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Abstract

With this work, we present a scalable relative differentiated services architecture
based on bandwidth shares: Scalable Bandwidth Share Differentiation (SBSD).
SBSD has been designed to provide isolation and differentiation of user traffic
without per-flow or per-user state at the core nodes. In addition, SBSD preserves
this isolation and differentiation when being scaled over domain boundaries.

The presented SBSD architecture leads to a weighted maxmin fair bandwidth
distribution with respect to each user’s sending rate. The novelty of the result-
ing fairness distribution is that it is user-based, in contrast to traditional fairness
criteria dealing with flows.

Even though SBSD operates at a per-user granularity, it allows more fine-
grained differentiation, which we use to demonstrate how multicast can be inte-
grated in a straight-forward manner and how SBSD can be optimized for end-to-end

TCP congestion control.

1 Introduction

The current Internet is built on the best-effort model where all packets are treated as
independent datagrams and are serviced on a FIFO basis. This model suffers fundamen-
tally from two problems: the potentially unfair distribution of the network resources
and the lack of differentiation.

The potentially unfair resource distribution problem results from the fact that the
best effort model does not provide any form of traffic isolation inside the network and
relies on the application’s behaviour to fairly share the network resources among the
users. Therefore the cooperation of the end systems (such as provided by TCP con-
gestion control mechanisms) is vital to make the system work. In today’s Internet,

however, such dependence on the end systems’ cooperation is increasingly becoming



unrealistic. Given the current best-effort model with FIFO queueing inside, it is rela-
tively easy for non-adaptive sources to gain greater shares of network bandwidth and
thereby starve other, well-behaved, TCP sources. For example, a greedy source may
simply continue to send at the same rate while other TCP sources back off. Today,
even many applications such as web browsers take advantage of the best-effort model by
opening up multiple connections to web servers in an effort to grab as much bandwidth
as possible.

The lack of differentiation relates to the incapacity of the best-effort model to pro-
vide a better service to those consumers who are willing to pay more for it. In todays
Internet there is a growing demand for user differentiation based on their services’
needs. For example, there are many companies relying on the Internet for day-to-day
management of their global enterprise. These companies are willing to pay a substan-
tially higher price for the best possible service level from the Internet. At the same
time, there are millions of users who want to pay as little as possible for more elemen-
tary services. Since the best-effort model treats all packets equally (same-service-to-all
paradigm), it does not allow Internet Service Providers (ISPs) to differentiate among
users as needed.

Over the last ten years, considerable effort has been made to provide Quality of
Service (QoS) in the Internet, leading to the specification of an Integrated Services
architecture for the Internet (IntServ) [1]. However, research and experience have
shown a number of difficulties in deploying the IntServ architecture, due to scalability
and manageability problems. The scalability problems arise because IntServ requires
routers to maintain control and forwarding state for all flows passing through them.
Maintaining and processing per-flow state for gigabit and terabit links, with millions

of simultaneously active flows, is significantly difficult from an implementation point of



view. The manageability problems come from the lack of support for accounting, the
high administrative overheads and the complexity of inter-ISP settlement.

The above issues have led to a number of proposals for providing differentiated
services in the Internet. In those proposals, scalability is achieved by pushing most of
the complexity and state to the network edges (where both the forwarding speed and
the number of flows are smaller); at the edge, incoming packets are classified among
several classes, and core routers do not need to store state for each flow, but can
instead process packets using different policies for each traffic class. In a similar way,
manageability is achieved by focusing on traffic aggregates instead of individual flows,
where a traffic aggregate is a large set of flows with similar service requirements.

Most of the proposed differentiated services architectures solve the potentially unfair
resource distribution problem of the best-effort model by performing some type of
admission control at the edge of the network (see e.g. [2], [3]). Admission control ensures
that no user sends more traffic than he or she is allowed to. A key point for admission
control is to determine how much traffic a user should be allowed to send, such that
the network does not become congested and, therefore, can give the service expected.
The difficulty lies, however, in estimating at the edge the congestion level to which the
acceptance of a certain amount of traffic would lead?. One possibility is to use a static
over-provisioned configuration. In this case, since the admitted traffic is always much
smaller than the network resources, the danger of congestion is minimized. A more
dynamic solution is the use of bandwidth brokers (BB), which are agents responsible
for allocating network resources among users. In this approach, the knowledge of the

network usage is centralized at the BB and the admission decisions to be taken are

2 Note that this problem does not arise in the Integrated Services architecture, since in that architec-
ture, the admission control decision is taken individually at each router on the path between sender
and receiver(s) based on the local state information.



transfered from this BB to the edge. The design and implementation of BB is an
ongoing effort [4].

The authors feel that an architecture solving the problems of the best-effort model
while avoiding the complexity of an admission control module at the edge would be
highly desirable. The goal of this paper is to propose an architecture meeting these
requirements.

The rest of the paper is structured as follows: In Section 2, we present a differ-
entiation model that works without admission control. We discuss the effect of using
different differentiation parameters with the differentiation model presented and iden-
tify an approach that provides isolation and differentiation without admission control.
We compare this approach with other proposals that also do not use admission control
and point out the weak points. In Section 3, an architecture for our approach that
overcomes the weak points identified in the previous sections is proposed: the SBSD
architecture. Extensions to this architecture for TCP optimization and multicast sup-
port are proposed in Sections 4 and 5. Section 6 analyses the differentiation provided
by this architecture, and Section 7 validates it through simulations. Finally, Section 8

gives a summary and concludes the paper.

2 Differentiation Approach: Model and Parameters

In this section a differentiation model is proposed. Based on this model, the utility of
the different possible differentiation parameters is discussed.
2.1 Differentiation Model

As mentioned in the introduction, research on DiffServ is proceeding along two different

directions: those proposals that use admission control and those that do not.



In the approach with admission control, it is possible to control the amount of
traffic allowed inside the network. In this way, traffic that would decrease the network
service to a level lower than a desired limit can be stopped and an admitted user can
be assured of his/her requested performance level. This approach, which we refer to as
Absolute Service Differentiation, can be considered as trying to meet the same goals as
IntServ, i.e. absolute performance levels, but pushing complexity (admission control
and traffic policing) to the edge and to the BB and thus avoiding per-flow state in the
core routers.

