
REIHE INFORMATIK
14/96

Some Properties of Re�nement
Friederike Benjes

Universit�at Mannheim
Seminargeb�aude A5
D-68131 Mannheim



Some Properties of Re�nement

Friederike Benjes

August 26, 1996

1 Introduction

In concurrent reactive systems re�nement has two aspects: there is the notion of a
horizontal re�nement and of a vertical re�nement. A typical instance of horizontal
re�nement is the substitution of a sequential process S by a system of parallel processes that
exhibits the same communication behaviour as S.

In contrast, vertical re�nement or action re�nement deals with the substitution of a
communication by a process.

We are here dealing with action re�nement. Action re�nement has been considered as a
syntactic operation ([AH91], [AH93], [NEL89]) as well as a semantic operation.

We consider here two problems concerning re�nement.
The �rst deals with (semantic) re�nement in 
ow event structures and con�guration
structures. It is well-known ([CZ89], [BC91]) that there may exist con�gurations in the
product E1 kA E2 of event structures that do not map to con�gurations of the individual
event structures under projection (9E1; E2 : 9X 2 Conf(E1 kA E2) : �1(X) 62Conf(E1)).
[Sch91] and [CZ89] showed that languages using only the operators +; ; ; kA but no
re�nement operator do not create event structures of that type. [Co95] attempted to show
the same for languages with a re�nement operator { however their proof contained a
mistake. In the �rst part we will give a corrected proof.

The second problem deals with the connection of syntactic and semantic re�nement.
In [GGR92] a notion of syntactic re�nement was de�ned and compared with semantic
re�nement on 
ow event structures. It was shown that in the case of re�ning synchronizing
actions syntactic and semantic re�nement coincide only under fairly restrictive conditions.

We present a di�erent notion of syntactic re�nement, that can be seen as motivated by
[DG95] who proposed a \parallel call of procedure" for re�ning synchronizing actions. The
basic idea is to consider the re�nement of a synchronizing action as the call of a procedure
to which both partners have to \inscribe". This view still leaves the question open of who
takes control for this procedure. We investigate a variant where one of the synchronizing
processes takes control. We show that this notion of re�nement is much closer to the
semantic notion of re�nement by presenting a criterion that guarantees that the two kinds of
re�nement coincide and that is satis�ed in most cases.

In section 2 we give some elementary de�nitions and propositions. In section 3 re�nement is
be de�ned on prime and 
ow event structures and on con�guration structures. Chapter 4
deals with the consistency of a 
ow event structure semantics and a con�guration structure

2



semantics. In section 5 the new de�nition of syntactic re�nement is introduced and compared
to semantic re�nement. And �nally the appendix contains the main proof for section 5.

2 Foundations

2.1 The Language L

De�nition 2.1.1: Let Act be a countable set of actions, a 2Act. The following grammar
de�nes the terms of the language L:

P ::= a j P ;P j P + P j P kA P j P [a; P ]

We use a family of synchronization operators fkAgA�Act corresponding to the TCSP
approach. The re�nement operator [a; P ] acts on single actions a 2Act at a time.

Lo � L denotes the set of terms not containing re�nement operators.

De�nition 2.1.2: Let P 2 L. Then L(P ) is the set of actions occuring in P . S(P ) is the
set of synchronizing actions of the term P . (see [GGR92]):

L(a) := fag
L(P1 + P2) := L(P1) [ L(P2)
L(P1;P2) := L(P1) [ L(P2)
L(P1 kA P2) := L(P1) [ L(P2) [ A

L(P1[a; P2]) :=

(
(L(P1) n fag) [ L(P2) if a 2 L(P1)
L(P1) otherwise

S(a) := ;
S(P1 + P2) := S(P1) [ S(P2)
S(P1;P2) := S(P1) [ S(P2)
S(P1 kA P2) := S(P1) [ S(P2) [ ((L(P1) [ L(P2)) \ A)

S(P1[a; P2]) :=

8><
>:

(S(P1) n fag) [ L(P2) if a 2 S(P1)
S(P1) [ S(P2) if a 2 L(P1) n S(P1)
S(P1) otherwise

Terms are called well-formed, if all the actions introduced by a re�nement operator applied
to P , i.e. P [a; Q] are di�erent (more concrete) from the actions in P . We de�ne
well-formedness by induction on the syntactical structure of terms:

De�nition 2.1.3: (well-formedness)
All actions a 2Act are well-formed.
If P and Q are well-formed, so are P ;Q, P +Q, P kA Q.
If P and Q are well-formed and L(P ) \ L(Q) = ; then P [a; Q] is well-formed.
(see [GGR92])

Syntactic substitution almost corresponds to textual replacement. It is de�ned by induction
on the syntactical structure of a term { but it is only de�ned on terms not containing
re�nement operators.

3



De�nition 2.1.4: (syntactic substitution fQ
a
g)

Let P;Q; P1; P2 be in L
o, a; b 2Act, A �Act.

bfQ
a
g :=

(
Q if b = a
b otherwise

(P1;P2)fQa g := P1fQa g;P2fQa g
(P1 + P2)fQa g := P1fQa g+ P2fQa g

(P1 kA P2)fQa g :=
(
P1fQa g kA P2fQa g if a 62 A
P1fQa g kAnfag[L(Q) P2fQa g if a 2 A

(see [GGR92])

2.2 Prime Event Structures

De�nition 2.2.1: (prime event structure)
E = (E;�;#; l) is a prime event structure labelled over Act i�

� E is a countable set of events

� � � E � E is a partial order (causal relation)

� # � E �E is an irre
exive and symmetric relation (con
ict relation)

� l : E !Act is a labelling function

and

� 8e 2 E :# e = fe0 2 E j e0 � eg is �nite (principle of �nite causes)
� 8e; e0; e00 2 E : e#e0 � e00 ) e#e00 (principle of con
ict heredity)

The class of all prime event structures is denoted by P. The empty prime event structure is
denoted by ;.

De�nition 2.2.2: (con�guration of a prime event structure)
Let E = (E;�;#; l) be a labelled prime event structure. A subset X � E is called
con�guration of E i�

� X is con
ict-free, i.e. 8d; e 2 X : :(d#e) and
� X is left-closed, i.e. 8e 2 X :# e � X.

A con�guration X of E is called complete i� 8e 2 E nX : 9e0 2 X : e0#e.
A con�guration X of E is called maximal i� 8X 0 2Conf(E 0) : X 6� X 0.

Remark 2.2.3 Con�gurations of prime event structures are maximal i� they are complete.

4



De�nition 2.2.4: Let E = (E;�;#; l) be a labelled prime event structure.

a) Conf(E) is the set of all con�gurations of E (the �nite ones and the in�nite ones).
Conff(E) is the set of all �nite con�gurations of E .
b) Let e 2 E. # e denotes the set of all events that have to occur before e:
# e := fe0 2 E j e0 � eg.

2.3 Flow Event Structures

De�nition 2.3.1: (
ow event structure)
E = (E;�;#; l) is a 
ow event structure labelled over Act i�

� E is a countable set of events

� �� E �E is irre
exive (
ow relation)

� # � E �E symmetric (con
ict relation)

� l : E !Act labelling function

The class of all 
ow event structures is denoted by F. ; denotes the empty 
ow event
structure.

De�nition 2.3.2: (con�guration of a 
ow event structure)
Let E = (E;�;#; l) be a 
ow event structure. A subset X � E is called con�guration of E i�

(i) X con
ict-free, i. e. 8d; e 2 X : :(d#e),
(ii) �X := (� \(X �X))� (the re
exive and transitive closure of � in X) is a partial

order, i.e. � is cycle-free on X,

(iii) 8e 2 X: fe0 2 X j e0 �X eg is �nite (principle of �nite causes) and
(iv) 8e 2 X 8e0 2 E nX : e0 � e) 9e00 2 X : e0#e00 � e (X left-closed up to con
icts).

Like con�gurations in prime event structures a con�guration is called complete i�
8e 2 E nX : 9e0 2 X : e0#e.
A con�guration is maximal i� it is maximal with respect to inclusion.

Remark 2.3.3 Con�gurations of 
ow event structures can be maximal without being
complete (see [GG90]).

De�nition 2.3.4: Let E = (E;�;#; l) be a 
ow event structure.

a) Conf(E) is the set of all con�gurations of E (the �nite ones and the in�nite ones).
Conff(E) is the set of all �nite con�gurations of E .
b) Let e be in E, X 2Conf(E). Then #X e := fe0 2 X j e0 �X eg.

5



Lemma 2.3.5 Let E = (E;�;#; l) be a 
ow event structure, X;Y 2Conf(E) and
e 2 X; e 2 Y . If #X (e) 6=#Y (e) then exists x 2 X & y 2 Y : x#y.

Proof:
W.l.o.g. let b 2#X (e) and b 62#Y (e). Then exist
x1; :::; xn+1 2#X (e) : b = x1 � ::: � xn � xn+1 = e. Then exists j � n : xj 62#Y (e) and
xj+1 2#Y (e). Since xj � xj+1 and #Y (e) is a con�guration exists y 2#Y (e) : xj#y � xj+1.
Thus xj 2#X (e); y 2#Y (e) and xj#y.

Remark 2.3.6 Each prime event structure E = (E;�;#; l) can also be seen as a 
ow
event structure E 0 = (E;<;#; l). On prime event structures the de�nition for con�gurations
of prime event structures coincides with the one for 
ow event structures.

2.4 Domains

De�nition 2.4.1: (domains)
Let (D;v); (D0;v0) be partial orders.

(D;v) is isomorphic to (D0;v0) ((D;v) �= (D0;v0)) if exists f : D ! D0, f bijective and
8d1; d2 2 D : d1 v d2 , f(d1) v0 f(d2).

An element d 2 D is called least upper bound of X � D (d =
F
X) i�

(8x 2 X : x v d) & (8d0 2 D : (8x 2 X : x v d0)) d v d0).

An element p 2 D is called a complete prime i� for any X � D with
F
X 2 D:

p v FX ) 9x 2 X : p v x.
P (D) := fp 2 D j p is a complete prime g.

Two elements x; y 2 D are called consistent (x " y) i� 9z 2 D : x v z & y v z.

X � D is called pairwise consistent i� 8x; y 2 X : x " y.
(D;v) is called coherent i� every pairwise consistent subset X � D has a least upper

bound
F
X in D.

(D;v) is called �nitary i� 8p 2 P (D) :# p := fd 2 D j d v pg is �nite.
(D;v) is called (!)-prime algebraic i� P (D) is countable and

8d 2 D : d =
Ffp 2 P (D) j p v dg.

We call any �nitary coherent (!)-prime algebraic domain a domain.

