
REIHE INFORMATIK
14/98

The Recording of Interactive Media Streams Using a Common Framework

Volker Hilt
Universität Mannheim

Praktische Informatik IV
L15, 16

D-68131 Mannheim

1

The Recording of Interactive Media Streams Using a
Common Framework 1

Volker Hilt
University of Mannheim

hilt@informatik.uni-mannheim.de

Abstract: The development of real-time transport protocols for the Internet has been a focus of
research for several years. Meanwhile, the Real-Time Transport Protocol (RTP) is a well accepted
standard that is widely deployed for the transmission of video and audio streams. The RTP specifi-
cation, combined with a companion RTP profile, covers common aspects of real-time transmissions
of video and audio in various encodings. This enabled the development of RTP recorders which
record and play back video and audio streams regardless of a specific media encoding.Interactive
media streams with real-time characteristics are now gaining importance rapidly. Examples are the
data streams of shared whiteboards, remote Java animations and distributed VRML worlds. In this
paper we present a generalized recording service that enables the recording and playback of this
new class of media. In analogy to video and audio streams we have defined an RTP profile covering
common aspects of the interactive media class. We discuss design principles for this recording ser-
vice and describe the key mechanisms that allow to randomly access recorded interactive media
streams independent of a specific media type and encoding.

Keywords: Recording, Interactive Media, Real-Time Transmission, Multicast.

1 Introduction
The use of real-time applications in the Internet is increasing quickly. For several years researchers from all over
the world have conducted meetings using video-conferencing tools. A well-known example is the IETF meeting
which is transmitted worldwide. In many universities, teachers are starting to disseminate lectures over the Inter-
net to remote students. For example at the University of Mannheim such tele-lectures have been conducted since
1996. One of the key technologies enabling such transmissions is a transport protocol that meets real-time
requirements. In the Internet theReal-Time Transport Protocol (RTP) has been developed for this purpose [21].
Now a well accepted standard, it is used by many freely available tools for the transmission of real-time media
[16], as well as by commercial products [3].

The RTP protocol provides a framework covering common aspects of real-time transmission. Each encoding of a
specific media type entails tailoring the RTP protocol. This is accomplished by anRTP profile which covers com-
mon aspects of a media class (e.g. the RTP profile for audio and video [19]) and anRTP payload specifying the
transmission of a specific type of media encoding (e.g. H.261 video streams). While the class of audio and video
is the most important one and is quite well understood, interactive media streams are used by several applications
which are gaining importance rapidly. Examples of interactive applications are: shared whiteboard applications
[4], VRML models [24], Java animations [9] and SMIL presentations [25].

Currently most media of these kinds are presented locally to a single user. However, it would be very desirable to
be able to use them in a distributed fashion, possibly incorporating this media class into teleconferencing, telepre-
sentation, and telecooperation applications. In addition, several interactive media like shared whiteboards or
multi-user virtual reality are inherently distributed. Many existing approaches to define protocols and services for
of some interactive media are proprietary [4]. This prevents interoperability as well as sharing of common tools
while at the same time requiring re-implementation of similar functionality for each protocol. For this reason, we
have developed an RTP profile [14] which covers common aspects of the distribution of interactive media. This
RTP profile can be instantiated for a specific interactive media encoding (e.g. collaborative VRML [13] or distrib-
uted Java animations [10]).

With the increasing use of real-time applications the need arises to record some of the live transmissions. A num-

1 This work is sponsored by BMBF (Bundesministerium für Forschung und Technologie) as part of the V3D2 initiative.

2

ber of RTP recorders now exist [6][20] that accomplish recording of video and audio transmissions. These record-
ers store media streams packetized in RTP which has the major advantage that the mechanisms implemented in
the recorder (e.g. media synchronization) are more generic; they build upon RTP and do not depend on a specific
media encoding. Recent developments extend RTP recorders to the proprietary protocols of specific applications.
Examples are the MASH recorder [17], the mMOD [18] and the dlb recorder for the digital lecture board [5][4].
Unlike the generic RTP video and audio recorders, these implementations are dependent upon the specific media
encoding of the application. The RTP profile for interactive media provides a common framework for interactive
media which allows the development of a generalized interactive media recorder. In this paper we present the
mechanisms required to provide a generalized service for recording and playback of interactive media streams.
We show that random access to these media streams can be achieved by these mechanisms without interpreting
media-specific data.

The remainder of this paper is structured as follows: In Section Two an overview over related work is provided. In
Section Three a classification of different media types is introduced, and the scope of our work is defined. Section
Four provides a short overview of the RTP profile for interactive media on which the presented recording scheme
is based. Design issues for an interactive media recorder are pointed out in Section Five. In Section Six fundamen-
tals of random access to stored interactive media streams are discussed, followed by the description of two mech-
anisms that realize media independent random access to these media streams in Section Seven. Section Eight
concludes the paper.

