REIHE INFORMATIIK
14/96
Some Properties of Refinement
Friederike Benjes
Universitat Mannheim
Seminargebaude A5
D-68131 Mannheim

Some Properties of Refinement

Friederike Benjes

August 26, 1996

1 Introduction

In concurrent reactive systems refinement has two aspects: there is the notion of a
horizontal refinement and of a vertical refinement. A typical instance of horizontal
refinement is the substitution of a sequential process S by a system of parallel processes that
exhibits the same communication behaviour as S.

In contrast, vertical refinement or action refinement deals with the substitution of a
communication by a process.

We are here dealing with action refinement. Action refinement has been considered as a
syntactic operation ([AH91], [AH93], [NEL89]) as well as a semantic operation.

We consider here two problems concerning refinement.

The first deals with (semantic) refinement in flow event structures and configuration
structures. It is well-known ([CZ89], [BCI1]) that there may exist configurations in the
product & ||4 & of event structures that do not map to configurations of the individual
event structures under projection (3€,& : AX € Conf(E; ||a &) : L1 (X) €Confl&r)).
[Sch91] and [CZ89] showed that languages using only the operators +,;, |4 but no
refinement operator do not create event structures of that type. [Co95] attempted to show
the same for languages with a refinement operator — however their proof contained a
mistake. In the first part we will give a corrected proof.

The second problem deals with the connection of syntactic and semantic refinement.

In [GGRI2] a notion of syntactic refinement was defined and compared with semantic
refinement on flow event structures. It was shown that in the case of refining synchronizing
actions syntactic and semantic refinement coincide only under fairly restrictive conditions.

We present a different notion of syntactic refinement. that can be seen as motivated by
[DGI5] who proposed a “parallel call of procedure” for refining synchronizing actions. The
basic idea is to consider the refinement of a synchronizing action as the call of a procedure
to which both partners have to “inscribe”. This view still leaves the question open of who
takes control for this procedure. We investigate a variant where one of the synchronizing
processes takes control. We show that this notion of refinement is much closer to the
semantic notion of refinement by presenting a criterion that guarantees that the two kinds of
refinement coincide and that is satisfied in most cases.

In section 2 we give some elementary definitions and propositions. In section 3 refinement is
be defined on prime and flow event structures and on configuration structures. Chapter 4
deals with the consistency of a flow event structure semantics and a configuration structure

semantics. In section 5 the new definition of syntactic refinement is introduced and compared
to semantic refinement. And finally the appendix contains the main proof for section 5.

2 Foundations

2.1 The Language L

Definition 2.1.1: Let Act be a countable set of actions, a €Act. The following grammar
defines the terms of the language L:

P:=a|P;P|P+P|Pl|aP| Pla~ P]

We use a family of synchronization operators {|[4} ,c 4. corresponding to the TCSP
approach. The refinement operator [a ~ P] acts on single actions a € Act at a time.

L° C L denotes the set of terms not containing refinement operators.

Definition 2.1.2: Let P € L. Then L(P) is the set of actions occuring in P. S(P) is the
set of synchronizing actions of the term P. (see [GGRI2)):

L(a) = {a}
L(Pr; P») = L(P)UL(P)
L(Py [[a P») = L) ULP)UA

o (L(P) \{a})UL(P) iftae L(P)
L~ B]) = { L(P) otherwise
S(a) =
S(Pl + P)) = S(Pl) U S(Pz)
S(Pl, P)) — S(Pl) U S(Pz)
Sy [la P) = S(P)US(P) U((L(P)UL(P)) N A)

S(Py) otherwise

Terms are called well-formed, if all the actions introduced by a refinement operator applied
to P, i.e. Pla~ Q)] are different (more concrete) from the actions in 7. We define
well-formedness by induction on the syntactical structure of terms:

Definition 2.1.3: (well-formedness)

All actions a € Act are well-formed.

If P and @Q are well-formed, so are P;Q, P+ Q, P |4 Q.

If P and @ are well-formed and L(P) N L(Q) = § then Pla ~ Q] is well-formed.
(see [GGR92])

Syntactic substitution almost corresponds to textual replacement. It is defined by induction
on the syntactical structure of a term — but it is only defined on terms not containing
refinement operators.

Definition 2.1.4: (syntactic substitution {%})
Let P.Q, P, P, be in L°, a,b € Act, A CAct.

s ::{ gg itb=ua

otherwise
(Pi; P){2} = P{2}: B{9)
(P4 P){%} == P {2} + {4}

Pi{Z} |la Po{%) ifag A
P / P [Q = 1 I £ (lf o
(Pulla P){} { PULY ayaporio) Y} ifac A
(see [GGRI2])

2.2 Prime Event Structures

Definition 2.2.1: (prime event structure)
E = (F,<,#.1) is a prime event structure labelled over Act iff

e F is a countable set of events

e < C E X F is a partial order (causal relation)

C FE x E is an irreflexive and symmetric relation (conflict relation)

o [: EF —Actis a labelling function
and

o Vec E:le={¢ € E|¢e <e} isfinite (principle of finite causes)

o Ve ¢ ¢ € E:efte <€’ = efte’ (principle of conflict heredity)

The class of all prime event structures is denoted by P. The empty prime event structure is

denoted by ().

Definition 2.2.2: (configuration of a prime event structure)
Let £ = (E,<,#.1) be a labelled prime event structure. A subset X C F is called
configuration of & iff

e X is conflict-free, i.e. Vd, e € X : =(d#e) and

o X is left-closed, i.e. Ve € X :l e C X.

A configuration X of £ is called complete iff Ve € E'\ X : 3¢’ € X : e'#e.
A configuration X of £ is called mazimal iff VX' € Conf(€') : X ¢ X'.

Remark 2.2.3 Configurations of prime event structures are maximal iff they are complete.

Definition 2.2.4: Let £ = (E, <, #,1) be a labelled prime event structure.

a) Conf(€) is the set of all configurations of £ (the finite ones and the infinite ones).
Conf¢(E) is the set of all finite configurations of €.

b) Let e € E. | e denotes the set of all events that have to occur before e:

le={deFE|d<e}.

2.3 Flow Event Structures

Definition 2.3.1: (flow event structure)
E=(E,<,#,1) is a flow event structure labelled over Act iff

e [V is a countable set of events

<C E x I is irreflexive (flow relation)

C E X E symmetric (conflict relation)

[: E — Act labelling function

The class of all flow event structures is denoted by F. () denotes the empty flow event
structure.

Definition 2.3.2: (configuration of a flow event structure)
Let £ = (E, <, #,l) be a flow event structure. A subset X C F is called configuration of £ iff

(i) X conflict-free, i. e. Vd, e € X : —(d#e),

(i) <y:=(<N(X x X))* (the reflexive and transitive closure of < in X) is a partial
order, i.e. < is cycle-free on X,

(iii) Ve € X: {¢' € X | ¢ <y e} is finite (principle of finite causes) and
(iv) Vee X Ve e E\ X : ¢/ <e= 3" € X : #e’ < e (X left-closed up to conflicts).
Like configurations in prime event structures a configuration is called complete ift

Vee E\ X : 3¢ € X : e#e.

A configuration is mazimal iff it is maximal with respect to inclusion.

Remark 2.3.3 Configurations of flow event structures can be maximal without being
complete (see [GGIO]).

Definition 2.3.4: Let £ = (E, <, #,[) be a flow event structure.

a) Conf(€) is the set of all configurations of £ (the finite ones and the infinite ones).
Conf;(£) is the set of all finite configurations of £.

b) Let e be in E, X €Conf(€). Then [y e :={e' € X | ¢ <y e}.

Lemma 2.3.5 Let & = (F,<,#,1) be a flow event structure, X,Y € Conf(€) and
eceX,e€Y.If lx (e) Zly () then exists x € X & y € Y : afty.
Proof:
W.lo.g. let b €ly (e) and b €]y (e). Then exist
Ty Tpyr €dx (€) 1b=17 < ... < &, < Ty41 = €. Then exists j < n:z; €ly (e) and
241 €Ly (€). Since z; < xj41 and]y (e) is a configuration exists y €ly (e) : x;#y < j41.
Thus z; €lx (¢),y €ly (e) and z;#y.
|

Remark 2.3.6 Each prime event structure & = (E, <, #,1) can also be seen as a flow
event structure & = (E, <, #,[). On prime event structures the definition for configurations
of prime event structures coincides with the one for flow event structures.

2.4 Domains

Definition 2.4.1: (domains)
Let (D,E),(D’,CC') be partial orders.

(D,C) is isomorphic to (D',C') ((D,E) = (D',C')) if exists f: D — D', f bijective and
Vd],dg eD . d1Cd & f(d]) ;l f(dz)

An element d € D is called least upper bound of X C D (d = || X) iff
VeeX:2Cd) &V eD:(VxeX:2Cd)=dCd).

An element p € D is called a complete prime iff for any X C D with || X € D:
pCUXN =dre X pLCa.
P(D) :={p € D | pisa complete prime }.

Two elements x,y € D are called consistent (x T y) iff 3z€e D:aCz &y -
X C D is called pairwise consistentifft Ve, ye X 1 x T y.

(D,C) is called coherent iff every pairwise consistent subset X C D has a least upper
bound | | X in D.

(D,C) is called finitary ifft Vp € P(D) :l p:={d € D | d C p} is finite.

(D,C) is called (w)-prime algebraic iff P(D) is countable and
Vie D:d=||{pe P(D) | pCd}.

We call any finitary coherent (w)-prime algebraic domain a domain.

(see [Bo90])

Lemma 2.4.2: For any unlabelled prime event structure £ the poset (Conf(€),C) is a
domain, and any domain (D,) is isomorphic to the poset of configurations of a prime
event structure. More specifically we have (D,C) = (Conf(K(D,C)), C) with

K(D,C) = (P(D),#,<), p1#tps © Ad € D : p1,po Ed and py < ps & p1 E pa,

(First Representation Theorem in [Bo90])

Lemma 2.4.3: For any unlabelled flow event structure £ the poset (Confl€),C) is a
domain. Its complete primes are the configurations |x (e) for X € Conf(E). Conversely if
(D,C) is a domain then (D,) is isomorphic to the poset (Conf(€), C) of a flow event
structure £.

(Second Representation Theorem in [Bo90])

Definition 2.4.4: (labelled domain)

We call (D,C,1) a labelled domain (labelled over Act) iff (D,C) is a domain and
[:P(D)—Act.

Two labelled domains (D, C, 1), (D', C,1") are called isomorphic if exists f : D — D', f
bijective, Vdy,dy € D : dy E dy & f(dy) E f(dy), Yd € P(D) :1(d) =U'(f(d)).

We can transfer lemma 2.4.2 and 2.4.3 to the labelled case:

Lemma 2.4.5: Let £ be a prime event structure labelled over Act. Then (Conf(€), C, 1)
) I(e) fX=le
. | 1Y _

with I'(X) = undef. otherwise

If (D,C,1) is a labelled domain, then K(D,C,1) = (P(D).#,<,l) is a labelled prime event

structure with (Conf(K(D,C,1),C,1') is isomorphic to (D, C,1).

is a labelled domain.

Lemma 2.4.6: Let & be a labelled flow event structure. Then (Conf(€), C,I") with

F(X) = l(e) if X :%X e
’ T otherwise

exists a labelled flow event structure whose set of configurations is isomorphic to (D, C,1).

is a labelled domain. For any labelled domain (D, C,[) there

2.5 Configuration Structures

Definition 2.5.1: (configuration structure)
Let E be a set of events, C C {X C F | X finite}, / C C. (C, /) is called a (stable)
configuration structure iff
(i) hecC
i) VX,V ZeC: XUYCZ=XUY €eC
)
)

(iii) VXeCVr#2 e XV CX: (zeY &2/ gY)
(iv) VX, Y e C: XUY € C= X NY € (Stability)
(v) VXe/:YWelC: XY

Let E¢ :=Uxee, | : Ec = Act. Then (C, +/,1) is called a (labelled) configuration structure.
(see [Co95])

The class of all configuration structures is denoted by K.

Definition 2.5.2 Let & = (E, <, #,![) be a flow event structure. Let
E':={ee E|3X €Conf(f):e € X}. Define C(€) := (Confr(E),/, ') with
Vv = A{X €Confr(€) | X complete} and I :=I[E".

7

Lemma 2.5.3: Let € be a flow event structure. Then C(€) is a stable configuration
structure.

Proof: proposition 2.25 in [Co95]

Remark 2.5.4: There exist stable configuration structures that cannot be created by flow
event structures, but we will not consider such structures.

In the remainder of this paper we will implicitly assume all configuration structures to be
stable, except if stated otherwise.

2.6 Equivalence relations

Let & = (Ey, <1, #1,11),E = (Ea, <2, #2,13) be two labelled flow event structures and let

Ec, ={e€ E; | X €Confl&;) : ¢ € X}. E¢, contains only the events that occur in some
configuration. For example self-conflicting events of E; are not contained in E¢,.