(see [Bo90])

Lemma 2.4.2: For any unlabelled prime event structure E the poset (Conf(E);�) is a
domain, and any domain (D;v) is isomorphic to the poset of con�gurations of a prime
event structure. More speci�cally we have (D;v) �= (Conf(K(D;v));�) with
K(D;v) := (P (D);#;�), p1#p2 ,6 9d 2 D : p1; p2 v d and p1 � p2 , p1 v p2.
(First Representation Theorem in [Bo90])

6



Lemma 2.4.3: For any unlabelled 
ow event structure E the poset (Conf(E);�) is a
domain. Its complete primes are the con�gurations #X (e) for X 2 Conf(E). Conversely if
(D;v) is a domain then (D;v) is isomorphic to the poset (Conf(E);�) of a 
ow event
structure E .
(Second Representation Theorem in [Bo90])

De�nition 2.4.4: (labelled domain)
We call (D;v; l) a labelled domain (labelled over Act) i� (D;v) is a domain and
l : P (D)!Act.
Two labelled domains (D;v; l); (D0;v0; l0) are called isomorphic if exists f : D ! D0, f
bijective, 8d1; d2 2 D : d1 v d2 , f(d1) v f(d2), 8d 2 P (D) : l(d) = l0(f(d)).

We can transfer lemma 2.4.2 and 2.4.3 to the labelled case:

Lemma 2.4.5: Let E be a prime event structure labelled over Act . Then (Conf(E);�; l0)
with l0(X) =

(
l(e) if X =# e
undef. otherwise

is a labelled domain.

If (D;v; l) is a labelled domain, then K(D;v; l) = (P (D);#;�; l) is a labelled prime event
structure with (Conf(K(D;v; l);�; l0) is isomorphic to (D;v; l).

Lemma 2.4.6: Let E be a labelled 
ow event structure. Then (Conf(E);�; l0) with
l0(X) =

(
l(e) if X =#X e
" otherwise

is a labelled domain. For any labelled domain (D;v; l) there
exists a labelled 
ow event structure whose set of con�gurations is isomorphic to (D;v; l).

2.5 Con�guration Structures

De�nition 2.5.1: (con�guration structure)
Let E be a set of events, C � fX � E j X �niteg, p � C. (C;p) is called a (stable)
con�guration structure i�

(i) ; 2 C
(ii) 8X;Y; Z 2 C : X [ Y � Z ) X [ Y 2 C
(iii) 8X 2 C 8x 6= x0 2 X : 9Y � X : (x 2 Y , x0 62 Y )

(iv) 8X;Y 2 C : X [ Y 2 C ) X \ Y 2 C (Stability)

(v) 8X 2 p : 8Y 2 C : X 6� Y

Let EC :=
S
X2C , l : EC !Act. Then (C;p; l) is called a (labelled) con�guration structure.

(see [Co95])

The class of all con�guration structures is denoted by K.

De�nition 2.5.2 Let E = (E;�;#; l) be a 
ow event structure. Let
E 0 := fe 2 E j 9X 2Conf(E) : e 2 Xg. De�ne C(E) := (Conff (E);

p
; l0) withp

:= fX 2Conff (E) j X completeg and l0 := ldE 0.

7



Lemma 2.5.3: Let E be a 
ow event structure. Then C(E) is a stable con�guration
structure.

Proof: proposition 2.25 in [Co95]

Remark 2.5.4: There exist stable con�guration structures that cannot be created by 
ow
event structures, but we will not consider such structures.

In the remainder of this paper we will implicitly assume all con�guration structures to be
stable, except if stated otherwise.

2.6 Equivalence relations

Let E1 = (E1;�1;#1; l1); E2 = (E2;�2;#2; l2) be two labelled 
ow event structures and let
ECi = fe 2 Ei j 9X 2Conf(Ei) : e 2 Xg. ECi contains only the events that occur in some
con�guration. For example self-con
icting events of Ei are not contained in ECi.

De�nition 2.6.1: (event structure isomorphism �=e)
E1 �=e E2 :, 9f : E1 ! E2, f bijective with 8e; e0 2 E1:
e �1 e

0 , f(e) �2 f(e
0)

e#1e
0 , f(e)#2f(e

0)
l1(e) = l2(f(e))

De�nition 2.6.2: (domain isomorphism �=d)
E1 �=d E2 :, 9h :Conf(E1)!Conf(E2) with
h bijective
8X;X 0 2Conf(E1) : X � X 0 , h(X) � h(X 0)
8X 2Conf(E1) : l1(X) = l2(h(X)).

De�nition 2.6.3: (con�guration structure isomorphism �=c)
E1 �=c E2 :, 9f : EC1

! EC2
, f bijective and

8X � E1 : X 2Conf(E1), f(X) 2Conf(E2).
8X 2Conf(E1) : X complete , f(X) complete
8E 2 EC1

: l1(e) = l2(f(e)).

Lemma 2.6.4: For all 
ow event structures E1; E2 we have:
E1 �=e E2 ) E1 �=c E2 ) E1 �=d E2.
Proof:
E1 �=e E2 ) E1 �=c E2 is obvious. Let now E1 �=c E2, i.e. 9f : EC1

! EC2
such that f is

bijective and 8X � E1 : X 2Conf(E1), f(X) 2 Conf(E2). Obviously f extended to sets:
f :Conf(E1)!Conf(E2) is also bijective and 8X;X 0 2Conf(E1) : X � X 0 , f(X) � f(X 0).

De�nition 2.6.5: (interleaving trace equivalence �it)
Let E be a 
ow event structure and X;Y 2Conf(E). We de�ne X !a Y i� 9e 2 E nX such
that l(e) = a and Y = X [ feg.

8



A sequence of actions t = ha1; a2:::i in Act is called trace of Ei, if there exist con�gurations
X0; :::; Xn 2Conf(E) with X0 = ; and 80 � i � n� 1: Xi !ai Xi+1.
Traces(E) denotes the set of all traces that can be constructed from Conf(E).
Traces(E) := ft j t trace of Eg.
Two 
ow event structures are called interleaving trace equivalent i� their sets of traces
coincide: E1 �it E2 i� Traces(E1) =Traces(E2).
(see [GG90])

Remark 2.6.6: If E1 and E2 are prime event structures then E1 �=e E2 , E1 �=d E2 (see
lemma 2.4.2 and 2.4.5).

Lemma 2.6.7: For each 
ow event structure E = (E;�;#; l) there exists a domain
equivalent prime event structure P(E) := (E 0;�0;#0; l0) with
E 0 := f#X (e) j e 2 X 2Conf(E)g,
X �0 X 0 :, X � X 0,
X#0X 0 :, X [X 0 62Conf(E),
l0(#X (e)) := l(e).
I.e. for all 
ow event structures E : P(E) �=d E .
(see lemma 2.4.5 and 2.4.6)

2.7 Other de�nitions

De�nition 2.7.1: Let E1; E2 be sets of events such that � 62 E1 [ E2. Then
E1 �� E2 := f(e1; e2) j (e1 2 E1 & e2 2 E2) _ (e1 2 E1 & e2 = �) _ (e1 = � & e2 2 E2)g.
Let X � E1 �� E2. Then �1(X) := fe1 2 E1 j 9e2 2 E2 [ f�g : (e1; e2) 2 Xg and
�2(X) := fe2 2 E2 j 9e1 2 E1 [ f�g : (e1; e2) 2 Xg.

De�nition 2.7.2 Let E1; E2 be sets of events with � 62 E1 [E2, l1 : E1 !Act, l2 : E2 !Act
and A �Act.

Then E1 ��
A E2 := f(e1; �) j e1 2 E1g [ f(�; e2) j e2 2 E2g [ f(e1; e2) j e1 2 E1; e2 2

E2; l1(e1) = l2(e2) 2 Ag.
and E1 �A E2 := f(e1; �) j e1 2 E1; l1(e1) 62 Ag [ f(�; e2) j e2 2 E2; l2(e2) 62 Ag
[f(e1; e2) j e1 2 E1; e2 2 E2; l1(e1) = l2(e2) 2 Ag.

9



3 Semantic Re�nement

In this section two denotational semantics for the language L of de�nition 2.1.1 are given {
one for 
ow event structures (in the �rst subsection) and one for con�guration structures (in
the last subsection). In the second subsection a re�nement-operator on prime event
structures is de�ned.

3.1 Semantic of L on Flow Event Structures

We de�ne a denotational semantics for the language L like in [GGR92]:

First of all the operators on 
ow event structures are de�ned:

De�nition 3.1.1: Let E1 = (E1;�1;#1; l1), E2 = (E2;�2;#2; l2) be 
ow event structures,
A �Act, a 2Act, and E1 \ E2 = ;, � 62 E1 [ E2. De�ne

� E1 + E2 := (E1 [ E2;�1 [ �2;#1 [#2 [ (E1 �E2) [ (E2 � E1); l1 [ l2).

� E1; E2 := (E1 [ E2;�1 [ �2 [(E1 �E2);#1 [#2; l1 [ l2).

� E1 kA E2 := (E;�;#; l)
E := E1 ��

A E2

�:= f((e1; e2); (e01; e02)) j e1 �1 e
0
1 _ e2 �2 e

0
2g

# := f((e1; e2); (e01; e02)) j e1#1e
0
1 _ e2#2e

0
2

_(e1 = e01 6= � & e2 6= e02)
_(e2 = e02 6= � & e1 6= e01)
_(e1 = e01 = � & e2 = e02&l2(e2) 2 A)
_(e2 = e02 = � & e1 = e01&l1(e1) 2 A)

l(e1; e2) :=

(
l1(e1) if e2 = �
l2(e2) otherwise

� E2 6= ;. E1[a; E2] := (E;�;#; l)
E = f(e1; e2) 2 E1 � E2 j l1(e1) = ag [ f(e1; �) j e1 2 E1; l1(e1) 6= ag
�= f((e1; e2); (e01; e02)) j e1 �1 e

0
1 _ (e1 = e01 & e2 �2 e

0
2)g

# = f((e1; e2); (e01; e02)) j e1#1e
0
1 _ (e1 = e01 & e2#2e

0
2)g

l(e1; e2) =

(
l1(e1) if e2 = �
l2(e2) otherwise

The denotational semantics [[:]]F for the language L will now be de�ned inductively:

De�nition 3.1.2: [[:]]F : L! F:

[[a]]F := (feg; ;; ;; (e; a))
[[P +Q]]F := [[P ]]F + [[Q]]F
[[P ;Q]]F := [[P ]]F ; [[Q]]F
[[P kA Q]]F := [[P ]]F kA [[Q]]F
[[P [a; Q] ]]F := [[P ]]F [a; [[Q]]F ]

10



Remark 3.1.3 This semantics is almost the same as the one in [Co95] { only the de�nition
of the product di�ers slightly from the one we use: [Co95] uses: E1 k0A E2 := (E;�;#; l) with
E;#; l as before and (e1; e2) � (e01; e

0
2) :, (e1 �1 e

0
1 _ e2 �2 e

0
2) & (:(e1; e2)#(e01; e02)).

