
REIHE INFORMATIK
3/96

Real-Time Estelle
Stefan Fischer

Universit�at Mannheim
Fakult�at f�ur Mathematik und Informatik

Seminargeb�aude A5
D-68131 Mannheim

Real-Time Estelle

Stefan Fischer

Praktische Informatik IV, University of Mannheim

D-68131 Mannheim, GERMANY

Phone: +49 621 292 5053, Fax: +49 621 292 5745

stefis@pi4.informatik.uni-mannheim.de

Abstract

Estelle is one of the standardized Formal Description Techniques for the speci�-

cation of communication protocols and distributed systems. Unfortunately, Estelle

is not capable to express real-time requirements or characteristics of services or

protocols which is especially important in the context of distributed multimedia

systems. In this paper, we introduce an extension to Estelle called Real-Time Es-

telle that allows to describe real-time systems. We introduce the syntax of the new

language and propose both an operational and a hybrid semantics. Examples show

the usefulness of the approach. We also discuss ways to implement Real-Time Es-

telle speci�cations.

Keywords: Estelle, real-time systems, multimedia systems, quality of service, au-

tomatic implementation

1 Introduction

One of the major applications in the framework of the emerging \information super-
highway" will be distributed multimedia systems. Compared to traditional applications
in data processing, these systems have totally di�erent requirements in terms of data
transfer rates, response time etc. All these requirements are typically related to real-time
and usually expressed by quantitative Quality of Service (QoS) parameters.

The use of Formal Description Techniques has proved useful for the speci�cation of tra-
ditional protocols and distributed systems. However, most of these languages have no
real-time concept. Thus, it is often impossible to express quantitative QoS requirements
based on a formal syntax and semantics.

Estelle is one of the standardized Formal Techniques for the speci�cation of protocols and
distributed systems. Estelle has many advantages. Since the language is a superset of
the programming language Pascal, Estelle speci�cations are easy to understand, and it is
possible to derive simulations and e�cient implementations in a straight-forward way.

1

2 Real Time Estelle

In [15] however, we showed that Estelle is not very good at specifying real-time constraints.
The Estelle model of time is too weak to express real-time requirements. Thus, in this
report, we develop a real-time extension of Estelle called Real-Time Estelle. We show
that it is possible with this extension to express timing constraints in terms of real-time
and thus quantitative QoS requirements or characteristics.

The rest of this report is organized as follows: in Section 2, we describe a general formal
model of real-time systems. We also give an overview of earlier approaches to formal
description of real-time systems. Then, we extend the Estelle transition model to �t into
this general formal model. In Sections 3 and 4, we describe the syntax and semantics of
Real-Time Estelle which allow us to construct real-time systems in terms of the extended
real-time transition model. Section 5 presents examples of how to use the extension for
QoS descriptions and modeling of system timing behavior. In Section 6, we show how
implementations may be derived from Real-Time Estelle speci�cations which are capable
of guaranteeing speci�ed QoS requirements. Section 7 concludes the report.

2 Real-Time Model

2.1 Formal De�nition of a Real-Time Model

In [3], a model for real-time systems is given which concludes many of the approaches
developed so far:

De�nition 2.1 A real-time system is modeled as a set of timed state sequences. The
domain of time is the number of positive real numbers R+ . In a timed state sequence,
intervals on R

+ determine the duration of system states. Formally, a real-time system
S = (S;P; �; T) consists of the following four components:

� A set S of system states.

� A set P of atomic propositions observable in system states.

� A function � : S ! 2P which determines which propositions are observable in each
system state.

� A set T of timed state sequences s = s0I0s1I1:::, where si 2 S and I = I0I1::: is
an interval sequence such that for every t 2 R

+ , there exists exactly one interval
Ii � R

+ with t 2 Ii. Thus, the expression (si; Ii) means that at every time instant
t 2 Ii the system is in state si.

For many real-time systems, this de�nition may be simpli�ed. Often, it su�ces to char-
acterize a system by its timed observation sequences instead of by state sequences. An
observation sequence is a sequence � = �0�1�2::::; �i � 2P . A timed observation sequence
� = (��; �I) consists of an observation sequence �� and an interval sequence �I of equal

Real-Time Estelle 3

states

observations

s s s s s
210 3 4

2

time[I] I [I [I] I [0 1 2 3 4

[B] [B] [B] [B]0 1 3 4[B]

Figure 1: Timed state and timed observation sequences

length. A pair (�i; Ii) means that during interval Ii the observation �i does not change.
The realtionship between timed state and timed observation sequences is shown in Figure
1.

The observations B0 and B1 are correct. B2, however, is not correct since the state changes
during the observation interval. Looking at two consecutive observations, the state of the
system does not necessarily change (B3 and B4). Also. not necessarily all states of a
system are observed.

A second important simpli�cation is possible, if only instantaneous events occur. In this
case, it su�ces to record only singular intervals, i.e. the points in time where events
happen (which is equivalent to state changes).

If there is no causal relationship between single events (concurrency), one often uses
interleaving semantics. Here, the occurrence of several events at the same time are mapped
to all possible sequences with only one event in each sequence member. The occurrence of
events p and q at time 3, also described as (fp; qg; 3) will then be mapped to two sequences
(fpg; 3) ! (fqg; 3) and (fqg; 3) ! (fpg; 3) which both model a possible behavior of the
system. Interleaving semantics reduces the state space of a system and thus simpli�es the
analysis.

In the case of instantaneous events, it also su�ces to use natural numbers for the repre-
sentation of time. The time unit has then to be selected accordingly.

2.2 Constructing and Describing Real-Time Systems

We now have a very general formal model for real-time systems. However, it may be
quite costly or even impossible to enumerate all timed state sequences describing the
system. Therefore, formalisms | formal description techniques | have been developed
to describe implicitly those sequences. In this section, we will give a short overview on
formalisms for real-time systems.

Generally, the techniques may be divided into two categories: constructive and descriptive
approaches. The �rst group provides an explicit algorithm of how to construct the state
sequences, while the second one describes characteristics of the system.

4 Real-Time Estelle

Basically, all constructive approaches are based on state transition systems. They may
be further subdivided into timed automata-, timed Petri Net- and timed process algebra-
based methods.

The work of Alur and Dill [2], Henzinger, Manna and Pnueli [20], Rudin [36] and Lynch
and Vandraager [28] is all based on some kind of timed automata. Time restrictions
are introduced by labeling transitions or states of �nite state machines with time limits.
Henzinger et al. [20], e.g., assign to each transition of their Timed Transition System
(TTS) an upper bound u and a lower bound l. Once enabled, the transition has to be
delayed at least l time units, and it has to be �red before u time units have elapsed.
Figure 2 shows a sample TTS.

s

]

t

v

u

c [1,2] a=5
[0,1]

[2,10]
DATAreq

[1, 8

Figure 2: A Timed Transition System

If the system starts in state s, then the execution of the transition has to be delayed for
at least one unit time after condition c has become true. At most 2 units time after that,
the transition has to be executed, an the system switches to state t. By this TTS, the
following timed state sequences (among others) are constructed.

(s; 0)! (t; 1:5)! (u; 1:7)! (v; 6:7)! (s; 9:0)! ::::

(s; 0)! (t; 1:8)! (u; 2:0)! (v; 12:0)! (s; 14:0)! ::::

Here, the transitions are instantaneous which means that it su�ces to record only singular
intervals.

There has also been much and early work in the area of timed Petri Nets, e.g. Time Petri
Nets [31], Object Composition Petri Nets [26] and Time Stream Petri Nets [38]. Especially
Little and Ghafoor [26] made Petri Nets popular for the speci�cation of synchronization
relations in multimedia systems.

We do not further elaborate on timed process algebras. The interested reader may �nd a
good starting point in [33], though development has since progressed.

Descriptive techniques are usually based on temporal logic (TL), for an overview see [19]).
Generally, temporal logic formulas describe temporal relations between states which are

Real-Time Estelle 5

characterized by state propositions. The formulas are interpreted over state sequences.
All state sequences ful�lling the formulas compose the system. For the description of
real-time systems, traditional temporal logic is not su�cient. Therefore, extensions have
been introduced to TL to express real-time relations, e.g. timed operators as in Metric
Temporal Logic (MTL) [22] or Quality of Service Temporal Logic QTL [6], or explicit
timer variables as in Real-Time Temporal Logic (RTTL) [34] or TLA [1]. Most of them
are based on linear time and use natural numbers as their time domain.

High Level Languages. To make the use of these approaches more convenient, several
of them have been realized in higher level languages. Especially for timed process algebras,
several extensions of LOTOS have been developed, e.g. in [35, 24, 11]. Basically, in all
these approaches, the occurrence of actions is restricted to certain time intervals. There
have also been some approaches to extend the language Estelle by some real-time aspects
[13, 45, 9], but none of the methods described above is addressed explicitly there. A
popular recent method is to provide a hybrid language. A system's functional behavior is
speci�ed by automata or algebra, while its timing constraints are expressed in temporal
logic. The real-time system is then characterized by all the timed state sequences produced
by the automata/algebra which in addition ful�ll the temporal logic formulas. Bowman
et al. [6] describe this for LOTOS in conjunction with QTL and Leue [25] for SDL with
MTL. We will employ this approach for Estelle in Section 4.