The second approach, which we refer to as Relative Service Differentiation, can-
not prevent flooding of the network using admission control, and the only option to
provide service differentiation is to forward packets in the network nodes with a qual-
ity according to their relative priority. Therefore, absolute performance levels are not
guaranteed and only relative ones can be provided. The advantage of Relative Service
Differentiation is that it is easier to deploy and manage.

In the relative differentiated services model, the relative priority is determined by
shares assigned to the users of the network. This model must be strongly coupled with
a pricing scheme that makes higher shares more costly than lower shares; otherwise,
everyone would use the highest shares and service differentiation would be ineffective.

The relative differentiated services model we have chosen is the Proportional Dif-
ferentiation Model. The proportional differentiation model states that the network
resources should be distributed among users proportionally to the share they have
been assigned. So, if g; are the network resources being used by user i, and s; is the
share assigned to user i by the network operator, then the proportional differentiation

imposes:
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The basic idea is that, even though the actual quality experienced by each user will
depend on the total load of the network, the quality ratio between users will remain
fixed and controllable by the network operator, independent of the load.

The proportional differentiation model presented here is similar to the one presented
in [5]. The main difference between the two models is that while the one presented in [5]
is class-based (i.e., resources are assigned to a service class according to the share of
that class, and then distributed somehow among the users members of this class), ours
is user-based (i.e., resources are assigned directly to a user according to his/her share).

The key issue in the proportional differentiation model is to choose the appropriate
network resource parameter, which we will call differentiation parameter (i.e., g; in

Equation 1). This issue is discussed in more detail in the following section.

2.2 Differentiation Parameters

Even though there is no wide consensus on the most appropriate performance measure
for network resource usage, it is generally agreed that a better network service means a
higher bandwidth, a lower delay and a lower likelihood of packet losses. The differen-
tiation parameter should provide a useful service differentiation and proper isolation.
With useful service differentiation we provide additional value to the users that pay
more. With proper isolation we guarantee that a misbehaving user cannot obtain more
resources than he/she has been assigned.

In the following, we evaluate the three differentiation parameters that have been
proposed in literature (bandwidth, queueing delay and packet drop probability) with

respect to the utility of the differentiation and the effectiveness of the isolation they



provide to the users.

2.2.1 Bandwidth

When this differentiation parameter is used, each user is allocated a bandwidth pro-
portionally to his or her share:
bw,- S;

= (2)

bwj Sj

Fair bandwidth allocation has the property that it protects well-behaving flows from
misbehaving ones. That is, using bandwidth as a differentiation parameter provides
proper isolation, which is one of the desirable properties identified in the previous
section.

The other desirable property is the utility of the differentiation to the users. We
will base the study of this property on utility functions. Utility functions map net-
work parameters (delay, throughput, packet drops, etc.) into the performance of an
application: it reflects how the performance of an application depends on the network
parameters. With this definition, a differentiation parameter will be of utility to a user
when an increase in the user share of this differentiation parameter reflects an increase
in the utility experienced by the user. In other words, a differentiation parameter will
provide useful differentiation if and only if the utility function is strictly increasing with
this differentiation parameter.

In [6], applications are divided into two groups (elastic applications and real-time
applications) and qualitative utility functions are given for each group. Examples of
elastic applications are file transfer, electronic mail and remote terminal. These applica-
tions are tolerant of delays, and experience a diminishing marginal rate of performance

enhancement as bandwidth is increased, so the function is strictly concave everywhere.
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Figure 1: Utility function for elastic applications

This is illustrated in Figure 1; an elastic application always benefits from a higher

bandwidth share, independent of the level of congestion in the network:

u; = f(congestion),Vt,s; > s; = u; > uj ®)

Therefore, bandwidth always provides useful differentiation to elastic applications.

Increasing the utility for real-time applications is not as straight-forward. Since
real-time applications are delay-sensitive, bandwidth is not enough to provide utility.

Further discussion about real-time applications is postponed until the next section.

2.2.2 Queueing Delay

With this differentiation parameter, the average queueing delays of the packets of a

user are inversely proportional to his or her share:

where d; is the queueing delay of the user i’s packets at the nodes of the network.

One undesirable behaviour of this differentiation parameter is the lack of isolation:



a well-behaving user may be affected by misbehaving users sending at a higher rate than
they should. A misbehaving user increases the global queueing delay of the network,
which increases the queueing delay of the misbehaving user, but also the queueing delay
of the well-behaving ones. The queueing delays of the different users in the network
always remain proportional, and therefore some misbehaving users increasing the av-
erage delay will also affect the well-behaving ones: queueing delayyei—behaving users X
queueing delaymisbehaving users X average queueing delay

As a consequence, the queueing delay is not well suited as a differentiation parameter
without admission control, because it does not prevent misbehaving users harming
well-behaving ones, not even if the well-behaving ones have a higher share than the
misbehaving ones.

Note that this problem did not occur when using bandwidth as the differentiation
parameter, since in that case the differentiation parameter itself plays the role of admis-
sion control, letting into the network only the appropriate amount of packets of each
flow, and thus precluding the existence of a misbehaving user flooding the network with
too many packets and degrading the overall quality.

The other desirable property identified in section 2.2 was the utility of the differ-
entiation to the users. The delay has a small impact on elastic applications; therefore
the queueing delay differentiation parameter does not provide useful differentiation in
this case. On the other hand, real-time applications need their data to arrive within
a given delay bound; the application does not care if packets arrive earlier, but the
application performs very badly if packets arrive later than this bound. Examples of
such applications are link emulation, audio and video. The qualitative utility function
for real-time applications is illustrated in Figure 2.

With this utility function it can be seen that it is not always beneficial to have a
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Figure 2: Utility function for real-time applications

higher share (smaller delay): an increase in the share will only be beneficial only if it
leads to a delay smaller than the delay limit. As a consequence, using the queueing
delay as a differentiation parameter will not always provide useful differentiation for
real-time applications. This is because the utility function is not strictly increasing
with the delay. This situation is undesirable because we do not guarantee the user a
benefit from paying more for a higher share.

As a conclusion, the queueing delay differentiation parameter does not provide
useful differentiation for elastic applications and does not provide guarantee of use-
ful differentiation for real-time applications; the only property it provides is a higher

probability that the utility will be higher for real-time applications.