But [Co95] showed that this semantics (which we will denote with [[:]]F 0) yields the same
consistency results as [[:]]F { see also lemma 4.3.1.

Like on 
ow event structures we now de�ne equivalence relations on terms:

De�nition 3.1.4: Let P1; P2 be terms of L, then

P1
�=e P2 :, [[P1]]F �=e [[P2]]F .

P1
�=d P2 :, [[P1]]F �=d [[P2]]F .

P1
�=c P2 :, [[P1]]F �=c [[P2]]F .

P1 �it P2 :,Traces([[P1]]F ) = Traces([[P2]]F ).

(we also write Traces(P ) for Traces([[P ]]F ).

Lemma 3.1.5: �=e and �=c are congruences on L.

Proof: see [GGR92]

3.2 Re�nement on Prime Event Structures

Problems with Re�nement on Prime Event Structures

We saw that it is rather easy to de�ne re�nement on 
ow event structures: each event to be
re�ned will be replaced by a 
ow event structure and each event that has been replaced for e
inherits the relations to the environment from e.

This kind of re�nement is not appropriate for prime event structures because a re�ned event
structure might no longer be a prime event structure.

Example: E

u

ea0

u

eb1

-

F

u
fx0

u
f y1

qq
qq
q
qq
qq

E [a; F ]

u
(e0; f0)

x

u(e0; f1)
y

qq
qq
q
qq
qq

u (e1; �)b

�
�
��3

Q
Q
QQs

Figure 1: The re�nement of a prime event structure does not yield a prime event structure
(ea denotes the event e labelled with a)

But with help of lemma 2.6.7 we know that each 
ow event structure can be turned into an
equivalent prime event structure: Let E be an arbitrary 
ow event structure, then
E �=d P(E) which is a prime event structure.

11



Now if we want to re�ne a prime event structure we take the 
ow event structure result and
turn it into a prime event structure. This gives rise to the following de�nition:

De�nition 3.2.1 (re�nement of prime event structures)
Let E1; E2 be two prime event structures and a 2Act. De�ne E1[a; E2]P := P(E1[a; E2])
(with P from lemma 2.6.7).
Thus E1[a; E2]P := (E;�;#; l) with
E = f#X (e) j e 2 X 2 Conf(E1[a; E2])g,
#X (e) �#Y (f) :,#X (e) �#Y (f),
#X (e)# #Y (f) :,#X (e)[ #Y (f) 62Conf(E1[a; E2]),
l(#X (e)) = l0(e),
with E 0 = (E 0;�0;#0; l0) = E1[a; E2] being the 
ow event structure constructed by
re�nement.

3.3 Semantics of L on Con�guration Structures

We de�ne a denotational semantics for the language L like in [Co95] (with a slightly
modi�ed notation).

De�nition 3.3.1: Let (C1;p1; l1) and (C2;p2; l2) with E1 =
S
X2C1 X and E2 =

S
X2C2 X

be con�guration structures, A �Act, a 2Act, E1 \ E2 = ;,� 62 E1 [ E2. De�ne:

� C1 + C2 := (C1 [ C2;
p

1 [
p

2; l1 [ l2)

� C1; C2 := (C;p; l) such that
C = C1 [ fX1 [X2 j X1 2 C1; X2 2 C2; X2 6= ; ) X1 2 p1g,p

= fX1 [X2 j X1 2 p1 & X2 2 p2g,
l = l1 [ l2.

� C1 kA C2 := (C;p; l) with
C is the smallest set with:

{ (i) ; 2 C
{ (ii) 8(e1; e2) 2 E1 �A E2 and 8X 2 C: �i(X [ f(e1; e2)g) 2 Ci and �i injective on
X [ f(e1; e2)g implies X [ f(e1; e2)g 2 C.
Recall that �i(e1; e2) =

(
ei if ei 6= �
unde�ned otherwise

p
= fX 2 C j �1(X) 2 p1 & �2(X) 2 p2g

l(e1; e2) =

(
l1(e1) if e2 = �
l2(e2) otherwise

� Let
S
X2C2 X 6= ;. C1[a; C2] := (C;p; l) with

E := f(e1; e2) 2 E1 �E2 j l1(e1) = ag [ f(e1; �) j e1 2 E1; l1(e1) 6= ag
For e1 2 E1 and X � E de�ne X(e1) := fe2 2 E2 j (e1; e2) 2 Xg.
C = fX � E j X satis�es (i),(ii),(iii)g :
(i) �1(X) 2 C1

12



(ii) 8e1 2 �1(X) : l1(e1) = a) X(e1) 2 C2
(iii) 8Y � �1(X) with fe1 2 �1(X) j X(e1) 2 p2 _ l1(e1) 6= ag � Y : Y 2 C1.p

= fX 2 C j �1(X) 2 p1 & 8e1 2 �1(X) : (l1(e1) 6= a _X(e1) 2 p2)g

l(e1; e2) =

(
l1(e1) if e2 = �
l2(e2) otherwise

We now inductively de�ne the denotational semantics [[:]]K for the language L:

De�nition 3.3.2: [[:]]K : L! K:

[[a]]K := (f;; fegg; ffegg; f(e; a)g)
[[P +Q]]K := [[P ]]K + [[Q]]K
[[P ;Q]]K := [[P ]]K ; [[Q]]K
[[P kA Q]]K := [[P ]]K kA [[Q]]K
[[P [a; Q] ]]K := [[P ]]K [a; [[Q]]K]

4 Consistency of 
ow event structure semantics and

con�guration structure semantics for L

4.1 Introduction

Two denotational semantics have been de�ned for the language L { based on 
ow event
structures respectively on con�guration structures. We want to know whether these
semantics are consistent, i.e. if C([[P ]]F ) = [[P ]]K holds for an arbitrary term P 2 L? (Only
�nite con�gurations have to be considered because for all terms P 2 L the equation
Conf([[P ]]F ) =Conff([[P ]]F ) holds.)

The consistency can easily be shown for terms that do not contain the parallel operator kA.
In order to show for arbitrary terms P1; P2 that C([[P1 kA P2]]F ) = [[P1 kA P2]]K one has to
show that the set of con�gurations Conf([[P1 kA P2]]F ) is the same as the one constructed
with [[:]]K . With de�nition 3.3.1 we see that one necessary condition for this is that the
projections of con�gurations of the process [[P1 kA P2]]F = [[P1]]F kA [[P2]]F are con�gurations
of the components [[P1]]F and [[P2]]F . This is a quite natural demand because the possible
executions (i.e. the con�gurations) of a process should not be enlarged by putting another
process in parallel.

We thus have to show for arbitrary terms P1 and P2 that for all con�gurations
X 2Conf([[P1]]F kA [[P2]]F ): �1(X) 2Conf([[P1]]F ) and �2(X) 2Conf([[P2]]F ).
As we see in the following example this condition does not hold for arbitrary 
ow event
structures: We can �nd 
ow event structures E1 and E2 such that
�1(Conf(E1 kA E2)) 6�Conf(E1), i.e. 9X 2 Conf(E1 kA E2) such that �1(X) 62Conf(E1).

13



E1

u
ea1

u
da1

u
f b1

-qq
qq
qq
qq
q kfa;bg

E2

u

ea2

u

f b2

-

Figure 2: Problem E1

In our example X = f(d1; e2); (f1; f2)g is a con�guration of E1 kfa;bgE2, but
�1(X) = fd1; f1g 62Conf(E1), because �1(X) is not left-closed up to con
icts. X is
left-closed up to con
icts, because the events (e1; �) and (e1; e2) are both con
icting (d1; e2)
and (d1; e2) is predecessor of (f1; f2).

In our example E1 is the \critical" event structure because for E2 no event structure E3 exists
with �1Conf(E2 kA E3) 6�Conf(E2).
We want to know if critical event structures like E1 can be created by the language L.

Recall that Lo denotes the set of those terms of our language L that do not contain a
re�nement operator. [Co95] showed that for all terms P 2 Lo: C([[P ]]F ) = [[P ]]K and in
particular 8P1; P2 2 Lo: �i(Conf([[P1]]F kA [[P2]]F )) �Conf([[Pi]]F ) (see lemma 4.3.1).

It was claimed in [Co95] that the consistency result is also valid for all terms of the language
L. But this proof seems to contain a mistake. We will give a correct proof here.

4.1.1 The Problem of the Proof in [Co95]

De�nition 4.1.1: (delta axiom)
Let E = (E;�;#; l) be a 
ow event structure. E satis�es the delta axiom i� 8d; e; f 2 E :
d#e � f & d 6� f ) 9g 2 E : (e#g � f) & (8e0 2 E n feg : (g#e0)) (e#e0 & e0 � f)).
Here e � e0 :, e#e0 _ e � e0 _ e0 � e.

In [Co95] the following facts are mentioned:

� All 
ow event structures [[P ]]F created by terms P 2 Lo satisfy the delta axiom.
� If the 
ow event structures E1, E2 satisfy the delta axiom then
8A �Act: 8i 2 f1; 2g : �i(Conf(E1 kAE2)) �Conf(Ei).

We want to show that the same holds for all terms of the language L.

[Co95] claims that the delta axiom is preserved by re�nement. We can disprove this however
by a counter example:

Let P1; P2 be in L
o with P1 = ((a k; b); c) kfa;bg (a+ b) and P2 = u; v.

Then [[P1[b; P2] ]]F does not satisfy the delta axiom.

Consider Figure 3: (self-con
icting events are encircled). If one chooses
d := (e0; �); e := (e3; f0); f := (e6; �), one cannot �nd g with the property
(e#g � f) & (8e0 2 E n feg : (g#e0)) (e#e0 & e0 � f)). The only possible candidates for g
are (e5; f0) and (e5; f1), but for these one has e

0 := (e3; f1)#g, e
0 6= e but :(e0#e). (e2; �) is

no candidate for g, because d#(e2; �) and d 6� f .

