the path tree,
consider the following informal argument. In level 0 we have all the primaries, and each
primary has a node for which DCOM = 1. Since each primary is trivially derived by a
derivation path of length zero, we must set dcom = DCOM = 1 for each node for a primary.
This takes care of the first stage of filling in DCOM and dcom. We now temporarily define a
first derivation path for any non-primary vertex v of <A, E>, in <A, E>, as follows. Suppose
that v is in level n, n ≥ 1, in <A, E>. A first derivation path for v is any derivation path for v,
in <A, E>, for which every vertex u used on that derivation, i.e. in an edge of that derivation
path, is in a level m < n.

Let v be any vertex, of <A, E>, that lies in level 1, and let D(v) be any first derivation path for
v in <A, E>. Then the only vertices of <A, E> that are used in reaching v by means of D(v)
are primaries of <A, E>, and this includes the case of ∅ labels. It follows that we can assign a
value of DCOM to that node copy of v that lies at the “end” of the unique path, in the path
tree for <A, E>, which corresponds with this first derivation path D(v) for v. Notice that there
must be at least one first derivation path in <A, E> for every v ∈ A in any given level,
because <A, E> can be precisely generated by a limited access cascade from its primaries. We

Relation nets and hypernets 77

now assign a value of DCOM to the relevant node copy of v for every first derivation path for
v. Any minimal value of DCOM assigned to a node copy of v in the path tree using this
procedure for v ∈ A can be chosen to be the value of dcom for v, and this value is now fixed
for v so we fill it in, together with the number of the chosen node copy of v, at every
occurrence of v in a label in the path tree. We do this for every v ∈ A that lies in level 1, and
this is possible because each such vertex has at least one first derivation path, in <A, E>, that
involves only primaries, possibly with a ∅ label, in reaching that vertex.

Next suppose that we are done with all level n vertices of <A, E> for some n ≥ 1. Thus every
vertex of <A, E> that lies in level m ≤ n has been associated with at least one value of DCOM
and with a single value of dcom. Let v now be any vertex of <A, E> that lies in level (n+1) in
<A, E>, and let D(v) be any first derivation path for v in <A, E>. The only vertices of <A, E>
that are used in reaching v by means of D(v) are vertices u in levels m ≤ n, so each such
vertex u is associated with some node copies for each of which we have a value of DCOM,
and all those copies have the same previously chosen value of dcom. It follows that we can
now compute a value of DCOM for that node copy of v which lies at the “end” of the unique
path, in the path tree of <A, E>, that corresponds with this first derivation path D(v) for v. We
do this for each first derivation path for v. Any minimal value of DCOM associated with some
node copy of v in the path tree using this first derivation path procedure for v can be chosen to
be the value of dcom for v and attached to every occurrence of v in a branch label of the path
tree, together with the number of the node copy of v which was chosen in assigning the value
of dcom to v. We repeat this for every vertex of <A, E> that lies in level (n+1): This is
possible because each such vertex has at least one first derivation path that involves only
vertices in levels m ≤ n, and possibly ∅ labels, in reaching that vertex, and at least one such
path must exist because <A, E> can be precisely generated by a limited access cascade from
its primaries. Since <A, E> and its path tree are finite, it follows that the assignment of
DCOM and dcom values for every node in that path tree can be achieved: DCOM(n) can be
computed for every node n in the path tree of <A, E>.

Using the path tree of a CRKH <A, E> we can, by combining the DCOM and deductive
distance values for each leaf (pendant) of the path tree, where each leaf is a copy of some goal
of <A, E>, assign a complexity value to each derivation path in <A, E>, thereby establishing a
partial order of the derivation paths in <A, E> from the least complex to the most complex.
This leads to a presentation strategy – see [GVS99]. We make some brief comments on this
situation in our third intermission.

Relation nets and hypernets 78

20. Third intermission
.

This intermission is very speculative, and is partly for the amusement of frustrated theoretical
physicists like one of the authors (HO van Rooyen), but also contains some serious
suggestions about the use of CRKS’s and CRKH’s in the representation of study material –
see Parts I and II of [GVS99]. In such a representation, the notion of a CRKH frees the
designer from specific statements of relationship in a particular teaching metalanguage,
opening the way to “language free” design.

Hamilton’s Principle of Least Action appears to be a potential unifying principle for the
theories of relativity, electromagnetic theory and quantum mechanics: All we need seems to
be the appropriate definition of “action” in each case. In this author’s view, it is unfortunate
that the principle is formulated in a number continuum that is a wholly human invention and
has little to do with the “real world”, thus constituting a fundamental a priori flaw in the
models used in these fields of theoretical physics. Discrete models would be more suitable,
both for (partial) representation and for computation, and also for simulation, but are slow to
appear, partly probably due to the overwhelming concentration on the apparent success of real
and complex number modelling in Physics in general and a concurrent and appalling neglect
of basic scientific method in several fields of the physical “sciences” in recent years.

Where shall we look for potential “discrete versions” of Hamilton’s Principle? Let me suggest
here that we have indeed uncovered something, in the very unlikely field of education, that
looks suspiciously like a discrete version of Hamilton’s Principle and is also lightly attached
to probability, depending of course on ones enthusiasm for that Principle, which can make
one see ghosts where there may not be any!

We have seen that deductive complexity can be used to partially order the set of all derivation
paths in a CRKH, and of course in a CRKS. By partially ordering the members of each of
these “deductive complexity equivalence classes” by means of the deductive distances of the
leaves of our path tree from the primaries, we can define an overall complexity for each
derivation path of the relevant CRKH (or CRKS). Now consider any one of these “complexity
equivalence classes”, and let it have n members, each of which is a derivation path with the
same complexity. (One might suppose that a teacher/learner would start with the class of
lowest complexity!). The a priori probability that the teacher/learner will choose to start with
any one of these derivation paths is 1 in n, and the moment one is chosen the probability of
choice of all the rest in the equivalence class becomes 1 in (n-1). Of course the
teacher/learner will often make these choices on the basis of personal familiarity with the
“subsidiary” derivations involved in teaching/learning a given derivation path, but to some
extent this heuristic, and subjective, influence on the order of choice of derivation paths has
been built into the complexity measure of those paths. What is asking to be recognised here is
a sort of “least action” principle to be adhered to by “good” teachers/learners: The
teacher/learner must follow a derivation path of minimum complexity every time s(he) has a
choice, and the probability of choice varies with every choice actually made, indicating a
clear influence of the chooser on the whole of the remaining CRKH (CRKS) every time a
choice is made. The situation is of course actually more complicated than this simple choice

Relation nets and hypernets 79

of derivation path indicates, because in choosing a derivation path we are in fact choosing a
whole sub-hypernet (sub-net) in which at least one derivation of each vertex between p and g,
p a primary and g a goal, on the chosen derivation path p  g must exist. One such sub-
hypernet (sub-net) for p  g can easily be constructed from the labelling of p  g on our
path tree, so all the information is available for our chosen path p  g. One can see quite
plainly how this works in the example that constitutes Part II of [GVS99].