Definition 2.6.1: (event structure isomorphism =)
&1 2. & & Af - By — Es, f bijective with Ve, e € Ey:
e<1 e & f(f’) <9 f(G’I)

e#ie’ & fle)#a2f(€)

le) = 12(f(e)

Definition 2.6.2: (domain isomorphism ;)
& =4 E e h :ConfE) — Conf(Ey) with

h bijective

VX. X' eConf(&) : X C X' & h(X) Ch(X')
VX €Conf(&)) : [1(X) = L(h(X)).

Definition 2.6.3: (configuration structure isomorphism 2%.)
& = E e Af Eo, — E¢,, [bijective and

VX CE,: X €Confl&)) & f(X) €Conf(E,).

VX €Conf(&)) : X complete & f(X) complete

VE € E¢, : li(e) = ls(f(e)).

Lemma 2.6.4: For all flow event structures &;,&, we have:
EZ b= E = 6= 8 =4 b

Proof:
E1 = E = & =, & is obvious. Let now & =, &, 1.e. If 1 By = E¢, such that f is
bijective and VX C E) : X €Conf(&)) & f(X) € Conf(E;). Obviously f extended to sets:
[:Conf(&1) — Conf(&,) is also bijective and VX, X' € Conf(&)) : X C X' & f(X) C f(X').
|

Definition 2.6.5: (interleaving trace equivalence =)
Let £ be a flow event structure and X,Y €Conf(€). We define X =Y iff 3e € £\ X such
that I(e) = a and Y = X U {e}.

A sequence of actions t = (ay, as...) in Act is called trace of &, if there exist configurations
Xo, ey, Xy €ConflE) with Xg =0 and VO <i <n&1: X; 2% Xy .

Traces(E) denotes the set of all traces that can be constructed from Conf(€).

Traces(E) = {t | t trace of £}.

Two flow event structures are called interleaving trace equivalent iff their sets of traces
coincide: &) ey & iff Traces(E;) = Traces(Ey).
(see [GGIO0])

Remark 2.6.6: If & and &, are prime event structures then & =, & & & =45 & (see
lemma 2.4.2 and 2.4.5).

Lemma 2.6.7: For ecach flow event structure £ = (F, <, #,1) there exists a domain
equivalent prime event structure P(€) := (F', <, #',I') with

E'={lx (e) | e€ X €Conf(E)},

X< X e X CX,

X# X' & XUX &gConfl€),

MLy (¢)) = Ife).

Le. for all flow event structures £: P(€) =, E.

(see lemma 2.4.5 and 2.4.6)

2.7 Other definitions
Definition 2.7.1: Let Ey, F5 be sets of events such that « € E; U Fy. Then
Ey x* Ey:={(e1,e9) | (e1 € By & ea € En) V(e EEL & ea =)V (e] =% & g € Ey)}.

Let X C Iy x* Ey. Then I1) (X) :={e; € Ey | Jea € EL U {x} : (e1,e2) € X} and
HQ(JX') = {62 e ks | de; € B4 U {*} : (61762) S JX'}.

Definition 2.7.2 Let F|, Fs be sets of events with « € Fy U Ey, [: E) —Act, [y : Ey — Act
and A CAct.

Then Ey X% By :={(e1,%) | e1 € By} U{(*,e2) | e2 € Ex} U{(e1,e3) | e1 € Ey,e9 €

Eg,l] (E]) = 12(62) € rl}

and Ey X4 Ey = {(e1,%) | e; € By li(er) € Ay U {(*,e2) | €2 € Fa la(ea) & A}

U{(e1,e2) | €1 € Er,ea € Eyli(ey) =la(en) € A}

3 Semantic Refinement

In this section two denotational semantics for the language L of definition 2.1.1 are given —
one for flow event structures (in the first subsection) and one for configuration structures (in
the last subsection). In the second subsection a refinement-operator on prime event
structures is defined.

3.1 Semantic of L on Flow Event Structures

We define a denotational semantics for the language L like in [GGR92]:

First of all the operators on flow event structures are defined:

Definition 3.1.1: Let & = (Ey, <1, #1. 1), & = (Ey, <9, #2, l2) be flow event structures,
A CAct, a €Act, and Ey N Ey =, x € Ey U E5. Define

° 51 + 52 = (El U Eg,-<1 U %2,#1 U #2 U (El X Ez) U (Ez X El),ll U lz)
o £1;E = (E1 UEy, <1 U<y U(E) X Ey),#1 U#a, i Ul).

o & |4 &= (B, =, #.1)
E = El Xt& EQ
<= {((e1,ea). (€], ’))| e1 <1€)Ves <y e}

= {(ler.e2). (€1, €))) [erdfre) V eagfac)y
\/(elze’l;é*&e);ée?)
Vieg = €, #x & e # ¢€))
Viey =€) = & ey = eh&ely(en) € A)
Vies =y =% & e; = e&ly(er) € A)

) ifey=x
lo(es) otherwise

T
—~
D
—
D
NS
—
—
=
—_
D
S——

L] EQ %V) gl[(l’\/? 52] E '< #])
E = {(6] €2) € I x Iy | [(61) = (l} U {(6] | €1 € E] ((l}
<= {((e1,eq), (e e>) | e1 <1 €]V (eg =¢) & ey <o ey}
#= {((e1,e2), (€], e3)) | erFt1e) V (e1 = €] & eadfaeh)}
Z((ﬁh(fg) — { (1% if €y = X

l5(e2) otherwise

/
1>
/
1>

The denotational semantics [.] for the language L will now be defined inductively:

Definition 3.1.2: []r:L — F:

[alr == ({e}, 0,0, (e, a))

[P+ QL == [Pl +[Qr
[P:Qr = [Pl [Qlr

[P |4 Q]r = [Plr ||a [Q]r
[Pla~ Q] | = [Plr [a~ [Q]]

10

Remark 3.1.3 This semantics is almost the same as the one in [Co95] — only the definition
of the product differs slightly from the one we use: [Co95] uses: & |y & = (E, <, #,1) with
E,#,1 as before and (e, e2) < (€],€}) & (e1 <1 €] Vex <9 €)) & (m(eq, e2)#(e], €)).

But [Co95] showed that this semantics (which we will denote with [.]p) yields the same
consistency results as [.]p see also lemma 4.3.1.

Like on flow event structures we now define equivalence relations on terms:

Definition 3.1.4: Let P, P> be terms of L, then
P =, Py [Pi]r = [Po]r

P =2y P [Pir =4 [P]r-

P =, Pe [Pr = [P]r.

Py =y Py i Traces([P1]) = Traces([P]r).

(we also write Traces(P) for Traces([P]r).

Lemma 3.1.5: =, and £, are congruences on L.

Proof: sece [GGRI2]

3.2 Refinement on Prime Event Structures

Problems with Refinement on Prime Event Structures

We saw that it is rather casy to define refinement on flow event structures: each event to be
refined will be replaced by a flow event structure and each event that has been replaced for e
inherits the relations to the environment from e.

This kind of refinement is not appropriate for prime event structures because a refined event
structure might no longer be a prime event structure.

Example:
F Ela~ F]
o (60.7f1)y
1 R
s (e0r fo)”

Figure 1: The refinement of a prime event structure does not yield a prime event structure
(e” denotes the event e labelled with (1,)

But with help of lemma 2.6.7 we know that each flow event structure can be turned into an

equivalent prime event structure: Let £ be an arbitrary flow event structure, then
€ =, P(E) which is a prime event structure.

11

Now if we want to refine a prime event structure we take the flow event structure result and
turn it into a prime event structure. This gives rise to the following definition:

Definition 3.2.1 (refinement of prime event structures)
Let &, &, be two prime event structures and a €Act. Define & [a ~ E)]p 1= P(E[a ~ &)
(with P from lemma 2.6.7).
ThU_b El[av Ep = (E,<,#.1) with
={lx (¢) | ce X € 0()r)f(51[(1«» &)}

(() <lv (f) =&y (e) Sy (f),

(()733 v ()) Slx (3)U Iy (f) QC()’ILf(gl[(J,M gg])
(=1'(e

with & = (E', <", #', ') = & [a ~ &)] being the flow event structure constructed by
refinement.

3.3 Semantics of L on Configuration Structures

We define a denotational semantics for the language L like in [C0o95] (with a slightly
modified notation).

Definition 3.3.1: Let (Cy,/,.11) and (Ca, /5, l2) with B} = Uxee, X and Ey = Uyee, X
be configuration structures, A CAct, a €Act, 1 N Ey = ,x € E; U E5. Define:

o O+ (0= (Cl UCQ,,'\/l U f\/27ll Uls)

e Ci;Cy:=(C,+/,1) such that
C = 61U{X1 xY)|X1€Cl XZEC) X2#®:>X1€\/l},

V={XuXo [X eV, & Xy e,
[=1, Ul.

o (4 Hq Cy = (C, \/, Z) with

C is the smallest set with:

- (i)becC
— (il) V(ey,e2) € By X4 By and VX € C: TI;(X U {(e1,e2)}) € C; and II; injective on
X U {(eg,e9)} implies X U {(eg,e2)} € C.

Recall that IT;(ey, e9) = € if e; #

undefined otherwise

V={X€C|M(X) e, &T(X) € ,}
[(61,62):{ li(ep) if eo =

l5(e2) otherwise
o Let Uyee, X # 0. Cila~ Co] == (C, /. 1) with
E—{(t’] €))EE]><E)|Z<€] —G}U{(t’] |€]EE1]] #CL}
For e1 € By and X C E define X(ey) := {ey € B, | (e1,e9) €)&}.
= {X C E | X satisfies (i),(ii),(iii)} :
(i) IL(X) e

(ii) Vey € ITI(X) s [1(ey) = a = X(e;) € Co
(iii) VY C I, (X) with {e; € I (X) | X(e1) € /y Vii(e)) #a} CY: Y €.

V=X el |IL(X) eV, &Ve €Il (X) : (Ii(e)) #aV X(e1) € V/,)}

[(e1,e2) :{ l(er) i eg =

[o(¢ 2) otherwise

We now inductively define the denotational semantics [.]x for the language L:

Definition 3.3.2: []Jx:L — K:

[l := ({0 {e}}. {{e}}. {(e;a)})
[P+ Qlx := [[P]]A + [Q]«

[[Pi, Q]]A’ = [[P]]A [[Q]]A

[P |4 Qlx = [Plx lla [Q]x
[Pla~ Q] |k :=[P]x [a ~ [Q]xk]

4 Consistency of flow event structure semantics and
configuration structure semantics for L

4.1 Introduction

Two denotational semantics have been defined for the language L — based on flow event
structures respectively on configuration structures. We want to know whether these
semantics are consistent, i.e. if C([P]r) = [P]x holds for an arbitrary term P € L? (Only
finite configurations have to be considered because for all terms P € L the equation

Conf([P]r) = Confr([P]r) holds.)
The consistency can easily be shown for terms that do not contain the parallel operator || 4.

In order to show for arbitrary terms Py, Py that C([Py, |4 P2]r) = [P1 |4 P2]x one has to
show that the set of configurations Conf{([Py |4 P2]r) is the same as the one constructed
with [.]x. With definition 3.3.1 we see that one necessary condition for this is that the
projections of configurations of the process [Py |4 Po]r = [Pi]r ||a [P2]F are configurations
of the components [P]r and [P2] . This is a quite natural demand because the possible
executions (i.e. the configurations) of a process should not be enlarged by putting another
process in parallel.

We thus have to show for arbitrary terms P, and P, that for all configurations

X €Confl([P]p ||a [Po]r): 11(X) € Confi[P1]r) and I1o(X) € Confi[P2]r)-

As we see in the following example this condition does not hold for arbitrary flow event
structures: We can find flow event structures £, and &, such that

I (Confl&E; ||a £2)) LConfli&y), i.e. AX € ConflE |4 &) such that TI1(X) €Confi&).

13

&1 &

dﬁl. ” {a,b}
: @Q—— 0
es b

Figure 2: Problem &

In our example X = {(d;,e2),(f1, f2)} is a configuration of & ||14,4E, but

I (X) = {dy, f1} €Conf(&1), because I1;(X) is not left-closed up to conflicts. X is
left-closed up to conflicts, because the events (e, *) and (e, e2) are both conflicting (dy, e2)
and (dy, ey) is predecessor of (f1, f2).

In our example &£ is the “critical” event structure because for & no event structure £ exists

with ITy Conf(Ey |4 E3) L ConflEs).
We want to know if critical event structures like & can be created by the language L.

Recall that L° denotes the set of those terms of our language L that do not contain a
refinement operator. [Co95] showed that for all terms P € L°: C([P]y) = [P]x and in
particular VP, P, € L®: IL,(Conf([Pi] ¢ ||a [P2]r)) CConf([P]r) (see lemma 4.3.1).

It was claimed in [Co95] that the consistency result is also valid for all terms of the language
L. But this proof seems to contain a mistake. We will give a correct proof here.

4.1.1 The Problem of the Proof in [C095]

Definition 4.1.1: (delta axiom)

Let £ = (E, <, #,1) be a flow event structure. £ satisfies the delta aziom iff Vd e, f € E -
dffe < f&dot f=3ge E:(efg<f) & (Ve € E\{e}:(g#) = (e & ¢ ~ f)).
Here e ~ ¢/ i e#e Ve < Ve <e.

In [Co95] the following facts are mentioned:

e All flow event structures [P]p created by terms P € L® satisfy the delta axiom.
o If the flow event structures £, & satisfy the delta axiom then

VA CAct: Vi e {1,2} : TLi(Conf(&) ||4E2)) CConf(&;).
We want to show that the same holds for all terms of the language L.