14



[[P1]]F

ujea0

uj

eb1

qq
qq
qq
q uea2

u

eb3
qq
qq
qq
qq
qq
qq
qq
qq
q

q q
q q
q q
qq q q q q q q

q q q q q q q

q q q q q q q

ujea4

uj
eb5

u ec6

HHHj

S
S
S
Sw

��
�*

�
�
�
�7

[[P2]]F

ufx0
uf y1

important part of [[P1]]F [a; [[P2]]F ]

u
(e3; f0)

x

uj

(e5; f0)
x

uj
(e0; �)a

q q q q q q q q

q q q q q q q q q q q q

q q
q q
q q
q q

u
(e3; f1)

y

uj

(e5; f1)
y

u(e2; �)aqqqqqqqqqqqq

qqqqqqqqqqqq

qq
qq
qq
qq
qq
qq

qq
qq
qq
qq
qq
qq

q q
q q
q q
q q
q q
q q

q q q q q q q q q q q qq q q q q q q

u(e6; �)c

PPPPPPPPPPPq

���
���

���
���

�:

�
�
�
�
�
�
�
�
�
�
�
��>

��
��

��
���1

�
�
�
�
�
�
�
�
���

Figure 3: delta axiom is not satis�ed for d = (e0; �); e = (e3; f0); f = (e6; �)

4.2 Characterization of \critical" event structures

De�nition 4.2.1 A 
ow event structure E1 = (E1;�1;#1; l1) is called crictical if there
exists a 
ow event structure E2 = (E2;�2;#2; l2) and an action set A �Act such that there
exists a con�guration X 2Conf(E1 kA E2) with �1(X) 62Conf(E1).
We want to know if such critical 
ow event structures can be created by the language L.
Since the de�nition of critical uses a quanti�cation over all event structures it is not easy to
use and we look for a simpler characterization. So how can the critical 
ow event structures
be characterized?

In the example the di�culty arose because a new causal relationship was created between d1
and f1 by the events d2 and f2. This leads to the following idea:

E = (E;�;#; l) can only be critical if it is possible to extend the 
ow relation in such a way
that a new con�guration arises, i.e. there exists �0�� with 9X 2 Conf(E;�0;#; l) but
X 62Conf(E;�;#; l).
We do not consider all possible extensions of � but only those ones that add a �nite number
of predecessors to a single event:

De�nition 4.2.2 Let E = (E;�;#; l) be a 
ow event structure, f 2 E;D � E;D �nite.
De�ne an event structure with an extended 
ow relation:
H(E ; D; f) := (E;� [(D � f);#; l).

Thus the only di�erence between E and H(E ; D; f) is that in H(E ; D; f) all events of D are
predecessors of f .

We now want to characterize critical event structures by introducing the notion of
\problematic" event structures:

15



De�nition 4.2.3 Let E = (E;�;#; l) be a 
ow event structure. E is called problematic i�
exists D � E, D �nite and 8d 2 D : d 6� f : such that exists X 2Conf(H(E ; D; f))nConf(E).
Thus an event structure E = (E;�;#; l) is problematic if adding a �nite number of
predecessors to an event f (that all were in no relation to f before) leads to a new
con�guration.

Lemma 4.2.4 Let E = (E;�;#; l) be a 
ow event structure, D a �nite subset of E such
that 8d 2 D : d 6� f . Let Y 2Conf(H(E ; D; f))nConf(E), i.e. E is problematic. Let
X := fe 2 Y j e �0

Y fg with �0
Y := (�0 \(Y � Y ))�). Then X 2Conf(H(E ; D; f))nConf(E)

and X n ffg 2Conf(E).
Proof: evident.

Proposition 4.2.5: For all 
ow event structures E the following implication holds:
If E is critical then E is problematic.

Proof: Let A be a subset of Act, X 2Conf(E1 kA E2) and �1(X) 62Conf(E1). Then there
exists e1 62 �1(X); (f1; f2) 2 (X); e1 �1 f1 and 8(d1; d2) 2 X : :(d1#1e1) _ d1 6�1 f1.

Let z 2 Z � E1. De�ne M(Z; z) i� 9z0 62 Z; z0 �1 z & 8z00 2 Z : :(z00#z0) _ :(z00 �1 z). For
exampleM(�1(X); f1) holds.

Consider #X (f1; f2) = f(d1; d2) 2 X j (d1; d2) �X (f1; f2)g. Since X is a con�guration, it
follows that (f1; f2) only has a �nite number of predecessors in X, so #X (f1; f2) is �nite.
Because of this there exist minimal elements in the set
f(y1; y2) 2#X (f1; f2) j M(�1(#X (f1; f2)); y1)g. Let (f 01; f 02) 2#X (f1; f2) be such a minimal
element, then M(�1(#X (f1; f2)); f

0
1) and

8(x1; x2) �X (f 01; f
0
2) & (x1; x2) 6= (f 01; f

0
2) : :M(�1(#X (f1; f2)); x1).

SinceM(�1(#X (f1; f2)); f
0
1) holds we can conclude that

D := fd01 2 �1(#X (f 01; f
0
2)) j d01 6� f 01 & 9x1 62 �1(X); x1 �1 f

0
1; d

0
1#x1g 6= ;. D �#X (f 01; f

0
2)

shows that D is �nite.

Now let us look at H(E1; D; f 01) with �0
1:=�1 [D � ff 01g and

Y :=#�1(X) (f
0
1) [

S
d0

1
2D #�1(X) (d

0
1) = fx1 2 �1(X) j x1 ��1(X) f

0
1 _ 9d01 2 D : x1 ��1(X) d

0
1g.

Then Y � �1(#X (f 01; f
0
2)) holds.

We will show, that Y 62Conf(E1) but Y 2Conf(H(E1; D; f 01)) and therefore conclude that E1
is problematic.

� Y 62Conf(E1) because it is not left-closed up to con
icts:
e01 �1 f

0
1 2 Y & 8h01 2 Y : :(h01#e01) _ :(h01 �1 f

0
1).

� Y 2Conf(H(E1; D; f 01)):

(i) Y is con
ict-free since Y � �1(X)

(ii) �Y is a partial order with respect to �1 and with respect to �0
1 because Y � �1(X)

and 8(d01; f 01) 2�0
1 n �1: 8d02 : (d01; d02) 2 X : (d01; d

0
2) �X (f 01; f

0
2)

(iii) evident

(iv) Y is left-closed up to con
icts:

16



Let z1 2 Y; x1 62 Y; x1 �1 z1.
Case 1: z1 = f 01; x1 62 �1(X). According to the de�nition of D there exists d01 2 Y with
x1#1d

0
1 �0

1 f
0
1.

Case 2: z1 = f 01; x1 2 �1(X)) x1 2 Y , since x1 �1 f
0
1.

Case 3: z1 6= f 01. 8z1 2 Y : z1 2 �1(#X (f 01; f
0
2)), and therefore if z1 6= f 01 then

:M(�1(#X (f1; f2)); z1), so that 8x1 62 �1(#X (f1; f2)); x1 �1 z1 : 9y1 2#X (f1; f2) with
x1#1y1 �1 z1 and therefore y1 �Y f 01, and y1 2 Y . If x1 �1 z1 and x1 2 �1(#X (f1; f2)),
then x1 2 Y .
This shows that Y is left-closed up to con
icts with respect to �0

1.

We conclude that Y 2Conf(H(E1; D; f 01)).

Corollary 4.2.6: Let E1, E2 be 
ow event structures with E1 and E2 not being
problematic. Then 8i 2 f1; 2g : �i(Conf(E1 kA E2)) �Conf(Ei).

Remark 4.2.7: The following (simpler) de�nition of problematic is not su�cient to
ensure proposition 4.2.5: If we called E problematic i� 9d; f 2 E; d 6� f , so that
9X 2Conf(E 0)nConf(E) with E 0 = (E;� [f(d; f)g;#; l) the implication \E is critical) E is
problematic" would not hold, as we see in the following example:

E1

ueb0

u

ec1

ujex2

uj

ex3

q q q q q q q

q q q q q q q

u ea4

HHHj

��
�*

E2

uf b0

u

f c1

u fa2

HHHj

��
�*kfa;b;cg

Figure 4: E1 would not be problematic with this de�nition but nevertheless critical

We see in Figure 4 that E1, not problematic with the modi�ed de�nition, is critical because
X = f(e4; f2); (e0; f0); (e1; f1)g 2Conf (E1 kfa;b;cg E2), and �1(X) = f(e4; e0; e1)g 62Conf(E1).

Proposition 4.2.8: For all terms P 2 L: [[P ]]F is not problematic.

Proof: (induction on the syntactical structure of the terms)
Let Pi be Terms in L and [[Pi]]F := Ei = (Ei;�i;#i; li), [[P ]]F = E := (E;�;#; l) and
E1 \ E2 = ;.

� P = a, obvious

17



� P = P1;P2

Suppose that E is problematic, then
9d1; :::; dn : di 6� f 2 E ) fd1; ::; dn; fg � E1 _ fd1; ::; dn; fg � E2 and therefore
9X 2Conf(H(E1; fd1; ::; dng; f))n Conf(E1) or 9X 2Conf(H(E2; fd1; ::; dng; f))n
Conf(E2). Contradiction!

� P = P1 + P2

Suppose that E is problematic, then
9d1; :::; dn : di 6� f 2 E ) fd1; ::; dn; fg � E1 _ fd1; ::; dn; fg � E2 and therefore
9X 2Conf(H(E1; fd1; ::; dng; f))n Conf(E1) or 9X 2Conf(H(E2; fd1; ::; dng; f))n
Conf(E2). Contradiction!

� P = P1 kA P2

By induction hypothesis E1 and E2 are not problematic, and it follows
8X 2Conf(E1 kA E2) : 8i 2 f1; 2g : �i(X) 2Conf(Ei).
Suppose that E is problematic, then 9D := fd1 = (d11; d

1
2); :::; d

n = (dn1 ; d
n
2)g and

f = (f1; f2) with 81 � i � n : di 6� f = (f1; f2) 2 E and 9Y 2 Conf(H(E ; D; f))n
Conf(E). We denote �0:=� [D � ffg. Recall lemma 4.2.4 and consider
X = fh 2 Y j h �0

Y fg = fh 2 Y j h �Y f _ 9di 2 D \ Y : h �Y dig. Then
X 2Conf(H(E ; D; f)); X 62 Conf(E), X n ffg 2Conf(E), and it follows for i 2 f1; 2g
that �i(X n ffg) 2Conf(Ei), with �i(X n ffg) =

(
�i(X) n ffig if fi 6= �
�i(X) otherwise:

Since X 62Conf(E), but X n ffg 2Conf(E), there exists e = (e1; e2) 62 X and
di 2 D \X such that: (i) di#e � f and (ii) 8h 2 X : :(h#e) _ :(h � f).

{ Case 1: di1#1e1 �1 f1 ) �1(X) 62Conf(E1).
Let W := fh1 2 �1(X) j h1 6�1 f1 & 9x1 62 �1(X) : x1 �1 f1; x1#h1g and
D := ff1; d11; :::; dn1g n f�g [W . Since W � �1(#X (f1; f2)), both W and D are
�nite.
Since �1(X) n ff1g 2Conf(E1) �1(X) 2Conf(H(E1; D; f1)) holds and consequently
E1 is problematic. Contradiction!