If we define the complexity of a flow to be the sum of the derivation path complexities over
all the independent derivation path sections of the paths in the flow, then the same thing can
be said about the choice of a particular flow: A flow of lowest complexity can be found by
selecting a derivation path of lowest capacity from each of the sets of paths from which one
member is chosen, from each set, to make up a flow.

Again we may have several distinct flows with the same flow complexity, so we meet the
same situation as with the choice of individual derivation paths, and a similar Principle
applies. One may ask, incidentally, why a teacher/learner would wish to teach flows. The
answer is that it makes some good sense as the various paths belonging to any given flow
each go through a “region” of the relevant CRKH (CRKS) that is unrelated to the “region”
through which any other path in that flow goes.

Our principle of least complexity can be worded in a fairly evokative way. The “movement”
of a teacher/learner “through” a CRKH (CRKS) will always be along a derivation path of
minimum complexity in the current CRKH (CRKS), or, more succinctly: The Principle of
Least Complexity for “Good” Teachers/Learners. Given a choice of (derivation) paths (or of
flows) from one (primary) vertex to another (goal) vertex in (CRKH/CRKS) space, a path that
is of least complexity under the current conditions in that space will be followed.

While this intermission is likely to evoke a few chuckles over a cocktail there is, hidden
behind it, a serious appeal to give more consideration to the marvellous Principle of Hamilton
and to free it, if possible, from its original home in the calculus. As discrete modelling, the
natural field of the digital computer, becomes ever more important we may find much wider
use of such theorems as that of Menger in its various formats, and perhaps too of general
principles such as that of Hamilton’s “Least Action”.

Relation nets and hypernets 80

21. An Extended View of Modelling Study Material

Before continuing with the development of CRKH theory, we will use a simple example to
show how the use of the representation of study material in CRKS form is linked with, and is
extended by, the notion of a CRKH. Our illustration is the partial model of CRKS theory
itself, as given in Appendix A of [GVS99], in the form of a CRKS. For convenience, we
repeat the statements of Appendix A here. The CRKS is rather trivial, but is an adequate
illustration of the point that we wish to make in this section.

The concept-names in the statements are those printed in bold. Here are the statements, made
on the basis of part of Part 1 of [GVS99].
1. The problem of devising a science of teaching has a potential solution in terms of vee

diagrams .
2. The problem of devising a science of teaching has a potential solution in terms of

concept circle diagrams .
3. The problem of devising a science of teaching has a potential solution in terms of

concept maps .
4. The problem of devising a science of teaching has a potential solution in terms of

semantic networks.
5. The problem of devising a science of teaching has a potential solution in terms of

conceptual graphs .
6. The problem of devising a science of teaching has a potential solution in terms of CNR-

nets.
7. Concept maps deal with concept-names and relationships among them, as do CNR-

nets.
8. Concept-names are represented by the vertices in a CNR-net.
9. Relationships are represented by the tuples in a CNR-net.
10. Tuples represent relationships in a CNR-net.
11. A CNR-net has subnets.
12. The set of all subnets of a CNR-net, with meet and join defined on it, forms a

distributive lattice.
13. A concept-name, in a CNR-net, represented by a vertex with in-degree zero and out-
 degree ≥ 1, is called a primary.
14. A concept-name, in a CNR-net, represented by a vertex with out-degree zero and in-
 degree ≥ 1, is called a goal.
15. A primary is a vertex with in-degree zero and out-degree ≥ 1 in a CNR-net.
16. A goal is a vertex with out-degree zero and in-degree ≥ 1 in a CNR-net.
17. A CNR-net with at least one primary, at least one goal, and no circuits, and in which
 each concept-name is related to at least one other concept-name, is called a formal
 schema.
18. A formal schema that consists of all the tuples that involve a given concept-name
 constitutes, for that concept-name, its context-schema.
19. A formal schema in which every vertex has degree ≥ 1 is said to be complete.
20. A formal schema may have the property that every one of its vertices is derivable.
21. A complete formal schema in which every vertex is derivable is called a CRKS.

Relation nets and hypernets 81

22. Derivability and completeness of a formal schema characterizes a CRKS.
23. A primary in a CRKS is trivially derivable.
24. Every statement of relationship in a CRKS is treated as an inference rule: This leads to
 the notion of derivability.
25. A formal schema that is complete and in which every vertex is derivable is called a
 CRKS.
26. Tuples in a CRKS are preserved by CRKS isomorphism.
27. Isomorphism of CRKS’s expresses structural analogy.
28. Structural analogy is expressed in terms of isomorphic (sub-) CRKS’s.
29. Isomorphism is used to express structural analogy among (sub-) CRKS’s.
30. Derivability is realized in a CRKS by means of derivation paths .
31. Derivation paths express derivability in a CRKS.
32. Derivability is realized in terms of derivation paths in a CRKS.
33. A formal schema can be searched for relevant subnets using cascades.
34. A cascade from the primaries of a formal schema can be used to test a formal schema
 for CRKS form.
35. In a formal schema we can use a cascade from the primaries to test for CRKS form.

These statements do not tell us much about CRKS’s, but we can continue to design more
statements until we “cover” CRKS theory. This is just a simple illustration after all!

The Tuples Table is as follows, with the tuple set for each.

1. <problem, vee diagram> {problem, vee diagram}
2. <problem, concept circle diagram> {problem, concept circle diagram}
3. <problem, concept map> {problem, concept map}
4. <problem, semantic network> {problem, semantic network}
5. <problem, conceptual graph> {problem, conceptual graph}
6. <problem, CNR-net> {problem, CNR-net}
7. <concept map, concept-name,

relationship, CNR-net>
{concept map, concept-name, relationship,
CNR-net}

8. <concept-name, CNR-net> {concept-name, CNR-net}
9. <relationship, tuple, CNR-net> {relationship, tuple, CNR-net}
10. <tuple, relationship, CNR-net> {tuple, relationship, CNR-net}
11. <CNR-net, subnet> {CNR-net, subnet}
12. <subnet, CNR-net, distributive lattice> {subnet, CNR-net, distributive lattice}
13. <concept-name, CNR-net, primary> {concept-name, CNR-net, primary}
14. <concept-name, CNR-net, goal> {concept-name, CNR-net, goal}
15. <primary, CNR-net> {primary, CNR-net}
16. <goal, CNR-net> {goal, CNR-net}

So far the difference is that the entries in the tuples are in a strict order, but those in the edges
are unordered.