[Co95] claims that the delta axiom is preserved by refinement. We can disprove this however
by a counter example:

Let P, P, be in L® with P = ((a ||p b);¢) |lapy (@ +0) and Py = u;v.
Then [P1[b~ P3| |r does not satisty the delta axiom.

Counsider Figure 3: (self-conflicting events are encircled). If one chooses

d = (eg,*),e:= (es, fo), f := (eg, %), one cannot find g with the property

(e#tg < f) & (Ve € E\ {e} : (g#¢€') = (efte’ & € ~ f)). The only possible candidates for g
are (es, fo) and (es, f1), but for these one has ¢’ := (e3, f1)#¢g, € # e but = (e'#e). (s, %) is

no candidate for g, because d#t(ey, %) and d £ f.

14

a important part of [P] [a ~ [P]x]
4

(€2, %)

€o e
@....‘ 9\
e
e} e .
es
[P:]
fre e (es, fo)® (es, f1)Y

Figure 3: delta axiom is not satisfied for d = (eg, *), e = (e, fo), f = (eq, *)

4.2 Characterization of “critical” event structures

Definition 4.2.1 A flow event structure & = (Fy, <y, #1,/1) is called crictical if there
exists a flow event structure & = (Fay, <o, #2,l5) and an action set A CAct such that there

exists a configuration X € Confl&; ||4 &) with I1;(X) € Conf(&)).
We want to know if such critical flow event structures can be created by the language L.
Since the definition of critical uses a quantification over all event structures it is not easy to

use and we look for a simpler characterization. So how can the critical low event structures
be characterized?

In the example the difficulty arose because a new causal relationship was created between d;

and f; by the events dy and f5. This leads to the following idea:

E = (E,<,#,l) can only be critical if it is possible to extend the flow relation in such a way
that a new configuration arises, i.e. there exists <'D=< with 3X € Conf(E, <’ #.1) but
X ¢ConflE, <, #.,1).

We do not consider all possible extensions of < but only those ones that add a finite number
of predecessors to a single event:

Definition 4.2.2 Let & = (E, <, #,[) be a flow event structure, f € E, D C E, D finite.
Define an event structure with an extended flow relation:

H(E.D. f) = (E.< U(D x f).4.1).

Thus the only difference between £ and H(E, D, f) is that in H(E, D, f) all events of D are
predecessors of f.

We now want to characterize critical event structures by introducing the notion of
“problematic” event structures:

15

Definition 4.2.3 Let & = (F,<,#,1) be a flow event structure. £ is called problematic iff
exists D C E, D finite and Vd € D : d ¢ f : such that exists X € ConflH(E, D, f))\ Conf(E).

Thus an event structure & = (E, <, #.1) is problematic if adding a finite number of
predecessors to an event f (that all were in no relation to f before) leads to a new
configuration.

Lemma 4.2.4 Let & = (F,<,#,1) be a flow event structure, D a finite subset of F such
that Vie D :d o f. Let Y €eConflH(E, D, f))\Conf(€), i.e. £ is problematic. Let
X:={eeY |e<y f} with <p:=(<'NY xY))*). Then X €eConf(H(E,D. f))\ ConflE)
and X \ {f} €Conf(&).

Proof: evident.

Proposition 4.2.5: For all flow event structures £ the following implication holds:
If £ is critical then & is problematic.

Proof: Let A be a subset of Act, X € Conf(&) ||a &) and II;(X) €Conf(€;). Then there
exists e ¢ Hl(‘X), (fl: fg) S (‘X),el =<1 f1 and V(dl‘dg) e X ﬁ(dl#lel) V dy 741 fl

Let z € Z C Fy. Define M(Z,2) ift 32/ ¢ 7.2/ <1 2 & V2" € Z: =(2"#2') vV = (2" <1 2). For
example M (IT;(X), f1) holds.

Consider |x (f1, f2) = {(d1,ds) € X | (dy,dy) <x (f1, f»)}. Since X is a configuration, it
follows that (fi, fo) only has a finite number of predecessors in X, so Ly (fi, fo) is finite.

Because of this there exist minimal elements in the set

{1, 92) €lx (f1, fo) | ML (Ux (fis f2)),w)}. Let (f], f3) €lx (f1, f2) be such a minimal
clement, then M(IT;({x (f1, f2)), f1) and

V(wy,aa) <x (f1, f5) & (w1, 22) # (f1, fo) - "ML (Lx (f1. f2)), 21).
Since M(IT; ({x (f1, f2)), f]) holds we can conclude that

D :={dy e Ihi(lx (fi,) | d\ # fi & Ty @ IL(X), 21 <1 fl.diFFen) #0. D Clx (f1, f5)
shows that D is finite.

Now let us look at H(&y, D, f]) with <}:==<; UD x {f{} and

Y ::er](X) (f{) U UdQGD LH] (X) ((]/]) = {Z,Ifl & Hl(4Y> | sl SH] (X) f], V 3(1’,] € D it SH] (X) (I"]}
Then Y C I (Ix (ff, f})) holds.

We will show, that Y € Conf(E;) but Y € Conf(H (&1, D, f])) and therefore conclude that &
is problematic.

e Y ¢Conf(€)) because it is not left-closed up to conflicts:
el <1 fleY &Vh, €Y (i #e)) V(R <1 f]).

e Y €ConflH(,.D. f}))
(i) Y is conflict-free since Y C II; (X))

(ii) <y is a partial order with respect to <; and with respect to <} because Y C II; (X)

and ¥(d, f{) €<\ =02 ¥y (dyod) € X - (dy.d) <x (f),)
(iii) evident

(iv) Y is left-closed up to conflicts:

16

Let 2y € Y.y € Y, 1 <y 21.

Case 1: zp = fl, 21 € TI1(X). According to the definition of D there exists d} € Y with
Tl#ld,l -</1 f{

Case 2: 21 = fl, 1 € [I}(X) = 21 €Y, since 21 <y f].

Case 3: 21 # fl. Vo €Y : 2y € II1(Ix (f], f)). and therefore if 2y # f| then
My (L (f1, f2)), 21), so that Vay € T (Ux (f1, f2)), 21 <1 210 Jyn €1x (f1, f2) with
r1#1y1 <1 21 and therefore y; <y f{, and yy € Y. If 2y <y 2y and z1 € I ({x (f1, f2)),
then z; € Y.

This shows that Y is left-closed up to conflicts with respect to <.

We conclude that Y € Conf(H (1, D, f1)).

Corollary 4.2.6: Let &, & be flow event structures with & and & not being
problematic. Then Vi € {1,2} : IL;(Confl&, ||a &2)) CConf(&;).

Remark 4.2.7: The following (simpler) definition of problematic is not sufficient to
ensure proposition 4.2.5: If we called &£ problematic iff 3d, f € E.d + f, so that

AX €Conf(E")\ Conf(E) with & = (E,< U{(d, f)},#,1) the implication “£ is critical = & is
problematic” would not hold, as we see in the following example:

® || a.b,c ® /3
® ---- @/ 1 febch o/

Figure 4: £ would not be problematic with this definition but nevertheless critical

We see in Figure 4 that &, not problematic with the modified definition, is critical because

X = {(es, [2). (€0, fo), (e1, f1)} €Conf (&1 ||{aper E2). and I11(X) = {(eq, ep, 1)} EConf(Ey).

Proposition 4.2.8: For all terms P € L: [P]r is not problematic.

Proof: (induction on the syntactical structure of the terms)
Let P; be Terms in L and [P]p := & = (E;, <, #:,0;), [P]lr = € := (E, <, #,]) and
E1 N Eg == @

e PP = «a, obvious

17

e P=P;; P
Suppose that & is problematic, then
dd',...d"di A feE={d, . d" f} CE V{d,.. d" f} CE, and therefore
3X €ConflH (&, {d", .., d"}, f)\ Conf(&) or AX €Conf(H (&, {d*, .., d"}, f))\
Conf(&;). Contradiction!

o« P=P +P,
Suppose that & is problematic, then
dd',...d"di o fe B = {d, . d" fy CE V{d, .. d" f} C Ey and therefore
AX € ConflH (&, {d", ..,d"}, F)\ Conf(€) or AX € Conf(H (E, {d", ... d"}, F))\
Conf(&;). Contradiction!

[] P == P1 ||4 Pg
By induction hypothesis £ and & are not problematic, and it follows
VX €Conflé ||a &) : Vi€ {1,2} : IL;(X) €Confl&;).
Suppose that € is problematic, then 3D := {d' = (d},d3),...,d" = (dp,d3)} and
F=(fi,fo) withV1<i<n:d # f=(f1,f) € Eand 3Y € ConflH(E, D, f))\
Conf(€). We denote <":=< UD X {f}. Recall lemma 4.2.4 and consider
X={heY|h<) fl={heY |h<y fVad € DNY :h <y d'}. Then
X €ConflH(E.D. f)),X & Conf(€), X\ {f} €Conf(€), and it follows for i € {1, 2}
ﬂmHMX\Ube&wmeMJMX\ﬁp:{iﬁip{m iﬁi;a
Since X €Conf(€), but X \ {f} €Conf(€), there exists e = (e, e2) € X and
d' € DN X such that: (i) d'#e < f and (ii) Vh € X : =(hfte) V =(h < f).

— Case 1: di#ie1 <1 f1 = I (X) €Conf(&)).
Let W= {hy € II}1(X) | hy o1 f1 & Fay € T(X) 1y <y f1,21#h,} and
D = {fi,d},....d}} \ {x} UW. Since W C I;({x (f1, f2)), both W and D are
finite.
Since IT; (X) \ { fi} € Confi&)) I11(X) € Conf(H (&1, D, f1)) holds and consequently

&1 is problematic. Contradiction!
— Case 2: dyFaes <o fo analogous to case 1.

— Case 3: di#1e1, e <y fo (we assume —(ex#dy))
a) (x,e9) € X = (e, ea)#(*,e2) < (f1, f2), Contradiction to assumption (ii)!
b) (%,e2) € X. Since X €Conf(H(E,{d",..,d"}, f)), there exists (hy, hs) € X such
that ho#oeo and (hy, ho) <" (f1, fo). If (hy,h2) < (f1, f2) this would be a
contradiction to assumption (ii). So 3j : (hy, he) = (d{ ({JZ) Now in analogy with
case 2 a contradiction follows.

— Case 4: dy#se9, 01 <1 f1 in analogy to case 3.
— Case d5: d} = e; # * & dy # ey (we assume —(es#d5))
Since (d',dy) # (f1, f2), e1 <1 f1 is not allowed, one concludes ey <y fo.
a) (x,e9) € X = (e, e)#(*,e2) < (f1, f2), Contradiction to assumption (ii)!
b) (%, e2) ¢ X in analogy to case 3b)
— Case 6: d) = eg # * & d} # e; in analogy to case 5.
[P:P][(I’\ﬁpz]

We assume that £ is problematic, consequently there exist

D:={d" = (dj.dy),....d" = (d},d3)} and [= (f1. [») with

18

Vi<i<n:d & f=(f1,f2) € Eand AY € Conf(H(E. D, f))\ Conf(€). Define
<":=<UD x {f}. Recall lemma 4.2.4 and consider

X={heY |h<y f}={heY |h<y fVId eDNY :h<yd} Then

X €Conf(H(E.D. f)) but X & Conf(€). X\ {f} €Conf(E).

Since X €Conf(€), but X \ {f} €Conf(E). there exists e = (e1,e2) € X and 7 such
that: (i) d'#te < f and (ii) Vh € X : =(hfte) V =(h < f).

— Case 1: d{#1e1 <1 f1
Suppose I1; (X) € Conf(&y), then there exists hy € 11 (X) with e;#,hy <1 f1 and
because of this there exists (hy, hy) € X with (ey, ea)#(h1, he) < (f1, f2),
Contradiction to assumption (ii), consequently I, (X) ¢ Conf(&;).
Suppose 11 (X) €ConflH (&, {d], ..., d}}, f1)), i-e.
Ay (X)), 2y <y fi & Vhy € TII(X) : = (2141 hy) V = (hy <) f1), in particular
V1 <i<n:=(d#a).
If there exist different (f1, f2), (f1, f3) € X take (fi, f2) € X with Ay, € E, and
Y2 <2 fo. Since X €Conf(H(E,{d",...,d"}, f)) and
(21, 29) & X, (x1,29) < (f1, f2), there exists (hy, he) € X with
(21, 29)#(h1, he) <" (f1, f2). x1#£17 because otherwise x; € I (X).
If (hy,he) < (f1, f2) then hy <1 fi, since fy has no predecessors. So x1#1hy <1 f1.
Contradiction!
If (hy,he) <" (f1, fo), then 35 : (hy, ho) = ((]31(1”2) but then d!#, 21, Contradiction!
Therefore I1;(X) € Conf(H (&, {d},....d}}, f1)), II1(X) €Conf(&;), and therefore
& is problematic. Contradiction!