{ Case 2: di2#2e2 �2 f2 analogous to case 1.

{ Case 3: di1#1e1; e2 �2 f2 (we assume :(e2#di2))
a) (�; e2) 2 X ) (e1; e2)#(�; e2) � (f1; f2), Contradiction to assumption (ii)!

b) (�; e2) 62 X. Since X 2Conf(H(E ; fd1; ::; dng; f)), there exists (h1; h2) 2 X such
that h2#2e2 and (h1; h2) �0 (f1; f2). If (h1; h2) � (f1; f2) this would be a
contradiction to assumption (ii). So 9j : (h1; h2) = (dj1; d

j
2). Now in analogy with

case 2 a contradiction follows.

{ Case 4: di2#2e2; e1 �1 f1 in analogy to case 3.

{ Case 5: di1 = e1 6= � & di2 6= e2 (we assume :(e2#di2))
Since (di1; d

i
2) 6� (f1; f2), e1 �1 f1 is not allowed, one concludes e2 �2 f2.

a) (�; e2) 2 X ) (e1; e2)#(�; e2) � (f1; f2), Contradiction to assumption (ii)!

b) (�; e2) 62 X in analogy to case 3b)

{ Case 6: di2 = e2 6= � & di1 6= e1 in analogy to case 5.

� P = P1[a; P2]
We assume that E is problematic, consequently there exist
D := fd1 = (d11; d

1
2); :::; d

n = (dn1 ; d
n
2)g and f = (f1; f2) with

18



81 � i � n : di 6� f = (f1; f2) 2 E and 9Y 2 Conf(H(E ; D; f))n Conf(E). De�ne
�0:=� [D � ffg. Recall lemma 4.2.4 and consider
X := fh 2 Y j h �0

Y fg = fh 2 Y j h �Y f _ 9di 2 D \ Y : h �Y dig. Then
X 2Conf(H(E ; D; f)) but X 62 Conf(E), X n ffg 2Conf(E).
Since X 62Conf(E), but X n ffg 2Conf(E), there exists e = (e1; e2) 62 X and i such
that: (i) di#e � f and (ii) 8h 2 X : :(h#e) _ :(h � f).

{ Case 1: di1#1e1 �1 f1
Suppose �1(X) 2Conf(E1), then there exists h1 2 �1(X) with e1#1h1 �1 f1 and
because of this there exists (h1; h2) 2 X with (e1; e2)#(h1; h2) � (f1; f2),
Contradiction to assumption (ii), consequently �1(X) 62Conf(E1).
Suppose �1(X) 62Conf(H(E1; fd11; :::; dn1g; f1)), i.e.
9x1 62 �1(X); x1 �1 f1 & 8h1 2 �1(X) : :(x1#1h1) _ :(h1 �0

1 f1), in particular
81 � i � n : :(di1#1x1).

If there exist di�erent (f1; f2); (f1; f
0
2) 2 X take (f1; f2) 2 X with 6 9y2 2 E2 and

y2 �2 f2. Since X 2Conf(H(E ; fd1; :::; dng; f)) and
(x1; x2) 62 X; (x1; x2) � (f1; f2), there exists (h1; h2) 2 X with
(x1; x2)#(h1; h2) �0 (f1; f2). x1#1h1 because otherwise x1 2 �1(X).
If (h1; h2) � (f1; f2) then h1 �1 f1, since f2 has no predecessors. So x1#1h1 �1 f1.
Contradiction!
If (h1; h2) �0 (f1; f2), then 9j : (h1; h2) = (dj1; d

j
2) but then dj1#1x1, Contradiction!

Therefore �1(X) 2 Conf(H(E1; fd11; :::; dn1g; f1)), �1(X) 62Conf(E1), and therefore
E1 is problematic. Contradiction!

{ Case 2: di1 = e1 = f1 & di2#2e2 �2 f2

Look at X(e1) = fy2 2 E2 j (e1; y2) 2 Xg. X(e1) 62Conf(E2), since with
assumption (ii) 8h2 2 X(e1) : :(e2#h2) _ :(h2 �2 f2).

Let D := fd12; :::; dn2g n f�g. Suppose X 62Conf(H(E2; D; f2)). Then 9x2 62 X(e1)
with x2 �2 f2 and 8h2 2 X(e1) : :(h2#2x2) _ :(h2 �0

2 f2), in particular
8di2 : :(h2#2d

i
2). But (e1; x2) 62 X and (e1; x2) � (e1; f2), consequently

9(h1; h2) 2 X with (e1; x2)#(h1; h2) �0 (e1; f2). If h1#1e1 then (h1; h2) 62 X,
consequently h1 = e1 & h2#2x2 and h2 62 D, consequently (e1; h2) � (e1; f2) and
h2 �2 f2, Contradiction!

We conclude X 2Conf(H(E2; D; f2)) and E2 is problematic. Contradiction!

There are no more cases for P1[a; P2]: If d
i
1#1e1 & e1 = f1 & e2 �2 f2 then di#f ; if

di1 = e1 & d2#e2 & e1 �1 f1 then di � f .

Corollary 4.2.9: For all P1; P2 2 L and for all A �Act the following holds:
�1(Conf([[P1]]F kA [[P2]]F )) � Conf([[P1]]F ) and �2(Conf([[P1]]F kA [[P2]]F )) � Conf([[P2]]F ).

19



4.3 Consistency Results

Lemma 4.3.1 For all terms P1; P2 2 L and for all actions a 2Act:
[[a]]K = C([[a]]F 0) = C([[a]]F )
If [[Pi]]K = C([[Pi]]F 0) = C([[Pi]]F ) then:
[[P1]]K ; [[P2]]K = C([[P1]]F 0 ; [[P2]]F 0) = C([[P1]]F ; [[P2]]F )
[[P1]]K + [[P2]]K = C([[P1]]F 0 + [[P2]]F 0) = C([[P1]]F + [[P2]]F )
[[P1]]K [a; [[P2]]K ] = C([[P1]]F 0[a; [[P2]]F 0]) = C([[P1]]F [a; [[P2]]F ])
If P1 and P2 satisfy the delta axiom then
[[P1]]K kA [[P2]]K = C([[P1]]F 0 k0A [[P2]]F 0) = C([[P1]]F kA [[P2]]F ).

Proof: [Co95], proposition 3.43 shows this result for [[:]]F and [[:]]F 0

The last point has to be shown for terms that do not satisfy the delta axiom:

Lemma 4.3.2: Let P1; P2 2 L, A �Act. If [[Pi]]K = C([[Pi]]F ) then
[[P1 kA P2]]K = C([[P1]]F kA [[P2]]F ).

Proof:
Let (C;p; l) := [[P1 kA P2]]K = [[P1]]K kA [[P2]]K (note that we use the same symbol kA for
the domain of 
ow event structures and the domain of con�guration structures).
Let (C 0;p0; l0) := C([[P1]]F kA [[P2]]F ) and let E := (E;�;#; l) = [[P1]]F kA [[P2]]F .
Let Ei := (Ei;�i;#i; li) = [[Pi]]F and (Ci;pi; li) = [[Pi]]K.
According to the assumption (Ci;

p
i; li) = C(Ei).

We want to show that (C;p; l) = (C 0;p0; l0).

� C � C 0
Since we only take �nite con�gurations into account an induction over the number of
events in a con�guration is possible. Let X 2 C.
X = ; ) X 2 C 0.
Let X = X 0 [ f(e1; e2)g and X 0 2 C 0, (e1; e2) 62 X 0. According to the assumption we
have (e1; e2) 2 E1 �A E2 and 8i 2 f1; 2g: �i(X) 2 Ci(=Conf([[Pi]]F )) and �i is injective
on X.
Suppose X 62 C 0
(i) Suppose X contains con
icts: (e1; e2) cannot be self-con
icting therefore
9(e01; e02) 2 X 0 : (e01; e

0
2)#(e1; e2).

Case 1: e01#1e1 ) �1(X) 62 Conf([[P1]]F ). Contradiction!
Case 2: e02#2e2 ) �2(X) 62 Conf([[P2]]F ). Contradiction!
Case 3: e1 = e01 6= � & e2 6= e02 ) �1 is not injective on X. Contradiction!
Case 4: e2 = e02 6= � & e1 6= e01 ) �2 is not injective on X. Contradiction!
(ii) Suppose �X isn't a partial order, i.e. X contains cycles with respect to �. Then
9(e01; e02) 2 X 0 with (e1; e2) � (e01; e

0
2). Since X

0 2Conf([[P1]]F kA [[P2]]F ), this is only
possible if 9(e001; e002) 2 X 0 with (e1; e2)#(e

00
1; e

00
2) � (e01; e

0
2), but then X contains

con
icts. Contradiction to (i).
(iii) All events of X obviously only have �nitely many predecessors, since we only take
into account �nite con�gurations.
(iv) Suppose X is not left-closed up to con
icts.
Let (e01; e

0
2) 62 X, (e01; e

0
2) � (e1; e2). W.l.o.g. e01 �1 e1. Since �1(X) 2 Conf([[P1]]F ),

there exists e001 2 �1(X) : e01#1e
00
1 �1 e1 and 9(e001; e002) 2 X with

(e01; e
0
2)#(e

00
1; e

00
2) � (e1; e2). Contradiction!

20



� C 0 � C
Let X 2 C 0. Then X � E1 �A E2 and with corollary 4.2.9 �i(X) 2Conf([[Pi]]F ) = Ci.
Finally �i is injective on X, since otherwise X contained con
icts.

� p0 � p

Let X 62 p, d.h. �1(X) 62 p1 _ �2(X) 62 p2. W.l.o.g. 9e1 62 �1(X) with
8e01 2 �1(X) : :(e01#e1), then (e1; �) 62 X and 8(e01; e02) 2 X : :(e01; e02)#(e1; �),
consequently X 62 p0.

� p � p0. Let X 62 p0, i.e. 9(e1; e2) 62 X with 8(e01; e02) 2 X : :(e01; e02)#(e1; e2). W.l.o.g.
e1 6= �, consequently e1 62 �1(X) (otherwise (e1; e

0
2) 2 X; (e1; e

0
2)#(e1; e2)) and

8e01 2 �1(X) : :(e01#1e1, consequently �1(X) 62 p1 and we conclude X 62 p.
� l = l0 obvious

Proposition 4.3.3: For all terms P 2 L the following holds: [[P ]]K = C([[P ]]F ).
Proof: induction over the syntactic structure of P with lemma 4.3.1 and lemma 4.3.2.

Corollary 4.3.4: �=d is a congruence on L.