17. <CNR-net, primary, goal, concept-name,

relationship, concept-name, formal
schema>

{CNR-net, primary, goal, concept-name,
relationship, formal schema}

Relation nets and hypernets 82

18. <formal schema, tuples, concept-name,
concept-name, context-schema>

{formal schema, tuples, concept-name,
context-schema}

19. <formal schema, complete> {formal schema, complete}
20. <formal schema, derivable> {formal schema, derivable}
21. <complete, formal schema, derivable,

CRKS>
{complete, formal schema, derivable, CRKS}

22. <derivability, complete, formal schema,
CRKS>

{derivability, complete, formal schema,
CRKS}

23. <primary, CRKS, derivability> {primary, CRKS, derivability}
24. <relationship, CRKS, derivability> {relationship, CRKS, derivability}
25. <formal schema, complete, derivable,

CRKS>
{formal schema, complete, derivable, CRKS}

26. <tuple, CRKS, CRKS, isomorphism> {tuple, CRKS, isomorphism}
27. <isomorphism, CRKS, structural

analogy>
{isomorphism, CRKS, structural analogy}

28. <structural analogy, isomorphic, CRKS> {structural analogy, isomorphic, CRKS}
29. <isomorphism, structural analogy,

CRKS>
{isomorphism, structural analogy, CRKS}

30. <derivability, CRKS, derivation path> {derivability, CRKS, derivation path}
31. <derivation path, derivability, CRKS> {derivation path, derivability, CRKS}
32. <derivability, derivation path, CRKS> {derivability, derivation path, CRKS}
33. <formal schema, subnet, cascade> {formal schema, subnet, cascade}
34. <cascade, primary, formal schema, formal

schema, CRKS>
{cascade, primary, formal schema, CRKS}

35. <formal schema, cascade, primary,
CRKS>

{formal schema, cascade, primary, CRKS}

In designing a CRKS we need to decide on the primaries, the goals, and the concept-names,
and then write out statements and permutations (re-statements) of relationships, constructing
the diagram at every step as the developing diagram often indicates what kind of statements
need to be made in order to archieve derivability of every vertex. A useful hint is to run a
limited access cascade from the primaries at each stage of the design, getting each step of the
cascade complete before moving to the following step of the cascade. The diagrams are given
in figure 21.1 (CRKS) and figure 21.2 (CRKH). In labelling the diagrams we use some
obvious abbreviations of concept-names and the edges of the CRKH are labelled by the index
number of the statements.

In the diagram of the CRKS we have entered tuple numbers on the arrows. Thus for example,
3 arises from <problem, concept map> and the complete label is 3; ∅. 17 arises from
<CNR-net, primary, goal, concept-name, relationship, concept-name, formal schema> and the
complete label has only one member, 17; <primary, goal, concept-name, relationship,
concept-name>. In Figure 21.2 the corresponding complete label is 17; {CNR-net, primary,
goal, concept-name, relationship, formal schema}. In the diagram of the CRKH for this
knowledge about CRKS’s, we have entered only the edge index numbers. Thus, for example,
the label l({derivable, CRKS}) is made up of E22 and E32, so, in full, we have l({derivable,
CRKS}) = {{derivability, complete, formal schema, CRKS}, {derivability, derivation path,
CRKS}}.

Relation nets and hypernets 83

 Problem

 1;∅ 2;∅ 3;∅ 4;∅ 5;∅

Vee-diagram con. circle diag. con. map sem. net conc. graph

 7 6

 CNR-net

 9 15 8 16 17 11 10

 13 14

relat prim con. name goal subnet tup

 12

 context schema dist. lattice

 23 18 26
 formal schema

 24 20 33 19

 derivable cascade complete isom

 30 22, 32 34 25, 35 21 29 27

 struct. analogy

derivation path
 31 28

 CRKS

Figure 21.1: CRKS where a circle indicates a primary and a square indicates a goal

Relation nets and hypernets 84

 Problem

 1 2 3 4 5

Vee-diagram con. circle diag. con. map sem. net conc. graph

 7 6

 CNR-net

 9 15 8 16 17 11 10

 13 14
relat prim con. name goal subnet tup

 12

 context schema dist. lattice

 18 26
 formal schema

 24 23 20 33 19

 derivable cascade complete isom

 30 22, 32 34 25, 35 21 29 27

 struct. analogy

derivation path
 31 28

 CRKS

Figure 21.2: CRKH where a circle indicates a primary and a square indicates a goal

Relation nets and hypernets 85

Starting with a CRKS <A1, T1> with the statements of relationship among its concept-names
in a teaching metalanguage L1, we can easily abstract the unique corresponding CRKH
<A1, E1> = M [<A1, T1>]. Now we can translate the concept-names to another teaching
metalanguage L2, bearing in mind that a concept-name can even be a phrase in L1 and/or L2,
producing a 1-1 correspondence between A1 and the set of translated names A2. Next we
construct a CRKH <A2, E2> that is isomorphic with <A1, E1>. Then we write statements of
relationship in L2 using, for each edge Ei ∈ E1, all and only the translations of the members of
Ei as the L2 concept-names in the relevant statement in L2, where we can use the translated
members of Ei in any order, and each can be used any number of times in the statement in L2.
The relationships, as opposed to the statements of relationship, should remain unchanged.
This now defines a set T2 of tuples, and we have <A2, T2> = I [<A2, E2>] for some
interpretation I of <A2, E2>.

Thus <A1, T1> and <A2, T2> may be made isomorphic by appropriate choice of interpretation
of <A2, E2>, but such a choice may be impractical. Indeed, we may not want to be restricted
to having <A2, E2> isomorphic with <A1, E1> as this forces one to preserve vertex
adjacencies. In that case <A2, T2> = I [<A2, E2>] must be chosen in such a way that the
relationships expressed by the members of T1 are preserved by the members of T2 in teaching
language L2. We refer the reader to Definition 2.18.