2.2.3 Packet Drop Probability

With packet drop probability as a differentiation parameter, the fraction of packets of

a user dropped are inversely proportional to his or her share:

where [; is the fraction of packets dropped of a user 1.
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The loss-rate differentiation parameter suffers from the same problem of lack of
isolation as the delay differentiation parameter: a misbehaving user increases the global
drop rate, which is also proportional to the drop rate of the well-behaving users.

This parameter does not take into account the different behaviours that different
users may have regarding losses: some greedy users may not back off when they ex-
perience losses and, even if they have a high loss rate, they may experience a high
throughput, whereas other users with small loss rate may even back off, resulting in a

low throughput?®.

2.3 Discussion

Our conclusion in evaluating the possible differentiation parameters is that bandwidth
is the most sensible differentiation parameter. It is the only one that provides proper
isolation, and, consequently, the only one that can operate well without admission
control. The bandwidth differentiation parameter always provides useful differentiation
for elastic applications. With real-time applications, bandwidth differentiation cannot
guarantee utility, but nor can any of the other differentiation parameters alone.

This problem with real-time applications is the price that has to be paid for not
having admission control: without admission control, the level of congestion of the
network cannot be controlled, and consequently, utility cannot be guaranteed to ap-
plications such as real-time applications that need a minimum amount of resources
to work. Hence, bandwidth differentiation provides as much useful differentiation as

possible without admission control.

3 Note that from the implementation point of view, differentiation based on bandwidth and differen-
tiation based on packet drop probability are both enforced using packet dropping mechanisms, but
while in the former case dropping accords to the ratio between the rate used and the rate assigned
to the user, in the latter case, dropping is based only on the share. In case of congestion, with
bandwidth differentiation only the users using too many resources will experience losses; in the latter
case, all users will experience losses (in different degrees according to their share).

11



In [7] a relative DiffServ architecture that uses bandwidth as a differentiation pa-
rameter is proposed. However, this architecture does not scale well with the number
of users, since it requires all user shares to be stored in all the routers of the network.
Another problem of this architecture is the lack of traffic isolation when crossing ISP
boundaries. [7] proposes to aggregate users in a small number of classes in the new
ISP, assigning a different share to each class. However, this approach does not provide
isolation among users belonging to the same class in the new ISP: one misbehaving
user in one class will lead to a bad performance to all the users of this class (also the
well-behaving ones).

In [5], two relative DiffServ architectures that use queueing delay and packet drop
probability respectively as differentiation parameters are proposed. Following the ar-
guments discussed in 2.2, the authors doubt the validity of these differentiation pa-
rameters. However, if the delay differentiation parameter is combined with bandwidth
differentiation, the drawbacks discussed in Section 2.2.2 disappear. The question is
then whether the further differentiation provided by the delay is worth the additional
complexity it involves. In the remaining of this paper we focus only on bandwidth as

a differentiation parameter.

3 Scalable Bandwidth Share Differentiation

In this section, we propose an architecture that provides bandwidth differentiation based
on bandwidth shares that the users contract with their ISPs. We have called this
architecture SBSD (Scalable Bandwidth Share Differentiation). It consists of two parts

that will be explained next: the intra-domain part and the inter-domain part.
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3.1 Intra-domain

In the SBSD architecture, each user ¢ contracts a bandwidth share S; within the domain
of an ISP. This bandwidth share is used to determine the treatment of the users’ packets
in bottleneck nodes. The goal of SBSD is to treat packets in such a way that the
throughput experienced by user ¢ increases proportionally with .S;.

The bandwidth share of the user is divided equally among its packets in such a
way that each packet gets assigned an effective bandwidth share W; = S;/r;, where r;
is the total rate at which the user is transmitting. r; is measured at the ingress node
and the corresponding value of W; is inserted into the packet according to the concept
of dynamic packet state (DPS) [8]. The basic idea of DPS is that each packet header
carries some additional state information, in this case the effective bandwidth share W;
of the packets’ originator, which is initialized by the ingress node of the diffserv network
and processed by the core nodes on the path. Interior nodes use this information to
possibly update their internal states and to update the information in the header before
forwarding the packet to the next hop.

Within the SBSD architecture, the specific DPS mechanism of inserting W; into the
packets is used to provide relative bandwidth share differentiation: interior nodes use
the packets effective bandwidth share to determine the dropping policy for that user’s
packets in congestion situations. Whenever there is not enough bandwidth at a link to
serve all incoming packets, the packets with a lower effective bandwidth share should
be dropped with higher probability.

That means, when a packet has too low an effective bandwidth share, its user dis-
tributed its bandwidth share among too many packets (i.e., the user sent at a higher
rate than allowed according to the user’s contracted bandwidth share). In this case,

the router drops some of the packets of that user, thereby reducing the packet rate at
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this link. Then, the node redistributes the bandwidth share of the user among the fewer
packets, which leads to a higher value of W; for the remaining packets of that user.

Thus, by dissolving the congestion situation at that link, we increase the minimum
effective bandwidth shares of the packets that contributed to the bottleneck up to a
certain effective bandwidth share value Wy, at which the link capacity is sufficient to
forward all remaining packets. We call this value fair effective bandwidth share W gq,.

Let us define d; to be the probability of dropping a packet belonging to user ¢ at
some node. Then the redistribution of the users bandwidth share among the packets
that are not dropped leads to:

Wl
new __ ?
Wi 1—d (6)

Taking into account that flows with an effective bandwidth share lower than W,
should adjust themselves to this value (i.e., their new effective bandwidth share should
be equal to Wye,) and flows with an effective bandwidth share higher than Wy,
can pass untouched, we have that, given the fair effective bandwidth share W, the

dropping probability of the packets of user 7 can be calculated with the formula:

0 Wi > Wiair
di = (M)

1- WVfV:ir Wi < Wfair, VVinew = Wfai'r

The key point of the SBSD architecture is the estimation of Wi, Wfaira for each
congested link. For scalability reasons, Wfair should be estimated without storing any
per-user or per-flow information at the core nodes.

The problem of estimating Wy, is similar to the one solved by the CSFQ (Core
Stateless Fair Queuing) algorithm in [9]. The difference is that while SBSD focuses
on the problem of distributing bandwidth among users, CSFQ focuses on bandwidth

distribution among flows. The importance of working on a per-user basis is that it
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allows aggregation when crossing ISP domains and therefore is a key requirement for a
scalable architecture for differentiated services (see Section 3.2).