Suitability for Quality of Service Speci�cation. Our main goal is to describe qual-
ity of service requirements or characteristics. Typically, those requirements cannot be
expressed by timing expressions belonging to one transition of one automaton or tran-
sition system. Looking e.g. at the requirement that a connection setup should take no
longer than 5 units time, usually, at least two transitions of an automaton and often even
several automata are involved. The suitable means to express this requirement is by re-
lating communication events, e.g. \After receiving a CONreq, you have to send a CONcnf
within 5 units time ". This, however, may be much better done using descriptive tech-
niques. In MTL, one would write: RECEIV E(CONind) � 3�5SEND(CONcnf). On
the other hand, this makes it much more di�cult to derive e�cient implementations, as
we do not have an explicit algorithm to construct the system. In distributed system spec-
i�cation, descriptive techniques are often used for service speci�cations while protocols
are described by constructive techniques like automata [18].

Besides QoS requirement modeling, performance descriptions may be an interesting appli-
cation. Here, data are often available on the execution speed of single transitions, which
makes it suitable to restrict their execution times and thus use e.g. the TTS semantics.
Therefore, we do not restrict Real-Time Estelle to one or the other technique. In Sec-
tion 3, we develop a syntax which is
exible enough for a descriptive and an operational
semantics, both described in Section 4.

6 Real-Time Estelle

2.3 Preparing the Estelle Model for Real-Time

Before the syntax and semantics of Estelle may be extended, we �rst have to evaluate
whether the current model of Estelle �ts into the real-time model described in Section
2.1. Our task is thus to compare the four constituents of the general real-time model to
the Estelle model. Where there is no equivalence, the Estelle model has to be extended.

The set of states S. According to the Estelle standard, an Estelle speci�cation de-
scribes a set of state sequences. A state is called a global situation (sit) and consists
basically of the states of the single modules and the connection and hierarchical relation-
ships between them. The global state of the described system is changed by the execution
of a transition of one of the modules or by the selection of a new set of executable tran-
sitions in a system module. A sequence sit = sit0sit1sit2::: of global situations is called
a computation and is a state sequence. All possible computations compose the system
described by the Estelle speci�cation.

The observables P and the labeling function �. The Estelle standard does not
de�ne what is \observable" in a speci�ed system. It is, however, clear that states which
exist during the execution of a transition are not visible meaning that transitions are
instantaneous. States may thus only be observed between the execution of two transitions.

Adhering to the information hiding principle of Estelle, which says that no internal data
| variables, queue contents, major state etc. | of a module is accessible to the outside,
we de�ne that internal data are also not observable from the outside. However, they
may be used inside a module body to de�ne timing constraints on states. Hence, service
requirements which are imposed externally on a system may only be expressed by reference
to its interface, i.e. interaction points and external variables.

We de�ne the following to be observable inside a module:

� local and exported variables,

� enabling conditions of transitions,
for each of which we de�ne a predicate. For example, the predicate WHEN(p.m) is
true, if Message m is the �rst message of the queue of interaction point p. The state
of a module may be accessed by the predicate MAJOR STATE(x), which is true if the
module is currently in state x.

� In accordance with [25], we de�ne predicates RECEPTION-OF(p.m) and SENDING-
OF(p.m) which are true, if in the last transition, message m has been received
resp. sent via interaction point p. To allow counting of messages, the instance
operator [] is introduced. SENDING-OF(p.m)[z] means the sending of the zth
instance of m. The use of this operator implies the existence of an event counter
for each possible message at each interaction point. These predicates allow to de-
scribe relationships between communication events, a very important feature of QoS
speci�cation.

Real Time Estelle 7

With this de�nition, we also have already gained our labeling function.

The set T of timed state sequences. It remains to map Estelle state sequences into
real-time. As we have seen, transitions from one state to the next are instantaneous. Thus,
we may restrict ourselves to singular intervals, i.e. points in time, as well as to natural
numbers as time domain. We will also use interleaving semantics which is standard in
Estelle anyway.

We construct a timed observation sequence from the Estelle state sequence by adding a
function f : S 7! N that maps each global situation siti onto its time of occurrence. The
time function increases monotonically, in conformance to the Estelle standard. In fact,
we can simply use the external time process de�ned there.

A timed state sequence as we need it thus has the form � = (sit0; f(sit0)); (sit1; f(sit1)); :::.
With these de�nitions, every Estelle speci�cation describes a set of timed state sequences
and thus a real-time system. In the next sections, we develop a language extension which
allows to describe timing constraints on timed state sequences.

3 Syntax Extensions

We now have a real-time transition model that maps every Estelle speci�cation onto a
real-time system. However, we still have no means to express characteristics of such real-
time systems, i.e. certain timing requirements on state sequences. These means will be
developed syntactically in this section and semantically in the following one.

The design of the language extension was driven by the following criteria:

1. The extension should �t harmoniously into the existing Estelle language. Estelle is
easy to understand, and we do not want to make its speci�cations unreadable.

2. It should be usable in as many stages of the software life cycle as possible. After
specifying a system, it should be possible to verify or test the system, but it is also
important that it be possible to derive e�cient implementations automatically.

3. Generally, it should be possible to assign several | descriptive and operational |
semantics to the extension.

In the following, we describe the syntactic extensions. First, we show how to write real-
time state descriptions. These states are then put into a timed relationship. Afterwards,
the extension is embedded into the existing language Estelle. We also describe ways
to specify exceptions, i.e., what happens when a timing constraint cannot be ful�lled.
Finally, some abbreviations are presented which are very useful in many situations.

8 Real Time Estelle

State descriptions. State descriptions consist of state propositions de�ned in Section
2.3. The following rules de�ne correct state descriptions:

1. If p is an observable proposition in a module, then it is a state description.

2. If p and q are state descriptions, then p AND q, p OR q, p IMPLIES q, p OTHERWISE

q and NOT p are state descriptions.

Temporal relationship between states. Refering to time in state descriptions be-
comes possible by using the time function now and time variables. The function now

provides values of type time, which denote the current system time. In a Real-Time Es-
telle restriction, the value of now may be di�erent for di�erent states. The value of time
variables is the same for the whole formula (rigid variables). This is enforced by quan-
ti�ers discussed in the next paragraph. Values of now can be \stored" in time variables
and later be referenced. The type time is implicitly de�ned as TYPE time=integer, and
the time domain is given by the timescale option.

Time variables can be used in time expressions. They may be compared to each other or
to time constants (using the operators =; <;>;�;�). Now is considered to be a special
time variable and may also be used in time expressions. Finally, it is allowed to add
constants to time variables.

To express, e.g., that during the last transition the message DATAreq has been received
and this is observable at time instant 7, we may write in Real-Time Estelle:

SENDING OF DATAreq AND now=7

To determine the occurrence of states in the future, it is necessary to use temporal op-
erators. In Real-Time Estelle, the operators HENCEFORTH and EVENTUALLY are available.
HENCEFORTH pmeans, that from now on, p is always true. Similarly, EVENTUALLY p means
that there is a future state where p is true. The following bounded-response property ex-
presses that q is observable within 3 units time after p:

p AND x=now IMPLIES EVENTUALLY (q AND now <= x+3)

Quanti�cation of variables and embedding into standard Estelle. To embed
real-time requirements into standard Estelle speci�cations, we considered three possibili-
ties: assign them to the module header description, i.e. to the interface, put them into the
transition part or de�ne a new section in the module body. The �rst choice was rejected,
as it would then be impossible to access local variables. The second choice was rejected
because it is not general enough. Our timing requirements are not necessarily related to
transitions. Thus, it was decided to add a new section to a module body, named TIME

CONSTRAINTS. All timing requirements for one module are collected here.

Every single time constraint may be enhanced by a NAME clause and quanti�cation clauses
FORALL and EXISTS. The expression FORALL x:time; p AND x=now is the typical �rst-
order logic expression for (p AND 0=now) AND (p AND 1=now) AND (p AND 2=now)

Real Time Estelle 9

Similarly, EXISTS x : time; p AT x is equivalent to (p AND 0=now) OR (p AND 1=now)

OR (p AND 2=now)

Every time variable occuring in a temporal restriction has to be quanti�ed.

Exceptions. It is often unrealistic to assume that hard real-time guarantees can really
be given. Therefore, it is useful to allow the speci�cation of exceptions, i.e. to specify what
happens, when a timing requirement is not ful�lled. Generally, such a reaction could be
expressed as follows in Real-Time Estelle:

NOT ((p AND x=now) IMPLIES EVENTUALLY (q and now < x+c) IMPLIES

EVENTUALLY (r and now < x+d))

or alternatively using the operator OR:

(p AND x=now) IMPLIES (EVENTUALLY (q and now <x+c) OR

EVENTUALLY (r and now < x+d))

However, this makes it di�cult to understand the intention of the speci�er. Even more
important, it will confuse a compiler and run-time system trying to guarantee existing
real-time constraints. The compiler would have no chance to �nd out which constraint to
ful�ll. Thus, for the expression of exceptions, we add the language construct OTHERWISE
to Real-Time Estelle. The expression above then reads

(p AT x IMPLIES EVENTUALLY (q and now <x+c))

OTHERWISE EVENTUALLY (r and now < x+d)

Both problems mentioned above disappear: the meaning is easy to understand, and for a
compiler, the constraint to be optimized can be uniquely identi�ed. However, as we will
see in the next section, there is no semantical di�erence between all three descriptions
which means that semantically, none of the alternatives q or r is favored. But a compiler
may detect on a purely syntactical analysis which constraint should be ful�lled and which
describes the way out, if the main constraint cannot be ful�lled.

Abbreviations. The following abbreviations simplify the speci�cation of many practi-
cally relevant temporal restrictions: the expression p AND �, where � is a time expression,
can be replaced by p AT �. All occurences of =now may be omitted. Thus, p AT x

is equivalent to p AND x=now. The combination IMPLIES EVENTUALLY (� and x=now)

can be replaced by LEADSTO � ersetzt werden1. Similarly, IMPLIES HENCEFORTH (� and

x=now) may be replaced by FORBIDS NOT �.