21



5 Syntactic Re�nement

5.1 Introduction and Motivation

As mentioned above [GGR92] de�ned a syntactic re�nement, compared it with semantic
re�nement and showed that in case of re�ning synchronizing actions it coincides with
semantic re�nement only under fairly restrictive conditions. We will call the syntactic
re�nement of [GGR92] syntactic substitution and de�ne a new kind of syntactic re�nement.

The di�culties in [GGR92] arise by the re�nement of synchronizing actions: e.g.
(P1 kA P2)[a; Q] and a 2 A. In this case the semantic re�nement operator does not
necessarily distribute over the parallel composition, which is the case for syntactic
substitution.

If one understands the re�nement of an action a as the instantiation of a procedure call it is
quite natural to understand a synchronizing action in the following way: An action name
stands for an agreement among the communicating partners to execute the procedure just
once and to distribute the result. This is the way we understand semantic re�nement.

In order to simulate this in a syntactic way one possibility is to put another process in
parallel that takes charge of the execution of the procedure. Let a1; a2 be calling- and
returning actions and � an operator for repetition. So the de�nition of syntactic re�nement
could be the following:

(P1 kA P2)[Q=a] := (P1[(a1; a2)=a] kAnfag[fa1;a2gP2[(a1; a2)=a]) kfa1;a2g(a1;Q; a2)�
But �rst it is rather complicated to put a third process in parallel, and secondly it is not
quite intuitive, thus a a simpli�cation could be to charge one process with the execution of
the synchronizing procedure. The other process then synchronizes with it:

(P1 kA P2)[Q=a] := (P1[(a1;Q; a2)=a] kAnfag[fa1;a2gP2[(a1; a2)=a])

If one is not interested in the synchronization points one has to de�ne an appropriate hiding
operator n and one gets:

(P1 kA P2)[Q=a] := (P1[(a1;Q; a2)=a] kAnfag[fa1;a2gP2[(a1; a2)=a]) n fa1; a2g
We will give a simple criterion under which circumstances the new syntactic re�nement
coincides with semantic re�nement with respect to a rather strong equivalence relation.

Only well-formed terms will be taken into account.

5.2 A new kind of syntactic re�nement

5.2.1 The new de�nition

With exception to the case (P1 kA P2)[a; Q] with a 2 A, the notion of syntactic re�nement
in [GGR92] coincides with textual replacement as one could see in de�nition 2.1.4. Moreover
[GGR92] show that syntactic re�nement and semantic re�nement yield isomorphic 
ow
event structures for all terms in L that do not belong to the same exceptional class.

Lemma 5.2.1 Let P; P1; P2; Q 2 Lo, a; b 2Act, A �Act. Then the following equivalences
hold:

22



1. a[a; Q] �=e Q
2. b[a; Q] �=e b (if b 6= a)
3. (P1;P2)[a; Q] �=e P1[a; Q];P2[a; Q]
4. (P1 + P2)[a; Q] �=e P1[a; Q] + P2[a; Q]
5. (P1 kA P2)[a; Q] �=e P1[a; Q] kA P2[a; Q] (if a 62 A)

(taken from [GGR92], lemma 4.1)

Lemma 5.2.2: Let P;Q 2 Lo, a 2Act. If a 62 S(P ), then: P [a; Q] �=e PfQa g.
(taken from [GGR92], theorem 4.3)

But for terms with syntactic structure (P1 kA P2)[a; Q] with a 2 A the syntactic
substitution and the semantic re�nement coincide only under fairly restrictive conditions.

The syntactic substitution of [GGR92] is de�ned in this case:
(P1 kA P2)fQa g := (P1 kAnfag[L(Q) P2), if a 2 A.

As one can see in the following example the semantic of (P1 kA P2)fQa g does not even
necessarily preserve interleaving trace equivalence:

Let P1 := (a; c k; a; c); P2 := a;Q := (b; b+ b); A := fag.
Then hb:b:c:ci 62 Traces((P1 kAP2)[a; Q]) =Traces(((a; c k;a; c) kfaga)[a; (b; b+ b)]).
But hb:b:c:ci 2Traces(P1[a; Q] kAnfag[L(Q)P2[a; Q]) since with lemma 5.2.1
P1[a; Q] kAnfag[L(Q)P2[a; Q]) �=e ((b; b+ b); c k; (b; b+ b); c) kb(b; b+ b).

In order to avoid problems arising by executing actions of Q repeatedly and parallel to each
other we de�ne syntactic re�nement like a procedure call. The idea is that one process
executes the procedure and the other only synchronizes at the beginning and the end of the
call.

De�ne syntactic re�nement [Q=a] inductively over the syntactic structure of the terms:

De�nition 5.2.3 Let P; P1; P2; Q 2 Lo and fa1; a2g \ (L(Q) [ L(P1) [ L(P2) [ A) = ;.
b[Q=a] :=

(
Q if b = a
b otherwise

(P1;P2)[Q=a] := P1[Q=a];P2[Q=a]
(P1 + P2)[Q=a] := P1[Q=a] + P2[Q=a]
(P1 kA P2)[Q=a] := P1[Q=a] kA P2[Q=a] (if a 62 A)
(P1 kA P2)[Q=a] := (P1[(a1;Q; a2)=a] kAnfag[fa1;a2g P2[(a1; a2)=a]) n fa1; a2g (if a 2 A).

Note that the result of the syntactic re�nement of a term lies in a language L0
0
which

consists of L0 plus a hiding-operator. Apart from the last clause the de�nition is equivalent
to syntactic substitution.

(Note that a de�nition
(P1 kA P2)[Q=a] = (P1[(a1;Q; a2)=a] kAnfag[fa1;a2g[L(Q)P2[(a1;Q; a2)=a]) n fa1; a2g would not
solve the problem. Consider for example P1 = P2 = a;A = fag; Q = c; d+ c. Then a
maximal con�guration fea10 ; ec1g would exist for the syntactically re�ned term (before hiding)
and not for the semantically re�ned one.)

With lemma 5.2.1 and 5.2.2 one sees that for all terms P;Q 2 Lo with a 62 S(Q)
P [a; Q] �=e P [Q=a] holds.

Now the conditions when (P1 kAP2)[Q=a] and (P1 kAP2)[a; Q] coincide will be studied.

23



5.2.2 Equivalence of syntactic and semantic re�nement

Syntactic re�nement without hiding

For simplicity �rst no hiding operator will be considered. Thus the conditions when
(P1 kA P2)[(a1;Q; a2)=a] and (P1 kA P2)[a; a1;Q; a2] are equivalent will be examined. First
of all an appropriate equivalence relation has to be chosen.

[GGR92] chose �=c { but as one sees in the example below this relation is not suitable for our
purposes.

;

fea0g

fea10 ; ex1g

fea10 ; ex1; ea22 g

fea10 ; ex1; ea22 ; ea13 g

fea10 ; ex1 ; ea22 ; ea13 ; ex4g

fea10 ; ex1 ; ea22 ; ea13 ; ex4 ; ea25 g

AA

BB

BB

BB

BB

BB

fea16 g

fea16 ; ex7g

fea16 ; ex7; ea28 g

fea16 ; ex7; ea28 ; ea19 g

fea16 ; ex7; ea28 ; ea19 ; ex10g

fea16 ; ex7; ea28 ; ea19 ; ex10; ea211g

��

��

��

��

��

��

Figure 5: Conf(([[P1]] kA [[P2]])[a; a1;x; a2])

;

fea0g

fea10 ; ex1g

fea10 ; ex1; ea22 g

fea10 ; ex1; ea22 ; ea13 g

fea10 ; ex1 ; ea22 ; ea13 ; ex4g

fea10 ; ex1 ; ea22 ; ea13 ; ex4 ; ea25 g

AA

BB

BB

BB

BB

BB

fea16 g

fea16 ; ex4g

fea16 ; ex4; ea28 g

fea16 ; ex4; ea28 ; ea19 g

fea16 ; ex4; ea28 ; ea19 ; ex1g

fea16 ; ex4; ea28 ; ea19 ; ex1 ; ea211g

��

��

��

��

��

��

Figure 6: Conf(([[P1]] kA [[P2]])[(a1;x; a2)=a])

Let P1 = a k; a, P2 = a; a, Q = x, A = fag.
In Figure 5 we see that in case of semantic re�nement four events (e1; e4; e7; e10) with label x
are constructed. As we see in Figure 6 in case of syntactic re�nement only two events (e1; e4)
with label x are constructed.

The reason for this is that in the case of syntactic re�nement a procedure call is used { for
example e1 corresponds to the execution of x on the left hand side and e4 corresponds to the

24



execution of x on the right hand side of P1. Of course both events have to be contained in
each complete con�guration. In the case of semantic re�nement however there is �rst a
decision which a synchronizes with which one { and depending on this choice x will be
\called".

It turns out however that the domains of con�gurations are equivalent. Thus the equivalence
relation �=d seems to be natural for this kind of syntactic re�nement.

The following example shows that syntactic and semantic re�nement do not coincide with
respect to �=d for all terms. In fact there exist terms for which syntactic and semantic
re�nement even do not coincide with respect to interleaving trace equivalence (�it).

Let P1 = b; a k; c; a, P2 = f ; a; d k; g; a; e and Q = x. Then
(P1 kfag P2)[a; a1;Q; a2] 6�it P1[a; a1;Q; a2] kfa1;a2gP2[a; a1; a2], because
hb; c; f; a1; x; g; a1; a2; ei is a trace of the second term but not of the �rst one.

In this example the problem arisis from a being in parallel to itself in P1 kA P2. It will be
shown that syntactic and semantic re�nement coincide with respect to �=d if the re�ned a is
not in parallel to itself:

De�nition 5.2.4: Let P 2 L. An action a 2 L(P ) is called auto-concurrent if there exist
con�gurations X;Y; Z 2Conf([[P ]]) with Y 6= Z & X !a Y & X !a Z and
Y [ Z 2Conf([[P ]])

Proposition 5.2.5 Let P1; P2 2 Lo, A �Act, a 2 A. If a is not auto-concurrent in
P1 kA P2 and (L(P1) [ L(P2)) \ L(Q) = ; and (L(P1) [ L(P2) [ L(Q)) \ fa1; a2g = ; then
(P1 kA P2)[a; a1;Q; a2] �=d P1[a; a1;Q; a2] kA0 P2[a; a1; a2] holds with
A0 = A n fag [ fa1; a2g.
Proof: see Appendix A

A Hiding-Operator

To complete our de�nition of syntactic re�nement we now have to de�ne a hiding operator.
It is very easy to de�ne hiding on prime event structures:

De�nition 5.2.6 (hiding on prime event structures)
Let E = (E;�;#; l) be a prime event structure, A �Act. De�ne
E nP A := (E 0;� \(E 0 �E 0);# \ (E 0 �E 0); ldE 0) with E 0 := fe 2 E j l(e) 62 Ag.
A hiding operator nF on 
ow event structures should be consistent with the one on prime
event structures, i.e. it is useful to demand: E nF A �=d P(E) nP A for each 
ow event
structure E .
The de�nition for hiding on 
ow event structures is not so easy because one event can have
di�erent roles in the event structure. Consider for example the event structure E in Figure 7:

In fact it is not possible to de�ne an event structure E 0 consisting only of the events
fe0; e2; e3g which is domain isomorphic to P(E) n fbg.
Thus we de�ne hiding on 
ow event structures according to hiding on prime event structures:

25



De�nition 5.2.7 (hiding on 
ow event structures)
Let E = (E;�;#; l) be a 
ow event structure and A � Act. De�ne E nF A := P(E) nP A.