In summary, the second diagram is that of the unique CRKH which is the abstraction of the
CRKS represented by the first diagram, though many distinct CRKS’s can of course have this
same CRKH as abstraction. The concept-names involved in the CRKS can be translated to, or
constructed in, another teaching metalanguage, and from these we could build a CRKH that is
isomorphic with the English language (in this case) CRKH represented by the second
diagram. The new CRKH can now be interpreted as a CRKS in the ”new” language in a
number of ways, where we recall that Theorem 17.5 asserts that if that ”new” hypernet is a
CRKH then each and every interpretation of it is a CRKS. Such a CRKS can now be used to
teach/learn the knowledge represented by our English language CRKS in the ”new” language.
Heuristically, the statements from which the tuples arise in the ”new” language should be
chosen, from the alternatives for each CRKH edge, in a manner that best suits the
teachers/learners in that language. It may be that the vertex adjacencies forced upon the
designer are inappropriate in the ”new” language.

Relation nets and hypernets 86

22. Accommodation and analogy

Definition 22.1: By an accommodation of a CRKH <A, E> we mean any restructuring of
<A, E>, for example adding 1 to the weight of an edge Ei ∈ E every time that Ei is used in any
way, thereby emphasizing certain edges of <A, E> in the sense that the higher the weight of
an edge in the current, accommodated hypernet, the greater the ”user familiarity” with that
edge. By a unit edge accommodation we mean adding one edge to <A, E>. By a unit vertex
accommodation we mean adding one vertex to <A, E>. By a hypercluster accommodation
we mean adding a hypercluster for some new edge to <A, E>.♦

Definition 22.2: In the case of unit accommodations and hypercluster accommodations of a
CRKH <A, E>, we say that the accommodation is assimilated by <A, E> iff the restructured
hypernet that results is itself a CRKH. ♦

It is clear that a unit edge accommodation of a CRKH <A, E> in which all the members of
the new edge are elements of A is the simplest form of accommodation. A unit vertex
accommodation of a vertex v ∉ A will of course never be assimilated: We need to add in, as
well, appropriate associations with members of A, in the form of new edges, to produce a
context hyperschema for v that is assimilated by <A, E> if our objective is to construct
CRKH’s from simple structures. If a unit edge accommodation involves an edge in which
there is at least one vertex v ∉ A then we have a slightly less complex problem, because here
we introduce both v and an edge that has v as a member.

As was indicated in [GVS99], the most ”natural” kind of accommodation is (hyper) cluster
accommodation, because of the key role of (hyper) clusters in teaching/learning and in finding
(CRKH) CRKS isomorphisms in practical situations in which analogy modelling is used. We
will return to this point in the later section on isomorphism and structural analogy for
CRKH’s.

Finally, let us point out that even though a hypercluster is, by definition, a (minimal) CRKH
for a given edge, accommodating a hypercluster into a CRKH does not always lead to
effective assimilation of that hypercluster. Certainly the join of the CRKH <A, E> and a
hypercluster that is disjoint from <A, E> will yield a CRKH, so that hypercluster is
assimilated by <A, E>, but this is a trivial situation of no importance: What we need to do is
consider only such hyperclusters that are not disjoint from <A, E>, i.e. the meet of <A, E>
and the hypercluster in question has at least one vertex, and here there may be real problems
that require to be dealt with to achieve assimilation of the hypercluster by <A, E>. If we deal
with the case in which the meet is < ∅, ∅> then the accommodation and assimilation is
useless in restructuring <A, E> in practice. What we need for effective assimilation is that we
add to <A, E> and the hypercluster in question enough vertices and edges to end up with a
restructured hypernet <A’, E’> that is a CRKH and is such that the hypercluster introduced
belongs to a component of <A’, E’>.

Relation nets and hypernets 87

Combining unit and hypercluster accommodations can always produce, with enough
perseverance, an (effective) assimilation. Some brief comments on accommodations in the
case of CRKS’s are presented in [GVS99].

Relation nets and hypernets 88

23. Isomorphism and Structural Analogy

To see if two given CRKS’s, or two given CRKH’s, are isomorphic we can use constructional
scheme 6.2 of [GVS99], which easily transcribes to the CRKH case. If two CRKH’s
(CRKS’s) are isomorphic then we say that they are structurally analogous. The use of
structural analogy in teaching/learning by virtue of the use of ”modelling” has been discussed,
in the case of CRKS’s, in [GVS99], and the discussion applies to CRKH’s as well. Further, an
example of structural analogy is presented in Chapter 7 of [GVS99], and again that work can
be transcribed to the case of CRKH’s. Also covered in that chapter of [GVS99], and also
smoothly transcribable to CRKH’s by simply replacing tuple labels with tuple-set (edge)
labels on the arcs, even leaving arc directions unchanged for ease of reading, is the section on
theorem proofs.

What, then, is the reason for introducing CRKH’s in this connection? Well, the central
problem is that of finding, if possible, an isomorphism between two sub-CRKS’s: Given
<A1, T1> and <A2, T2>, how can we find and construct an isomorphism between them? In
[GVS99] a rather complex constructional scheme to do this, if possible, was presented. We
now wish to point out that an easier solution appears from the notions of interpretation and
abstraction. Setting up the problem in the field of teaching/learning ”new” knowledge by
refering to given knowledge, i.e. in the sphere of teaching by the use of a ”model” of new
knowledge in terms of given knowledge, we visualize the following situation in which we
need to construct an isomorphism, i.e. a structural analogy, to compare new, developing
knowledge with given knowledge.

We start with existing knowledge in the form of a CRKS K = <A, T> and some ”new”
observations in the form of a cluster K’ = <A’, T’> for some tuple of ”new” concept-names.
Now in seeking a match, in K, for K’, we meet the first, and greatest, problem in trying to set
up an isomorphism/structural analogy between a sub-CRKS of K and the cluster K’: That of
relative permutations. How do we recognise a match between a tuple in K and a tuple in K’
when we have to take account of all possible permutations of both tuples? Bearing in mind
that the whole procedure is a trial-and-error attempt to find the ”best” structural analogy – see
Chapter 8 in [GVS99] – we side-step this problem while maintaining the basic approach used
in [GVS99], as outlined briefly below.

First we abstract K = <A, T> and K’ = <A’, T’>, producing CRKH <A, E> and the
hypercluster CRKH <A’, E’> respectively. Now relative permutations are irrelevant. Next we
look at the member or members of E’, assuming that not all members of E and of E’ are
unordered pairs, and find a matching of <A’, E’> in <A, E> by matching all the sets in E’
with a collection of the same number of sets in E that form a hypercluster in <A, E>, if
possible. There may be several such matchings, so it is better, but not essential, to start with a
number of ”new” hyperclusters and try to match them simultaneously. Even then there may be
more than one possible initial matching, but continuing with the construction will show which
initial matching is ”best”. (Of course one can also apply heuristics in deciding between
several possible matchings, but our formal measure of relative success is the number of
vertices and edges in the final matching.)