2 Related Work
Much work has been done on the recording of media streams. Many approaches built upon the RTP protocol,
which allows the synchronized recording of media streams in a general fashion. The rtptools [20] are command-
line tools for recording and playback of single RTP audio and video streams. The Interactive Multimedia Jukebox
(IMJ) [1] utilizes these tools to set up a video-on-demand server. Clips from the IMJ can be requested via a Web-
based user interface but the playback cannot be controlled any further.

The mMOD [18] system is a Java-based video-on-demand server that is capable of recording and playing back
multiple RTP and UDP data streams. Besides RTP audio and video streams, the mMOD system is capable of han-
dling media streams from applications like mWeb, Internet whiteboard wb [8], mDesk and NetworkTextEditor.
While mMOD supports the recording and playback of distinct applications, it does not provide a generalized
recording service with support for random access and late join.

The MASH infrastructure [15] comprises an RTP recording service called the MASH Archive System [17]. This
system is capable of recording RTP video and audio streams as well as media streams produced by the Media-
Board [23]. The MASH Archive System supports random access to the MediaBoard media stream but does not
provide a recording service generalized for other interactive media streams.

A different approach is taken by the AOF tools [2]. The AOF recording system does not use RTP packets for stor-
age but converts the recorded data into a special storage format. The AOF recorder grabs audio and video streams
from a hardware device and records the interactive media streams produced by one of the two applications
AOFwb [11] or the Internet whiteboard wb. Random access as well as fast visual scrolling through the recording
are supported but the recordings can only be viewed from a local hard disk, and recording of other application
streams is not possible.

In the Interactive Remote Instruction (IRI) system [12] a recorder was implemented that captures various media
streams from different IRI applications. In all cases the recording of media streams is accomplished by a special-
ized version of the IRI application that is used for live transmission. This specific application performs regular
protocol action towards the network but stores the received data instead of displaying it to the user. For example, a
specialized version of the video transmission tool is used to record the video stream. For each IRI tool such a spe-
cialized recording version must be developed.

There are a number of comerical video-on-demand servers available, one of them is the Real G2 server. The Real
G2 server is capable of streaming video and audio data as well as SMIL presentations to RealPlayer G2 clients. A
SMIL presentation may contain video and audio as well as other supported media types like RealText, RealPix
and graphics. In contrast to the recording of interactive applications, SMIL presentations are authored using a spe-
cialized authoring tool and consist of multiple predefined media streams.

At the University of Mannheim we have implemented an MBone videorecorder, the MBone VCR [6], which is
capable of recording and playing back multiple RTP audio and video streams. During playback, synchronization
of media streams is assured, and a Java user interface enables the remote control of the MBone VCR. We have

3

recently enlarged the MBone VCR by a module [5] that allows the recording and playback of data from a shared
whiteboard, the digital lecture board (dlb) [4]. The dlb uses a specific RTP payload format to transmit data on top
of our own reliable multicast protocol SMP [4]. The dlb recorder module extends the MBone VCR in two
respects: First, it handles reliable multicast towards the shared whiteboard by adding SMP headers during play-
back and stripping them during recording. The SMP headers are not recorded because they change depending on
the reliability of transport medium which may change between recording and playback. The SMP protocol must
dynamically adapt itself to the current situation and use different SMP headers. Second, the dlb recorder adds the
functionality for playback at random positions. The dlb recorder implements a playout mechanism that is specific
to the discrete interactive media stream produced by the dlb. The mechanisms described in Section 7 are general-
ized versions of this mechanism.

3 Interactive Media

3.1 Classification of Interactive Media
Before discussing the recording of interactive media streams, it is important to establish a common view on this
media class. Basically, we separate media types by means of two criteria. The first criterion distinguishes whether
the medium is discrete or continuous. The characteristic of adiscrete medium is that its state is independent of the
passage of time. Examples of discrete media are still images or digital whiteboard presentations. While discrete
media may change their state, they do so only in response to external events, such as a user drawing on a digital
whiteboard. The state of acontinuous medium, however, depends on the passage of time and can change without
the occurrence of external events. Video and animations belong to the class of continuous media.

The second criterion distinguishes between interactive and non-interactive media.Non-interactive media change
their state only in response to the passage of time and do not accept external events. Typical representations of
non-interactive media are video, audio and images.Interactive media are characterized by the fact that their state
can be changed by external events such as user interactions. Whiteboard presentations and interactive animations
represent interactive media. Figure 1 depicts how the criteria characterize different media types.

Figure 1: Examples of Media Types

A medium which is neither interactive nor continuous does not have real-time characteristics and is therefore not-
discussed any further here. Media types that are non-interactive and continuous have already been investigated to
a large extent; digital audio and video streams are the most prominent examples. An RTP profile [19] has been
defined, and excellent recording tools exist for these media types. In contrast, proprietary protocols are used by
almost all applications for the distribution of, and cooperation with, interactive (continuous, as well as discrete)
media. The usage of proprietary protocols prohibits the development of a generalized recording service. For a
long time it was impossible to record the whiteboard part of a videoconferencing session. Our first approach to
solving this problem was to extend the functionality of an existing recording tool to make it understand the
semantics of a shared whiteboard transmission [5]. While this approach enables the recording of one specific
shared whiteboard — the digital lecture board [4], it does not provide a generalized solution for all interactive
media. However, a recording service can be provided if all interactive media use a general framework for their
transmission over the network.