Lemma 5.2.8 Let E1; E2 be two 
ow event structures with E1 �=d E2. Then
E1 nF A �=d E2 nF A.

Proof: Obvious, since the de�nition is made via the con�guration structure.

Now we show that re�ning an event structure with [[a1;P ; a2]]F and then hiding a1; a2 leads
to the same result as re�ning it only with [P ]]F :

Lemma 5.2.9 Let E = (E;�;#; l) and F = (EF ;�F ;#F ; lF) be arbitrary event
structures with a1; a2 62 l(E) [ lF (EF). Then E [a; F ] �=d (E [a; a1;F ; a2]) nF fa1; a2g
(with ai being the event structures (fxig; ;; ;; f(xi; ai)g).
Proof:
Let fx1; x2g 62 EF . Then E [a; a1;F ; a2] = (E1;�1;#1; l1) = E1 with
E1 := f(e; �) j e 2 E; l(e) 6= ag [ f(e; f) j e 2 E; l(e) = a; f 2 EF [ fx1; x2gg,
(e; f) �1 (e

0; f 0) :, (e � e0) _ (e = e0 & (f �F f 0 _ f = x1 _ f 0 = x2)),
(e; f)#1(e

0; f 0) :, (e#e0) _ (e = e0 & f#Ff
0)),

l1(e; f) :=

8>>><
>>>:

l(e) if f = �
lF(f) if f 2 EF

a1 if f = x1
a2 if f = x2

Let E 01 := E [a; a1;F ; a2] nF fa1; a2g = P(E1) nP A = (E 0
1;�0

1;#
0
1; l

0
1) with

E 0
1 := f#X (e; f) j (e; f) 2 X 2Conf(E1); f 62 fx1; x2gg,

X �0
1 Y :, X � Y ,

X#0
1Y :, X [ Y 62Conf(E1),

l01(#X (e; f)) = l1(e; f) (see lemma 2.6.7).

Let E2 := E [a; F ] = (E2;�2;#2; l2) with
E2 := f(e; �) j e 2 E; l(e) 6= ag [ f(e; f) j e 2 E; l(e) = a; f 2 EFg,
(e; f) �2 (e

0; f 0) :, (e � e0) _ (e = e0 & f �F f 0),
(e; f)#2(e

0; f 0) :, (e#e0) _ (e = e0 & f#Ff
0),

l2(e; f) :=

(
l(e) if f = �
lF(f) otherwise

and let E 02 := P(E2) = (E 0
2;�0

2;#
0
2; l

0
2) with

E 0
2 = f#X (e; f) j (e; f) 2 X 2Conf(E2)g,

X �0
2 Y :, X � Y ,

E :

u
ec2

ueb1

qq
q
qq
qq
qq

u ed3

�
�
��3

Q
Q
QQsea0 u�

�
��3

E n fbg:

u
ec2

uea0

u
ed3

ue0d3

qq
q
qq
qq
qq

-

-

q q
q
q q
q q
q q

q
q q
q q
q
q q
q

Figure 7: A 
ow event structure E and E n fbg

26



X#0
2Y :, X [ Y 62Conf(E2),

l02(#X (e; f)) := l2(e; f).

Now we show that E 01 �=e E 02, i.e. E [a; a1;F ; a2] nF fa1; a2g �=e P(E [a; F ]). With remark
2.6.6 and lemma 2.6.7 then follows E [a; a1;F ; a2] nF fa1; a2g �=d E [a; F ].
De�ne h : E 0

1 ! E 0
2: For each X =#X (e; f) 2 E 0

1 de�ne
h(#X (e; f)) := f(e0; f 0) 2 X j f 0 62 fx1; x2gg = X 0 =#X0 (e; f).

h is well-de�ned because for all X 2Conf(E1) : f(e0; f 0) 2 X j f 0 62 fx1; x2gg 2Conf(E2).
h is injective:
Suppose exist #X1

(e1; f1) 6=#X2
(e2; f2) in E 0

1 such that h(#X1
(e1; f1)) = h(#X2

(e2; f2)).
Then (e1; f1) = (e2; f2) and with lemma 3.2.5 exists
(e01; f

0
1) 2#X1

(e1; f1); (e
0
2; f

0
2) 2#X2

(e2; f2) with (e01; f
0
1)#1(e

0
2; f

0
2). Since h(#X1

(e1; f1))
contains no con
icts f 01 2 fx1; x2g _ f 02 2 fx1; x2g { but then e01#e

0
2. Contradiction!

h is surjective:
Let Y =#Y (e; f) 2 E 0

2. De�ne h
�1(Y ) := X =

Y [ f(e0; x1) j 9f 0 2 EF : (e0; f 0) 2 Y g [ f(e0; x2) j 9f 0 2 EF : (e0; f 0) 2 Y & 9(e00; f 00) 2 Y :
e0 � e00g.
As one easily veri�es X 2Conf(E1), X =#X (e; f) 2 E 0

1 and h(X) =#Y (e; f).

h is an isomorphism:
Obviously #X (e; f) �0

1#X0 (e0; f 0), h(#X (e; f)) �0
2 h(#X0 (e0; f 0)) and

#X (e; f)#0
1 #X0 (e0; f 0), h(#X (e; f))#0

2h(#X0 (e0; f 0)) and
8 #X (e; f) 2 E 0

1 : l
0
1(#X (e; f)) = l1(e; f) = l2(e; f) = l02(h(#X (e; f)).

Thus E [a; a1;F ; a2] nF fa1; a2g �=d E [a; F ].

We now show the consistency of syntactic and semantic re�nement:

Proposition 5.2.10 Let P1; P2 2 Lo, A �Act, a 2 A. If a is not auto-concurrent in
P1 kA P2 and P1[a; a1;Q; a2] �=d P1[(a1;Q; a2)=a] and P2[a; a1; a2] �=d P2[(a1; a2)=a] then
(P1 kA P2)[a; Q] �=d (P1 kA P2)[Q=a] holds.

Proof:
With lemma 5.2.5 we know that
(P1 kA P2)[a; a1;Q; a2] �=d P1[a; a1;Q; a2] kA P2[a; a1; a2].
And with lemma 5.2.8 we therefore conclude
[[(P1 kA P2)[a; a1;Q; a2]]] nF fa1; a2g �=d [[P1[a; a1;Q; a2] kA P2[a; a1; a2]]] nF fa1; a2g.
With lemma 5.2.9 we know that
[[(P1 kA P2)[a; a1;Q; a2]]] nF fa1; a2g �=d [[(P1 kA P2)[a; Q]]] and therefore we see that
[[(P1 kA P2)[Q=a] = [[P1[a; a1;Q; a2] kA P2[a; a1; a2]]] nF fa1; a2g �=d [[(P1 kA P2)[a; Q]]].

Proposition 5.2.11 Let P 2 Lo. If P does not contain a term P1 kA P2; a 2 A with a
auto-concurrent in P1 kA P2, then P [a; Q] �=d P [Q=a] holds.

Proof: induction over the syntactic structure of P :
For P = a, P = b 6= a, okay.
For P = P1 � P2 with � 2 f; ;+; kAg, (a 62 A) lemma 5.2.1 claims that
(P1 � P2)[a; Q] �=e P1[a; Q] � P2[a; Q]. With the induction hypothesis one concludes

27



Pi[a; Q] �=d Pi[Q=a] if P1; P2 do not contain forbidden terms. With de�nition 5.2.3 one
sees P1[Q=a] � P2[Q=a] �=d (P1 � P2)[Q=a] and therefore (P1 � P2)[a; Q] �=d (P1 � P2)[Q=a].

If P = P1 kA P2, a 2 A, and if a is not auto-concurrent in P we conclude with proposition
5.2.10 and with the induction hypothesis that P [a; Q] �=d P [Q=a].

5.3 Conclusion and comparison with [GGR92]

We showed that (P1 kA P2)[a; Q] with a 2 A coincides up to �=d with
(P1[a; a1;Q; a2] kAnfag[fa1;a2gP2[a; a1; a2]) n fa1; a2g if a 2 A and a is not
auto-concurrent in P1 kA P2.

This result is more powerful than the one for syntactic substitution in [GGR92]. [GGR92]
showed (P1 kA P2)[a; Q] �=c (P1 kA P2)fQa g under the hypothesis that either Q atomic or
Q deterministic and a two-way-sequential in P1 kAP2 or
Q distinct and a not auto-concurrent in P1 kAP2.

Q is called deterministic i� 8a 2 L(Q) :6 9F;G 6= H 2Conf([[Q]]) with F !a G & F !a H.

Q is called atomic i� Q is deterministic and each action in Q is initial-only, i.e.
8a 2 L(Q); F;G 2Conf([[Q]]) with F !a G: F = ;.
Q is called distinct i� Q is deterministic and each initial action in Q is initial-only (an action
is called initial in Q i� 9F 2Conf([[Q]]) with ; !a F ).

a being two-way-sequential in P1 kAP2 is a bit weaker than the requirement of a being not
auto-concurrent in P1 and not being auto-concurrent in P2.

In each case Q has to satisfy some restrictive hypothesis. This is not the case in our version.
All terms satisfying the conditions of [GGR92] also satisfy the condition of a not being
auto-concurrent in P1 kA P2. Therefore the new de�nition of syntactic re�nement is more
powerful than the syntactic substitution in [GGR92].

[GGR92] chose an equivalence relation stronger than the one we use. But the following
examples show that the syntactic substitution of [GGR92] easily violates the equivalence �=d

if the conditions above are not satis�ed.

One example we saw already above was P1 = (a; c k; a; c); P2 = a;Q = (b; b+ b); A = fag.
hb:b:c:ci is no trace of (P1 kAP2)[a; Q], but it is a trace of (P1 kA P2)fQa g because
(P1 kA P2)fQa g �=e ((b; b+ b); c k; (b; b+ b); c) kb(b; b+ b).

Thus (P1 kAP2)[a; Q] 6�it (P1 kA P2)fQa g.
On the other hand (P1 kA P2)[Q=a] �=d (P1 kAP2)[a; Q] (because a is auto-concurrent in
P1 but not in P2 and therefore proposition 5.2.11 can be used).