Relation nets and hypernets 89

Next we turn the isomorphism found from <A’, E’> into a hypercluster in <A, E> round, and
expand its domain in <A, E> one edge at a time, each edge having as ”large” a meet with the
current domain of the growing isomorphism in <A, E> as possible. Each edge projected by
the tentative expansion of the domain of our CRKH isomorphism is tested as follows. We
define, at each stage of the ”prediction” from <A, E>, an interpretation of the ”predicted”
CRKH, based on expanding the inverse of the abstraction of <A’, E’>, and producing for each
predicted edge a tuple from that edge. What tuple? Well, combining the abstraction of <A, T>
with the potential CRKH isomorphism and the developing interpretation we can identify the
potential matching tuple in <A, T>, so we can construct a matching tuple in the growing new
knowledge CRKS that contains <A’, E’>.

Now try to provide semantics for that predicted new tuple by trying to write an appropriate
and consistent statement of relationship for that tuple, identifying the relevant ”new” concept-
names in that tuple. If this effort is ”acceptable”, and judging that may require some empirical
work suggested by the predicted tuple, then we accept the ”prediction”; if not then we move
on to another ”prediction”. Eventually we will have found no isomorphism, or several from
which to choose, and can use the matching sub-hypernet of <A, E> as a ”model” of the
”new” knowledge for use in presenting the ”new” knowledge. There is just one further
stipulation: The matching relation nets must be CRKS’s, and thus the matching hypernets
must be CRKH’s, in the case of teaching/learning applications, but in other applications we
can broaden the approach to isomorphic matching of general hypernets. To write a
constructional scheme for the procedure briefly outlined above is easy.

Finally, the section on the use of abstraction isomorphism and algorithmic isomorphism in the
field of problem solving - section 8.5 in [GVS99] - is easily transcribable to CRKH
representations of top-down algorithms. In fact, as pointed out in section 1 of this report, the
entire treatment of problem solving in [GVS99] is best done in terms of CRKH’s because in
[GVS99] we forced an arbitrary order onto the members of the edges. Either top-down
direction, with a singleton vertex basis, or bottom-up direction, with a non-empty, non-
singleton vertex basis, can be ”read into” the hypernet. If read top-to-bottom we have a
(usually connected) hypernet; if read bottom-to-top we have derivation path ordering in a
(usually connected) CRKH. In the case of connectedness, which is clearly desireable, a fairly
generous slice of the theory of hypernets presented in this report is applicable in the analysis
of the structure of the kind of hypernets refered to in section 1, and considerable simple
computer support for such analysis can easily be made available.

As pointed out in [GVS99], the isomorphism finding procedure can also be used in other
education oriented applications for example, such as in finding and analysing ”common
ground” for the current study material among the CRKS’s/CRKH’s drawn up by the members
of a class of learners.

Relation nets and hypernets 90

24. Models of Reasoning

CRKS models of reasoning were introduced in Chapter 9 of [GVS99], and all that is said
there can be transcribed to CRKH models. Models of intuitive and deductive reasoning are
based upon sequences of fast access and limited access cascades respectively. Inductive
reasoning is based on finding what is common among a number of CRKS’s by means of
abstraction isomorphisms, and then projecting this structure into (partially) similar new
CRKS’s by means of algorithmic isomorphism, thereby describing common inductive
reasoning formally. If only two CRKS’s are involved we describe one as a structural analogue
of the other. We are of course assuming that all these CRKS’s can have disjoint vertex sets.

Deductive reasoning may be described as ”vertical reasoning” and is geared to developing the
consequences of a set of primary concept-names or, in general, certain ”basic facts”. This
might also be described as ”male reasoning”, and is predominant in basic education in many
fields. In contrast, inductive reasoning may be described as ”lateral reasoning” with some
justification, and can also be described as analogical reasoning on the formal basis of CRKS
isomorphism. We may also assert that this ”analogical association” can be described as
”female reasoning”. Though we do not of course claim that all males reason vertically and all
females laterally, since many people are adept at both methods of reasoning, there seems to be
cause to claim that many female learners have more difficulty than males in certain fields of
education as the result of the ”male orientation” of organization and presentation of study
material. We believe that much more emphasis should be placed on analogical reasoning in
teaching and research if we want to achieve a balance between establishing new concepts and
the development of their consequences.

In [GVS99] we introduced the notion of cluster sets, and from this the notion of cluster
associations. In the CRKH approach to reasoning, this is the precise equivalent of plotting a
graph in which each vertex represents the cluster set of a hypercluster, i.e. the union of the
edges from which the relevant hypercluster is defined, and two vertices are joined iff the two
relevant cluster sets have a non-empty intersection. Notice that we are implying that this edge
is included in the vertex set of the (hyper) cluster for that edge. If necessary, permutations of
the defining tuple for the (hyper) cluster can be used to construct the (hyper) cluster.
Labelling each arc in this graph with the relevant intersection set produces a graph of the
cluster associations involved, and following walks in this graph is our model of associative
reasoning.

At the other extreme from associative reasoning, among our five CRKS models of reasoning,
is constructive reasoning. This is dependent upon the associations described above. In the
other three models we assume that already constructed CRKS’s (or CRKH’s) exist. In the
association model only individual observations, each represented by a (hyper) cluster, exist.
The question then is how to order at least some of those (hyper) clusters, using some or all of
the associations in our association graph, into a body of knowledge in the form of a CRKS on
the basis of (part of) the data displayed in that graph. How do we effectively combine
clusters? The process of joining (hyper) clusters together to produce a CRKS (or CRKH) is

Relation nets and hypernets 91

termed constructive reasoning. Some mainly heuristic guidelines for this task are set out in
Chapter 9 of [GVS99].

In the following section of this report we set out a brief example of models of reasoning. We
do this in terms of CRKH’s rather than CRKS’s because of the flexibility of interpretation
into CRKS format. We must however bear in mind that we have always to start all but the
association model with specific statements of relationship, thus giving rise to CRKS’s from
which we abstract to CRKH’s for a range of specific interpretations, one of which is that
CRKS of origin.

Relation nets and hypernets 92

 25. An Illustration of Models of Reasoning

In this simple example, in terms of CRKH models, we start by assuming that the properties of
addition of integers are discovered by induction from a number of (good and bad) examples,
such as the notion of a ”number line” for instance, by the use of (partial) abstraction
isomorphisms. Notice that we could opt for the ”common ground” of the ranges of these
abstraction isomorphisms, or for the ”best” one.