1The operator LEADSTO in this meaning was �rst introduced by Lamport [23].

10 Real Time Estelle

Example. A complete time restriction is given in the following example: a module has
some transitions which transform its major state from idle to connected. This transition
should be executed within 5 units time after its activation. The transition part reads as
follows:

TRANS

FROM idle TO pending begin

output sap.REQUEST;

end;

FROM pending TO connected

WHEN sap.CONFIRMATION begin end;

The TIME CONSTRAINTS part contains the following restriction:

TIME CONSTRAINTS

NAME tc1:

FORALL x : time;

HENCEFORTH (

MAJOR_STATE(idle) AT x LEADSTO

MAJOR_STATE(connected) AT (now<=x+5));

Examples of usage of all of these clauses are given in Section 5. The formal syntax rules
in BNF may be found in Appendix A.

4 Semantics

In the previous section, we de�ned how to write syntactically correct time descriptions.
Now, we will assign a formal semantics to these language features. In Section 2, several
formal semantics were evaluated with respect to their suitability for the speci�cation of
QoS restrictions. It turned out that descriptive techniques are much better suited than
operational semantics. However, the semantics of Estelle is operational. Thus, we will
�rst discuss a hybrid semantics which integrates Estelle's operational semantics with a
descriptive one for the time restriction. Since Real-Time Estelle is not only useful for
QoS descriptions, we present, in the second part, a purely operational semantics based on
Timed Transition Systems.

4.1 A hybrid approach

The following semantics is called \hybrid", since it contains both operational and de-
scriptive parts.The operational parts arise from standard Estelle, while the Real-Time

Real-Time Estelle 11

logic semantics

Estelle specification

describes

p AT x LEADSTO

 q AT y

models for the

real-time system

interpretation over
timed state sequencesreal-time restrictions

logic formulas

sequences
timed state specified

gets a temporal

Figure 3: Hybrid semantics for Real-Time Estelle.

Estelle part determines the descriptive part. The overall speci�cation consists of timed
observation sequences which are constructed as follows: �rst, timed state sequences are
constructed using the operational semantics described in the Estelle Standard and the
real-time extensions developed in Section 2. Then, these sequences are used as models
for the temporal formulas described by the Real-Time Estelle restrictions. Only those se-
quences which satisfy all formulas are part of the overall real-time system. This approach
is shown graphically in Figure 3.

The task of this section is therefore to provide the satisfaction relation for timed state
sequences with respect to Real-Time Estelle restrictions.

The following terms are used in the satisfaction relation's de�nition: V is the set of all
time variables and x 2 V . Let p 2 P be an observable proposition, � 2 �(V [fnowg) a
time expression containing free variables from V and �; �1; �2 time restrictions in Real-
Time Estelle. In addition, let � = (��; �I) be a timed observation sequence and B : V ! N

+
0

a value assignment for all time variables.

Using these terms, the hybrid semantics of Real-Time Estelle may be de�ned as follows
with the satisfaction relation: A timed observation sequence � satis�es the restriction �

if and only if (�; 0) j=B � for all environments B. The relation j=B is inductively de�ned
by:

(i) (�; t) j=B p i� p 2 �i, where t 2 Ii

(ii) (�; t) j=B � i� B[now := t] j= �

(iii) (�; t) j=B NOT � i� (�; t) 6j=B �

12 Real-Time Estelle

(iv) (�; t) j=B �1 AND �2 i� (�; t) j=B �1 and (�; t) j=B �1

(v) (�; t) j=B HENCEFORTH � i� (�; t0) j=B � for all t0 � t

(vi) (�; t) j=B FORALL x:time; � i� (�; t) j=B[x:=t0] � for all t0 2 N
+
0

(vii) (�; t) j=B EXISTS x:time; � i� (�; t) j=B[x:=t0] � for some t0 2 N
+
0

Informally, those de�nitions express the following: de�nition (i) determines the interpre-
tation of observable propositions. A timed observation sequence satis�es p at time instant
t if and only if p is observed at t. De�nition (ii) gives the meaning of time expressions.
(�; 0) satis�es a time expression if and only if the time variables' value assignment satis�es
the time expression, assuming that now is set to t. An example: The time expression
now < 3 is satis�ed if t = 2, but not if t = 5. Topics (iii) and (iv) de�ne the meaning
of logical operators, and (v) that of temporal operators. Finally, (vi) and (vii) de�ne the
semantics of the FORALL and EXISTS clauses.

The remaining operators may be derived from those de�ned above as follows:

(i) �1 OR �2 � NOT (NOT �1 AND NOT �2)

(ii) �1 IMPLIES �2 � NOT �1 OR �2

(iii) �1 OTHERWISE �2 � �1 OR �2

(iv) p AT x � p AND x=now

(v) EVENTUALLY � � NOT HENCEFORTH NOT �

(vi) �1 LEADSTO �2 � �1 IMPLIES EVENTUALLY(�2 AND y=now), where y is used in �2

(if a new variable is used).

(vii) �1 FORBIDS �2 � �1 IMPLIES HENCEFORTH NOT (�2 AND y=now)

This is the semantics of a �rst-order logic with time variables. It is similar to the semantics
of RTTL [34]. As a result, Real-Time Estelle is very expressive, but undecidable. For many
applications, a decidable logic such as MTL would have been su�cient, but in Section 5.2,
we show some examples which are not speci�able in languages like MTL. This semantics
was selected since we are more interested in expressiveness than in decidability.

If a timed observation sequence has been produced by this hybrid semantics, it is a correct
representation of the overall system.

Real-Time Estelle 13

4.2 Timed Transition Systems

In some previous work [13, 9], approaches to a kind of TTS semantics have been made for
Estelle. There, time restrictions refer to exactly one Estelle transition. Such a semantics
can be useful as several examples show.

Standard Estelle speci�cations de�ne transition systems. With the new Estelle real-
time model de�ned in Section 2, a basis for the transition to timed transition systems
is available. Using Real-Time Estelle restrictions, upper and lower time bounds for the
execution of a transition may be de�ned. The TTS semantics is de�ned by translating
Real-Time Estelle language constructs into those of TTS.

To allow such a translation, real-time restrictions must not refer to more than one transi-
tion. In such a case, we would not be able to assign a restriction to exactly one transition,
which is necessary for TTS. The time restriction has to express that, if a certain tran-
sition is activated, there is a time interval during which the transition has to be �red.
Each restriction has to identify the state in which a certain transition is enabled (p), and
the state which is reached by �ring the transition. The state description p has to be a
conjunction of all enabling conditions of the transition, and q will typically determine the
major state to be reached:

FORALL x:time;

(enabling_condition_of_t AT x FORBIDS

MAJOR_STATE(to-state) AT (now < x+l)) AND

(enabling_condition_of_t AT x LEADSTO

MAJOR_STATE(to-state) AT (x+l <= now <= x+u))

If these conditions are ful�lled, then every Real-Time Estelle restriction describes a re-
striction for a transition of a TTS. The mapping rules are as follows:

� If the time expression of q has the form (x+l OP1 y OP2 x+u), then the referred
Estelle transition is labeled with the interval [l; u]. The operator (<,<=) determines
the character of the interval (open, closed, half open).

� If the time expression is simpli�ed to (y OP x+c), then the transition is labeled
according to the following rules:

{ < resp. <= leads to [0; c[resp. [0; c].

{ > resp. >= leads to]c;1[resp. [c;1[.

{ = leads to [c; c].

The process of constructing a TTS from Real-Time Estelle speci�cations may be seen in
Figure 4. A complete example is given in Section 5.3.

14 Real Time Estelle

specified

p AT x LEADSTO

 q AT y

Timed Transition
System

[2,5] [0, 8]

[1,1]
[0,1]

real time restrictions

Estelle specification

real-time system

state sequences
timed

Figure 4: Semantics of Timed Transition Systems for Real-Time Estelle.

5 Examples

In this section, some sample applications for Real-Time Estelle will be presented. The
main part is concerned with QoS restrictions and mechanisms. But we also examine the
suitability of the new language for the speci�cation of Timed Transition Systems.

Usually, only the time restrictions are given. Where necessary, however, the relevant parts
of the Estelle automaton are described, too.

5.1 QoS

In the following, the speci�cation of a transport service displayed in Figure 5 is used to
show how Real-Time Estelle can be used to specify QoS requirements and restrictions.
The transport service is provided by the XTP protocol [42]. The Estelle speci�cation of
XTP used in this context is provided by the INT (France) [8].

5.1.1 Data Rates and Throughput

Data rates and throughput may be speci�ed in many di�erent ways. They may be ex-
pressed by the number of messages per unit time or alternatively by the number of user
data octets per unit time. Also, it is important to determine the point of reference.
Throughput may, e.g., be related to the interface between service user and provider,
which means that the network throughput is not regarded. A de�nition, however, that
refers to the number of data transmitted from a sender to a receiver, would take the

Real-Time Estelle 15

transport_service

tsap[1]

medium_ip

xtp_ip

protocol
xtp

tsap[1] tsap[2]

tsap[2]

xtp_ip

msap[2]msap[1] Medium

medium_ip

protocol
xtp

Figure 5: Sample speci�cation of QoS restrictions

network into account. In the following examples, some practically relevant data rates are
speci�ed.

Minimum message rate at the transport interface. A minimum data rate based
on messages o�ered by the transport service may be speci�ed by giving an upper bound
for the packet inter-arrival time.