D
iscrete M

edia

Non-Interactive Media

Interactive Media

C
ontinuous M

edia

Image Video

AnimationDigital Whiteboard

4

3.2 Model for Interactive Media
An interactive medium is a medium that is well defined by its current state at any point in time. For example, at a
given point in time the medium Java animation is defined by the internal state of the Java program that is imple-
menting the animation. Thestate of an interactive medium can change for two reasons, either by the passage of
time or byevents. The state of an interactive medium between two successive events is fully deterministic and
depends only on the passage of time. Any state change which is not a fully deterministic function of time is
caused by an event. A typical example of an event is the interaction of a user with the medium. An example of a
state change caused by the passage of time might be the animation of an object moving across the screen.

To display a non-interactive media stream like video or audio, a receiver needs to have an adequateplayer for a
specific encoding of the medium. If such a player is present in a system, every media stream that employs this
encoding can be processed. This is not true for interactive media streams. For example, to process the media
stream that is produced by a shared VRML browser, it is not sufficient for a receiver to have a VRML browser.
The receiver will also need the VRML world on which the sender acts; otherwise the media stream cannot be
interpreted by the receiver. But even if the receiver has loaded the correct world into its browser, the VRML world
may be in a state completely different from that of the sender. Therefore, the receiver mustsynchronize the state of
the local representation of the interactive medium to the state of the sender before it will be able to interpret the
VRML media stream correctly.

Generally speaking, it is not sufficient to have a player for an interactive media type. Additionally the player must
be initialized with thecontext of a media stream before the stream can actually be played. The context is com-
prised of two components: (1) the environment of a medium and (2) the current state of the medium. Theenviron-
ment represents the static description of an interactive medium that must initially be loaded into the media player.
Examples of environments are VRML worlds or the code of Java animations. Thestate is the dynamic part of the
context. The environment within a player must be initialized with the current state of the interactive medium
before the stream can be played. During transmission of the stream, both sender and receiver must stay synchro-
nized since each event refers to a well-defined state of the medium and cannot be processed if the medium is in a
different state.

4 RTP Profile for Interactive Media
This section gives a short overview over the main concepts of our RTP profile for the class of interactive media.
An in-depth discussion of the profile can be found in [14].

4.1 State, Delta State, Event
The model presented in Section 3.2 illustrates that two basic elements of an interactive medium must be transmit-
ted in real-time: states and events. But in cases where a complex state is inserted frequently into the media stream,
the transmission of states would consume a large bandwidth. Therefore it is necessary to be able to send only
those parts of a state that have changed since the last transmission. We call a state which contains only the state
changes that have occurred since the last state transmitted adelta state. A delta state can only be interpreted if the
preceding full state and interim delta states are also available (see Figure 2). The main advantages of delta states
are their smaller size and the fact that they can be calculated faster than full states.

The state for some media types may get very large so that a transmitted state comprises a huge amount of data. In
these cases it is desirable to partition an interactive medium into severalsub-components. Such partitioning allows
participants of a session to track only the states of those sub-components they are actually interested in. Examples
of sub-components are VRML objects (a house, a car, a room), or the pages of a whiteboard presentation. In the
RTP profile the sub-components are used as the level of granularity for state transmissions. To allow applications
to discard events for sub-components they are not interested in, all events have to identify the sub-component in
which the “target” of the event is located.

5

Figure 2: Decoding of Delta States

Most of the data for interactive media are carried in three packet types: state, delta state and event. We define the
structure of these packet types as depicted in Figure 3 within our RTP profile; for the general structure of RTP
packets see [21]. The most important fields in these packets are type, sub-component ID and data. The type field is
needed to distinguish the different packet types defined in the profile. This is especially important for the record-
ing service which must be able to identify the type of content transported in an RTP packet without having to
interpret the data part of the packet. In state and delta state packets the sub-component ID field holds the sub-com-
ponent ID of the state included in the data part of the packet. In event packets this field identifies the sub-compo-
nent containing the “target” of an event. The data field of the packet contains the definition of states, delta states or
events specific to the payload type.

Figure 3: RTP Packet Structure for States, Delta States and Events

Since setting the state of a sub-component can be costly and might not always be reasonable, state and delta state
packets contain a priority (PRI) field. This priority can be used by the sender of the state to signal its importance.
A packet with high priority should be examined and applied by all communication peers which are interested in
the specific sub-component. Situations where high priority is recommended are resynchronization after errors or
packet loss. Basically a state transmission with high priority forces every participant to discard its information
about the sub-component and requires the adoption of the new state. A state transmitted with low priority can be
ignored at will by any participant. This is useful if only a subset of communication partners is interested in the
state. An example of this case is a recorder that periodically requests the media state in order to insert it into the
recording.