Both architectures differ not only in the problem they solve, but also in the way they
solve it; for the estimation of W4, SBSD applies small variations for every incoming
packet, while CSFQ applies much bigger changes on a periodic basis. In the following,
we present in detail the solution we have adopted within the SBSD architecture.

In order to determine the fair effective bandwidth share me'r, we define it implicitly
using the rate with which the algorithm accepts packets as a function of the current
estimation of Wy;r. Let F(Wfai,«) denote this acceptance rate. Then, the fair effective
bandwidth share will be the value Wyq;, that leads to F(We) = C, where C is the
available capacity.

According to the considerations presented above, we have

W

F(Wfair(t)) = Z Tj+ Z Tj" = (8)

jeN jET2 fair

where J; is the set of users ¢ with W; > Wfaira and Jy is the set of users ¢ with
W; < Wfair-

Given the individual rates r; we could calculate Wfair exactly using this formula.
Since that would require storing per-user state information at each node, we do not
follow this approach, but rather apply the following technique: we continuously measure
F(me-r) for the current value of Wfai,« and use this information to adjust Wfair in
such a way that it converges to the actual fair effective bandwidth share Wgqir.

Let us define a new variable a = 1/W;,. Then, the aggregated acceptance rate as

a function of & is:

F(&(t))ZZTj—l-ZTj-Wj-d (9)

je jEJ2
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Note that F' as a function of & is continuous and increasing. Thus, an increase in &
will lead to an increase in F' (Wfair), and a decrease in & to a decrease in F (Wfair)-

In our algorithm, for every incoming packet we increase & by a small amount ¢ in
case that F (Wfair) < C, and we decrease & by § otherwise. Let &; be the & computed
after the arrival of packet n. Then,

<0, F(ap)>C
é(n+1 = dn + 5, (5 (10)

>0, F(a,) <C
A key parameter in the algorithm is d. If § is too small, & converges too slowly to the
desired value, and if it is too big, & fluctuates too much. There are two considerations
that should be taken into account when determining the proper value for . The first
is: the bigger the distance from the desired point, the larger steps we should take.

That is, the bigger ‘F(Wfair) -C

, the larger § should be. Secondly, the more full the
queue is, the more aggressive we should be in decreasing &. This helps to keep queues
small and, therefore, delays short*. Therefore, § can be expressed as a function of the

accepted rate (F'), link capacity (C), queue length (L) and buffer size (B):

with f and g satisfying the considerations above. The functions f and g we have used

in the simulation results given in this paper are:

0.1-%F, £<090r £>11

f(F,C) = (12)

C
0.01 - C;CF otherwise

4 Note that if we keep all delays short, then bandwidth, which is the parameter we have chosen for
SBSD, is the right parameter for QoS differentiation. The advantages of keeping queues small have
also been identified in [10].
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9(L,B) =

L F>C
(13)

B
B—L
BL F<C

Note that with these definitions of f and g, & increases linearly with ‘F (Wfair) -C ‘
When F' is far from C (10%), & increases/decreases 10 times faster and when the queue

is full, & increases slowly and decreases fast.

3.2 Inter-domain

Since the Internet consists of different ISP domains, in order to provide end-to-end QoS,
ISPs are required to cooperate. Thus, the QoS behaviour when crossing ISP domains
(inter-domain part) is an essential aspect of any DiffServ architecture.

In this section we present an inter-domain extension of the SBSD architecture.
The inter-domain extension of SBSD is, as the intra-domain part, based on bandwidth
shares; but in this case it is not a user who contracts a bandwidth share to his or her ISP
but it is an ISP that contracts a bandwidth share with a neighbour ISP. This bandwidth
share that one ISP contracts with another will be divided among all the users sending
from the first ISP to the second. So, for example, if an ISP has 100 users sending to
another ISP, and wants them to experience the same quality as one user of the other
ISP with a bandwidth share of 1 contracted within that ISP, then the first ISP will have
to contract a bandwidth share of 100 to the second ISP.

When crossing domains, for scalability reasons users have to be somehow aggre-
gated. As it has been explained in the intra-domain part of the architecture, per-user
state needs to be maintained at the edges in order to measure each user’s rate. If users
are not aggregated, boundary routers also need to keep state for every user crossing the
router. The number of users crossing edge routers will always be relatively small, but

this does not have to hold true for boundary routers between domains. Therefore, if
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users are not aggregated, boundary routers may need to keep a very large state and will
then become bottlenecks concerning scalability. The DiffServ architectures proposed
in [11] and [12] suffer from this problem.

One way of aggregating users in our architecture would be to consider all the users
sending packets from one domain into another as one user in the second domain with
a bandwidth share of Sysp (where Srsp is the bandwidth share that the ISP of the
first domain has contracted to the second). In this case all packets coming from the
first domain would get assigned in the second domain an effective bandwidth share of
Wisp = Srsp/risp- This solution, however, would not provide proper isolation; if
there was a bottleneck in the second domain, all the packets coming from the first
domain would be treated in the same way, independently of the bandwidth share of its
originator, and the bandwidth assigned to each user would not increase proportionally
with his or her bandwidth share, violating one of the main goals of our architecture. In
order to provide proper isolation when crossing domains the packets in the new domain
should preserve the ratios between the effective bandwidth shares they had in the old
domain.

For that reason, the inter-domain architecture has to compute the effective band-
width shares for the packets coming from another domain in such a way that the
ratios between the effective bandwidth shares of the original domain are preserved and
the overall effect in the new domain is the same as if an effective bandwidth share of
Wisp = Sisp/risp had been assigned to all incoming packets. The first condition is
expressed in Equation 14. The second condition is equivalent to saying that the ad-

dition of the shares that the users from the first domain receive in the second domain
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should be equal to S;gp. This is expressed in Equation 15.

Wold old old
Wy Wt g (14)
Wlnew W2TL€'U} W#ew
Srsp =W - ri + W3 - rg + ...+ W)Y - 1y (15)
Combining Equations 14 and 15 leads to:
Sisp =Y rj-B- Wi (16)
J

where 3 is the value we need to calculate in order to solve the problem (i.e., to obtain
the new effective bandwidth shares).