— Case 2: d = e; = fi & doftaes <o fo
Look at X(e1) = {y2 € Ey | (e, 42) € X}. X(ey) €Conf(&,), since with
assumption (i) Vhe € X(ey) : m(ea#tha) V 2(ha <2 f2).
Let D :={d},....,ds} \ {*}. Suppose X & Conf(H (&2, D, f»)). Then Iz & X (e1)
with a9 <o fo and Vhy € X(ey) : =(ho#aas) V = (hy <) fo), in particular
Vs : = (ho#tads). But (e, 19) € X and (e, a5) < (e, f2), consequently
A(hy, hy) € X with (eq,29)#(hy, he) < (1, fo). If hy#1ey then (hy, hy) € X,
consequently hy = e; & hoftoxs and ho & D, consequently (e1, ho) < (eq, fo) and
ho <o fo. Contradiction!
We conclude X € Conf(H (&>, D, f2)) and &, is problematic. Contradiction!

There are no more cases for Pi[a~ Po]: If d{#1e1 & e; = f1 & ey < fo then d'#f; if
di = e & doftey & e <y fi then d' < f.
|

Corollary 4.2.9: For all P, P, € LL and for all A CAct the following holds:
I (Conf([Pr]r ||la [Po]r)) © ConfilPi]r) and Ta(Conf([P1]r (|4 [P]r)) © Conf([P2]r).

19

4.3 Consistency Results

Lemma 4.3.1 For all terms P, P, € L and for all actions a € Act:
[olc = C(lal) = C(lalr)

If [Plx = C([P]r) = C([P]p) then:

[P [Pl = C([P] s [Pe]) = C([1] r: [P2])

[P]w + [Po]w = C([P]r + [Pl) = C([P1]F + [12]F)

[P]xla~ [P]x] = C([P2]pla~ [Po]r]) = C([P]rla~ [P]r])
If P, and P, satisfy the delta axiom then

[P]w N4 [P = CAQIP T e (s [Po]e) = CAUP TP (14 [P2]P).

Proof: [C095], proposition 3.43 shows this result for [.]p and [.]#

The last point has to be shown for terms that do not satisfy the delta axiom:

Lemma 4.3.2: Let P, P, € L, A CAct. If [P]x = C([P;]F) then

[P la P2l = C([P]e [[a [P2]r)-

Proof:

Let (C,/,1) :=[P1 ||a Po]k = [P]k ||a [2]x (note that we use the same symbol |4 for
the domain of flow event structures and the domain of configuration structures).

Let (C',\/', ') == C([P]r ||a [P]r) and let € := (E, <, #.,1) = [P]r |4 [P2]r

Let g,j = (E“ -<7,#7,l7) = [[R]]p and (C[, \/117) = [[]—)7]][\

According to the assumption (C;,v/;, ;) = C(&;).

We want to show that (C,/,1) = (', '\/’«,).

o CC(C

Since we only take finite configurations into account an induction over the number of
events in a configuration is possible. Let X € C.

X=0=Xel.

Let X = X' U{(e1,e2)} and X' € ', (e1,e2) € X'. According to the assumption we
have (e1,e3) € Ey x4 Ey and Vi € {1,2}: II;(X) € C;(=Conf([P]r)) and II; is injective
on X.

Suppose X & ('

(1) Suppose X contains conflicts: (e1, es) cannot be self-conflicting therefore

(e},) € X' 1 (€], eh)#(er,eq).

Case 1: ¢j#1e; = I1I1(X) & Conf([P1]r). Contradiction!

Case 2: eh#oeo = (X)) &€ Conf([P2]r). Contradiction!

Case 3: e; = ¢} # % & eg # ¢}, = 11} is not injective on X. Contradiction!

Case 4: ey = ¢, # x & €1 # ¢ = 5 is not injective on X. Contradiction!

(i) Suppose <x isn’t a partial order, i.e. X contains cycles with respect to <. Then
(e}, €) € X' with (eq,e2) < (€],€,). Since X’ € Conf([P]r ||a [FP2]r). this is only
possible if (e, e)) € X" with (ey, ea)#(€], e)) < (¢}, €)), but then X contains
conflicts. Contradiction to (i).

(iii) All events of X obviously only have finitely many predecessors, since we only take
into account finite configurations.

(iv) Suppose X is not left-closed up to conflicts.

Let (€}, €}) & X, (¢],¢€)) < (e1,e2). Wlo.g. €] <1 e;. Since II1(X) € Conf([P1]r),
there exists ¢f € II1(X) : ej#1€] <1 e; and (€], €)) € X with

(eh,)7 (e, e) < (ey,eqs). Contradiction!

20

e (' CC
Let X € C'. Then X C E| X4 Ey and with corollary 4.2.9 T1;(X)) € Conf([P;]r) = C;.
Finally II; is injective on X', since otherwise X contained conflicts.

o/ CV
Let X ¢/, d.h. IL(X) &€/, VII(X) € \/,. Wlo.g. de; €11 (X) with
Ve € TII(X) : =(e)#eq1), then (eg,*) € X and V(e},¢l) € X @ =(e), eh)#(er, %),
consequently X ¢ \/.

o /C V. Let X &/ ie J(er,en) @ X with V(e eh) € X :=(el, eh)#(e1,e2). W.lo.g.

e1 # *, consequently e; & II1(X) (otherwise (e, €)) € X, (e, e})#(e1, ez)) and
Ve € II1(X) : =(e}#1e1, consequently IT, (X) & /, and we conclude X & /.

e [= obvious

Proposition 4.3.3: For all terms P € L the following holds: [P]x = C([P]s).

Proof: induction over the syntactic structure of P with lemma 4.3.1 and lemma 4.3.2.

Corollary 4.3.4: =, is a congruence on L.

21

5 Syntactic Refinement

5.1 Introduction and Motivation

As mentioned above [GGR92] defined a syntactic refinement, compared it with semantic
refinement and showed that in case of refining synchronizing actions it coincides with
semantic refinement only under fairly restrictive conditions. We will call the syntactic
refinement of [GGRI2| syntactic substitution and define a new kind of syntactic refinement.

The difficulties in [GGR92] arise by the refinement of synchronizing actions: e.g.

(P ||a P)[a~ Q] and a € A. In this case the semantic refinement operator does not
necessarily distribute over the parallel composition, which is the case for syntactic
substitution.

If one understands the refinement of an action a as the instantiation of a procedure call it is
quite natural to understand a synchronizing action in the following way: An action name
stands for an agreement among the communicating partuners to execute the procedure just
once and to distribute the result. This is the way we understand semantic refinement.

In order to simulate this in a syntactic way one possibility is to put another process in
parallel that takes charge of the execution of the procedure. Let aq, as be calling- and
returning actions and * an operator for repetition. So the definition of syntactic refinement
could be the following:

(Pl Hl PQ)[(Q/U] = (Pl[(a‘l; (1/2)/(1] HA\{(L}U{(H,(LZ}PZ[(U’I; ”’2)/“]) ||{a1 ;(Lz}((‘l’l; (2 (1’2)*

But first it is rather complicated to put a third process in parallel, and secondly it is not
quite intuitive, thus a a simplification could be to charge one process with the execution of
the synchronizing procedure. The other process then synchronizes with it:

(P |4 P2)[Q/a] == (Pi[(a1; Qs a2)/a) || a\{a}ufaraey Po[(ar; az) /a])

If one is not interested in the synchronization points one has to define an appropriate hiding
operator \ and one gets:

(L1 |4 P)[Q/a] = (Pi[(ar; Qs as) /a] || a\fayutarany P2l(ar; az) /a]) \ {ar, as}

We will give a simple criterion under which circumstances the new syntactic refinement
coincides with semantic refinement with respect to a rather strong equivalence relation.

Only well-formed terms will be taken into account.

5.2 A new kind of syntactic refinement
5.2.1 The new definition

With exception to the case (P |4 Py)[a ~ Q] with a € A, the notion of syntactic refinement
in [GGRI2] coincides with textual replacement as one could see in definition 2.1.4. Moreover
[GGRI2] show that syntactic refinement and semantic refinement yield isomorphic flow
event structures for all terms in L that do not belong to the same exceptional class.

Lemma 5.2.1 Let P, P, P, Q € L°, a,b €Act, A CAct. Then the following equivalences
hold:

L. ala~ Q] = Q

2. bla~ Q] =, b (if b # a)

3. (P B)a~ Q] = Pila~ Q]; Pola~ Q)]

4. (P + Py)[a~ Q] = Pila~ Q]+ Pya~ Q]

5 (P 1 Poa~ Q) % Pila~ Q] s Paa~> Q] (ifa ¢ A)

(taken from [GGR92], lemma 4.1)

. : . ~)
Lemma 5.2.2: Let P,Q € L°, a €Act. If a ¢ S(P), then: Pla ~ Q] =, P{4}.
(taken from [GGR92], theorem 4.3)
But for terms with syntactic structure (P ||4 P2)[a ~ Q] with a € A the syntactic
substitution and the semantic refinement coincide only under fairly restrictive conditions.

The syntactic substitution of [GGR92] is defined in this case:
(P] HA Pg){%} = (P] HA\{(L}U[P)) 1fa - 4

As one can see in the following example the semantic of (P || 4 Pz){%} does not even
necessarily preserve interleaving trace equivalence:

Let Py = (a;¢ ||p a;¢), Py :=a,Q = (b;b+ b), A := {a}.

Then (b.b.c.c) & Traces((Py ||aPa)[a ~ Q) =Traces(((a; ¢ ||pa; ¢) ||{aya)a ~ (b; b+ D)]).
But (b.b.c.c) € Traces(Pila ~ Q] || a\{ajur(@)Pola ~ Q]) since with lemma 5.2.1

Pia~ Q) [avtapur Pela~ Q) =e ((b;0+b)sc flp (0:0+b);¢) [[5(b50 + D).

In order to avoid problems arising by executing actions of () repeatedly and parallel to each
other we define syntactic refinement like a procedure call. The idea is that one process
executes the procedure and the other only synchronizes at the beginning and the end of the

call.

Define syntactic refinement [@)/a] inductively over the syntactic structure of the terms:

Definition 5.2.3 Let P, Py, P»,Q € L°® and {a;,ax} N (L(Q) U L(P)) U L(P,) U A) = .
Q ifb=a

bQ/a] = { b otherwise
(Pi: P)[Q)a] = Pi[Q/a]; P[Q/d]
(P +)[Q/al = PQ/a]+ P[Q/d]
(P |4 P)[Q)a] = Pi[Q[a] ||a P2[Q/[a] (if a & A)

(P ||la P2)[Q)a] = (Pi[(ay; Q;az)/al ’|Al\{a}U{a],ag} Py[(ay;az)/a]) \ {ay,as} (if a € A).
Note that the result of the syntactic refinement of a term lies in a language L% which
consists of L9 plus a hiding-operator. Apart from the last clause the definition is equivalent
to syntactic substitution.

(Note that a definition

(P1 ||a P)[Q[a] = (Pi[(a1; Qs az)/a] | a\fayufar e yun) Pol(ar; Qs as)/a]) \ {ar, as} would not
solve the problem. Consider for example P =P =a,A={a},Q =c;d+ c. Then a
maximal configuration {eg', ef} would exist for the syntactically refined term (before hiding)
and not for the semantically refined one.)

With lemma 5.2.1 and 5.2.2 one sees that for all terms P,) € L° with a € S(Q)
Pla~ Q] =, [Q/a] holds.

Now the conditions when (P ||4P)[Q/a] and (P ||4P)[a ~ Q] coincide will be studied.

23

5.2.2 Equivalence of syntactic and semantic refinement

Syntactic refinement without hiding

For simplicity first no hiding operator will be considered. Thus the conditions when
(P ||a P2)[(a1; Q;a2)/a] and (P |4 P2)[a ~ ai; Q; as] are equivalent will be examined. First
of all an appropriate equivalence relation has to be chosen.

[GGRI2] chose =, — but as one sees in the example below this relation is not suitable for our
purposes.

\ /
{eg ef, e, e5t el } {egh,ef, e, eg', efy)
{€0 ,ef, ey’ es! {681» 7,65%, ey
\ /
{eo' 7, €5’ {e6' et ex’}

\ /

(i) e
\
@) ()

\/
0

Figure 5: Conf(([P1] ||a [P2])[a ~ a1;x; as])

i)a] }I)(L) o));I1)a2 i)a] }I }(L2 > o))(L)
{eg',el,e5%, 5" eh, e5?) {eg', eh,eq’, eq', el el
ar Lx 02 01 az a1 LT
{eG 1,65, e5t en} {e6' el ex’. eg' et}
ay ay
{egt, et e5?, et {eg, e, es?, €

a \ a foa / a2 "
{eg' et e5?t {eg', el eg?}
/
{eg' e} {es e}
/
{eg) {et'
\/
0

Figure 6: Conf(([P1] ||a [P2])[(a1;x;as)/da])

Let PL=allp a, Py =aja, Q =, A= {a}.

In Figure 5 we see that in case of semantic refinement four events (e, e4, €7, e19) with label x
are constructed. As we see in Figure 6 in case of syntactic refinement only two events (eq, e4)
with label x are constructed.

The reason for this is that in the case of syntactic refinement a procedure call is used — for
example e corresponds to the execution of x on the left hand side and e4 corresponds to the

24

execution of 2 on the right hand side of P;. Of course both events have to be contained in
each complete configuration. In the case of semantic refinement however there is first a
decision which a synchronizes with which one and depending on this choice x will be
“called”.