4.2 Active Sub-Components
For the implementation of an efficient recording service it is important that the sub-components necessary to dis-
play an interactive medium are known. This allows a recorder to transmit only those sub-components during a
playback that are actually visible in the receivers. Our profile provides a standardized way to announce the sub-
components of any application participating in an interactive media session. Theactive sub-components of a sin-
gle application at any point in time are those sub-components which are required by the application to present the
interactive medium at that specific time. The active sub-components of a session comprising several participants
are the active sub-components of all participants. Declaring a sub-component active does not grant permission to
modify anything within that sub-component. It is perfectly reasonable for an application to activate several sub-
components just to declare that they are needed for the local presentation of the medium. However, a sub-compo-
nent must be activated before a session participant is allowed to modify (send events into) the sub-component. It is
the responsibility of the application to ensure this behavior, e.g. by using a floor control mechanism.

A requires B for decoding

B A

time

StateState
Full

State
Full

State
DeltaDelta

State
Delta

X

IV=0

7 8 9
3
0 1

contributing source (CSRC) identifiers

M

data

sub-component ID sub-component sequence number

reservedPRI

synchronization source (SSRC) identifier

CC PT

timestamp

type

62 3 4 5 98761

V=2 P

0
0

sequence number

1
9

2
0 1 543280 1 2 3 7654

6

In order to simplify the handling of sub-component states in the application, the following rule applies: Whenever
a sub-component becomes active in a session, the full state of that sub-component must be transmitted. This rule
allows local applications to discard any state information that becomes inactive in a session. Only those applica-
tions interested in reactivating the sub-component at a later point in time need to remember its state. All other
applications can rely on this rule to receive the state should someone else reactivate the sub-component.

4.3 State Query
In many cases it is reasonable to let the receivers decide when the state of sub-components should be transmitted.
For this reason a receiver must be able to request the state from other participants in the session.

As the computation of state information may be costly, the sender must be able to distinguish between different
types of requests. Recovery after an error urgently requires information on the sub-component state since the
requesting party cannot proceed without it. The state is needed by the receiver to resynchronize with the ongoing
transmission. These requests will be relatively rare. In contrast, a recorder needs the media states to enable ran-
dom access to the recorded media. It does not urgently need the state but will issue requests frequently. For this
reason, the state request mechanism supports different priorities through the priority (PRI) field in the state query
packet. Senders should satisfy requests with high priority (e.g. for late joiners) very quickly, even if this has a neg-
ative impact on the presentation quality for the local user. Requests with low priority can be delayed or even
ignored, e.g. if the sender currently has no resources to satisfy them. The sender must be aware that the quality of
the service offered by the requesting application will decrease if requests are ignored.

5 RTP Recorder Design

5.1 Recording Scenario

An RTP recorder usually handles two network sessions (see Figure 4). In the first, the recorder participates in the
multicast transmission of the RTP media data. Depending on its mode of operation (recording or playback), it acts
as a receiver or sender towards the other participants of the session. A second network session can be used to con-
trol the recorder from a remote client, e.g. using the RTSP [22] protocol. During the recording of an RTP session,
the recorder receives RTP data packets and writes them to a storage device. Packets from different media streams
are stored separately. When playing back, the recorder successively reads the RTP packets of each media stream
from the storage device. The time when each packet must be sent is computed using the time stamps contained in
the RTP packet. The recorder sends the packets according to the computed schedule. A detailed description of the
synchronization mechanism implemented in the MBone VCR can be found in [7].

5.2 Functionality of a RTP Recorder for Interactive Media

To define the functionality that is required for a recorder for interactive media streams the design metaphor of a
VCR is used, since a VCR is a well-known device for dealing with recording and playback of continuous media.
Six basic operations for the recording and playback of interactive media streams can be derived:

• Record. The recorder must be able to record interactive media streams in synchronization with other media

Figure 4: Scenario for the Recording of an RTP Session

I n t . M e d i a
A p p l i c a t i o n

I n t . M e d i a
A p p l i c a t i o n

I n t . M e d i a
A p p l i c a t i o n

M u l t i c a s t
S e s s i o n

R T P /
I n t . M e d i a
R e c o r d e r

R T P

R T P R e c o r d e r
C o n t r o l

R T
S P

R T PR T P

7

streams.
• Play. The synchronized playback of interactive media streams must start at (or near) the current position of the

recorder within the stream. A user may have altered this position through operations such as random position-
ing, fast forward, fast rewind or a previous play.

• Fast Forward. The fast forward operation allows a user to scan through a recording. Especially in the case of
continuous interactive media, fast forward is hard to implement because the internal clock of a medium runs at
normal speed whereas the recorder sends recorded packets at high speed. Another problem with fast forward is
that it consumes much more bandwidth than does regular playback. Finally, forall media types (like audio and
video) to which the interactive media stream is synchronized, a fast forward operation must also be imple-
mented. For these reasons, the fast forward operation is not further discussed here.