B could be obtained from Equation 16, but this would require keeping per-user
information (specifically, the rate r; at which each user j is sending). We already
indicated that this solution is undesirable for scalability reasons.

One way of avoiding per-user state is calculating the average W of all packets going
from the old domain to the new one; extending Equation 16, we have:

Sisp =Y ,ri-B-WH =431 W )

=A- LY i pyold
=pB-r1sP - Xjap W

where the last term of Equation 17 is precisely the average W of incoming packets.

This can be calculated without the need of keeping per-user state:

— T
W=y L. 18
; risp g ( )

Combining Equation 17 with Srsp/risp = Wisp, we obtain a way of calculating

19



without keeping per-user state:

=21 (19)

Therefore, at the egress of the old domain the packets will be marked with the new
effective bandwidth shares shown in Equation 20.

SISP ld
Wi = — = - Wy (20)

At the ingress of a new domain, it has to be checked that the bandwidth share
contracted is not violated (i.e., r7sp - W < Srsp), which, like the egress functionality,
is easy to compute and does not require per-user state.

This mechanism, therefore, assigns different effective bandwidth shares to the users
in such a way that their new effective bandwidth share represents their relative pro-
portion (with respect to their old values) of the ISP’s effective bandwidth share in the
new domain. Thus, the new average effective bandwidth share is scaled to the effective
bandwidth share 2L52.

Besides providing isolation in a scalable way when crossing domains, the inter-
domain extension of the SBSD architecture explained in this section has another very
important advantage: it allows the user to discriminate among his or her packets by
assigning different effective bandwidth shares to them before they are sent to the ISP.
The ISP can then change the effective bandwidth shares of the packets according to
the user’s bandwidth share in the same way that it is done at the egress of a domain
(Equation 20).

With this approach, a user can discriminate among packets belonging to different
applications (inter-application discrimination) or among packets from the same appli-

cation (intra-application discrimination). With inter-application discrimination, it is
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for example possible to choose to assign more bandwidth to certain people inside an
organization (e.g., the CEQ)®. With intra-application discrimination we can provide a
lower loss probability to certain packets that carry more important information than
the other packets (for example, we may want I frames in an MPEG stream to have a
lower loss probability than P or B frames; in [13] the benefits of such a discrimination
for MPEG are studied).

Another advantage of applying the inter-domain extension of SBSD within a user’s
domain is that the granularity of the discrimination is the user’s responsibility; packets
can be assigned an effective bandwidth share according to the rate of the flow they
belong to, according to the sending rate of the machine where they were originated,
etc. The highest grade of isolation is achieved when the effective bandwidth shares
are assigned to the packets on a per-flow basis. This form of discrimination at the
users site can, for example, be useful to provide proper isolation between TCP and
UDP flows, since otherwise, if TCP and UDP streams are marked together, the UDP
streams might eat up most of the bandwidth, and the TCP streams will not receive
their corresponding share. If the packets are assigned their effective bandwidth shares
on a per-flow basis at the first-hop router at the user site, the load should not be high,
since a leaf router is usually not crossed by too many flows.

In Section 4 we optimize the behaviour of TCP in the SBSD architecture by using
intra-application discrimination introduced in this section. In Section 5 we focus on
multicast and unicast bandwidth allocation based on the inter-application discrimina-
tion of this section. Both cases assume that the effective bandwidth shares are assigned

at the users site based on a per flow basis.

5 Note that in this case, the abstract entity user is not an end user, but an organization consisting of
several people.
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4 TCP Optimization in SBSD

With SBSD, the bandwidth that corresponds to each user is controlled by packet drop-
ping when the user is sending at a higher rate than the rate that corresponds to his
or her bandwidth share. A potential problem of this way of controlling the bandwidth
consumed by a flow is that different transport protocols react in a different way to
packet losses.

The most widely used transport protocols in the current Internet are TCP, which
reacts to packet losses in order to prevent congestion, and UDP, which is unresponsive to
losses (i.e., does not implement any congestion control mechanism at all). In this section
we study how to minimize the impact of packet drops on TCP flows in comparison to
unresponsive UDP flows.

The problem of TCP flows in the SBSD architecture is caused by TCPs congestion
mechanisms [14]. This problem is general for DiffServ architectures based on droppers.
Recent studies have shown the difficulty in guaranteeing to the TCP flows their assigned
throughputs in such architectures [15] [16] [17]. When a TCP flow detects packet loss,
the flow assumes that the packet loss is due to congestion in the network. A TCP flow
tries to resolve this congestion by reducing its transmission rate. This transmission
rate may then be less than the rate assigned to the flow according to the user’s share,
which results in lower throughput.

Figure 3 illustrates this problem when a TCP flow and a UDP flow with the same
effective bandwidth shares traverse a common link® (both the TCP and the UDP source
are configured to send as much as possible). The TCP flow reduces its transmission
rate when losses occur, and the bandwidth that becomes available is taken up by the

UDP flow, which has no congestion control and never reduces its transmission rate. As

6 All simulations shown in this paper were performed in ns-2 [18].
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a consequence, we have an unfair distribution of the bandwidth, thereby violating one

of the goals stated for our architecture in section 1: isolation.

10

bandwidth (Mbps)

L 1 L L
0 20 40 60 80 100
Time (sec)

Figure 3: Bandwidth evolution of TCP vs. UDP without intra-application discrimina-
tion. Link capacity: 10Mbps

The solution to this unfairness problem requires a closer look at TCPs congestion
control mechanisms [14], which operate in two modes: the first mode, fast-recovery, is
triggered by the loss of very few packets, typically one. In this mode, TCP reduces
its sending window size, and, with subsequent successful transmissions, increases it
again. This mechanism has a relatively small impact on the average transmission rate.
The second mode is called slow-start, and is typically invoked when a large number of
packets are lost. Current implementations of TCP fail to recover from multiple packet
losses within a window, and have to rely on the retransmission timer to recover. When
multiple packet losses occur, current TCP implementation usually remain silent until
the transmission timer goes off, and then enter slow-start mode. This behaviour has
a much more drastic effect on the TCP performance, since it essentially reduces its
transmission rate to zero upon packet loss, thereby reducing the average transmission
rate.