We take ”integer” to be the only primary concept-name, and we assume that the properties of
the relationship of equality are known. Equality is represented by the symbol =, and addition
of integers by +. Zero is represented by the symbol 0. All concept-names about which we
wish to say something are marked in the statements of relationship given. In order to
demonstrate analogical reasoning, in a very small way, we distinguish between the word
”zero” and the symbol ”0” in the sense that we treat ”0” as a concept-name in the statements
of relationship, but ”zero” as a non-concept-name word. This trick enables us to find a non-
trivial isomorphism between two sub-CRKH’s of the CRKH that we construct from our
statements of relationship.

The statements that arise from our ”observed” clusters, and the diagram of each cluster, and,
implicitly, the hypercluster abstracted from it, follow. We would show directions, imposed by
derivation paths, in the CRKH’s, these being those shown in the clusters. We attempt to build
a cluster for each tuple defined by using only previously met tuples/statements with the
defining tuple of that cluster. For each cluster we define a complexity measure as follows.

Definition 25.1: Given any cluster K, the cluster complexity of K is given by
CCOM(K) = Σ ni where the sum is taken over all the ni-tuples of K. Given a hypercluster
M [K], the hypercluster complexity HCOM(M [K]) = ΣEi where the sum is taken over all
the edges Ei of M [K]. ♦

It is clear that HCOM([K]) ≤ CCOM(K).

For each of the statements below, we give a cluster K which can easily be converted to the
abstracted hypercluster M [K], together with the value of CCOM(K) and the value of
HCOM(M [K]). These two values give us one kind of estimate of the relative difficulty of
learning the cluster, and hypercluster, respectively.

1. Addition of integers is represented by the symbol Q.
 A cluster for 1 is

 int 1; ∅ Q

 CCOM = 2 and HCOM = 2.

2. For every integer x there is a unique negation that is also an integer and is represented by
 the symbol ¬ x.

Relation nets and hypernets 93

 A cluster for 2 is
 int 2; <int> ¬

 CCOM = 3 and HCOM = 2.

3. ¬ (¬ x), the negative of ¬ x, for every integer x, is � x.
 A cluster for 3 is
 ¬ 3; <¬ , ¬ , int> �

 2; <int>

 int

 CCOM = 3 + 5 = 8 and HCOM = 2 + 3 = 5.

4. There is a special unique integer, for Q, called zero and represented by the symbol 0.
 A cluster for 4 is
 int 4; <+> 0

 1; ∅

 Q

 CCOM = 2 + 3 = 5 and HCOM = 2 + 3 = 5

5. � holds between ¬ 0 and 0.
 A cluster for 5 is
 � 5; <¬ , 0> 0

 3; <¬ , ¬ , int> 4; < + >

 ¬ Q 1; ∅ int

 CCOM = 5 + 4 + 3 + 2 = 14 and HCOM = 3 + 3 + 3 + 2 = 11

6. The only integer that is its own negative is 0, i.e. ¬ 0 � 0.
 A cluster for 6 is

 int 6; <0, ¬ , 0, 0, � > | 4; <+> 0

 2; <int> 1; ∅ 5; < ¬ , 0 >

 ¬ Q �

Relation nets and hypernets 94

 CCOM = 3 + 6 + 3 + 4 + 2 = 18 and HCOM = 2 + 4 + 3 + 3 + 2 = 14
 (note: 4; <+> is necessary so as to reach 0 for use in 6).

7. � holds, for any integers x and y, between x Q y and y Q x.
 A cluster for 7 is

 � 7; <int, +> Q

 1; ∅

 int

 CCOM = 4 + 2 = 6 and HCOM = 3 + 2 = 5.

8. 0 Q x � x for every integer x with 0 under the operation Q.
 A cluster for 8 is

 0 8; <+, � , int, 0> Q

 7; <int, +> 1; ∅

 � int

 CCOM = 6 + 4 + 2 = 12 and HCOM = 4 + 3 + 2 = 9.

9. x � x Q 0 for every integer x with 0 under the operation Q.
 A cluster for 9 is

 � 9; <+, 0, int, 0> Q

 1; ∅

 0 4; <+ > int

 CCOM = 6 + 2 + 3 = 11 and HCOM = 4 + 2 + 3 = 9.

10. From statements 8 and 9 we have that � holds, for every integer x, between x Q 0 and
 0 Q x, which conforms with statement 7.
 A cluster for 10 is

Relation nets and hypernets 95

 � 10; <int, +, 0, 0> Q

 1; ∅

 0 4; <+> int

 CCOM = 6 + 2 + 3 = 11 and HCOM = 4 + 2 + 3 = 9.

11. ¬ x Q x � zero for every integer x with ¬ x under the operation Q.
 A cluster for 11 is

 ¬ 11; < +, � , int, ¬> Q

 3; <¬ , ¬ , int> 1; ∅

 � int

 CCOM = 5 + 6 + 2 = 13 and HCOM 3 + 5 + 2 = 10

12. Zero � x Q (¬ x) for every integer x with ¬ x under the operation Q.
 A cluster for 12 is
 � 12; <+, ¬ , int, ¬ > Q

 1; ∅

 ¬ 2; <int> int

 CCOM = 6 + 2 + 3 = 11 and HCOM = 4 + 2 + 2 = 8.

13. From statements 11 and 12 we have that � holds, for every integer x, between x Q (¬ x)
 and ¬ x Q x. This conforms with statement 7.
 A cluster for 13 is

 � 13; <int, +, -, ¬ > Q

 1; ∅

 ¬ 2; <int> int

Relation nets and hypernets 96

 CCOM = 6 + 2 + 3 = 11 and HCOM = 4 + 2 + 2 = 8.

14. For any integers x, y and z, � holds between x Q (y Q z) and (x Q y) Q z.
 A cluster for 14 is

 int 14; <� , +, +, +> | 1; ∅ Q

 7; < int, +>

 �

CCOM = 6 + 2 + 4 = 12 and HCOM = 3 + 2 + 3 = 8.

Notice that we must reach + by means of 1; ∅ before we can use 14. It is easy to verify that
each of our clusters is indeed a minimal CRKS for the tuple in question.

Even this simple example is rich in associations, so the associations graph will be only
partially presented: In figure 25.1 we show only those cluster associations that involve ”0”.
Each vertex of the graph is labelled with the tuple number of its cluster set, and its cluster set .