NAME minimal-message-rate:

FORALL x : time;

HENCEFORTH (

SENDING OF tsap[2].T_DATAind AT x LEADSTO

SENDING OF tsap[2].T_DATAind AT (x < now <= x+5));

It is important to note that the occurrence of the second T DATAind has been restricted to
an instant y > x. Without this restriction, this formula would be always satis�ed as the
point in time y = x would also be included. Thus, the same message would be referenced
twice. Using the instance operator, this problem disappears:

NAME minimum-throughput

FORALL x : time;

FORALL z : integer;

HENCEFORTH (

SENDING OF tsap[2].T_DATAind[z] AT x LEADSTO

SENDING OF tsap[2].T_DATAind[z+1] AT (now <= x+5));

16 Real-Time Estelle

Maximummessage rate at the transport interface. Similarly, the user may specify
that his tra�c pattern will respect a certain maximum message rate. To specify this, the
sending of a data unit has to be forbidden for a certain time after the last sending of a
data unit.

NAME maximum-data-rate:

FORALL x : time;

HENCEFORTH (

SENDING OF tsap[1].T_DATAreq AT x FORBIDS

SENDING OF tsap[1].T_DATAreq AT (x < now <= x+5));

The same method may be used to specify that a telecommunications system may only
provide a certain maximum throughput. For the sample medium module, this restriction
is given below:

NAME maximum-possible-data-rate:

FORALL x : time;

HENCEFORTH (

SENDING OF msap[2].M_DATAind AT x FORBIDS

SENDING OF msap[2].M_DATAind AT (x < now <= now+5));

Average rates. To provide average restrictions, it is necessary to restrict the time
not between two consecutive, but between the n-th and (n+x)-th data packets. The
following restriction expresses the wish of a transport service user, that every sequence of
10 consecutive data packets have to be received within 35 to 45 units time.

NAME average-message-rate:

FORALL x : time;

FORALL z : integer;

HENCEFORTH (

RECEIVING OF tsap[2].T_DATAind[z] AT x LEADSTO

RECEIVING OF tsap[2].T_DATAind[z+9] AT (x+35 <= now <= x+45));

The variable z is determined by the current value of the instance counter for message
T DATAind at interaction point tsap[2]. Thus, when at a point in time x0 the message
T DATAind has just been received at IP tsap[2], then the actual value of this counter
will be frozen in z, and a point in time y0 must exist which is between 35 and 45 units
time after x0 and where a new instance of T DATAind has just been received and where
the actual value of the instance counter is z+9.

Real-Time Estelle 17

Throughput formulated in Mbit/s. Real-Time Estelle also allows speci�cations of
data rates which are not based on messages per unit time, but on the more popular unit
Mbit/s. Consider a transport service user who is expecting a data stream with a rate of
at least D Mbit/s with a packet size of size Kbit:

NAME mbit-throughput:

FORALL x: time;

FORALL z: integer;

HENCEFORTH (

RECEIVING OF tsap[2].T_DATAind[z] AT x LEADSTO

RECEIVING OF tsap[2].T_DATAind[z+1000*D/size-1]

AT (now <= x+1000));

In the Estelle speci�cation, the selected TIMESCALE should be milliseconds.

5.1.2 Delays

Delays in communication subsystems are induced by the duration of processes. On local
sites, they are due to computation times for protocol processing, I/O operations etc. From
the global point of view, delays are produced by network transfer. Local and global delays
combine to end-to-end delay experienced by the user. In the following, some important
delays are speci�ed:

Minimum delay of data transfer. To model a minimum delay introduced by the
medium, the output of a received data packet at the receiver's IP has to be forbidden for
a certain amount of time:

NAME minimum-delay:

FORALL x : time;

FORALL z : integer;

HENCEFORTH (

RECEPTION OF msap[1].M_DATAreq[z] AT x FORBIDS

SENDING OF msap[2].M_DATAind[z] AT (now < x+5));

It is worth noting that the modeled computation time covers the time from receiving the
message from the sender's IP until the new message is output at the receiver's IP. Due to
the asynchronous nature of IP communication in Estelle, this is not the same as the time
between sending a message to the medium and receiving it at the other site. Thus, it has
to be carefully analyzed which time interval really has to be modeled. This is a general
problem of all asynchronous communication mechanisms.

18 Real-Time Estelle

Maximum end-to-end delay. A transport user wishes that the sending of a data
packet leads to its reception by another transport user not later than 5 units time after
sending. This a global delay.

NAME end-to-end-delay:

FORALL x : time;

HENCEFORTH (

SENDING OF tsap[1].T_DATAreq AT x LEADSTO

RECEIVING OF tsap[2].T_DATAind AT (now <= x+5));

Specifying the restriction this way, a new problem emerges which is due to the missing
relationship between a sent and a received packet. The above speci�cation only states
that 5 units time after sending a packet another packet has to be received. It does not
state that the received packet is the one sent. Again, this problem can be solved using
the instance operator by relating the z-th sent to the z-th received packet:

...

SENDING OF tsap[1].T_DATAreq[z] AT x LEADSTO

RECEIVING OF tsap[2].T_DATAind[z] AT (now <= x+5)

...

However, even with this formulation, not all problems are solved. Consider an unreliable
service where not every packet sent is received at the other site. Using more complex
Real-Time Estelle expressions (e.g. containing the OTHERWISE construct) helps specifying
such situations. We do not further elaborate on this and omit such situations in the
examples to keep them simple.

Maximum computation time in the transport protocol. To restrict the time
which a data packet may remain inside a protocol instance (local delay), the following
expression is useful:

NAME service-processing-time:

FORALL x : time;

HENCEFORTH (

RECEIVING OF xtp_ip.T_DATAreq AT x LEADSTO

SENDING OF medium_ip.M_DATAreq AT (now < x+5));

This kind of information may be very useful for operating system schedulers with respect
to priorities, necessary computation time etc. The satis�ability of such restrictions largely
depends on the availability of local resources such as the CPU.

Real-Time Estelle 19

Connection setup delay. The reaction of a service provider to a connection setup
request should occur within 5 units time. However, this reaction may also be negative.

NAME connection-establishment-delay:

FORALL x : time;

HENCEFORTH (

SENDING OF tsap[1].T_CONNreq AT x LEADSTO

(RECEPTION OF tsap[1].T_CONNcnf OR

RECEPTION OF tsap[1].T_DISind) AT (now <= x+5));

5.1.3 Jitter

Global jitter. The term jitter describes a variance in delay. Consider the case where
data packets are transferred from a sender to a receiver. The packets are all arriving with
a certain delay. Specifying a maximal jitter restricts the di�erences between these delays
to a certain amount. Jitter may be speci�ed by the transport user in the following way:

NAME jitter-global:

FORALL x : time;

HENCEFORTH (

(SENDING OF tsap[1].T_DATAreq AT x FORBIDS

RECEPTION OF tsap[2].T_DATAind AT (now < x+5)) AND

(SENDING OF tsap[1].T_DATAreq AT x LEADSTO

RECEPTION OF tsap[2].T_DATAind AT (now <= x+7)));

In general, a relationship between the sent and received packet should be established using
the instance operator.

In the above restriction, the reception of the data packet is forbidden for the interval
[0; 5] after sending. Within the next two units time, the packet has to be received. If the
functional speci�cation part ensures that double packet delivery is impossible, the jitter
restriction my be simpli�ed using the instance operator:

...

SENDING OF tsap[1].T_DATAreq[z] AT x LEADSTO

RECEPTION OF tsap[2].T_DATAind[z] AT (x+5 <= now <= x+7)

...

In the case of possible double delivery, the reception of the original packet during the
interval [0; 5] and of the duplicate during]5; 7] would be allowed.

Global jitter restrictions are di�cult to implement. At least two nodes of a distributed
system are concerned by this kind of restriction. Thus, the jitter problem can no longer
be solved locally. Many protocol architectures, however, assume that the jitter problem
has to be solved locally anyway. The next paragraph handles local jitter.

20 Real-Time Estelle

Local jitter. Speaking of local jitter, only the packet arrival times at the receiver site
are taken into account. The jitter is 0 if the inter-arrival time between packets is always
the same; the greater the
uctuation, the greater is the jitter. The restriction to a certain
maximum local jitter may be written in Real-Time Estelle as:

NAME jitter-local:

FORALL x : time;

HENCEFORTH (

(RECEPTION OF tsap[2].T_DATAind AT x FORBIDS

RECEPTION OF tsap[2].T_DATAind AT (x < now < x+2)) AND

(RECEPTION OF tsap[2].T_DATAind AT x LEADSTO

RECEPTION OF tsap[2].T_DATAind AT (now <= x+3)));

Isochronous Sending. Especially for the transfer of continuous media such as audio
and video, it is desirable to send consecutive data units with the same time gap. The
following Real-Time Estelle restriction describes this requirement for the XTP module:

NAME isochronous-send:

FORALL x : time;

HENCEFORTH (

(SENDING OF medium_ip.M_DATAreq AT x FORBIDS

SENDING OF medium_ip.M_DATAreq At (x < now < x+5)) AND

(SENDING OF medium_ip.M_DATAreq AT x LEADSTO

SENDING OF medium_ip.M_DATAreq AT (now = x+5)));

5.1.4 QoS mechanisms.

QoS negotiation and renegotiation. QoS (re-) negotiation usually results in a vari-
ation of an existing QoS restriction. This fact is best modeled by describing current QoS
values in variables instead of constants. The value of this variable is then changed when
QoS has been renegotiated.