It turns out however that the domains of configurations are equivalent. Thus the equivalence
relation 2, seems to be natural for this kind of syntactic refinement.

The following example shows that syntactic and semantic refinement do not coincide with
respect to 24 for all terms. In fact there exist terms for which syntactic and semantic
refinement even do not coincide with respect to interleaving trace equivalence (/2;;).

Let Py =b;a|lp c;a, Py = fia;d ||g g;a;e and @ = x. Then

(L1 |lqay Po)]a~ ai;Q;as] 2y Pila~ ar; Q;as] ||(a) ar) 2[@ ~ a1; as], because

(b,c, foar,x,g,a1,as,€) is a trace of the second term but not of the first one.

In this example the problem arisis from a being in parallel to itself in P ||4 P. It will be
shown that syntactic and semantic refinement coincide with respect to = if the refined «a is
not in parallel to itself:

Definition 5.2.4: Let P € L. An action a € L(P) is called auto-concurrent if there exist
configurations X, Y, Z € Conf([P]) with Y # Z & X =»*Y & X = Z and
Y U Z eConf([P])

Proposition 5.2.5 Let P, € L°, A CAct, a € A. If a is not auto-concurrent in

Py |4 Py and (L(P) UL(P)) N L(Q) =0 and (L(P) U L(P) U L(Q)) N {ay,as} = O then
(P ||a Po)[a~ a1;Q;a0) 24 Prla~ ay;Q;as) || 4 Pola ~ ay;as] holds with

A'= A\ {a} U{as, ar}.

Proof: see Appendix A

A Hiding-Operator

To complete our definition of syntactic refinement we now have to define a hiding operator.
It is very easy to define hiding on prime event structures:

Definition 5.2.6 (hiding on prime event structures)
Let & = (F,<,#,l) be a prime event structure, A CAct. Define
E\p A= (E.<NE xXE),#N(E x E'),I[E) with E' :={e € E | l(e) € A}.

A hiding operator \ r on flow event structures should be consistent with the one on prime
event structures, i.e. it is useful to demand: £ \p A =, P(E) \p A for cach flow event
structure £.

The definition for hiding on flow event structures is not so easy because one event can have
different roles in the event structure. Consider for example the event structure £ in Figure 7:

In fact it is not possible to define an event structure £ consisting only of the events
{€o, €2, e3} which is domain isomorphic to P(E) \ {b}.

Thus we define hiding on flow event structures according to hiding on prime event structures:

25

Definition 5.2.7 (hiding on flow event structures)
Let £ = (E,=<,#.1) be a flow event structure and A C Act. Define E\p A:=P(E) \p A

Lemma 5.2.8 Let &,& be two flow event structures with & =, &y. Then
51 \F A %d 52 \F A.

Proof: Obvious, since the definition is made via the configuration structure.

Now we show that refining an event structure with [a;; P; as]p and then hiding a1, ay leads
to the same result as refining it only with [P]:

Lemma 5.2.9 Let & = (F,<,#,1) and F = (Er, <z, #r,lr) be arbitrary event
structures with ay,ay € [(E) Ulr(Ex). Then 5[(1 ~ F| =24 (E]la~ ay; Fraz)) \r {a1, a2}
(with a; being the event structures ({z;},0,0, {(z;, a;)}).

Proof:

Let {x1,29} € Ex. Then Ela ~ ay; F;az] = (E1, <1, #1,41) = & with
Ey:={(e,x) |e€ E,l(e) Za} U{(e,f) | e€ El(e) =a,f € ErU{x,xs}},
(e, Y=<, f)Y:ee<xe)Vie=d & (f<r 'V =1V [=u)),

(e, N1, 1) e (et) Ve=¢ & f#£F)),

l(e) if f=x
’) Ix(f) iffeEr
11(67 f) T a if f=m
as lf f = Ty

Let & = E[a~ ay; Frag) \p {a1, a0} =P(&1) \p A= (B}, <, #,,1]) with
El = {dx (e,) | e /) € X €Confi)), f & {r, 21},

X< VieXCY,

X#Y & XUY gConfl&),

I(x (e, f)) =1(e, f) (see lemma 2.6.7).

Let & = E[a~ F| = (Ey, —<2 #9,15) with

EZ—{(e* |e€ E\l(e) #a} U{(e,f) | e€ E,l(e) = a, f € Ex},
(e.f) =< (¢ ') 5 (e < &)V (e =& & [< f),

(e Fale') 265 (e) V (e = & & frf).
b@jw—{l“) if f=x

(f) otherwise
and let & := (8 (Eé, <4, #,. 1) with
= by (e.) | (e, /) € X €ConflEs)},

)

b) =
(e, f
,X S’ Y 1\ CY

£ EN{b): g g

Figure 7: A flow event structure £ and £\ {b}

26

X#LY & X UY €Confl&),

Lilx () = bale, f).

Now we show that & =, &, i.e. Ela~ ay: Fraz] \r {a1, a2} =, P(Ela ~ F]). With remark
2.6.6 and lemma 2.6.7 then follows E[a ~ ay; Fras] \p {a1, a2} =4 Ela~ F.

Define h : £} — FEl: For each X =|x (e, f) € E] define

hMlx (e, f)) ={(, e X | fre&{v,) =X =l (e f).

h is well-defined because for all X € Conf(&1) : {(¢/, f') € X | f & {x1,22}} €Confl&,).
h is injective:

Suppose exist ¢\1 (e1, f1) #lx, (€2, fo) in EY such that h(lx, (e1, f1)) = h(lx, (€2, f2)).
Then (e, f1) = (e2, f2) and with lemma 3.2.5 exists

(€1, 1) €dx, (e, fi), (€h, f3 E\l/\z (€2, f2) with (€}, f1)#1(€5, f3). Since h(lx, (e1, f1))
contains no conflicts f{ € 1L1 xo} V fy € {xy, 29} — but then ¢|#¢,. Contradiction!

h is surjective:

Let Y —i) (. f) € E}. Define h 1(Y) := X =

YU{(,x |3]"€E;'(6’,f’)€1”}u{ o) | Af € Ex: (€. f)eY &I, f")eY
¢ < ("}.

As one easily verifies X € Confl€)), X =lx (e, f) € E} and h(X) =ly (e, f).

h is an isomorphism:

Obviously Lx (e, f) <ilx/ (¢, f') & h{lx (e, f)) <5 h(lx: (€, f')) and
b (e) b (¢, 1) & hily (e, /) #h(L (¢) and

Vix (e f) € B By (e f) = hie, f) = e f) = Bih(Ly (e).

Thus Ela ~ ay; Fraz] \r {a1, a2} Z4 E[a ~ F.

We now show the consistency of syntactic and semantic refinement:

Proposition 5.2.10 Let P, P, € L®, A CAct, a € A. If a is not auto-concurrent in
Py ||a Py and Pila~ ay; Q;as] =4 Pi[(a; Qs az)/a] and Pyla ~ ay;as] =4 Pa[(ay;as)/a] then
(P ||a Po)[a~ Q] =4 (P |4 P»)[Q/a] holds.

Proof:

With lemma 5.2.5 we know that

(P ||a Py)[a~ ar;Q;a0] =4 Pila~ ar;Q;a9] |4 Paa~ ay;asl.

And with lemma 5.2.8 we therefore conclude

[(Py]|a Po)[a~ ar; Qi ao]] \p {ar, as} Zq [Pila~ a1; Qs as] ||a Pola~ ar;as]] \» {a1, a2}

With lemma 5.2.9 we know that
[(Py |4 Po)la ~ a1;Q;as]] \r {a1, a0} Z4 [(P1 |4 P2)[a ~ Q]] and therefore we see that

[(Py [[a P2)[@)a] = [Pia~ ay; Q;az] [[a Pola~ ar;as]] \p {ar, a2} =g [(P1 |4 P2)[a~ Q]].
m

Proposition 5.2.11 Let P € L°. If P does not contain a term P, |[4 P»,a € A with «a
auto-concurrent in Pj |4 P, then Pla ~ Q] =, P[Q/a] holds.

Proof: induction over the syntactic structure of P:

For P =a, P = b # a, okay.

For P =P+ P, with = € {;,+, |[4}, (a &€ A) lemma 5.2.1 claims that

(P * Py)[a~ Q] = Pila~ Q] * Psofa~ Q). With the mductlon hypothesis one concludes

27

Pila~ Q] =, P[Q/a] if Py, P, do not contain forbidden terms. With definition 5.2.3 one
sees Pi[Q/a] x Po[Q[a] =4 (P * Py)[Q/a] and therefore (P * Py)[a ~ Q] Z4 (P x P2)[Q/al.

If P=P ||a P, a € A, and if a is not auto-concurrent in P we conclude with proposition
5.2.10 and with the induction hypothesis that Pla ~ Q] 2, P[Q/a].
|

5.3 Conclusion and comparison with [GGR92]

We showed that (P ||4 P»)[a ~ Q] with a € A coincides up to =, with
(Pila~ ap; Q;as) || a\{ayufar,as 1 Pola ~ ai;as]) \ {a1, as} if a € A and a is not
auto-concurrent in P |4 P.

This result is more powerful than the one for syntactic substitution in [GGR92]. [GGR92]
showed (P |4 Po)[a~ Q] . (P ||a Po){2} under the hypothesis that either Q) atomic or
() deterministic and a two-way-sequential in Py |4 P or

() distinct and @ not auto-concurrent in Py || Ps.

Q is called deterministic iff Va € L(Q) : AF,G # H € Conf([Q]) with F - G & F = H.

Q) is called atomic iff () is deterministic and each action in () is nitial-only, i.e.

Va e L(Q), F,G € Conf([Q]) with FF = G: F =1{.

Q is called distinct iff () is deterministic and each initial action in @ is initial-only (an action

is called initial in Q iff IF € Conf([Q]) with § —* F).

a being two-way-sequential in Py || 4P, is a bit weaker than the requirement of a being not
auto-concurrent in P; and not being auto-concurrent in Ps.

In each case () has to satisfy some restrictive hypothesis. This is not the case in our version.
All terms satisfying the conditions of [GGR92] also satisfy the condition of a not being
auto-concurrent in P; |4 P». Therefore the new definition of syntactic refinement is more
powerful than the syntactic substitution in [GGR92].

[GGRI2] chose an equivalence relation stronger than the one we use. But the following
examples show that the syntactic substitution of [GGR92] easily violates the equivalence 22,
if the conditions above are not satisfied.

One example we saw already above was Py = (a;¢ ||g a;¢), Py = a,Q = (b;b+b), A = {a}.
(b.b.c.c) is no trace of (P ||4P)[a ~ Q], but it is a trace of (P |[a PQ){%} because

(P lla P){} 2= ((bib+b)ic llo (b0 + b)) lu(bib+0).

Thus (Py [|aP2)[a ~ Q] #: (Pr |4 P2){%},

On the other hand (P |4 P»)[Q/a] =4 (P ||4Ps)[a ~ Q] (because a is auto-concurrent in
P; but not in P, and therefore proposition 5.2.11 can be used).

If @ is non-deterministic the conditions of [GGR92] are not satisfied. Consider for example
P=P=a A={a},Q=cd+c

As Figure 8 shows: (P ||aP)[a~ Q]]) 2. (P |4 P2){%} and

(Py | aPo)[a~ Q1) Za (Pr ||a P2){%}
(but (P [|[aP2)[a~ Q]]) =a (P |4 P2)][Q/a]).

28

Confl(I1] |l [P2])a ~ Q1) Confl(IA] Il [2DAEY)

{‘0(1 {(1 (4

{66} {es} {ef} {ei} {est {es}
\@/ \\@//

Figure 8: ([P1] |[a [P2])[a ~ Q] versus ([P1] |[a [P]){£}

But as one sees in Figure 9: (P ||4f%)[a ~ Q] =4 (P || 4l%)[Q/a] holds.

Conf([Pi[(a1; Q; az)/a] || a\{ayufas,an} P2l(a1; az)/a])

=Conf((ar; (c;d + ¢);as |l1a, oy Q1;
onfilas; (¢ d + c); 0 ”{ paet 1 a2)) after hiding:

Conf([1 ||a P2)[Q/a]])

d a2

{
eot, e, e5, e’

{681 ey, egl} {6’81 €3, ey’ J
al\ c a1/ c e d
{(0 € } { €y 5 €: } {(«1:(/2}

\ / \
{6 ') {ef} {es}
\ \/
0 0

Figure 9: ([P1[(a1; Q5 a2)/a] |a\{a)ufay.any Pol(a1;az)/a]]) and ([P ||a P])][Q/a]

29

5.4 QOutlook and Future Work

It would be reasonable to give a definition for syntactic refinement including the case of a
being auto-concurrent in Py || 4 P». With this one could develop a syntactic refinement that
always preserves = -equivalence to semantical refined terms but possibly leads to
complicated terms.

Another possiblity is to check if there is a better version of syntactic refinement, i.e. one such
that a reasonable equivalence relation is always preserved between syntactic and semantic
refinement. One could reasonably use the following condition suggested in [GGR92]:

Pila~ Q1] ||a{ayuar Pola ~ Qo] with (Q [|ar Q2) = @ for an appropriate equivalence
relation ~.