Next, we construct a CRKS / CRKH from the given clusters. Because we have simplified the
construction by using only previously defined tuples in the cluster for a particular tuple, we
can simply start with cluster 1 and then join it with cluster 2, 3, …, 14, in that order, with no
problem. The process will not always be so straightforward! Notice that only selected
associations are used in constructing the CRKS/CRKH. Some choices of association are as
follows. Tuple 4 is associated, via ”0”, only with tuples 5, 6 and 8. Tuple 10 is associated with
tuple 5 via ”=”, and tuples 9 and 10 are associated with tuple 8 via ”+”, where our choices are
the concept-names at which we make these tuples adjacent and are among a host of such
choices which can be made. The CRKS is shown in figure 25.2.

Relation nets and hypernets 97

 {+, int, 0}

 {�, +, int, 0}
 {+, int, 0} {+, int, 0} {�, 0, int, +}

 {+, int, 0} {+, int, 0} {¬ , int, +, 0, +}

 {int, +, 0, �}

 {int, +, 0, �}
 {�, +, int, 0} {�, +, int, 0}

 {int, +, 0, �}

 {�, +, int, 0}

 {�, +, int, 0}

Figure 25.1: Cluster associations involving "0"

 4; <+> 1; ∅ 2; <int>
 -

 6; < 0, ¬ , 0, �> 14; < �, +, +, +> 11; < +,�, int, ¬> 3; <¬ , ¬ int >

 0 �
 5; < ¬ , 0>

 8; < +, �, int, 0 >
 7; < int, +>
 9; < +, 0, int, 0>
 10; <int, +, 0, 0>
 12; <+,¬ , int,¬>
 13; <int, +,¬ ,¬>
 +

Figure 25.2: CRKS/CRKH

 4
{ +, int, 0}

 5
{ ¬ , =, 0, int, +}

 8
{ 0,+,�, int}

 9
{ �,+, int, 0}

 10
{�,+, int, 0}

 6
{¬-, int, +, 0, �}

integer

Relation nets and hypernets 98

To illustrate our model of intuitive reasoning in this CRKS - figure 25.1 - we run a fast access
cascade from B1

0 = {int}, the only primary. At each step we show only what is newly found in
that step.

Step 1: int

 2; <int >
 6; <0, ¬ , 0, � > 1; ∅
 4; <+> 14; <�, +, +, +> ¬

 0 + �

Step 2:
 0 int ¬

 8; <+, �, int, 0> 11; <+, � int, ¬> 3; <¬ ,¬ , int>
 +

 5; <¬ , 0> 3; <¬ , ¬ int>

7; <int, +> | 12; <+, ¬ , int, ¬>
9; <+, 0, int, 0> | 13; <int, +, ¬,¬> �
10; <int, +, 0, 0>

After two steps the whole CRKS has been accessed. Suppose that after step 1 we decide to
explore further only the concept-name ”�”. We start a new cascade with B2

0 = {�}. T2
0

= ∅, and for T2
1 we have a choice of tuples that start with ”�”, i.e. tuples 5, 7, 9, 10, 12 and

13. If we choose only 5, then this step 2 yields

 0 5; <¬ , 0> �

 ¬

a formal schema. For the next cascade, let’s choose B3

0 = {0, �}, and T3
1 = {5} again. We get,

in this step 3, the newly found data

Relation nets and hypernets 99

Step 3:
 0 �

 8; <+, � int, 0> 3; <¬ ,¬ , int>
 -
 7; <int, +> | 12; <+, ¬ , int, ¬>
 9; <+, 0, int, 0> | 13; <int, +,¬ , ¬>
 11; <+, �, int,¬> 10; <int, +, 0, 0>

 +

Joining these formal schemas, leaving out the previous step 2, we see that this ”controlled”
chain of fast access cascades has generated the given CRKS. The power of this view of
intuitive reasoning by means of a sequence of ”directed” fast access cascades will only
become apparent when the given CRKS is very large.

To illustrate our model of deductive reasoning in this CRKS we run a limited access cascade
from its primary, i.e. B1

0 = {int}, in steps, showing what is newly derived in each step.

Step 1: int 2; <int> ¬

 1; ∅

 +

Step 2: int ¬

 4; <+> 3; <¬ , ¬ , int>

 0 �

Relation nets and hypernets 100

Step 3:

 int ¬

 6; <0,¬ , 0, �> 14; <�, +, +, +> 11; <+, �, int,¬>

 0 8; <+, �, int, 0> +

 5; <¬ , 0>
 7; <int, +> | 12; <+,¬ , int, ¬>
 9; <+, 0, int, 0> | 13; <int, +, ¬ , ¬> | 10; <int, +, 0, 0>
 �

The join of these three formal schemas is precisely our given CRKS. Suppose that after step 2
we decide to continue with a new limited access cascade from B2

0 = {int, +, �}. In the first
step of this cascade we get

 int �
 14; <� +, +, +>

 4; <+> 2; <int> 1; ∅ 7; <int, +>

 0 ¬ +

The next step, 2’, of this second cascade yields

 ¬ int

 3; <¬ , ¬ , int> 11; <+, �, int, ¬> 6; <0, ¬ , 0, �>

 � 5; <¬ , 0> 0

 9; <+, 0, int, 0> | 10; <int, +, 0, 0> 8; <+, � int, 0>
12; <+, ¬, int,¬ > | 13; <int, +,¬,¬->

 +

Joining < B1

1, T1
1>, < B2

1, T2
1> and step 2’ above yields the entire CRKH.

Relation nets and hypernets 101

Finally, we point out that it is easy to show that clusters 8 and 11 can be adjusted to be
isomorphic. We change to an alternative cluster for 11, for the tuple <¬ , +, �, int, ¬, +>, as
shown below.

 ¬ 11; <+,� int, ¬> +

 7; <int, +> 1; ∅

 � int

We have deleted 3 and added 7. This does not affect the construction of the CRKS from the
clusters. This alternative cluster and that for statement 8 are isomorphic, where ”-” and ”0”
are matched, so, for example we can use this structural analogy between the two clusters to
teach/learn cluster 11 by referring to cluster 8, previously learned, as a model of cluster 11.
Further, it is easy to extend this isomorphism by joining cluster 9, and then cluster 10, to
cluster 8, deleting tuple 4, and isomorphically mapping this domain onto the join of cluster 12
and 13, without tuple 2, with our revised cluster for tuple 11.