• Fast Rewind. This is analogous to the fast forward operation, implying the same problems.
• Stop. The stop operation will put the recorder into an idle state. Note that the internal clock of a receiver does

not stop. The receiver may therefore perform further operations without receiving packets from the recorder.
Before an interrupted playback can be resumed, the mechanism for random positioning must be executed (see
Section 7).
When stopping playback, the user regains control over the medium and can freely interact with it. For exam-
ple, this can be used to guide a user through an animation by playing back a recording while retaining the abil-
ity to let the user take over and explore the animation in its current state.

• Random Positioning. Random access should be possible within a recording by directly jumping to a desired
position.

6 Random Access
In contrast to the traditional media types where random access to any position within a stream is possible, interac-
tive media streams do not allow easy random access without restoring the context of the stream at the desired
access position. To restore the context of a recorded stream in a receiver, two operations have to be performed:
First, the environment has to be loaded into the receiver. The environment can be provided by the recorder or by a
third party, e.g. an HTTP server. Then the receiver needs the state of the interactive medium at the desired access
position within the recorded stream. Consider a shared whiteboard as an example. If we want to jump to minute
17 of a teleteaching session we must be able to show the contents of the page active at that time, together with the
annotations made by the speaker. We would like to go directly to that page, whithout replaying all operations
since the beginning to the session.

6.1 Recovering the Media State
The state of an interactive application can be recovered from the recorded media stream. Note that the recorder is
not able to interpret the media-specific part of the RTP packets and thus cannot directly compute the state and
send it to the receivers. But the recorder may send RTP packets that are stored within the recorded media stream.
Thus, it is our goal to compose a sequence of recorded RTP packets containing states and events that put a
receiver into the desired state. The task a recorder has to accomplish before starting a playback is to determine the
appropriate sequence of recorded packets.

In an interactive application the current state is determined by a state and a sequence of events applied to that
state. In a discrete interactive medium the event sequence is not bound to specific points in time. Thus, the appli-
cation of an event sequence to an initial state of a discrete interactive medium will always result in the same media
state, independent of the speed at which the sequence is applied. In contrast, the event sequence for a continuous
interactive medium is bound to specific points in time. A sequence of events that is applied to the state of a contin-
uous interactive medium will leave the media in the correct state only if each event is applied at a well-defined
instant in time.

This main difference between discrete and continuous interactive media must be considered when computing the
sequence of event and state packets to recover the media state. In the case of a discrete medium, such a sequence
can be computed to recover the media state at any point in a recorded stream. In contrast, the media state of a con-
tinuous medium can only be recovered at points within a recording where a state is available; events cannot be
used for state recovery. Therefore, random access to a continuous media stream will usually result in playback at
a position near the desired access position. The more often the state is stored within a stream, the finer is the gran-
ularity at which the stream of a continuous medium can be accessed later.

Interactive media applications usually send the media state only upon request by another application. Thus, the
recorder must request the state at periodic intervals. The requests use a low priority because a delayed or missing
response only reduces the access granularity of the stream, which can be tolerated in most cases.

8

6.2 Convergence of Media Contexts
In many cases it is desirable to play the recording of an interactive medium back into an ongoing live session (e.g.
a conference). This session incorporates an interactive medium context that has evolved during the course of the
session. But when starting the playback of a recording, the medium context of the recording is recovered by the
recorder. Thus, the context of the current session must merge with the context of the recording. Basically four pol-
icies for merging contexts are possible:

1. The context of the current session is discarded and the context of the recording is loaded.
2. The context of the current session is kept and the context of the recording is loaded. The context of the record-

ing supersedes in the event that parts overlap.
3. The context of the current session is kept and the context from the recording is added. If parts overlap, the cur-

rent context supersedes.
4. The context of the recording is not loaded at all.

With policies 3 and 4 errors during the playback of the recording are likely to occur because the context of the
recording is not restored completely (in policy 4 not at all). With policies 1 and 2, the playback is accurate but the
system behavior differs concerning the state of the current session. With policy 1, all the previous work within the
session is lost. For example in a session with shared whiteboards, all existing pages will be gone. With policy 2
the context of the session is kept as long as it does not interfere with the context of the recording. In the white-
board example, all existing pages will remain in the session, and the pages from the recording will be added.

There is no general rule as to which of the above policies is best suited for a specific distributed interactive appli-
cation. It must be decided for each media type which of the above policies is applicable, for some media types this
decision may even be left to the users, who may decide per session. However, a recorder must be able to provide
the media context to the participants and thus enable the implementation of all of the above policies in an interac-
tive application.

7 Mechanisms for Playback
The mechanisms presented in this section implement the recovery of the media state in order to allow random
access to interactive media streams. Both mechanisms are implemented completely in our recorder. It is not
required that the receiving applications recognize the recorder as a specific sender, nor does the recorder need to
interpret media-specific data. All applications that use a payload based on the RTP profile for interactive media
can be recorded and will be able to receive data from our recorder.