With the help of such a condition it might on the other hand be also possible to show that
the results obtained so far are optimal and that there is no inherent symmetry between
syntactic and semantic refinement.

30

A Proof of Proposition 5.2.5

A.1 Definitions

Let P, P,,QQ € L°. We show: If a € A, aj,ay & L(Py) U L(P,) U L(Q),

(L(P) U L(P)) N L(Q) =) and a not auto-concurrent in P; ||4 P, then

(P |4 Po)a~ ap;Q;a] =4 Pila~ a3 Qs as] || a\{a}ufarasy Pola ~ ag;as] holds.
LetPinl HA PQ.

Let & = (Ey, <1, #1,. L) =[], & = (Ey, <o, #2. o) =[] and
Eg = (Eg.=q.#0.lo) = [Q].

Define EY = {ey € Ey | l1(e1) = a} and ET* = {e; € Ey | l1(e1) # a}, ES and E;“ likewise.
First of all we state general presuppositions: Let Q' = ay; Q; ao, then

[Q = [a1:Q: a2] = (Eqr, =g #0r. lgy) with

Eq = EqU{q, g}, (with q1,¢ € L(Q))

<o==0 U{q} x EgU Eq X {a} Uilg,)},

#o = #q.

lor =1l U {(q1,a1), (g2, a2)})

A.1.1 Semantic Refinement

[[P]] = [[P]]] H"H:PZ]] = (EP-,‘<P-,#P]p) with

Ep: (ElX {*})U({*} XEQ {((l (2) XEQ |]1(Cl> [((?)G 4}
<p= {(ler,e2), (€}, ¢5)) | (er.€)) €1 V(e 2,('2) €=}
#r = {((e1,e2), (€], €3)) | (F’i#if’l) (e2#265)V (e1 = €] # x & ex # €})V
(o =€, #x & ep #¢€))}
{((x.e2), (%, €3) | 12(e2) € 4} U {((er, *) e, %)) | li(er) € A}
lp={((er,*),l1(e1)) | e1 € E1} U{((e1,e2),l2(e2)) | €2 # *}

Then let Pp := Pla~ Q'] = (P, ||aP2)][a ~ (l];Q;CLQ]

[Pr] = (Egr. <g.#r.[r) with
EFr= XoUX,U AYQ UX3U X, UX5UXgU X7 U Xg with
Xo = {((e1,%),%) | e1 € By 11(e1) € A}

Xi = {((e1, *)) | er € By li(er) & A}
Xo ={((e1,e9),q) | e1 € EY 62 € ES,qe LBy}
Xz = {((e1,%).4) | er € B}, ¢ € EqU {q1. 2} }
‘\4 {(<* 62)) | €y € E2 Zg(t’)) € 41
= {((*,e2).%) | e2 € E5" Zz(e)) ¢ 41
)&62 {((+,e2).¢') | ex € E5. ¢ GEQU{(Il:(Iz}}
X7 = {(((l (2) |(1 GEl J)GE; ll((fl> 212((32> 644}
Xs = {((e1.€2).q:) | e1 € Ef,e2 € Ef.i € {1,2}}

31

<r= {(((e1.€2),9). ((¢].€3).¢) | (e1 <1 €})(FRa)
\/(62 =<9 62) (FRb)
Vieg =€) & ea=¢, & qg=<¢ ¢) (FRe) }
fr= {l(ler,e0)0). (€ eh).0)) | (erdreh) (KRa)

V(ea#oeh) (KRD)
Vier = ¢ # 4 & ey # &) (KRo)
Vies = ¢h % & o1 £) (KR)
Viep = (1—*&(9—(2&120)64) (KRe)
V(e =ey, =x & eg =¢) &li(ey) € A) (KRf)
Vier = e} & ey =6, & q#d) (KRg)}
ZQ(q) 1fq € EQ
ay if g=q
Ir((e1,e2),q) =4 as if g =¢

lo(eg) ifep =% & ey € B
l1(e;) otherwise

The sets Xy, X3, X4, Xg only contain self-conflicting events. The other sets do not contain
any self-conflicting events.

A.1.2 Syntactic Refinement

Let Pl = Pila~ ay;Q; as] and Py = Pola ~ ay; as)].

Then [P[] = (B}, <1, #1.0),[P3] = (ES, <5, #5,15) with:

Ei= {(e;x)|e€ Ei“}U{(e.q) |e€ E{,q€ EqU{q,qp}}
<1= {(le, q) (¢,q)) | (P <1P)V(f’—f’ & (g =q q))}
#1= {le.q).(¢.q) | (e#t1€) V (e = € & q#qq)}

]1() ifee El_a

a ifee Bf & q=q

s ifee Ef & q=q

and [P)] = (ES, <5, #5,15) with

E,= {(e,*x) | e€ Es*} U{(e, q)|(€E q€{q,p}}

I ((e,q)) =

<= {(le;), (¢, q)) [(e <2 e)V(e=e & qg=qlq =q)}
#y = {((e.q).(¢.q)) | este’}
lo(e) ifee Ey?
Ih(e,q) =< @ ifee E$.q=q

s itee £S.q=q
Let Py = Py || a\{a}u{ar,a0} Ps- Then [Ps] = (Eg, <, #g.1ls) with

Eg={((e1,*),%) | ey € B¢}

u{((er, q),) | e1 € EY,q € EqU{q, ¢}}

U{(x, (€2, %)) | €2 € 5"}

U{(, (ez 9) | €> € E5.q € {q, ¢}

U{((e1, %), (ea, %)) | er € By en € By li(e1) = la(ez) € A}
U{((ey, ql) (e2,q) | e1 € Ef,es € ES}

U{ (61 qz) (€9,) | e € Ef,@g € Eél}

Rename the ev nts

Eg

o UY] UY;UYZ;UH UYs;UYsU YUYy, where
Yo = {((er,%),%) | e1 € E; % 1l(e1) € A}

| €1 € El l](€]) € 4}
) | e1 € BY,q € Eq)

ez#ze) (KSh)
e Zx& qg=q & ey #€y) (KSce)
ey, Zx & qg=q & e #¢)) (KSd)
d=x&qg=q & ey =¢, & ly(ey) € A) (KKSe)
6’2 =x&qg=qd &e =€ &(Liler) e A\ {a} Va.d €{q,q})) (KSI)
= ey # = & q#qq) (KSg)}

lolg) ifq€ Eq

a if¢g=q
Is(((e1,e2),q) = a2 fqg=q
12(62) if e = * & €9 € E;a
li(e1) otherwise

> o oo
[N} = [} —_
(a1

(
{((er) =
{((e1.%).q
Yy ={((er, %), q0) | er € EY, 1 € {1,2}}
};l = {((* 62) *) | €y € Ez_aﬁlz(eg) c fl}
Ys = {((*,e9), *) | eo € E5% 1h(e0) & A}
Ys = {((x,e2),q:) | e2 € ES.i € {1,2}
Y7 = {((ey, e2),) | er € ET% ea € B3 11(e1) = la(ea) € A}
Yz = {((e1,e2), i) | e1 € Ef,e0 € ES,i € {1,2}}
<s= A ((6’1-,62)?(1) ((€h.€5),q)) | (er <1 €))(FSa)
V(es <2 €h) (FSh)
Viep = e} #x & (¢ =q ¢) (FSe)
\/f’z= ey #x& qg=q.q¢ =q) (FSd) }
#s= |),), ((€1,€3),4)) | (er#1€]) (KSa)
\
\
\
V
V
V

v v v
/—\/—\/—\,—\,—\,—\/\,_\,_\,_\/\oo 't ont
/\

D
—
|

The sets Yy, Y3, Yy, Yy only contain self-conflicting events, the other sets do not contain any
self-conflicting event.

A.2 Comparison of £z and &

As one can easily see the sets X, and Yy, X7 and Y3, X3 and Y3, X, and Yy, X5 and Y5, X
and Yg, X7 and Y7 and Xg and Yy correspond to each other. Even the following identities
hold: Xy =Yy, X1 =Y, Xy =Y, X5 =Y;5, X7 =17, Xg = Y5, (instead of = one could use =2
(set-isomorphism) if the events were renamed).

The sets X3 and X contain more events than Y3 and Yj.

The main difference lies between X5 and Y5: X5 can contain much more events than Y5 since
any combinations between events labelled with a in E| and E5 are allowed. Syntactic
refinement does not lead to any combination with events of E.

Let Cg :=Conf(€x) and Cg :=Conf(Eg) (and Ec, = Uxec, X, Ecs = Uxec, X). In order to
show that £, =4 £y, one has to find a bijection f : C'y — Cg such that
VX, Y eCr: XCY = f(X) C f(Y).

First of all define f on E'z and then lift f to sets. Note that f : Er — Eg is not bijective.
Let © = ((e1,e2),q) € Ey.

33

ifxe XoUX;UX,U XU XU X
, if[L’E)(gU)&%&(]E{Q],QQ}
((6],62)7%) if[L’E‘XZgU)&—G&(]EEQ

((e1,*,q) if r € Xy

T
T

Then f(x) :=

Note that f is even defined on events that are not contained in E¢,. As you see f is a
well-defined surjective mapping from E¢,, to E¢,.

We want to show that f : C'r — Cg is an isomorphism of domains. if a is not
auto-concurrent in P ||4 %. We will show the following:
e [:Cpr— Cy (ie. all images of f are configurations of £¢: VX € Cp @ f(X) € Cy)
o Vo€ Loy i lp(r) =1s(f(x))
e VX, Y €Cr: X CY & f(X) C f(Y)

e If a is not auto-concurrent in P |4 P then f: C'yp — Cyg is bijective.

A3 VX eCr: f(X)eCy

Let y € FEg. The n Y y)={r e Er| f(x) =y}. Wehave VO <i < 8:ux € X; & f(x) €Y;
and y €Y; & f~(y) C X..

Let X be a configuration of &g, i.e. X satisfies the conditions (i),(ii),(iii), (iv): Then f(X)
also satisfies these conditions:
(1) Yy.y' € F(X) : =(y#sy)
(i) <p)= (= N(f(X) x f(X)))" is a partial order
(iti) Yy € f(X): {y' € F(X) | ¢ <px) g} is finite

(iv) Yy € f(X),Vy' € Es\ [(X): ¢ <5y = Fy" € [(X) : y'#sy" <5 u.

A3.1 (i)
Suppose Fy = ((e1,€2),9),y = (c€5),4q) € f(X) such that y#¢y'. Note that
Vy,o € f(X): 3z e f~Hy), 2" € f~Hy) with x,2" € X. One of the following must hold:

(e1#1€)) (KSa)
= Voe [T yVa' e fHY) a#re’ (KRa)
Therefore dz, 2" € X with x# ga’. Contradiction!
r (ea#to6€,) (KSh)
= Vo = ((e1,e2),q.) € [Hy)Va' = ((e],€y),q.) € FHY) : a#ra’ (KRD)
Therefore dz, 2" € X with x# ga’. Contradiction!

34

or (e =¢) #*x & qg=¢ & ey # €l)) (KSc)

Then ey # % V ¢}, # *. Let w.l.o.g. ea # % = ¢, # * (otherwise ¢ # ()
=Voe "N y) :v=((e,e2),)2’ € f7Hy) : 2’ = ((e1, €}),q) and with (KRc) a#tpa’.

Therefore Ju:, 2" € X with x#ga’. Contradiction!

or (ea=ey #*x& qg=¢ & e #¢)) (KSd)

= Vo e "N y)3q. : v = ((er, e2), q.)V2" € f7Hy)Ad, - 2/ = ((¢], ea), ¢.) and with
(KRd) x# g2’

Also A, 2’ € X with x#za’. Contradiction!

or (e =€l =x& qg=¢ &ey=¢é, &ls(er) € A) (KSe)
= y=y Vo e fHy)Tq v = ((*e),q). With (KRe) follows x4 g

Therefore dz € X with x# zx. Contradiction!

or (eo=ey,=x& q=q &e =¢) & (li(ey) € A\ {a} V¢, ¢ €{q.q})) (KSI)

= y=y.Voe fYy)Aq 2= ((e1,*),q) with [;(e;) € A. With (KRf) follows x# g

Therefore dz € X with x# zx. Contradiction!

or (g =¢€| #* & q#oq) (KSg)
= y7,y’ € }FZﬂv"L € fﬁl(y)zle‘ln € E‘Z = ((6],623,),(1)7VI’ € fﬁl(yl)aeéx € E2 : :LJ —
((e1,€h,),q) If ey, = €, then with (KRg) x4 g2’
If ey, # €,,, then follows with (IKRc) x4 pa’

Therefore dx, 2" € X with x# za’. Contradiction!

A.3.2 (i)

We have to show that <;yvy= (< N(f(X) x f(X)))* is a partial order. It suffices to show
that Vy,y' € f(X) 1 (v <) ¥ & ¥ <px) y) = y =y For this it’s enough to show that no
sequence y =y <g ... <5 Yo =y € f(X) with n > 2 exists.

Suppose there exists a sequence yi, ..., y,, n > 2. Consider the set {xy,..,2,} C X with
fle) =yt fla,) =y, V2 € X & fa) <g f(a) = a2 <g 2/, then @y <g ... <g 2, would
also be a cycle and therefore X would be no configuration. Contradiction!