Following the explanation above, in order to avoid undesired loss in throughput

of a TCP flow, too many closely spaced packet losses should be avoided, since that
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would force the TCP flow into slow-start and (as explained above) cause it to obtain
less than its assigned bandwidth. Intra-application discrimination, as explained in the
previous section, can be used in such a way that, when a loss is detected, a higher
weight is assigned to the following packets, making it highly improbable for losses to
occur closely spaced.

Equation 21 shows how we have chosen to assign weights:

1, r<n—L
W, = (21)

1+K-X.(n—r), r>n-1L
where W,, is the weight assigned to packet n and r is the first packet retransmitted
after detecting a loss.

After detecting a loss, a weight of 1 + K is assigned to the following packet, and
then the weight decreases linearly until after L packets the weight has again reached
17. Losses are detected by looking at the sequence number of the TCP header of the
packet.

This algorithm has been designed in such a way that it requires little processing
and a small state (namely, the sequence number of the last packet transmitted and a
counter indicating the last loss detected). In this way, the task of marking the packet
for the TCP flow can be easily delegated to the first hop router instead of performing

it at the sender’s machine 8.

" Note that with intra-application discrimination, the packets’ new effective bandwidth shares are put
into proportion to their average value (see Section 3.2). Thus, by assigning higher weights upon loss,
we consequently have a time interval during which the packets temporarily get a higher effective
bandwidth share than the current average, until the average catches up (slowly, the average value
will be reduced again by the algorithm’s linear decrease). This effect works in parallel to TCP’s rate
reduction and subsequent rate increase via fast recovery. By enforcing this behaviour, we allow the
fast recovery mechanism to resolve the loss-indicated congestion situation and avoid slow starts when
possible.

8 One of the design guidelines for our architecture has been to avoid modifying end-systems; in this
section, for example, we have presented a solution to adapt the SBSD architecture to TCP, rather
than modifying the TCP itself.

24



Figure 4 shows for the same scenario the improvements that the marking algorithm
proposed in this section provides to TCP: slow-starts do not occur any more, and the
TCP flow achieves almost the same throughput as the UDP flow. The values of K and

L used in this simulation have been K = 0.33 and L = 20.
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Figure 4: Bandwidth evolution of TCP vs. UDP using SBSD’s intra-application dis-
crimination. Link capacity: 10 Mbps.

5 Multicast Support in SBSD

In this section we introduce a multicast extension to the SBSD architecture explained
in Section 3. Multicast is an issue that has not yet been properly addressed in any of
the DiffServ architectures so far proposed.

In the SBSD architecture, each user gets assigned some ”wealth” (the bandwidth
share), which is divided among the packets originated by this user (the result of this
division is the effective bandwidth share). Therefore, the effective bandwidth share that
travels with a packet represents its associated ”wealth”.

In multicast, packets may be replicated at the network nodes: a packet arriving
to a node through the parent link may be forwarded to several child links. When a

packet is replicated, new packets with the same source address are introduced into the
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network. Therefore, according to the philosophy of the SBSD architecture explained
above, the bandwidth share of the user has to be further divided taking into account
these new packets. In other words, when a packet from a parent link is replicated
in a network node into n¢ child packets, the ”wealth” carried by the parent packet
(effective bandwidth share Wparent) has to be divided among its children. The easiest
way of doing that is assigning to the child packets the following effective bandwidth

share:

W t
W children = mnn (22)
nc

One of the main issues that have been studied in multicast charging is how the
efficiency of multicast (with respect to unicast for point-to-multipoint communication)
should give additional benefit to the user in terms of charging; the user should be given
an incentive to use multicast by charging him or her less than if he or she used unicast
for the same purpose. In the SBSD architecture, this benefit is clear: a user will receive
a better service using multicast than unicast for the same price (i.e., bandwidth share).
This is because with multicast, in the common links, the effective bandwidth shares of
all children are accumulated in one packet?, and thus the probability of this parent
packet being dropped is much smaller than if child packets were sent separately (i.e.,
with unicast). Therefore, in the case that there is a bottleneck in any of those common
links, the service with multicast will be better than with unicast.

An issue that arises when a user handles unicast and multicast is how much band-
width to allocate to multicast with respect to unicast. Note that the user has the
capability of deciding how the bandwidth is allocated among his or her flows using to

the inter-domain architecture introduced in Section 3.2. The motivation for allocating

9 Note that with unicast, the sender’s rate would be higher and, therefore, the effective bandwidth share
lower.
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different bandwidths to multicast and unicast is that more users benefit from allocating
bandwidth to multicast, since a multicast flow has more than one receiver. Therefore,
it seems a logical choice to allocate bandwidth to flows as a function of the number of

receivers np of the flow!?,

W = f(nr) (23)

where the bandwidth allocated to a unicast flow is a special case of Equation 23 with
ng = 1.

There are different possible choices for f(ng), between the two extremes f(ng) =1
and f(nr) = nr. With f(ng) = 1, bandwidth is allocated independently of the
number of receivers (i.e., multicast and unicast flows receive the same bandwidth).
This allocation strategy leads to a low receiver satisfaction, since it does not take
advantage of the fact that by allocating part of the bandwidth of a unicast flow to a
multicast one with ng receivers, we increase the satisfaction of ng users while only
decreasing the satisfaction of one single user.

With f(ng) = ng, the bandwidth allocated to a multicast flow is proportional to
its number of receivers: the bandwidth allocated to the multicast flow is the same
bandwidth that would be used if the data were sent to the ng receivers via separate
unicast flows. This allocation strategy leads to a high unfairness, because a multicast
flow with many receivers will eat up almost all the available bandwidth, letting the
unicast flows starve and leaving almost no bandwidth for them.

In [19] it is shown that using f(ng) = log(ng) leads to a good tradeoff between
receiver satisfaction and fairness. However, since the per-flow marking is performed at

the user site, it is up to the sender to decide which is the allocation strategy that best

101t is out of the scope of this paper to define how the marking entity (most likely the first hop router)
may get to know the number of receivers of the multicast group, ng.
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fits his or her interests.