7.1 The Basic Mechanism

This simple mechanism is able to recover the application state from interactive media streams which do not utilize
multiple sub-components. In the best case, the media state will be contained in the recorded stream at exactly the
position at which the playback should start. Then playback can begin immediately. But in general, the playback

9

will be requested at a position where no full state is directly available in the stream.

Consider, for example, a recorded media stream that consists of the sequence S0 containing a state, three succes-
sive delta (∆) states and several events (see Figure 5). If a user wants to recover position tp from the recording, the
state at tp must be reconstructed by the recorder. A continuous interactive medium does not allow direct access to
tp because the recorder cannot determine the state at tp since there is no state available at tp in the recorded stream.
However, access to position t∆3 within the stream is feasible, because t∆3 is the location of a delta state. The com-
plete media state at t∆3 can be reconstructed from the state located at position ts and the subsequent delta states
until position t∆3, which is the position of the last delta state before tp. The events between ts and t∆3 can be
ignored, because all modifications to the state at ts are reflected in the delta states. The packets that contain states
can be sent at the maximum speed at which the recorder is able to send packets. If required by the medium, the
internal media clock is part of the media state. Thus, after applying a state, the media clock of a receiver will
reflect the time contained in the state. When the recorder finally reaches t∆3 (and has sent∆3), fast playback must
be stopped and playback at regular speed must be started. The start of the regular playback may not be delayed
because events must be sent in real-time relative to the last state. This is important since for continuous interactive
media the events are only valid for a specific state that may change with the passage of time. Altogether, the
recorder will play back sequence S1 shown in Figure 5.

For discrete interactive media, fast playback of events is possible. Therefore random access to position tp can be
achieved by also sending the events between t∆3 and tp at full speed. The resulting sequence S2 is also shown in
Figure 5.

To implement the basic mechanism, the recorder must collect metadata about the location of states within the
stream. For random access to position tp, it is required to locate the nearest state before tp, without having to
rescan the entire stream. Furthermore all∆ states between that state and tp must be found. The time needed to
locate the states within the stream should be small so as to minimize the initial delay of the playback. To achieve
short access times, the locations of states can be stored in an index created during the recording. The index must
contain the time stamp of all states as well as the type of each state (full state or∆ state). The recorder can now
find the latest complete state by getting the highest time stamp before tp out of the index and may directly jump to
this state within the recording.

7.2 Mechanism with Support for Sub-Components
In a more sophisticated mechanism the existence of sub-components can be exploited to reduce the effort for the
recovery by selectively recovering the required sub-components. For example, take the recording of a conference
with many speakers where a shared whiteboard was used to distribute slides and annotations. Assume the shared
whiteboard has divided its media state into several sub-components where each page corresponds to a sub-compo-
nent. If a talk within the recording of the conference is accessed by a user, the recorder normally would have to

Figure 5: Playback of a Recorded Sequence of States, Delta States and Events

t

t

t

= c o m p l e t e s t a t e = ∆ s t a t e = e v e n t

S e q u e n c e S 0 (o r i g i n a l) :

S e q u e n c e S 1 (c o n t i n u o u s i n t e r a c t i v e m e d i a) :

S e q u e n c e S 2 (d i s c r e t e i n t e r a c t i v e m e d i a) :

t p

t p

t p

t ∆ 2 t ∆ 3t ∆ 1t s

t ∆ 3t s

t ∆ 3t s

10

restore the complete media state at the beginning of the talk. This complete state would comprise all slides from
previous speakers in the conference. Using sub-components, the recorder could recover only those slides that are
actually relevant for the playback of the talk.

In general, when a recorded stream is accessed, the set of active sub-components at the access position can be
determined. It is sufficient to recover the states of these active sub-components before starting playback because
active sub-components are those sub-components which are necessary to display an interactive medium (see Sec-
tion 4.2). If the medium is partitioned into reasonable sub-components, this is much cheaper than recovering the
full state of the application.

To determine the sub-components active at an access point the recorder must compute a list of active sub-compo-
nents for each point in time during the time of recording. At the beginning of a playback, the recorder recovers
only the sub-components that are active at the access point. These sub-components are sufficient for a receiver to
interpret all data recorded subsequenty. If the set of active sub-components is enlarged later on in the recording,
the state of each added sub-component is also contained in the recorded media stream. If an active sub-component
is added to a recorded session the application adding the sub-component must send its state. Otherwise the rule in
Section 4.2 would be violated. Thus, a recorder recording this session also captures the state of all added sub-
components.

The use of sub-components facilitates the coordination of multiple simultaneous senders as each sender may act
on a distinct sub-component of the medium. For this reason we have considered multiple senders in the descrip-
tion of the following mechanism. Basically, multiple simultaneous senders may also transmit events targeting the
same sub-component although the consistency of the sub-component state will then be hard to maintain for an
application.