Let us take as an example a variable data rate. Let min rate be such a variable of the
XTP module which contains the current minimum packet rate per second. The timescale
used in this speci�cation is milliseconds. Thus, the maximum time between to consecutive
data packets computes to min rate

1000
, i.e., with 2000 packets per second, a packet will be send

at least every 2 ms. In Real-Time Estelle, we write:

NAME changing_rate:

FORALL x : time;

HENCEFORTH (

SENDING OF medium_ip.M_DATAreq AT x LEADSTO

SENDING OF medium_ip.M_DATAreq AT (x < now <= x + min_rate/1000));

Real-Time Estelle 21

QoS violation. All of the above QoS restrictions imply that a system really behaves
as it is speci�ed. If, for example, the transport service contains a restriction that every
connection has to be set up within 5 units time, then this restriction has to be satis�ed
by every implementation. Otherwise, it does not conform to the speci�cation. For many
cases, this is unrealistic. A solution to this problem consists in o�ering the system a
way out which allows a reaction on such a QoS violation. This way out will typically be
of the form \if restriction x is not satis�ed, then do y." In Real-Time Estelle, the key
word OTHERWISE may be used to specify such reactions. Look at the transport connection
setup as an example. Receiving a setup request, the transport system should send a
con�rmation or a reject within 5 units time. If this is impossible, then after 6 units time,
it sends a violation message to the service user.

NAME qos-violation:

FORALL x : time;

HENCEFORTH (

RECEPTION OF tsap[1].T_CONNreq AT x LEADSTO (

(SENDING OF tsap[1].T_CONNcnf OR SENDING OF tsap[1].T_DISind)

AT (now <= x+5))

OTHERWISE

SENDING OF tsap[1].T_QOSVIOLind AT (now = x+6));

The advantage of using the OTHERWISE construct instead of the semantically equivalent
OR is that it is possible to make a di�erence between these alternatives based on the
syntax. For automatic implementations and the attempt to guarantee QoS requirements,
this possibility is of major importance.

The possibility of a reaction to a QoS violation also has to be speci�ed within the func-
tional speci�cation part. Otherwise, the automaton would not be able to produce timed
state sequences which contain such reactions, leading to an inconsistent overall speci�-
cation. Thus, a module containing such reactions should be equipped with transitions
similar to the following:

TRANS

FROM idle TO pending

WHEN tsap[1].T_CONNreq begin

output medium_ip.M_CONNreq;

end;

FROM pending

WHEN medium_ip[1].M_CONNcnf TO connected begin

output tsap[1].T_CONNcnf;

end;

delay(5) TO idle begin

22 Real-Time Estelle

output tsap[1].T_QOSVIOLind;

end;

In principle, using the delay clause in this example would not be necessary since non-
functional behavior is already speci�ed in the Real-Time Estelle restriction. However,
using this clause makes the intention of the speci�er more obvious. It should be noted
that an enabled delayed transition is disabled as soon as another transition is executed [10].
Especially when the executed transition does not change the enabling conditions of the
delayed transition, this is not obvious. The clari�cation allows the use this method even
in the case where the major state is not changed, e.g., when transferring huge amounts of
data. The clari�ed semantics of the clause [10] guarantees that the delay timer is restarted
every time.

5.2 Examples for the need of time variables

All the examples given above are similar in that timed reference points of state obser-
vations are frozen in a variable, and another state is related to the �rst. For such ap-
plications, a simpler syntax with implicit reference points as it is provided e.g. by MTL
would have been su�cent. In MTL, the bounded-response property \Always when p is
observable, q has to be observable within three units time." is expressed by the formula
2(p! 3�3q), while it reads in Real-Time Estelle:

FORALL x: time;

HENCEFORTH (p AT x LEADSTO q AT (now <= x+3));

The MTL speci�cation is obviously shorter. However, such languages have the disadvan-
tage of not being able to express so-called non-local properties (at least not always) and
absolute times.

Non-local restrictions. We call properties non-local which relate more than two time
instants resp. state observations. A typical example (given in [4]) is: \Always when p
occurs, q will later be observable, and after q, r will be observable within 5 units time after
p." The MTL formula 2(p! 3(q^3�5r)) does not do the job, since the reference point
of r is not p, but q. If we use discrete time domains (with dense time, this is impossible),
the correct way of expressing this restriction is

2(p! (3=0(q ^3�5r) _3=1(q ^3�4r)_
3=2(q ^3�3r) _3=3(q ^3�2r)_
3=4(q ^3�1r) _3=5(q ^3�0r)),

but Real-Time Estelle is capable to express this much more elegantly:

Real-Time Estelle 23

FORALL x: time;

HENCEFORTH (

p AT x LEADSTO (q AND EVENTUALLY (r AT now <= x+5)));

Conveyed to multimedia systems, the following restriction is non-local: \Always when a
user starts a movie, than he receives an acknowledgement, and afterwards, the �lm starts
within 5 units time after his request." In Real-Time Estelle, this reads:

FORALL x : time;

HENCEFORTH (

SENDING OF PLAYreq AT x LEADSTO

(RECEIVING OF PLAYcnf AND

EVENTUALLY firstframe AT (now <= x+5)));

Absolute times. Using languages with implicit time references, absolute time restric-
tions such as \State p will be observable on June 13th, 1996." are impossible. Real-Time
Estelle, however, is capable to express such restrictions. Consider the following Near-
Video-on-Demand system: movie transmissions will not start immediately after a user's
request, but only at 6, 8 and 10pm. All movie requests which arrive at least 5 minutes
before the movie transmission time will be serviced. For the 8pm movie, the following
restrictions apply2:

FORALL x : time;

(MOVIEreq AT x and (17:55 <= x < 19:55)) LEADSTO startMovie AT 20:00;

FORALL x : time;

(MOVIEreq AT x AND (x > 19:55)) FORBIDS startMovie AT x < now < 22:00;

The term AT x AND may be left out, since x is implicitly determined by now.

5.3 A Timed Transition System

In Section 4.2, a TTS semantics for Estelle was introduced. Using an example, this section
shows how to model TTS in Real-Time Estelle. The modeled example is that of Figure 2
and is speci�ed using one Estelle module. We just give the transition and time constraints
parts.

TRANS

FROM s TO t

PROVIDED c begin end;

2To improve readability, times are not given as integers.

24 Real-Time Estelle

FROM t TO u

PROVIDED a=5 begin end;

FROM u TO v

WHEN uip.DATAreq begin end;

FROM v TO s begin end;

TIME CONSTRAINTS

NAME s_to_t:

FORALL x : time;

HENCEFORTH (

((MAJOR_STATE(s) and PROVIDED(c) AT x) FORBIDS

MAJOR_STATE(t) AT (now <x+1)) AND

((MAJOR_STATE(s) and PROVIDED(c) AT x) LEADSTO

MAJOR_STATE(t) AT (now <= x+2)));

NAME t_to_u:

FORALL x : time;

HENCEFORTH (

(MAJOR_STATE(t) and PROVIDED(a=5) AT x) LEADSTO

MAJOR_STATE(u) AT (now <= x+1));

NAME u_to_v:

FORALL x : time;

HENCEFORTH (

((MAJOR_STATE(u) and WHEN(uip.DATAreq) AT x) FORBIDS

MAJOR_STATE(v) AT (now < x+2)) AND

((MAJOR_STATE(u) and WHEN(uip.DATAreq) AT x) LEADSTO

MAJOR_STATE(v) AT (now <= 10)));

NAME v_to_s:

FORALL x : time;

HENCEFORTH (

MAJOR_STATE(v) AT x FORBIDS

MAJOR_STATE(s) AT (now < x+1));

Obviously, the conditions of the time restrictions and the transitions are the same which
makes it possible to use the TTS semantics. In addition, a translation from this notation
to those described in [9] and [13] can be easily performed3. Compared to those approaches,

3Small restrictions have to respected. In our approach, it is for example impossible restrict the time
for system management phases.

Real Time Estelle 25

Real-Time Estelle produces quite a huge overhead, due to the fact that enabling conditions
of transitions have to be given twice. However, it has been shown that such a semantics
for Real-Time Estelle is possible and useful. On the other hand, QoS restrictions may not
or only in a very restricted way expressed in the other approaches.

6 Implementation

Implementing speci�cations of real-time systems is impossible without a real-time envi-
ronment. In this section, we show how real-time requirements speci�ed in Real-Time
Estelle may be guaranteed using a real-time operating system (rt-os). We only concen-
trate on local requirements, since global requirements such as an end-to-end delay need
more than just an rt-os. Thus, we assume the existance of e.g. a network with real-time
capabilities such as isochronous data transfer.

Using an rt-os, it is possible to reserve one of the most important resources necessary for
a guaranteed local performance: cpu time. If a process has asked for a certain amount of
cpu time, and this amount has been assigned, then the rt-os does everything to guarantee
this reservation. Especially, new processes will not be assigned the cpu resource if already
running processes would be disturbed.

6.1 Prerequisites

In [15] we showed that a major obstacle for e�cient implementations of Estelle spec-
i�cations is the complex parent-child synchronization. Real-time systems and e�cient
implementations are strongly related. If, e.g., a timer expires in a module which should
lead to an immediate reaction of that module, then it may be impossible to run this
module because the module's subsystem is currently executing another set of transitions.
In fact, the semantics allows implementations which are capable of ful�lling such timing
requirements, but it becomes very di�cult to generate such implementations.

This knowledge also has an impact on the speci�er's technique. Knowing that the im-
plementation will only be e�cient if there is very little synchronization, he/she will try
to write speci�cations consisting of many system modules and having a very
at hierar-
chy. However, such speci�cations will often not express the complex relationships between
system parts.

Therefore, it seems to be important to adapt the synchronization semantics for time
critical applications. The new semantics should be developed with respect to the following
requirements:

1. There should be a way to have parallel modules which do not in
uence each other.
The result would be a greater
exibility with respect to parallelism.