6 Theoretical Analysis

With the presented architecture, congestion resolution is performed in such a way that
a user ¢ who is sending packets at too high a rate experiences packet dropping that
reduces its rate to r; = S;/Wyqi,, which is the rate that corresponds to the fair band-
width share Wy, for the users share S;. Let us in the following examine the properties
of Wfai,«ll: when users increase their sending rates r;, their effective bandwidth shares
W; are decreased. Upon congestion at a link, the SBSD algorithm adjusts the effective
bandwidth shares in such a way that all remaining packets of users whose flows con-
tribute to the congestion will have a new effective bandwidth share that equals W,
Since all non-contending users have a higher effective bandwidth share than Wy,
W qir is necessarily the minimum of the new set of effective bandwidth shares at that
link. In this situation, we have the link fully utilized and, hence, cannot decrease any
W; further without at the same time increasing another effective bandwidth share that
equals W; or that is higher than W;'2.

We can show that from the above it follows that W, is the minimum value of the
distribution of effective bandwidth shares that minimizes the maximum value of W;:

Let W = (W1, ..., W,) be the distribution of effective bandwidth shares that results
from the SBSD algorithm. Then, given the above, it follows that for any other feasible
distribution W' and for each i, it holds that if W; > W/ there exists a j such that

Wj <W]’- and W]ZVVL

1 In this section we assume that a user does not prioritize its flows for simplicity reasons. The model
presented, however, can be extended in a straight-forward manner to the case where users can choose
to give priority to some flows with respect to others.

12 Note that the effective bandwidth shares of non-contending users cannot be decreased, since they
already send at their maximum rate
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Let Wy, :== maxz(W1,...,W,). Then, for all distributions W' = (W{,...,W}) and

for all i € {1,...,n} it follows that if W, > W, then:

maz(W1,..., W) > W, > W, = maz(Wh,...,Wp) (24)

Otherwise (i.e., if W] < W,;,), with the above, there exists a j € {1,...,n} such

that W; < W] and W; > Wp,, thereby yielding

max(Wi,...,Wy,) > W; > W; = Wy, = maz(Wy,..., W) (25)

Thus, in all cases, W minimizes the maximum of all W; and can therefore be
expressed as the distribution that results from the solution to min(maz(W1,...,Wy,)).
Alternatively, we can express W as the solution to maz(min(W Lo, W.1)), and

n

therefore, using the equality W; = r;/S;, W is the distribution provided when solving
. T1
maz(min(—,...,5-)), (26)

which corresponds to a mazmin fair distribution concerning the rates r;, weighted with
factors S; ! With SBSD, the rates r; are the total rates of all packets sent by user i
through the ingress node of the network.

Note that with USD [7], the resulting bandwidth distribution can also be expressed
as the solution to max(min(;—lll, een, gf:)) , but with the difference that the rates 7}
represent the total rate of all flows of user 7 that traverse the analyzed bottleneck link.

Note also that if all the flows of a same user follow the same path (links) both
bandwidth distributions, i.e., [7] and ours coincide. If each user is sending just one
flow, they also coincide with the architecture proposed in [9].

Nevertheless, in the other cases, SBSD exposes a significant difference: if there is
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more than one flow per user, with SBSD a user is penalized for using many links in
the network, while in the [7] approach the user is not penalized (i.e., in our approach,
one flow is impacted by the rate of another flow of the same user that is using another
link, while this does not happen in [7]).

This difference with [7] seems to be subtle, but is in concept very fundamental:
in [7] each user is assigned a share in all links of the ISP, and all nodes need to know all
user’s shares, while in our approach the user is assigned a global share in the domain,
and this share travels with each packet; i.e., the [7] works on a link basis, while ours
works on a domain basis, which we believe is a significant advantage, since the domain
is normally the granularity on which charging schemes apply. Note, however, that in

both cases the user always increases its bandwidth proportionally with its share.

7 Simulations

In this section, we study through simulation the different levels of isolation and differ-
entiation provided by the Relative DiffServ architectures referenced in Section 2.3, i.e.,
the USD approach [7] and the proportional drop and delay differentiation architecture
presented in [5] (hereafter called DDD). These results are compared to the performance
of the SBSD architecture in identical scenarios. The DDD architecture is the result of
combining the two architectures proposed in [5], based on queueing delay and packet
drop probability differentiation parameters respectively: when a packet arrives, the
decision if it should be dropped or not is taken according to its share; if the packet
is not dropped, then it is scheduled in such a way that the waiting time in the queue
is inversely proportional to its share. The simulation of the USD architecture uses
class-based queueing (CBQ)[20] as its scheduling mechanism to enforce proportional

bandwidth sharing. In all the simulations presented here, there are three senders: user
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1 through 3. User 1 and user 2 have each been assigned a share of 2, while user 3 has
been assigned a share of 1.

The purpose of these preliminary simulations is, rather than validating the appli-
cability of the SBSD architecture in the current Internet, to show the validity of its
conceptual approach for isolation and differentiation as compared to the other Relative
DiffServ architectures. More complete simulations will be performed and published in

the future in order to exhaustively validate the SBSD architecture'3.

7.1 Intra-domain

In order to study the intra-domain isolation we have simulated a scenario with a simple
network topology and three users (user i sends from node src i to node dst i) using
different types of sources (TCP or UDP). This scenario is shown in Figure 5. All the

links in the figure have a capacity of 10 Mbps.

srcl dqrj]gin dstl
src2 () (O dst2
src3 T / dst3

Figure 5: Simulation scenario for intra-domain isolation experiment.

Using this scenario, we performed for each DiffServ approach three tests, the results
of which are illustrated in Table 1 (all numbers represent the average throughput in
Mbps achieved for each user). In Test 1, all users send TCP flows. In this case,
both USD and SBSD'* provide the required differentiation, while DDD provides a
differentiation that is even higher than the one corresponding to the shares assigned

to the users. In Test 2, we have one TCP flow of user 1 competing with UDP flows

13 The simulation source code used in the simulation presented is made publicly available by the authors.
14 Note that for the presented simulations, the TCP-optimized extension of SBSD is used.
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with different data rates of users 2 and 3. The results demonstrate that both USD and
SBSD provide the required isolation and ensure the necessary differentiation according
to the users’ shares. It can be seen, that in this scenario, DDD does neither provide
the needed traffic isolation nor the proper differentiation. In Test 3, we simulate three
UDP sources, the ones with higher shares send with 4 Mbps, the third user with 8
Mbps. Again, in this case, both USD and SBSD guarantee the proper differentiation,

while DDD does not perform as required.