Joining clusters 8, 9 and 10 yields the CRKS

 � 7;<int, +> | 9; <+, 0, int, 0> +

 10; <int, +, 0, 0>

 8; <+, � int, 0>> 1;∅

 0 4; <+> int

Joining clusters 12 and 13 to our alternative cluster for 11 yields the CRKS

 � 7; <int, +> | 12; <+, ¬, int, ¬> +

 13; <int, +,¬, ¬>

 11; <+, �, int, ¬> 1;∅

 ¬ 2; <int> int

Relation nets and hypernets 102

Ignoring 2 and 4, it is easy to find the isomorphism between these two CRKS’s – we can go
via the equivalent CRKH’s. Expansion of the domain of the mapping one tuple at a time,
starting with the isomorphism between clusters 8 and 11 (revised), will break down when we
try to map 4; <+>. In most cases isomorphic (sub-) CRKS’s/CRKH’s will share no vertices.

We refer the reader to Chapters 9 and 10 of [GVS99N] for comments on structural analogy
and the uses of CRKS’s/CRKH’s in education.

Closing comment: It is clear that the digraphs constitute a sub-class of the class of relation
nets, and it appears that relation nets have, potentially, a wider domain of practical
applications when used as models in such applications. It is also apparent that the graphs
form a sub-class of the class of hypernets, as do the hypergraphs. Thus, in general, hypernets
should have a wider domain of practical applications, when used as models in such
applications, than either of these two sub-classes.

Relation nets and hypernets 103

Literature

[Ber73] Berge, C.: Graphs and hypergraphs. North Holland Publishing Company,

Amsterdam, 1973
[Ber89] Berge, C.: Graphs. North Holland Publishing Company, 2nd ed., Amsterdam,

1989
[GVS99] Geldenhuys, A.E., Van Rooyen H.O., and Stetter, F.: Knowledge

representation and relation nets. Kluwer Academic Publishers, Boston, 1999
[Har69] Harary, F.: Graph theory. Addison-Wesley, 2nd ed., 1969
[SVR93] Stetter, F. and Van Rooyen, H.O.: Program measures based on a graph-like

model. J. of Inf. Proc. and Cyb. 29, 55-76, 1993
[VR76] Van Rooyen, H.O.: Binary networks in graph theory. Ph. D. Thesis, Unisa,

1976
[Wei83] Weiermanns, D.J.: Development of a nebula database for a student advice

system. MSc. dissertation, Unisa, 1983

Relation nets and hypernets 104

Index

abstraction 13
accommodation 86
action diagram 4
adjacency function 20
assimilated 86
associative reasoning 90
between 32
betweenness sequence 56
block 51
branch 43
bridge 33
bundle 70
circuit 10, 58
chord 43
cluster complexity 92
CNR-hypernet 55
complete isolate 10
complete 55
completion 13
component 28
concept-name relationship hypernet 55
concept-relationship knowledge hypernet 57
concept-relationship knowledge structure 4
condition set 4
connected 28
connectedness preserving set of edges 37
constructive reasoning 91
context hypernet 22
context hyperschema 56
course unit 4
covering 73
CRKH 57
CRKS 4
cut-vertex 38
cyclomatic number 44
deductive complexity 75
deductive reasoning 90
deductive distance 67, 75
degree 10, 67
derivable (from) 57
derivable in terms of hypothesis 57
derivation adjacency 64
derivation path 57
derivation path hyperschema 65
derivation vertex 57
diagram 8, 9
edge 8

edge basis 35
edge-bundle 71
edge connectivity 46
edge context number 67
edge cut-set 46
edge-flow 71
edge-independent 71
edge rank 68
edge separation 71
edge with 20
edge-specific hypernet abstraction 13
fast access cascade 21
first derivation path 76
flow 67, 70
flow-separation 71
formal hyperschema 55
fundamental circuit 44
fundamental edge cut-set 46
goal 55, 57
goes via 32
hypercluster 65
hypercluster accommodation 86
hypercluster complexity 92
hypergraph 9
hypernet 8
hypertree 42
immediately derived from hypothesis 57
in-degree 67
independent 70
index set 8
inductive reasoning 90
interdependent paths 23
interdependent set 23
internal vertex 42
interpretation 13
in the name of 20
intuitive reasoning 90
isolate 10
isomorphic 14, 15
join 20
joined 32
label 8
labelling function 9
language equivalent relation net 18
length 10, 69
limited access cascade 21
local context number 67

Relation nets and hypernets 105

loop edge 9
matching 67, 73
maximal interdependent set 23
maximal matching 73
maximum sub-hypernet 14
measure 71
meet 20
minimal difficulty 69
minimal vertex cover 73
neutral edge 32
neutral vertex 39
non-joined 32
order 8
out-degree 67
parallel unit 4
path 10
path-hypernet 23
path-multiplicity 67
path-net 23
path tree 75
pendant 42
potentially edge adjacent 8
potentially vertex adjacent 8
predecessor hyperschema 65
prerequisite 4
primary 55, 57
primary edge 74
primary scope 68
primary scope number 68
quasi-disjoint 26, 70
quasi-edge-disjoint 71
rank 67
r-difficulty 68
reachability function 21
reachable 20
realization 13
recursive sub-hyperschema 74
relation net 8
scope 68
scope number 68
separation 25
simple hypergraph 9
singleton edge 9
spanning hypertree 43
spanning sub-hypernet 14
spinney 44
spiralling 74
strengthening edge 32
strengthening vertex 39
strong vulnerability 22
structurally analogous 88

sub-hypernet 14
sub-walk family 20
transversal 67
transversal number 67
tuple-oriented partial presentation strategy 74
tuple-specific relation net interpretation 13
unit edge accommodation 86
unit vertex accommodation 86
vertex 8
vertex basis 30
vertex between 20, 38
vertex connectivity 46
vertex context number 67
vertex cover 73
vertex covering 68
vertex cut-set 46
walk 10
walk family 20
weakening vertex 39
weight 86
weighted deductive distance 68
width 68
(x, y)-edge 32
(x, y)-vertex 39

	Start
	Table of contents
	Prologue
	 1. Intorduction
	 2. Relation nets, hypergraphs, ans hypernets
	 3. First intermission
	 4. Introduction to a theory of general hypernets
	 5. Mengers's theorem
	 6. Connectedness
	 7. Vertex bases
	 8. Introduction to vulnerability
	 9. Edge bases
	10. Deletion of vertices
	11. Hypertrees
	12. Connectivity and cut-sets
	13. Blocks
	14. Second intermission
	15. Concept-Name Relationship Hypernets
	16. Derivability in a formal hyperschema
	17. CRKH theorems
	18. Gauges of complexity
	19. Structural analysis of a CRKH
	20. Third intermission
	21. An extended view of modelling study material
	22. Accommodation and analogy
	23. Isomorphism and structural analogy
	24. Models of reasoning
	25. An illustration of models of reasoning
	Literature
	Index