Let us consider the example shown in Figure 6. If a recorded stream of a continuous interactive medium is
accessed at position tp, the recorder has to compute the list of sub-components s1, ... ,sn, that are active at tp. For
each of these sub-components, the position of the most recent sub-component state before tp must be located in
the recorded stream. As a result, the recorder gets the positions of sub-component states ts1, ... , tsn ≤ tp (for the
sake of simplicity, we will only consider states and sub-component states; support for∆ states can be achieved
similar to the basic mechanism.) Assume s1 is the sub-component of which the state is located farest from tp (ts1<
ts2, ... , tsn). Then the recorder would have to start playback at ts1 because events referring to s1 may be located
between ts1 and tp. Remember that we are considering a continuous interactive medium where events must be
played in real time. Unfortunately, we cannot play back all events that are contained in the stream between ts1 and
tp. The set of active sub-components at the position ts1 will probably comprise more sub-components than s1 (e.g.
s3). Therefore events may occur that refer to sub-components other than s1, but s1 is the only sub-component for
which we have sent a state so far. As a result, events that refer to other sub-component states must be filtered out.
Additionally, there may be state data of sub-components in the stream that are not in the set of active sub-compo-
nents at tp and are therefore not needed (e.g. s4). The states of these sub-components must also be filtered out.
When starting playback at ts1, the recorder will send the state of sub-component s1 and all events referring to s1.
The next required state (e.g. s2) will be sent as soon as it shows up and, after that, all subsequent events referring
to s2 will also pass the filter. Finally, once the recorder has reached position tp, all sub-components that are active
at tp will have been recovered and regular playback without any filtering may start.

11

In Figure 6 an example session with Sender 1 and Sender 2 is given. Sender 1 is responsible for sub-components

s1 and s3, Sender 2 updates s2 and s4. If the recording is accessed at position tp, the playback must be started at ts1
and all dotted objects will be filtered out until tp is reached. Then the recorder shifts into regular playback mode.

8 Conclusion
We have presented a model for interactive media with real-time characteristics. We have defined a new RTP pro-
file for the transmission of interactive media over RTP. An important aspect of our profile is that it captures com-
mon aspects of the interactive media class. Relying on this profile it is possible to develop a media-independent,
generic recording service as presented in the second part of our paper. This recording service provides generic
random access to all recorded media streams. This is not a trivial task because the context of a medium must be
recovered from a recording before starting playback at the desired access position without interpretation of media-
specific data. We have presented two mechanisms that accomplish this task in a media-independent manner, rely-
ing only on our RTP profile.

Currently we are working on the implementation of the generic recording service by integrating the proposed
mechanisms into the MBone VCR. By doing so we are developing a sample implementation of our RTP profile
which we will make available as a library in order to simplify the integration of the profile into other applications
using distributed interactive media. In parallel two applications which will implement an RTP payload based on
our RTP profile are currently under development: a cooperative VRML browser, and remotely controlled Java ani-
mations. As a testbed for our generic recording service we are planning to record data from both applications.

During the implementation and testing of the library, the recording service and the interactive media applications,
we are expecting to get enough feedback to fully specifiy the profile and the payload types which we intend to
publish as Internet drafts.

References

[1] K. Almeroth, M. Ammar.The Interactive Multimedia Jukebox (IMJ): A New Paradigm for the On-Demand
Delivery of Audio/Video. In: Proc. Seventh International World Wide Web Conference, Brisbane,
Australia, April 1998.

[2] C. Bacher, R. Müller, T. Ottmann, M. Will.Authoring on the Fly. A new way of integrating telepresentation
and courseware production. In: Proc. ICCE ‘97, Kuching, Sarawak, Malaysia, 1997.

[3] Cisco.Cisco IP/TV. On-line: http://www.cisco.com/warp/public/732/net_enabled/iptv/.

Figure 6: Playback of a recording containing sub-components

s u b - c o m p o n e n t s t a t e s 1 e v e n t r e f e r s t o s 1

t pt s 3t s 1

S e n d e r 1 :

s 3 s 1 s 3
e - 1 e - 3 e - 1

t pt s 2

S e n d e r 2 :

s 4 s 2 s 5

s 1
s 3

s 1
s 3

s 2
s 4 - s 4 s 2

+ s 5

e - 1 e - 3 e - 1 e - 3

t

t

s 1

e - 1 s 2
s 4 a c t i v e s u b - c o m p o n e n t s + s 5 a c t i v a t e s 5

D o t t e d o b j e c t s a r e f i l t e r e d o u t d u r i n g p l a y b a c k .

12

[4] W. Geyer, W. Effelsberg.The Digital Lecture Board - A Teaching and Learning Tool for Remote
Instruction in Higher Education. In: Proc. ED-MEDIA ’98, Freiburg, Germany, AACE, June 1998.
Available on CD-ROM, contact: http://www.aace.org/pubs/.