So we will show for all events .2’ € X that f(z) <g f(2') = = < 2’. Since x is
self-conflicting iff f(x) is self-conflicting one does not have to consider

v,y € YoUY3UY, UYs. Let 2" € X with @ = ((eq, €9, ¢.), 2" = ((€], €},,¢.), and
y =)= ((er.e2).q). 4 = f(a') = (€}, €}),¢). Then f(x) <5 f(a’) iff

e1 <1 6?’]
= 1 <y 2’ (FRa)
or ey < €

= (€9, = € & €, = ¢})) = (v <p 2') (FRb)

35

or e =¢) #x & q=<g ¢
Case 1: y € Yy, d.h. y = ((eg, %), q) with ¢ € Ey (= © = ((e1, e2,), ¢) with ey, € EY)
If y € Y5 then 2/ = ((ey,¢},),¢") with ¢}, € ES. If ey, # €, then ax# g2’ (KRe) and
therefore x, 2" & X. If ey, = ¢}, then 2 <z 2/ (FRe).

If y € Y5 then o/ = 2" = ((ey, €., ¢2). In analogy to this reasoning we conclude
g, = ¢b, and therefore © <g @' (FRe)

(If ¥ € Y3 then o' = (€], %, ¢) and therefore =(x <z ') thus the
assumption is not true for arbitrary events)

Case 2:y € Yz, i.e.y = ((e1,62),q1) = @

Ify €Y, with ¢y = ((e1,%),¢),¢ € Eg then 2/ = ((e1, €., ¢') and therefore e; = €},
and x <p 2’ (FRe)

If y € Ys with ¢/ = ((e1,€,), ¢2) = 2’ then with the same reasoning x <5 2’ (FRe).

or ey=er #Fx&qg=q,¢ = q
= (y,y €Y5) = (x =y, 2’ =y) = (v <z 2') (FRe)

A.3.3 (iii)

Vye f(X)ist {y € f(X) | ¥ <px) y} is finite since only finite event structures are taken
into account.

A.3.4 (iv)

We show that Yy € f(2

Let y = (((17({1/) (1y> €
Y y)={r € Er]| flx
examined:

FSa) e} <1 e1

FSb) e'zy <2 €2y
FSc) €] =e1 # x & qy <q ay

FSd) ey, = eay #+ & qy = qi & gy = q2

F(X): Y <y =y € f(X) with y/#sy" <5 y.

), s €h,), 1J € Eg\ f(X),y <5 y. Let
=y}, [T y) = {2’ € Eg | f(2') = y}. Four cases have to be

5
<
. Q\
Mm
&
9
—~ /

o ¢) <1 e1 (FSa)
Va'e fUy) 2 € X and Va' € f Yy)Vo € f1{y) 2’ <i 2. Let
v = ((€.e))f) € F-1(y/) and + € F1{y) N X. Then
a! S)&YU U .Xl U)&72 U ‘Yj U)&77 U -Yb holds.

If 2" € Xy choose 7' = ((e},%),¢) € Xs.

If 2/ € X7 choose T ((']*)) € Xo.

If 2/ € Xg, choose 1’ (() € X;.
/

Otherwise choose T/ = Th(n 7 = ((e),%),¢) € XoUXUX;3

Now 7' € X holds and 7 <g x. Then 32" = ((¢],€}),¢") € X, ¥'#pa” <g @, and so:
(KRa) e/#,¢€] or

(KRb) (impossible) or

36

KRe) ef =¢) #£x & e #x or
KRd) (unp()ssﬂ)l() or
) (impossible) o1
KRf) (1n1p0qsible)
KRg) e =€} & e’;’ =+ & ("#od

e#1¢| (KRa)
With lemma A-2a there exists & = (/(N e
we conclude f(7) <g f(a) & f(2)#.f(7) &
— e = e #x &) #x (KRe)
Obviously 2" = ((€},€5),¢") and f(z") <g f(x). If €5 € EY (this is the case iff
q" # *) we conclude with lemma A-la and A-1b that xy = ((¢},€}),q1) € X and
ry = ((€],€5),) € X. And therefore f(x1) <g f(x), f(x2) <5 f(z).
Case 1 7/ =2’ € Xy U Xy, therefore @/ = ((¢],%),%),¢} € ET¢, and f(a') =2
Since e) =€ € ET%, ¢" = % follows, hence 2" = ((€],€})), %) € X7 and f(a") = ?c".
With (KSe) f(a)#sf(2") follows. So choose v = f(z").
Case 27 € X3,2 € X,
Consequenth e} € Ef and e € EY. Suppose 3é; € Es : ((€],62).¢) € X Then
éy = €} holds, since otherwise ((6’176’2) ¢)#r2" = ((e],€5),q¢") with (KRc)). Thus
((¢h,€5),¢") € X. Since 2’ € Xy ¢ € Eg and therefore ((€],€2).¢") € Xs. But then
f@) = f(((el €),4q)). Contladlctlon'
Thus Véy € Fy = ((¢),62),¢) € X. With lemma A-1c¢ one concludes
A7 = ((¢], €)), q) € X suc h that g#¢q'. Then f(z) = ((¢},%),q) <s f(x) and
f) = ((¢,%),q") and therefore f(a')#5f(%) (KSg). So choose y" = f(&).
Case 37 =a' € Xy, thus 2/ = ((e}, %), ¢') with €] € E{. And
a" = ((eh,e5).4") € Xo U Xs. f(2') = ((e1,%).q1) V [(2') = ((e1, %). @2).
el € ES = x1,x9 € X. Therefore either f(a')#tqf(x1) or f(a')#f(22).
Depending on 2’ choose v = f(x1) or v = f(x2).
Case 4 7' € X, 2’ € X7. Then f(2') =2/ = ((€],€}),%), €] € B and thus
fa")=2a" = ((e),€)), %) € X5.
ey # by, (otherwise 2/ = 2”), consequently with (KSc¢) f(2”)#¢f(2"). Choose
' = f(JI/'N>-
Case 5 7' € X3,2" € Xg. Then f(a') = 2" = ((€].€}),¢) inth
e e bBl.q e {q1 ¢} and 2" = ((¢],€}).q") € Xo U X, €} € E§ = I],IZ e X.If
ey = el then o' = a1 V 2/ = 29 — this is impossible and thelefOIe ey ;é 62 and
consequentl} fa")#sf(x1) V f(a")#5f(22). Depending on ¢ choose y' = f(xy) or
y' = fla2).
— el =e & e =% & ¢"#od (KRg)
In this case 2" € X3 and thus 2"# 2" and 2" ¢ X. Contradiction!

2),

q) € X with é,#,¢| & é; <1 e1. Then
o f(3)#s [()

o ey, <2 ey (FSD)

Vo' e f7Uy) 2 € X and Vo' € f~H(y)Vor € f7 (y) : o' <p x. Let

' =((e),ey),qd) € fH(y)and x € f~'(y) N X. Then 2’ € X, U X5 U X U X7 U Xy
holds.

If ' € X7, choose &' = ((*,¢€}), %) € Xj.

If 2/ € X, choose &' = ((x,¢€}),¢) € Xg.

37

Otherwise choose 7' = . Then ' = ((x,¢),),¢) € X4 U X5 U Xg holds.
But 7’ € X and &' <y x. Therefore 32" = ((¢],€}),¢") € X, ¥'# pa” <y x, thus:

(I\R a) (nnposmble) or
b) e

(K b€l or

(I\R() (nnp()ssiblo) or

(KRd) e = ¢}, #* & €] # % or
(KRe) (impossible) or

(KRf) 1mp()ssibl(‘,) or

(KRg) €] = = & ef =€), & ¢"#0od

— el4hyel (KRD)
With lemma A-2b there exists & = ((é1, ¢
@) =s fla) & f(2)#:0(2) & f(0)#f(
— e =€, #x & e #x (KRd)
In any case f(2") <g f(x) and ly(e) € A and
o= ((e],€,),q) € Xy Uz UX7U Xs.
Case 1 ¢ =%, also 2’ = ((¢],¢€}).%x) e Xy UX; = ¢, € E,°,
= ((e],), %) € X7 = f(a)) =2/, f(2") = 2" and with (KSd) f(2")#sf(2).
Thus choose " = f(2”).
Case 2 ¢ € Eg U {q, ¢}, also 2’ € XgU Xg and therefore
f(il',> — { ((e,]:e‘lz)vqﬂ if g € EQ U {QI}
((e},€h),q2) otherwise
Moreover ¢, € ES = 2" = ((€],¢€}),¢") € Xs With lemma A-la and A-1b we
conclude xy = f(x1) = ((ef,€5), 1) € X and x9 = f(22) = ((¢].€}),q2) € X and
f(@1), fxa) <s flz) .
With (KSd): f(a")#sf(x1)V f(2')#sf(xs). Depending on ¢ choose y" = f(x1) or
y' = flaa).
—dl=x&) =6, & "#oq (KRg)
In this case 2/ would be in Xg and therefore 2”# p2” and thus 2" & X.
Contradiction!

2),q) € X with 52#2(’) & €9 <5 ey. Then
') h()lds Choose y" = f(¥).

o) =e1 #x & qy <q qy (FSc)
In this case e; € E{ and therefore y € Y, U Y5 and ¥ € Y5 U Y3 U Ys. Then there exists
ey € ES with o = ((e,e2),¢) € X and f(x) = f(((e1,e3),q)) =y, so that
r € X N fHy). With lemma A-la conclude that x; = ((e1,e3),q1) € X and therefore
f(x1) = ((e1,e2), 1) € f(X) and with (FSc) f(x1) <s .
Case 1: ¥ € Ys =y = ((e1,%),q1)
With (IKSe): f(x1)#sy’. Choose vy’ = f(x1)
Case 2: y € Yy =y = ((e1,¢),), q1)
Since y' € f(X) and f(x1) € f(X) we conclude: €}, # ey and with (KSc) f(x1)#sy.
Thus choose " = f(x1).
Case 3: ¢y €Yy = ¢ = ((e1,%),¢)
Then f~H(y') = {((e1.€5),¢) | €, € ES}. Therefore 2’ = ((e1,e2),¢) € f1(y) and
¥ <R
There exists 2" € X with " <p x, = (2" #rx), 2" # r2’. This is only possible with
(KRg), thus 2" = ((e1,e2),¢") for some ¢” € Eq with ¢"#¢¢q . In order that 2" <y ,

38

q" < ¢ must hold. With this we conclude 2”7 € Xy and f(2”) = ((e1,*),¢") with
fa")#sy (KSg) and f(2”) <g y with (FS¢). Choose y" = f(2”)

o ey =ezy # x & qy =q1 & qy = q2 (FSd)
So y € Ys and y € Y5 U Ys. Therefore x = ((ey, €2, q2) € 7' (y) N X and with lemma
A-Ta ;= ((er,e9.),q1) € X and f(x1) = ((e1.e2,), 1) € f(X). With (FSd)
flan) <s .
Case 1: ¢ € Y5 = v = ((*,¢2,), 1)
With (KSd) /'#sf(x1), thus choose vy = f(xy).
Case 2: y/ € i = of = ((¢}.e2,). 1)
Since ¢ & f(X) and f(x1) € f(X) we conclude €| # e;. With (KSd) f(x1)#sy/, thus
choose y" = f(xy).

A4 Vo€ Ee, () = ls(f(z))

Let © = ((e,e9),q) € Cg. Since f(x) =z, if © & Xo, f(x) = ((e1,¢€}),q) follows. Therefore:

r(x) = lolg) =ls(f(x)) if g€ Eg

r(z) = @ =ls(f(x)) ifg=q

R(r) = ar =Ils(f(z)) ifqg=q

Ir(x) = Ia(ea) =ls(f(rv)) ifep =% & ex € E5 Y, therefore ¢, = ey
Ir(x) = lLi(er) =ls(f(x)) otherwise

A5 VXY ECR:XCY & f(X)CF(Y)

X CY = f(X) C f(Y) evident.
Let f(X) C f(Y). Suppose XZVY iedreX:xgY, but f(x) € f(Y). Then Jy €Y
with f(a)— fly), but x # y.

Since Vo € Cp: & # f(x) = & € X», it follows that x = ((e;,es),¢q) € X, and therefore
x # y but as (') = f(y) conclude y = ((e1,€,),q). With lemma A-la 1 = ((e1,e9),q1) € X
and y; = ((e1,€}),q1) € Y. But then 21 € Y, Contradiction, since x4 ry;.

A.6 [bijective if a is not auto-concurrent in P; |4 P>
A.6.1 f injective

Let X, X' € Cp, X #ZX . Then Ir e X :x ¢ X' VI € X' : 2/ & X. Let w.lo.g.

reX g X

We show: Jy € f(X) 1y & f(X')

r e X7 UXyUX;U X7 U Xg, since o is not self-conflicting.

If v € X, UX5UX;U Xy, we have f(x) = x, fH(f(x)) = {a}. Thus if y = f(x) € X', there
exists 2" € fH(y) € X', since f1(;) = {z}, so x € X'. Contradiction!

((e (x) =

Sln() q) € Xo, we have f(x

ey, e ((e1,%),q) and
{((e1.€3).q) | ¢, € E5}.

1)

39

With lemma A-la also 21 = ((e1,e2),q1) € X. Since 21 € Xg we conclude as above that

v g€ X'= f(o) € f(X'), and thus X # X' = f(X) # f(X).