2. The position of a module within a hierarchy should have no impact on its perfor-
mance. The position should only be a means for structuring of speci�cations.

26 Real-Time Estelle

In fact, an Estelle enhancement already exists which exactly provides such features. Bred-
ereke and Gotzhein suggested to use so-called asynchronous process modules which are
independant of their parent modules [7]. The new keyword asynchronous is provided by
which process and systemprocess modules may be additionally attributed. Making a
module asynchronous means that it is no longer synchronized with its child modules. If
a module itself and its parent module are both asynchronous, then the module has not
to be synchronized with any other module. Its behavior is that of system modules, with
the di�erence, that such modules may still be dynamically created or released.

Some experiments presented in [15] clearly indicate that with this Estelle enhancements,
much better implementations may be produced. For the following considerations, we use
this technique.

6.2 Real-time operating systems and multimedia systems

Real-time operating systems are very useful for the implementation of multimedia systems.
One of the main characteristics of continuous media data streams is that the single parts
of the stream | audio samples or video frames | are only valid during a certain time
interval. If a video should be displayed with a rate of 30 frames per second, then every
frame has a validity interval of 1

30
s. If a frame cannot be displayed during this interval, it

is not useful anymore, since then, the next frame will already be displayed. It is the task
of an rt-os to guarantee that each frame is handled during its validity phase4. It does this
basically by reserving the resource cpu time.

The model for the cpu management of an rt-os is as follows: givenm tasks and n processors
where each task is determined by its computation time C, its deadline d and its period
T (see Fig. 6). Find a task execution on the given set of processors such that every task
gets C units time of computation time in each period and meets its deadline. Such an
execution is called real-time scheduling.

Normally, it su�ces that the end of the period and the the deadline are the same. In this
case, a task may simply be described by period and computation time. It is important to
note that in this model, only periodic tasks are discussed. The reason is that it is quite
di�cult to schedule aperiodic or sporadic tasks [32]. In reality, this is no real restriction,
since sporadic tasks may be mapped to periodic tasks with one period [30]. In addition,
periodic tasks are a good abstraction for continous data streams. Such streams usually
consist of periodically arriving data units. In one period of the task, one data unit is
handled.

Another important issue is whether tasks may be preempted or not. It is often more
di�cult to schedule non-preemptive tasks, since this may lead to the well-known problem
of priority inversion.

4As stated above, the ability of an rt-so to ful�ll this task is heavily in
uenced by other system parts
such as the network. If the network is not able to provide data with the correct rate, then an rt-os cannot
�x this.

Real-Time Estelle 27

T: period

S D

C

T

S+T S+2TD

C

T

time

S: starting time
C: computation timeD: deadline

Figure 6: Model of a real-time task

Most of the results summarized here are only valid for the single-processor case. For
multiprocessors, most of the algorithms are NP-comlete. However,there are also some
heuristics which allow real-time scheduling on multiprocessors [39].

The assignment of cpu time to a task is managed by a scheduling algorithm. A set of task
is schedulable, if the scheduling algorithm can execute all these tasks while guaranteeing
their computation times and periods. New tasks will only be accepted by the algorithm,
if the new set of task is still schedulable.

In real-time systems, basically two algorithms are used which have proved their usefulness.
Both work on preemptive tasks:

� The static Rate-Monotonic algorithm (RM) assigns to each task in a task set a static
priority depending on their period. The smaller the period, the higher the priority.
When a task with higher priority than that of the currently executed becomes active,
then the current task is preempted, and the cpu is assigned to the higher order task.
After the latter has �nished, the preempted task continues executing.

There is a simple test, if a set of tasks is schedulable. If a new task arrives, than
in the worst case, the following condition must hold:

P
m+1
i=1

Ci

Ti

� 0; 69, i.e. the
processor usage of all tasks must be less than 69%. If this is not the case, the new
task will be rejected. In the average case, the bound is about 80%.

� The dynamic Earliest-Deadline-First algorithm (EDF) assigns the highest priority
to the task whose deadline is reached next. This leads to a dynamic priority adjust-
ment. EDF is able to schedule both periodic and sporadic tasks. The schedulability
test of EDF is:

P
m+1
i=1

Ci

Ti

� 1.

The functionality of both algorithms is shown in Figure 7. The digitally-numbered stream
has a short period and represents e.g. an audio stream, while the alphabetically-numbered
stream has a longer period and represents a video stream.

28 Real-Time Estelle

���� ���� ������ ��������

���� ���� ���� ������

����

������ ����

���� ���� ���� ���� ������ ����

long period

short period

6

deadlines

1 2 3 4 5

A B C

EDF

RM

1 A 2 3 B 4 C5 6

1 2 3 4 5 6A A B B C C

d1 d2 d3 d4 d5 d6
dA dB dC

Figure 7: Rate-Monotonic- and Earliest-Deadline-First scheduling

Both algorithms are optimal in their class, i.e., there is no static resp. dynamic algorithm
which can schedule a task set which is not also schedulable by RM resp. EDF. However,
some improvemements for the basic algorithms have been achieved, e.g. [27, 5, 29, 46].

The EDF algorithm seems to be better than RM since it is obviously able to schedule
more task sets. However, dynamic priority assignment can be quite time-consuming, and
this overhead is not taken into account in the schedulability test. A problem which arises
for both algorithms consists in a varying computation time as it for example typical for
MPEG videos. In such a case, the longest computation time has to be reserved, and for
those periods where the computation time is smaller, the processor remains partly unused
[41]. In practice, however, both algorithms have proved useful for multimedia systems.

In the last few years, several rt-os have been developed. One of them is Real-Time
Mach [44]. Many projects showed that this operating system is well-suited to support
multimedia applications (e.g. [17, 30, 21]). RT Mach provides real-time threads which are
able to implement real-time tasks.

In the remainder of this section, we show how a variant of RT Mach can be used to
implement Real-Time Estelle speci�cations.

6.3 Mapping Real-Time Estelle restrictions onto real-time tasks

Time restrictions in Real-Time Estelle are speci�ed within modules. The goal of using an
rt-os is to assign to a module enough cpu time to satisfy its time restrictions. Thus, for
an rt-os, a Real-Time Estelle module is a real-time task. For simplicity's sake, we only

Real-Time Estelle 29

investigate periodic tasks which are, however, a good abstraction for multimedia tasks.
Problems of handling sporadic tasks are discussed in Section 6.6.

The handling of periodically arriving data units is modeled best, in an Estelle module, by
a repeatedly executed transition (or a sequence of transitions). The sequence is started
by a message read from an interaction point. Some or more transitions will process this
message, and �nally, a new message will be sent to another (or the same) interaction
point. The period of this module is determined by the time between the sending (or the
reception) of two consecutive messages, and the computation time is the time between
reading an incoming message and sending out the new message. This model is visualized
in Figure 8.

IP

period

messages
outgoing

messages
incoming

computation time

Estelle module

IP

Figure 8: Period and computation time in Real-Time Estelle

The necessary period depends on the application. A video module should be able to
process 25 frames per second, i.e., the period is 1

25
s.

It is less simple to determine the computation time. It cannot be derived directly from
the application or the speci�cation, since it largely depends on the processor speed. A
solution for this problem is to produce the software without timing constraints, run it on
the implementation machine and perform measurements for the interseting operations.
The measured values may then be used to write the timing constraint for the computation
time in Real-Time Estelle. In [47], such a measurement tool was developed, and some
experiments showed that computation times may be measured very exactly.

We now have two timing contraints. One of them describes the period and the other
one the computation time of a real-time task. The next step is to execute Real-Time
Estelle modules in a concrete real-time operating system. We discuss this using a variant
of Real-Time Mach.

6.4 Implementation issues of a Real-Time Estelle Compiler

As a basis for the implementation of Real-Time Estelle speci�cations, we will use Real-
Time Mach. This operating systems provides, as shortly described above, real-time
threads which are capable to execute real-time tasks. When initialized, a real-time thread
gets as parameters a pointer to the function to be executed periodically, and the period

30 Real-Time Estelle

and computation time. For the latter two, only one constant value may be speci�ed by
the user which makes simple real-time threads a little un
exible for Real-Time Estelle
restrictions. As we know, in this language, it is possible to give restrictions in form of in-
tervals. Therefore, we do not use pure Real-Time Mach, but an enhancement [21] which
o�ers so-called QThreads. Qthreads are characterized by the fact that for period and
computation time, both a lower and upper bound may be given. The operating system
is free to chose one value in the interval for the actual scheduling. During runtime, if
there occur any problems, the value may be dynamically adjusted within the bounds of
the interval and without noti�cation of the user.

QThreads are initialized similarly to real-time threads. A QThread can only be initialized
if the resulting set of threads is still schedulable.

An important decision is related to the mapping of modules to threads. Modules with
temporal restrictions need their thread exclusively to be able to ful�ll the restrictions.
Suppose two such modules to be mapped onto one thread. Then, a common period and
computation time could be computed, but the thread now has only knowledge of these
global restrictions. It does not \konw" that in fact, it has to ful�ll two restrictions. Thus,
a guarantee cannot be given for both restrictions.

In [16], we showed that grouping of modules in threads instead of assigning one thread to
each module usually leads to much better resource usage levels and better performance.
Due to the considerations above, this con�guration approach cannot be applied to modules
equipped with real-time restrictions. Thus, for a multiprocessor system, we suggest the
following approach of module execution: the set of available processors is divided in two
subsets. On the �rst subset, all real-time restricted modules are executed using QThreads
which are scheduled using the EDF or RM algorithms. On the other subset, all other
modules are executed according to the con�guration approach described in [16].