[5] O. Graß.Realisierung eines Whiteboard-Recorder Moduls. Master’s Thesis (in German), LS Praktische
Informatik IV, University of Mannheim, Germany, September 1998.

[6] W. Holfelder.Interactive Remote Recording and Playback of Multicast Videoconferences. In: Proc. IDMS
’97, Darmstadt, pp. 450-463, LNCS 1309, Springer Verlag, Berlin, September 1997.

[7] W. Holfelder.Aufzeichnung und Wiedergabe von Internet-Videokonferenzen. Ph.D. Thesis (in German), LS
Praktische Informatik IV, University of Mannheim, Shaker-Verlag, Aachen, Germany, 1998.

[8] V. Jacobson.A Portable, Public Domain Network ‘Whiteboard’, Xerox PARC, Viewgraps, April, 1992.

[9] C. Kuhmünch, T. Fuhrmann, and G. Schöppe.Java Teachware - The Java Remote Control Tool and its
Applications. In: Proc. of ED-MEDIA ’98, Freiburg, Germany, AACE, June 1998. Available on CD-
ROM, contact: http://www.aace.org/pubs/.

[10] C. Kuhmünch.Collaborative Animations in Java. Technical Report TR 15-98, University of Mannheim,
September 1998. On-line: http://www.informatik.uni-mannheim.de/~cjk/publications/cola-api.ps.gz.

[11] J. Lienhard, G. Maas.AOFwb - a new Alternative for the MBone Whiteboard wb. In: Proc. of
ED-MEDIA ’98, Freiburg, Germany, AACE, June 1998. Available on CD-ROM, contact: http://
www.aace.org/pubs/.

[12] K. Maly, C. M. Overstreet, A. González, M. Denbar, R. Cutaran, N. Karunaratne.Automated Content
Synthesis for Interactive Remote Instruction,In: Proc. of ED-MEDIA ’98, Freiburg, Germany, AACE,
June 1998. Available on CD-ROM, contact: http://www.aace.org/pubs/.

[13] M. Mauve.Transparent Access to and Encoding of VRML State Information. To appear in: Proc. of VRML
’99, Paderborn, Germany, 1999.

[14] M. Mauve, V. Hilt, C. Kuhmünch, W. Effelsberg.A General Framework and Communication Protocol for
the Real-Time Transmission of Interactive Media, Technical Report TR 16-98, University of
Mannheim, Germany, 1998. On-line: http://www.informatik.uni-mannheim.de/~hilt/publications/
RTPPayloadTR.ps.gz.

[15] S. McCanne, et. al.Toward a Common Infrastructure for Multimedia-Networking Middleware, In: Proc. of
NOSSDAV ‘97, St. Louis, Missouri, 1997.

[16] S. McCanne, V. Jacobson.vic: A flexible Framework for Packet Video. In ACM MultiMedia ‘95, San
Francisco, pp. 511 - 523, ACM press, November 1995.

[17] S. McCanne, R. Katz, E. Brewer et. al.MASH Archive System. On-line: http://mash.CS.Berkeley.edu/
mash/overview.html, 1998.

[18] P. Parnes, K. Synnes, D. Schefström.mMOD: the multicast Media-on-Demand system. 1997. On-line:
http://mates.cdt.luth.se/software/mMOD/paper/mMOD.ps, 1997.

[19] H. Schulzrinne.RTP Profile for Audio and Video Conferences with Minimal Control, Internet Draft,
Audio/Video Transport Working Group, IETF, draft-ietf-avt-profile-new-03.txt, August 1998.

[20] H. Schulzrinne.RTP Tools. Software available on-line, http://www.cs.columbia.edu/~hgs/rtp/rtptools/,
1998.

[21] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson.RTP: A Transport Protocol for Real-Time
Applications. Internet Draft, Audio/Video Transport Working Group, IETF, draft-ietf-avt-rtp-new-
01.txt, August, 1998.

[22] H. Schulzrinne, A. Rao, R. Lanphier.Real Time Streaming Protocol (RTSP). Request for Comments 2326,
Multiparty Multimedia Session Control Working Group, IETF, April 1998.

[23] T. Tung.MediaBoard: A Shared Whiteboard Application for the MBone. Master’s Thesis, Computer
Science Division (EECS), University of California, Berkeley, 1998. On-line: http://www-
mash.cs.berkeley.edu/dist/mash/papers/tecklee-masters.ps

[24] VRML Consortium.Information technology -- Computer graphics and image processing -- The Virtual
Reality Modeling Language (VRML) -- Part 1: Functional specification and UTF-8 encoding. ISO/IEC
14772-1:1997 International Standard, December 1997. On-line: http://www.vrml.org/Specifications/.

13

[25] World Wide Web Consortium.Synchronized Multimedia Integration Language (SMIL) 1.0 Specification.
W3C Recommendation, REC-smil-19980615, June, 1998. On-line: http://www.w3.org/TR/REC-smil/.