TEST 1
user | share | source type | DDD | USD | SBSD
1 2 TCP 4.3 3,9 4,0
2 2 TCP 4,2 3,9 4,0
3 1 TCP 1,4 2,1 2,0
TEST 2
user | share | source type | DDD | USD | SBSD
1 2 TCP 0,9 3.9 3,9

2 2 |UDP4Mbps| 3,5 | 3.9 | 40
3 1 | UDP8Mbps| 64 | 2,1 | 21

TEST 3
user | share | source type | DDD | USD | SBSD
1 2 UDP 4Mbps | 3,0 3.9 4,0
2 2 UDP 4Mbps | 3,0 3,9 4,0
3 1 | UDPS8Mbps| 40 | 21 | 20

Table 1: Intra-domain simulation results

The results of these three test simulations indicate that drop probability and queue-
ing delay as differentiation parameters cannot provide proper isolation, when misbehav-
ing users send at a higher rate than they should (compare discussion in Section 2.2.2).
On the other hand, bandwidth differentiation, as used in USD and SBSD, does provide

both proper isolation and differentiation.
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7.2 Inter-domain

In order to examine inter-domain isolation, we have simulated a scenario with a two-
domain network topology with the bottleneck link in the second domain (see Figure 6;
in this scenario, the bottleneck links has a capacity of 10 Mbps, and, as before, user 1

sends from node src i to node dst 7)).

domain 1 domain 2 dstl

srcl

src2

(O dst2

src3 dst3

Figure 6: Simulation scenario for inter-domain isolation erperiment.

Since DDD does not provide proper isolation in the intra-domain case, we have
not included it in the inter-domain simulations and only compare USD and SBSD.
The simulated USD implements user aggregation as suggested in [7], i.e., in the second
domain, the users from the first domain are aggregated in classes with identical shares.
In this case, user 1 and user 2 are aggregated in a class in domain 2 with share 2,
while user 3 is the only member of a second class in domain 2 with share 1'>. The
same three tests as in the previous section are performed for the inter-domain case and
the resulting figures presented in Table 2. Test 1 shows that USD fails to guarantee
proper differentiation due to user aggregation. SBSD preserves the relative shares as
discussed in Section 3.2 and, therefore, provides the required differentiation. Test 2
shows, that USD also fails to provide proper isolation, again due to aggregation effects,
while SBSD protects the TCP flow against the greedy UDP flows. In test 3, we see
again that SBSD ensures both proper isolation and differentiation, while USD suffers

from the aggregation problem.

15 Note that since in USD users are statically assigned to a class, such a situation in which one class is
more crowded than another can easily occur.
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TEST 1

user | share | source type | USD | SBSD
1 2 TCP 3,2 4,0
2 2 TCP 3,0 4,0
3 1 TCP 3,7 1,9
TEST 2
user | share | source type | USD | SBSD
1 2 TCP 2,3 3,8

2 2 UDP 4Mbps | 4,0 4,0
3 1 UDP 8Mbps | 3,7 2,2

TEST 3
user | share | source type | USD | SBSD
1 2 UDP 4Mbps | 3,1 4,0
2 2 UDP 4Mbps | 3,1 4.0
3 1 UDP 8Mbps | 3,7 2,0

Table 2: Inter-domain simulation results

8 Summary and Conclusions

As discussed in Section 2, we believe that the main goals for an architecture for differ-
entiated services should be to provide reasonable isolation and differentiation of user
traffic both in the intra-domain and in the inter-domain case. In addition we believe
that support for multicast, charging schemes and the support of existing end-to-end
flow control schemes are necessary requirements for an architecture in order for differ-
entiated services to become widely accepted.

The presented Scalable Bandwidth Share Differentiation (SBSD) architecture fulfils
all of these needs in a scalable and straight-forward way using bandwidth as differenti-
ation parameter.

In Section 2, we demonstrated why we believe that bandwidth is the only suit-
able differentiation paramter for a relative differentiated services architecture without
admission control: it is the only parameter providing proper isolation while allowing

applications to reasonably profit from relative differentiation.
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The presented SBSD architecture is based on user-based effective bandwidth shares
and works without keeping per-flow or per-user state at the core nodes. As shown in
Section 6, SBSD leads to a weighted maxmin fair bandwidth distribution and therefore
provides proper traffic isolation and differentiation.

In SBSD, the shares of the users represent a wealth that the user contracts within
a domain and that can be distributed among its packets thereby yielding the effective
bandwidth shares that travel with the packets. We believe that since this wealth
is directly related to a user in that domain, it provides an ideal basis for charging
schemes. In addition, since the wealth is distributed among all packets of a user,
independently of what paths these packets follow, it is well-suited for charging the
network resources utilized by individual users in a domain. To our knowledge, no other
scheme for differentiated services provides such a natural base for charging schemes.

The extension to the SBSD architecture presented in Section 3.2 provides the neces-
sary mechanism to aggregate packets with different effective bandwidth shares in such a
way that the ratios of their effective bandwidth shares are conserved while the packets’
average effective bandwidth share is scaled to a new value. While the SBSD architec-
ture without extension applies to flows with homogeneous effective bandwidth shares,
the presented extension permits management of flows with varying effective bandwidth
shares. As a result, with the extension to the SBSD architecture, the inter-ISP aggre-
gation problem is solved when this mechanism is applied at domain boundaries.

Additionally, the same mechanism can be used to provide further differentiation
at the user-level: inter-application differentiation and intra-application differentiation.
Inter-application differentiation can be useful, when the user is an organization and
wants to provide local differentiation with respect to an arbitrary criterion (such as the

originator’s ranking in the company, the type of application used, etc.). As shown in

35



Section 5, inter-application differentiation can be used to provide a natural mechanism
allowing the SBSD architecture to handle multicast, which is a feature missing in other
architectures for differentiated services. Intra-application differentiation can be used to
prioritize some packets of a stream originated by an application relative to others (such
as for layer encoded streams) or for intelligent packet marking in order to allow end-
to-end flow control schemes originally designed for the best-effort Internet to properly
work with SBSD. In Section 4 we demonstrated how intra-application differentiation
can be used to properly integrate TCP end-to-end behaviour.

The simulation results presented in Section 7, finally, give a first demonstration
of the validity of the SBSD approach and present some of its advantages over other

relative differentiated services architectures.
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