Functionality of a Real-Time Estelle compiler. Compared to existing tools, a Real-
Time Estelle compiler additionally has to consider the temporal restrictions during the
code generation process. From these restrictions, it has to derive the period and computa-
tion times for the QThreads. Thus, the compiler has �rst to be informed which restriction
determines which parameter. This information should be provided using quali�ed com-
ments since it seems quite di�cult to let the tool �nd out. Both restrictions should
have the form FORALL x:time; HENCEFORTH (p AT X LEADSTO q AT (x+c <= now <=

x+d);. For the period restriction, p and q should be identical, possibly except for the
instance operator. Considering these restrictions, the compiler may check the temporal
restrictions for plausability. If both restrictions have the correct form, the constants used
in the interval containing now are used as lower and upper bounds for the QThread's
period and computation time, respectively.

Functionality of the Real-Time Estelle runtime system. The central function of
the runtime system's real-time part is the init function, implementing Estelle's init. If
a module has to be initialized which contains temporal restrictions, then a new QThread

Real-Time Estelle 31

will be generated. Otherwise, the module will be assigned to an existing non-real-time
thread and will be con�gured for execution. In C, this function reads:

void init(Module m)

{

.... /* variables etc. */

if (m.restricted) {

qthread_attribute_init(

m.exec, m.arguments,

m.lower_period, m.upper_period,

m.lower_comp_time, m.upper_comp_time,

....);

qthread_create(...);

} else {

add_module_to_thread(m,thread);

}

...

}

The decision, whether a module resp. a QThread is schedulable already has to be made in
an Estelle function which may be used inside a provided clause or an if statement inside
the transition containing the init statement. If this test was part of the init function
and the result was negative, than it would be impossible to respect this result in Estelle,
since a call to init is always successful. The module has to be produced, even though a
QThread must not be generated. The following primitive function module schedulable

contains the schedulability test:

boolean module_schedulable(unsigned int new_period, new_comptime)

{

.... /* variable declarations */

for (i=0;i<m;i++) /* m=number of running tasks */

total_rate = total_rate + comp_time[i]/period[i];

if ((total_rate + new_comptime/new_period) <= 1) {

m++;

comp_time[m] = new_comptime;

period[m] = new_period;

return TRUE;

} else

return FALSE;

}

32 Real-Time Estelle

Violation of real-time guarantees. Theoretically, by using a real-time operating
system, it can be guaranteed that real-time restrictions are ful�lled. However, due to
exceptions such as network or processor failure, violations of these restrictions may pos-
sibly occur. When the QThread library detects such a violation, it �rst tries to adjust
period and computation times of the running threads within the interval boundaries. If
this is impossible, the Estelle runtime system receives error messages from the library.
These messages are passed to the user by means of the function qos violated. Now, the
user has to decide how to react on a violation. He could for example release the module.
To allow for violations, they should already be foreseen in the speci�cation, using the
OTHERWISE construct.

6.5 An Example

The following example models a simple multimedia application in Real-Time Estelle. The
application consists of a user module, a connection manager and a transport system. The
connection manager has three further modules for the handling of video and audio streams
and for text. A user may ask the connection manager to set up a new data stream. The
manager tries to initialize the corresponding module. This will only be possible, if the
temporal restrictions can be ful�lled. Temporal restrictions exist for video and audio
module as well as for the transport module. All other modules do not have any temporal
restrictions. The module structure is depicted in Figure 9.

cation
Manager

AudioVideo

Trans-
port

Text

Root

Appli-

Figure 9: Strukture of Real-Time Estelle implementation example

The central transitions of the manager module handle incoming user requests. For an
audio stream, this looks as follows:

TRANS

when sap.INIT-AUDIOreq

provided module_schedulable(period[audio_m_body],

comptime[audio_m_body])

Real-Time Estelle 33

begin

init audio[i] with audio_module_body;

output sap.INIT_AUDIOcnf(positive)

end;

provided OTEHRWISE begin

output sap.INIT-AUDIOcnf(negative)

end;

The audio module itself contains two temporal restrictions which model period and com-
putation time. The central transition gets data from the transport system and forwards
the audio samples contained in this data to a player. A violation of the period restriction
is possible since an OTHERWISE part exists:

TRANS

from sending

when tsap.T-DATAind(t-data-packet)

provided not qos_violated to same

begin

extractSamples(t-data-packet,samples);

output player.AUDIO_SAMPLES(samples);

end;

provided OTHERWISE to waiting

begin

output control.QOSVIOLind;

end;

TIME CONSTRAINTS

FORALL x : time;

NAME period:

SENDING OF player.AUDIO_SAMPLES AT x LEADSTO

SENDING OF player.AUDIO_SAMPLES AT (x+20 <= now <= x+30)

OTHERWISE

SENDING OF QOSVIOLind;

FORALL x : time;

NAME computation_time:

RECEIVING OF tsap.T-DATAind AT x LEADSTO

SENDING OF player.AUDIO_SAMPLES AT (x+4 <= now <= x+6);

Let's have a look at a typical situation: the manager module has already accepted a video
module with a period between 40 and 50 ms (current value: 40) and computation time

34 Real-Time Estelle

between 10 and 15 ms (15). In addition, there is a running audio module with a period
between 20 and 30 ms (20) and a computation time between 4 and 6 ms (6). As scheduling
algorithm we use RM. The resulting processor usage is 15

40
+ 6

20
= 67:5%. Now, we want

a new video module with the same characteristics as the �rst one to be accepted. We
suppose it has the lowest priority. The schedulability test tells us that the new module
may not be scheduled, even not with the lowest parameter values. The already running
video module has the second lowest priority. Using the lowest values within the speci�ed
bounds for this module, we obtain a processor usage of 6

20
+ 2 � 10

50
= 0:7 which is still

greater than 69%. To take no risk (69% is a very pessimistic bound), we also decrease the
computation time of the audio module by 1 ms. Now, all three modules are schedulable.

6.6 Implementation Problems

The implementation process suggested above certainly covers many possible and impor-
tant temporal restrictions, but not all possible. Aperiodic or sporadic modules may be
scheduled by EDF [41], but not by RM.

Another problem consists in Estelle modules which contain both kinds of restrictions. A
mapping has to be found that ful�lls both kinds. An example for such a pair of restriction
is a constrained connection setup time and a certain period.

7 Conclusion and Outlook

In this paper, we described an enhancement to the formal description technique Estelle
to allow the speci�cation of real-time propositions of protocols or systems. Both formal
syntax and semantics were provided. We showed that this enhancement is especially well-
suited for the speci�cation of quality-of-service characteristics and requirements. We also
gave �rst hints on how an implementation environment for Real-Time Estelle could look
like.

One of major future tasks is to realize this implementation environment. It would also be
interesting to study non-local restrictions such as end-to-end delay with respect to their
implementability. Another important task is to provide really powerful Estelle implemen-
tation tools which produce very e�cient runtime code. Such tools will make it much
easier to ful�ll local time restrictions for many modules.

A Syntax De�nition of Real-Time Estelle

This appendix contains the syntax de�nition of Real-Time Estelle in Backus-Naur Form.
It complements the the syntax of Estelle given in Appendix A.1 of the standard. Some of
the de�nitions given there are used here. These are e.g. expression, relational-operator
or body-definition. The latter is the only syntax rule which has been slightly adapted
by adding the TIME CONSTRAINTS part.

Real Time Estelle 35

The following meta symbols have been used in accordance with the Estelle standard:

Meta symbol meaning

= shall be de�ned to be
j alternatively
: end of de�nition
[x] 0 or 1 instance of x
fxg 0 or more instances of x
+fxg 1 or more instances of x
(xjy) grouping: either x or y
x	y xyjyx

a1	:::	an all possible strings consisting of all the
elements concatenated in an arbitrary order

\xyz" the terminal symbol xyz

Real-Time Estelle is de�ned as follows:

body-de�nition = declaration-part
initialization-part
transition-declaartion-part
time-constraint-declaration-part.

event = IDENTIFIER.

exists-clause = \EXISTS" +fvariable-declaration \;"g.

forall-clause = \FORALL" +fvariable-declaration \;"g.

logic-operator = \AND"j \OR" j \IMPLIES" j \OTHERWISE" j
\EVENTUALLY" j \HENCEFORTH" j \LEADSTO" j
\FORBIDS".

name-clause = \NAME" IDENTIFIER \:".

simple-state-description = \MAJOR STATE(" IDENTIFIER \)"
j \WHEN(" IDENTIFIER \)"
j \PROVIDED(" IDENTIFIER \)"
j \RECEIVING OF" event [\[" IDENTIFIER \]"]
j \SENDING OF" event [\[" IDENTIFIER \]"]
j expression.

36 REFERENCES

state-description = simple-state-description
j state-description logic-operator state-description
j timed-state-description
j \NOT" state-description
j \(" state-description \)".

tc-clause-block = f forall-clause g
	 f exists-clause g
	 f name-clause g.

tc-list = +f time-constraint g.

time-constant = IDENTIFIER.

time-constraint = [tc-clause-block] time-constraint-block.

time-constraint-block = time-constraint-expression.

time-constraint-declaration-part = [\TIME CONSTRAINTS" tc-list].

time-constraint-expression = state-description.

time-expression = time-variable
j time-constant
j time-variable \+" time-constant
j time-expression relational-operator time-expression
j \(" time-expression \)".

time-variable = IDENTIFIER.

timed-state-description = state-description \AT"
time-expression.

References

[1] M. Abadi and L. Lamport. An Old-Fashioned Recipe for Real Time. In de Bakker
et al. [12], pages 1{27.