A.6.2 f surjective

We want to show that VY € Cs3X € Cp with f(X) =Y.

For each Y € Cg define ¢y 1 Y — Cg with
_) e My Y))q) ity = ((e1.%),q) € Y3
gv(y) =

Y otherwise
(h from lemma A-3 is used h(fr().)
Define g: Cg — Cr: g(Y) ={gv(y) | y e Y}.
We see

e VY € Cy gy is well-defined and therefore Vy € Y : gy (y) € Eg, therefore
Vo€ g(Y):x € Fg.

o VY eCs:Voreg(Y):g (x)= f(x) (with f as above)

e VWY eCs:VoegY)ogXo:g ' (v) =z andVy €Y : gy (gv (9)) = ¥
If we can show that

o ¢: (g — (g well-defined

o fog=r1ide,

then f is surjective. But we can show this only for terms P, P, with a not being
auto-concurrent in P |4 P.

Let us assume for the rest of this paragraph that a is not auto-concurrent in P ||4 Ps.

fog=1dc, obvious

g : Cg — Cpg is well-defined We will show VY € Cy: g(Y) € Cg. Let Y € Cl.

(i) Suppose Jy = ((e1,e2),9),y" = ((€],€5),¢) €Y 1w = ((e1,e2,),9) = gy (y)Fr2' =
(e, eh.). d') =gy (). With lemma A-3a and A- 3b choose
((e1, iy, Y)),q1) ify€Ys (e}, (YY),) ify €Ys
z=4 ((e1,e),q1) itg=q ,2 =19 ((e,€), n) if ¢ =q» , Then
Y otherwise Y otherwise
2,2 ey,

Let x4 ga’. Because of

KRa) = y#sy/
KRb) = =442
KRe) = 2447
KRd) = =442
KRe) and KRf) impossible and

40

KRg) = y#sy
Thus Y contains a conflict. Contradiction!
(ii) Suppose there exists a sequence y = yi, ...y, = y € Y with

gy (1) <r 9y (¥2) <g -« <g 9y (Un). Choose the following sequence in Y: z1, ..., 2, with
N :{ ((exs. h(y:, Y))7q7,) if yi = ((e15.%), 4;) € Yo

Y; otherwise

Then V1 <i<n:z <g 2z (and 21 = z,, as KRa) and KRb) lead to KSa) and KSb),
and KRe) implies KSc).

Therefore Y is no configuration of £¢. Contradiction!
(iii) obvious
(iv) ¢(Y) is left-closed up to conflicts, i.e. Var € g(Y),Va! € Eg \ ¢g(Y):
¥ <p = A" € g(Y) with .L’#R.I" <R .
Let y €Y, 2" € Er\ g(Y), 2" < gv(y).
Choose =/ — { (e}, eh),q2) ifa’ =((e],e)),q) € Xo & 2" <g gy (y) (FRb)

.’I', otherwise

If y = ((e1,%),q) € Yy we will write y; for the unique event ((e1, e3),q1) € Y. Then
F(Z) €Y and f(z') <5y V f(Z) <s 1.

Since Y is a configuration there exists ¢ € Y with v/ <g y V ¢ <¢ vy and y"#s ().
With lemma A-4 it follows that gy (v") <z 9v (y) V 9y (y") <k 9v (11).

Now we have to show that gy (v")# g’ If v"#5f(2") holds because of KSa),KSh),KSc¢)
or KSd) then obviously gy (y")#ra’. It y"#gj(') holds because of KSg) (i.e.
6’1 = e, # * & ¢"#0q) then either] = €, and therefore gy (y")# ra’ with KRg) or

ey #), and therefore with KRe) gy (y")#r2'.

A.7 Some lemmata and propositions

Er, &1 = [P1], &2 = [P] are defined as before.

Proposition A Let X € Conf(Eg). Then II1(X) € Conf(&;) and TIo(X) € Conf(&,).

Proof:
With Lemma 4.3.1 X":={(e1,e2) | Iq: ((e1,€2),q) € X} €Conf([P1] |4 [2]). Obviously
I, (X') = II1(X) €Conf([P1]) and Hz()&') II,(X) € Conf([]).

Lemma A-1 Let X € Conf(Eg), v = ((e1,€2),q) € X.

a) If ey € B, es € EY,q € EgU{q,q}, then xy == ((e1,€2).q1) € X.
Proof:
((e1,e2),q1) <pg x. Suppose 1 € X. Then (iv) implies 32’ = ((¢], €),¢') € X with
P#r((er1,e2),q1) and =(a'#rx = ((e1,€2),q)). But this is excluded by
(KRa),(KRb),(KRc),(KRd),(KRe),(KRf),(KRg). So only (KRg) remains for a'# pa;:
el = e, ey = e, (' #oq. But ¢'#¢q is impossible. Contradiction!

41

b)

Ife; € E{,e0 € ES,q € EQU{q1,q}, and 32" = ((¢],¢,),¢") € X with

ep <y) Ve, <y el then o = ((e1,e2),q2) € X.

Proof:

Suppose ((Pl €),q2) € X. Since ((e1,e2),q2) <g 2/, (iv) implies 37 = ((€1,€2),q) € X
with # <g 2" and T#g((e1,€2), ¢2). Since x = ((6’176’2) q) € X T#g((e1,e2),q) is not
allowed. Thus all possibilities for conflict are forbidden. Contradiction! So x5, € X.

Let ¢} € EY,q € Eg and Ve, € Ey: ((eh,€h),qd) & X.
If there exists 2" = ((e],€5),¢") € X with €] € ES.¢" € Eg U {q1. ¢} and €] <y e; or
el <9 ey holds,

then there exists § € Eg such that ((€],€]),q) € X and ¢'#q.

Proof:

With lemma A-1b one sees that ((¢],¢e}),q) € X.

Since ¢’ <¢r q2 we have ((€],€5),q) <r ((¢].€5),q2). Since ((€],¢€5),¢") € X. (iv)
implies that 32" € X with 2" <p ((€],€}), q2) and 2"#r((€], €,),¢') and

(2" #r((€],€,), q)). This is only compatible with (KRg), thus 3¢" € Eg with ¢"#¢¢'
and 2" = ((€],€,).¢") € X.

Lemma A-2 Let X € Conf(Er).

a)

b)

If 32 = ((e1,€2),q) € X and 2/ = ((¢],€)), ¢)Er \ X with e, ¢] € Ey, then
& = ((e, e;) q) € X with €| #1é1 <1 €.

Proof follows directly from proposition A.

If 32 = ((e1,e2),q) € X and 2/ = ((¢],€)).¢') € Er\ X with ey, €}, € Ey, then
37 = ((é1,€2),q) € X with ey#265 <2 es.

Proof follows directly from proposition A.

Lemma A-3

a)

b)

Let Y € Confi€s), y = ((6’1, %),q) € Y with e; € EY,q € Egp. Then there exists a
uniquely determined e, € ES with y; = ((e1,€2),q1) € Y. It will be denoted by h(y,Y).

Proof:

Existence of es:

Let v = ((e1,%),q1) € Y, since ¢/ self-conflicting, but y' <¢ y. Thus

Ay €Y 1 y#sy" <s v/, and therefore =(y"#¢y). Thus

Y'#s((er,*), q1), (J”#g ((el, *),q)). Then the only possible reason for conflict is
(KSc):] = e1 & ¢" = q1 & € # +. Thus Jey = € with v’ = ((e1,e2),q1) €Y
(¥" <5).

Uniqueness of es:

Suppose there exists e, # ey such that ((e;,€)), 1) € Y. With (KSd) ((e1,€)), ¢1)
conflicts ((eq, es), q) — thus they cannot be both contained in Y.

) = l(ey) = a is not auto-concurrent in Py |[4 P, for all Y € Conf(Eq):

(1
= ((e1,€2),q2) €Y = y1 = ((e1,e2), 1) €Y.

42

Proof:

One easily shows that a is auto-concurrent in Py ||4 P iff ¢y is auto-concurrent in Pg.
So we show: If there exists a configuration Y with y» € Y and y; € Y then a; is
auto-concurrent in Ps.

Let yo € Y and y; € Y. Consider ((e1,*),q1) <g y2 and ((*,€2),q1) <g JQ both being
self-conflicting and therefore not contained in Y. So there must be y},y] € Y with
((e1, %), q1)#sy] <s y2 and ((ez, %), q1)#sy] < y2. The only pO%Slbﬂer% for this are
vy = ((e1,€h), q1), v = ((¢],ea), 1) with €}, # eq, €] # €.

Define Z ={x € Eg | v <s ¥y Vo < y{} N Y \ {¢},4/}. Then Z € Conf(Es). Moreover
Z'=ZU{y} €Confliés), Z" = Z U{y!} €Confl€s) and

Z'UZz"=ZU{y. y/} €Conf(Es). Thus

'+ 7" 7 =" 7 & Z - 7" & Z'U Z" €Conf(E). Therefore a; is auto-concurrent
in Ps. [|

Lemma A-4 1Ifi(e;) = I(e3) = a is not auto-concurrent in P ||4 P> and
y=(ler,e2),q),y = ((€],e5),¢') €Y € ConflEs), y <5 v, then gy (y) <r gv(¥).
Proof

If y <5 ¢ holds by FSa), FSb), then ,q)»(y) <r ¥ holds by FRa), FRb).

If y <g ¥ holds by FSc), i.e. €] = e # *,¢ <¢ ¢, then

gy (y) = ((er.e2),q). gy (') = (€}, €5,). ¢') with

€op, = €2V eo, = h(y,Y), e, = e Ve, =hy,Y). If eg, # €, then

((e1,e9.), q1)#s((€),6h,), q1) and with lemma A-3 ((er,es), q1), ((¢),65),q1) €Y,
Contradiction. Thus (FRc) can be applied.

If y <¢ ¢/ holds by FSd), i.e. €, = es # *,¢ = q1 & ¢ = ¢o. Then with lemma A-3
((€],€,),q1) € Y and therefore €] = ey, so again (FRc) can be applied.

43

References

[AH91]

[ATI93]

[Bo90]

[BCO1]

[BMC94]

[C095]

[CZ89]

[DG95]

[DGR93]

[GGIO]

[GGR92]

[LG91]

[NEL89]

[Sch91]

L. Aceto, M. Hennessy, “Adding Action Refinement to a Finite Process
Algebra”, in J. Leach Albert, B. Monien, M. R. Artalejo (eds.): Automata,
Languages and Programming, LNCS 510, pp. 506-519, Springer-Verlag, 1991.

L. Aceto, M. Hennessy, “Towards action-refinement in process algebras”,
Information and Computation, vol. 103, pp. 204 -269, 1993.

G. Boudol, “Flow Event Structures and Flow Nets”, in I. Guessarian (ed.):
Semantics of Systems of Concurrent Processes, LNCS 469, pp. 62-95,
Springer-Verlag, 1990.

G. Boudol, I. Castellani, “Flow models of distributed computations: Three
equivalent semantics for CCS”, Information and Computation, vol. 114, pp.
247-314, 1994.

C. Baier, M.E. Majster-Cederbaum, “The connection between an event
structure semantics and an operational semantics for TCSP”, Acta
Informatica, 31, 1994.

R. Costantini, “Abstraktion in ereignisbasierten Modellen verteilter
Systeme”. Ph.D Thesis, University of Hildesheim, 1995.

[. Castellani, G.Q. Zhang, “Parallel product of event structures”, Rapports
de Recherche 1078, INRIA, 1989.

P. Degano, R. Gorrieri, “A Causal Operational Semantics of Refinement”,
Information and Computation, vol. 122, pp. 97-119, 1995.

P. Degano, R. Gorrieri, G. Rosolini, “Graphs and Event Refinement”, Proc.
Workshop on Semantics: Theory and Applications, 1993.

R. J. van Glabbeek, U. Goltz: “Equivalences and Refinement”, in
I. Guessarian (ed.): Semantics of Systems of Concurrent Processes, LNCS
469, pp. 309-333, Springer-Verlag, 1990.

U. Goltz, R. Gorrieri, A. Rensink, “On Syntactic and Semantic Action
Refinement”, Hildesheimer Informatik-Berichte 17/92, 1992.

R. Loogen, U. Goltz, “Modelling nondeterministic concurrent processes with
event structures”, in Fundamenta Informatica, vol. XIV, pp. 39-74, 1991.

M. Nielsen, U. Engberg, K. S. Larsen, “Fully Abstract Models for a Process
Language with Refinement”, in J. W. de Bakker, W. P. de Roever, G.

Rozenberg (eds.): Linear Time, Branching Time and Partial Order in Logics
and Models for Concurrency, LNCS 354, pp. 523-548, Springer-Verlag, 1989.

S. Schreiber, “Fluss-Ereignisstrukturen als Modell fuer eine Sprache”,
Master’s thesis, Rheinische Friedrich-Wilhelms-Universitaet Bonn, 1991.

44

[Wig89] G. Winskel, “An Introduction to Event Structures 7, in J. W. de Bakker, W.
P. de Roever, G. Rozenberg (eds.): Linear Time, Branching Time, and
Partial Order in Logics and Models for Concurrency, LNCS 354, pp.
364 397, Springer-Verlag, 1989.

45