[2] R. Alur and D. Dill. The Theory of Timed Automata. In de Bakker et al. [12], pages
43{73.

REFERENCES 37

[3] R. Alur and T. Henzinger. Logics and models of real time: A survey. In de Bakker
et al. [12], pages 74{106.

[4] R. Alur and T. A. Henzinger. Real-time Logics: Complexity and Expressiveness.
In Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science,
pages 390{401, 1990.

[5] I. Barth. Extending the Rate-Monotonic Scheduling Algorithm to Get Shorter De-
lays. In Steinmetz [40], pages 104{114.

[6] H. Bowman, G. Blair, L. Blair, and A. Chetwynd. Time versus abstraction in formal
descriptions. In Tenney et al. [43], pages 467{482.

[7] J. Bredereke and R. Gotzhein. Increasing the Concurrency in Estelle. In Tenney
et al. [43], pages 127{141.

[8] S. Budkowski, B. Alkhechi, M. L. Benalycherif, P. Dembi�nski, M. Gardie, E. Lal-
let, J. P. Mouchel La Fosse, and Y. Souissi. Formal speci�cation, validation and
performance evaluation of the Xpress Transfer Protocol. In A. Danthine, G. Leduc,
and P. Wolper, editors, Protocol Speci�cation, Testing and Ver�cation XIII. Elsevier
Science Publishers B.V. (North{Holland), Amsterdam, 1993.

[9] S. C. Chamberlain. Estelle Enhancements for Formally Specifying Distributed Sys-
tems. PhD thesis, University of Delaware, USA, 1992.

[10] J.-P. Courtiat. A Petri Net Based Semantics for Estelle. In M. Diaz, J.-P. Ansart,
J.-P. Courtiat, P. Azema, and V. Chari, editors, The Formal Description Technique
Estelle, pages 135{174. Elsevier Science Publishers B.V. (North{Holland), Amster-
dam, 1989.

[11] J.-P. Courtiat and R. C. de Oliveira. RT-LOTOS and its application to multimedia
protocol speci�cation and validation. In B. Sarikaya and S. Saito, editors, IEEE
International Conference on Multimedia Networking (MmNet95), Participants' Pro-
ceeedings, pages 31{45. IEEE Computer Society Press, Sept. 1995.

[12] J. W. de Bakker, C. Huizing, W. P. de Roever, and G. Rozenberg, editors. Real-Time:
Theory in Practice (LNCS 600). Springer{Verlag Berlin Heidelberg New York, 1991.

[13] P. Dembi�nski and S. Budkowski. Simulating Estelle speci�cations with time param-
eters. In Rudin and West [37], pages 265{279.

[14] P. Dembi�nski and M. �Sredniawa, editors. Protocol Speci�cation, Testing and Ver�-
cation XV. Chapman & Hall, London, 1995.

[15] S. Fischer. On the Suitability of Estelle for Multimedia Systems. In Dembi�nski and
�Sredniawa [14], pages 369{384.

38 REFERENCES

[16] S. Fischer and W. E�elsberg. E�cient Con�guration of Protocol Software for Multi-
processors. In R. Puigjaner, editor, High Performance Networking VI, pages 195{210.
Chapman & Hall, London, Sept. 1995.

[17] R. Gopalakrishna and G. M. Parulkar. E�cient Quality of Service Support in Mul-
timedia Computer Opertaing Systems. Technical Report WUCS-94-26, Washington
University St. Louis, USA, 1994.

[18] R. Gotzhein. Specifying Communication Services with Temporal Logic. In L. Lo-
grippo, R. L. Probert, and H. Ural, editors, Protocol Speci�cation, Testing and Ver-
i�cation X, pages 295{309. Elsevier Science Publishers B.V. (North{Holland), Ams-
terdam, 1990.

[19] R. Gotzhein. Temporal logic and applications { a tutorial. Computer Networks and
ISDN Systems, 24:203{218, 1992.

[20] T. A. Henzinger, Z. Manna, and A. Pnueli. Timed Transition Systems. In de Bakker
et al. [12], pages 226{251.

[21] K. Kawachiya and H. Tokuda. QOS-Ticket: A New Resource-Management Mecha-
nism for Dynamic QOS Control of Multilmedia. In Multimedia Japan'96, 1996.

[22] R. Koymans. Specifying Real-Time Properties with Metric Temporal Logic. Real-
Time Systems Journal, 2(4):255{299, Nov. 1990.

[23] L. Lamport. Proving the Correctness of Multiprocess Programs. IEEE Transactions
on Software Engineering, SE-3(2):125{143, 1977.

[24] L. L�eonard and G. Leduc. An enhanced version of timed LOTOS and its application
to a case study. In R. Tenney, P. Amer, and M. Uyar, editors, Formal Description
Techniques VI, pages 483{498. Elsevier Science Publishers B.V. (North{Holland),
Amsterdam, 1994.

[25] S. Leue. Specifying Real-Time Requirements for SDL Speci�cations | A Temporal
Logic-Based Approach. In Dembi�nski and �Sredniawa [14], pages 19{34.

[26] T. D. C. Little and A. Ghafoor. Synchronization and storage models for multimedia
objects. IEEE Journal on Selected Areas in Communication, 8(3):52{61, Apr. 1990.

[27] J. W. S. Liu, K. J. Lin, and S. Naturajan. Scheduling Real-Time Periodic Jobs Using
Imprecise Results. In IEEE Real-Time Systems Symposium, pages 252{260. IEEE
Computer Society Press, 1987.

[28] N. Lynch and F. Vaandrager. Forward and Backward Simulation for Timing-Based
Systems. In de Bakker et al. [12], pages 397{446.

REFERENCES 39

[29] A. Mauthe and G. Coulson. Scheduling and Admission Testing for Jitter Constrained
Periodic Threads. In R. Gusella and T. D. C. Little, editors, Network and Operating
System Support for Digital Audio and Video (NOSSDAV'95), pages 219{226, Apr.
1995.

[30] C. W. Mercer, S. Savage, and H. Tokuda. Processor Capacity Reserves: Operating
System Support for Multimedia Applications. In L. Belady, S. M. Stevens, and
R. Steinmetz, editors, IEEE International Conference on Multimedia Computing and
Systems, pages 90{99. IEEE Computer Society Press, 1994.

[31] P. M. Merlin and D. J. Farber. Recoverability of Communication Protocols { Impli-
cation of a theoretical Study. IEEE Transactions on Communications, Com-24:1046{
1043, Sept. 1976.

[32] A. K. Mok. Fundamental Design Problems of Distributed Systems for the Hard Real-
Time Environment. PhD thesis, MIT, 1993.

[33] X. Nicollin and J. Sifakis. An Overview and Synthesis of Timed Process Algebras.
In de Bakker et al. [12], pages 526{548.

[34] J. S. Ostro�. Temporal Logic of Real-time Systems. Research Studies Press, 1990.

[35] J. Quemada and A. Fernandez. Introduction of Quantitative Relative Time into
LOTOS. In Rudin and West [37], pages 105{121.

[36] H. Rudin. The dimension of Time in Protocol Speci�cation. In Lecture Notes in
Computer Science 248, pages 360{372. Springer{Verlag Berlin Heidelberg New York,
1986.

[37] H. Rudin and C. H. West, editors. Protocol Speci�cation, Testing and Ver�cation
VII. Elsevier Science Publishers B.V. (North{Holland), Amsterdam, 1987.

[38] P. S�enac, M. Diaz, and P. de Saqui-Sannes. Toward a formal speci�cation of mul-
timedia synchronization scenarios. Annuaires T�el�ecommunication, 49(5{6):297{314,
1994.

[39] J. A. Stankovic, M. Spuri, M. D. Natale, and G. C. Buttazzo. Implications of Classical
Scheduling Results for Real-Time Systems. IEEE Computer, 28(6):16{25, June 1995.

[40] R. Steinmetz, editor. Multimedia: Advanced Teleservices and High-Speed Commu-
nication Architectures (LNCS 868). Springer{Verlag Berlin Heidelberg New York,
1994.

[41] R. Steinmetz. Analyzing the Multimedia Operating System. IEEE MultiMedia,
2(1):68{84, Spring 1995.

40 REFERENCES

[42] W. T. Strayer, B. J. Dempsey, and A. C. Weaver. XTP The Xpress Transfer Protocol.
Addison{Wesley, Reading, Massachusetts, 1992.

[43] R. L. Tenney, P. D. Amer, and M. �U. Uyar, editors. Formal Description Techniques,
VI. Elsevier Science Publishers B.V. (North{Holland), Amsterdam, 1994.

[44] H. Tokuda, T. Nakajima, and P. Rao. Real-Time Mach: Towards Predictable Real-
Time Systems. In USENIX 1990 Mach Workshop, Oct. 1990.

[45] G. von Bochmann and J. Vaucher. Adding Performance Aspects to Speci�cation Lan-
guages. In S. Aggarwal and K. Sabnani, editors, Protocol Speci�cation, Testing and
Veri�cation VIII, pages 19{29. Elsevier Science Publishers B.V. (North{Holland),
Amsterdam, 1988.

[46] J. Werner and L. C. Wolf. Scheduling Mechanisms Reducing Contention Situations
in Multimedia Systems. In B. Butscher and E. Moeller, editors, European Workshop
on Interactive Distributed Multimedia Systems and Services, Mar. 1996.

[47] H. Wittig, L. C. Wolf, and C. Vogt. CPU Utilization of Multimedia Processes:
HeiPOET { The Heidelberg Predictor of Execution Times Measurement Tool. In
Steinmetz [40], pages 92{103.