If Q is non-deterministic the conditions of [GGR92] are not satis�ed. Consider for example
P1 = P2 = a, A = fag; Q = c; d+ c

As Figure 8 shows: (P1 kAP2)[a; Q] ]]) 6�=c (P1 kA P2)fQa g and
(P1 kAP2)[a; Q] ]]) 6�=d (P1 kA P2)fQa g
(but (P1 kAP2)[a; Q] ]]) �=d (P1 kA P2)[Q=a]).

28



Conf(([[P1]] kA [[P2]])[a; Q])

;

fec0g

fec0; ed1g

AA

BB
fec2g
��

Conf(([[P1]] kA [[P2]])fQa g)

;

fec1; ed4g

fec1g
AA

BB
fec0g
HHHH

fec2g
��

fec3g
����

Figure 8: ([[P1]] kA [[P2]])[a; Q] versus ([[P1]] kA [[P2]])fQa g

But as one sees in Figure 9: (P1 kAP2)[a; Q] �=d (P1 kAP2)[Q=a] holds.

Conf([[P1[(a1;Q; a2)=a] kAnfag[fa1;a2gP2[(a1; a2)=a]])

=Conf((a1; (c; d+ c); a2 kfa1;a2g a1; a2))

;

fea10 g

fea10 ; ec1g

fea10 ; ec1; ed2g

fea10 ; ec1; ed2; ea24 g

AA

BB

BB

BB

fea10 ; ec3g
��

fea10 ; ec3; ea24 g
��

after hiding:
Conf(([[P1 kA P2)[Q=a]]])

;

fec1g

fec1; ed2g

AA

BB
fec3g
��

Figure 9: ([[P1[(a1;Q; a2)=a] kAnfag[fa1;a2g P2[(a1; a2)=a]]]) and ([[P1 kA P2]])[Q=a]

29



5.4 Outlook and Future Work

It would be reasonable to give a de�nition for syntactic re�nement including the case of a
being auto-concurrent in P1 kA P2. With this one could develop a syntactic re�nement that
always preserves �=d-equivalence to semantical re�ned terms { but possibly leads to
complicated terms.

Another possiblity is to check if there is a better version of syntactic re�nement, i.e. one such
that a reasonable equivalence relation is always preserved between syntactic and semantic
re�nement. One could reasonably use the following condition suggested in [GGR92]:

P1[a; Q1] kAnfag[A0 P2[a; Q2] with (Q1 kA0 Q2) � Q for an appropriate equivalence
relation �.
With the help of such a condition it might on the other hand be also possible to show that
the results obtained so far are optimal and that there is no inherent symmetry between
syntactic and semantic re�nement.

30



A Proof of Proposition 5.2.5

A.1 De�nitions

Let P1; P2; Q 2 Lo. We show: If a 2 A, a1; a2 62 L(P1) [ L(P2) [ L(Q),
(L(P1) [ L(P2)) \ L(Q) = ; and a not auto-concurrent in P1 kA P2, then
(P1 kA P2)[a; a1;Q; a2] �=d P1[a; a1;Q; a2] kAnfag[fa1;a2g P2[a; a1; a2] holds.

Let P := P1 kA P2.

Let E1 = (E1;�1;#1; l1) = [[P1]]; E2 = (E2;�2;#2; l2) = [[P2]] and
EQ = (EQ;�Q;#Q; lQ) = [[Q]].

De�ne Ea
1 = fe1 2 E1 j l1(e1) = ag and E�a

1 = fe1 2 E1 j l1(e1) 6= ag, Ea
2 and E�a

2 likewise.

First of all we state general presuppositions: Let Q0 = a1;Q; a2, then
[[Q0]] = [[a1;Q; a2]] = (EQ0 ;�Q0;#Q0 ; lQ0) with
EQ0 = EQ [ fq1; q2g, (with q1; q2 62 L(Q))
�Q0=�Q [fq1g �EQ [ EQ � fq2g [ f(q1; q2)g,
#Q0 = #Q,
lQ0 = lQ [ f(q1; a1); (q2; a2)g)

A.1.1 Semantic Re�nement

[[P ]] = [[P1]] kA[[P2]] = (EP ;�P ;#P ; lP ) with
EP = (E1 � f?g) [ (f?g �E2) [ f(e1; e2) 2 E1 �E2 j l1(e1) = l2(e2) 2 Ag,
�P= f((e1; e2); (e01; e02)) j (e1; e01) 2�1 _(e2; e02) 2�2g
#P = f((e1; e2); (e01; e02)) j (e1#1e

0
1)_ (e2#2e

0
2)_ (e1 = e01 6= ? & e2 6= e02)_

(e2 = e02 6= ? & e1 6= e01)g [
f((�; e2); (�; e2)) j l2(e2) 2 Ag [ f((e1; �); (e1; �)) j l1(e1) 2 Ag

lP = f((e1; �); l1(e1)) j e1 2 E1g [ f((e1; e2); l2(e2)) j e2 6= �g
Then let PR := P [a; Q0] = (P1 kAP2)[a; a1;Q; a2]

[[PR]] = (ER;�R;#R; lR) with
ER = X0 [X1 [X2 [X3 [X4 [X5 [X6 [X7 [X8 with

X0 = f((e1; �); �) j e1 2 E�a
1 ; l1(e1) 2 Ag

X1 = f((e1; �); �) j e1 2 E�a
1 ; l1(e1) 62 Ag

X2 = f((e1; e2); q) j e1 2 Ea
1 ; e2 2 Ea

2 ; q 2 EQg
X3 = f((e1; �); q0) j e1 2 Ea

1 ; q
0 2 EQ [ fq1; q2gg

X4 = f((�; e2); �) j e2 2 E�a
2 ; l2(e2) 2 Ag

X5 = f((�; e2); �) j e2 2 E�a
2 ; l2(e2) 62 Ag

X6 = f((�; e2); q0) j e2 2 Ea
2 ; q

0 2 EQ [ fq1; q2gg
X7 = f((e1; e2); �) j e1 2 E�a

1 ; e2 2 E�a
2 ; l1(e1) = l2(e2) 2 Ag

X8 = f((e1; e2); qi) j e1 2 Ea
1 ; e2 2 Ea

2 ; i 2 f1; 2gg

31



�R= f(((e1; e2); q); ((e01; e02); q0) j (e1 �1 e
0
1)(FRa)

_(e2 �2 e
0
2) (FRb)

_(e1 = e01 & e2 = e02 & q �Q0 q0) (FRc) g
#R = f(((e1; e2); q); ((e01; e02); q0)) j (e1#1e

0
1) (KRa)

_(e2#2e
0
2) (KRb)

_(e1 = e01 6= ? & e2 6= e02) (KRc)
_(e2 = e02 6= ? & e1 6= e01) (KRd)
_(e1 = e01 = ? & e2 = e02 & l2(e2) 2 A) (KRe)
_(e2 = e02 = ? & e1 = e01 & l1(e1) 2 A) (KRf)
_(e1 = e01 & e2 = e02 & q#Qq

0) (KRg)g

lR((e1; e2); q) =

8>>>>>><
>>>>>>:

lQ(q) if q 2 EQ

a1 if q = q1
a2 if q = q2
l2(e2) if e1 = � & e2 2 E�a

2

l1(e1) otherwise

The sets X0; X3; X4; X6 only contain self-con
icting events. The other sets do not contain
any self-con
icting events.

A.1.2 Syntactic Re�nement

Let P 0
1 = P1[a; a1;Q; a2] and P 0

2 = P2[a; a1; a2].

Then [[P 0
1]] = (E 0

1;�0
1;#

0
1; l

0
1); [[P

0
2]] = (E 0

2;�0
2;#

0
2; l

0
2) with:

E 0
1 = f(e; �) j e 2 E�a

1 g [ f(e; q) j e 2 Ea
1 ; q 2 EQ [ fq1; q2gg

�0
1= f((e; q); (e0; q0)) j (e �1 e

0) _ (e = e0 & (q �Q0 q0))g
#0

1 = f((e; q); (e0; q0)) j (e#1e
0) _ (e = e0 & q#Qq

0)g

l01((e; q)) =

8>>><
>>>:

l1(e) if e 2 E�a
1

a1 if e 2 Ea
1 & q = q1

a2 if e 2 Ea
1 & q = q2

lQ(q) if e 2 Ea
1 & q 2 EQ

and [[P 0
2]] = (E 0

2;�0
2;#

0
2; l

0
2) with

E 0
2 = f(e; �) j e 2 E�a

2 g [ f(e; q) j e 2 Ea
2 ; q 2 fq1; q2gg

�0
2= f((e; q); (e0; q0)) j (e �2 e

0) _ (e = e0 & q = q1&q
0 = q2)g

#0
2 = f((e; q); (e0; q0)) j e#e0g

l02((e; q)) =

8><
>:

l2(e) if e 2 E�a
2

a1 if e 2 Ea
2 ; q = q1

a2 if e 2 Ea
2 ; q = q2

Let PS := P 0
1 kAnfag[fa1;a2gP 0

2. Then [[PS]] = (ES;�S;#S; lS) with

ES = f((e1; �); �) j e1 2 E�a
1 g

[f((e1; q); �) j e1 2 Ea
1 ; q 2 EQ [ fq1; q2gg

[f(�; (e2; �)) j e2 2 E�a
2 g

[f(�; (e2; q)) j e2 2 Ea
2 ; q 2 fq1; q2g

[f((e1; �); (e2; �)) j e1 2 E�a
1 ; e2 2 E�a

2 ; l1(e1) = l2(e2) 2 Ag
[f((e1; q1); (e2; q1)) j e1 2 Ea

1 ; e2 2 Ea
2g

[f((e1; q2); (e2; q2)) j e1 2 Ea
1 ; e2 2 Ea

2g
Rename the events:

32



ES = Y0 [ Y1 [ Y2 [ Y3 [ Y4 [ Y5 [ Y6 [ Y7 [ Y8, where
Y0 = f((e1; �); �) j e1 2 E�a

1 ; l1(e1) 2 Ag
Y1 = f((e1; �); �) j e1 2 E�a

1 ; l1(e1) 62 Ag
Y2 = f((e1; �); q) j e1 2 Ea

1 ; q 2 EQg
Y3 = f((e1; �); qi) j e1 2 Ea

1 ; i 2 f1; 2gg
Y4 = f((�; e2); �) j e2 2 E�a

2 ; l2(e2) 2 Ag
Y5 = f((�; e2); �) j e2 2 E�a

2 ; l2(e2) 62 Ag
Y6 = f((�; e2); qi) j e2 2 Ea

2 ; i 2 f1; 2g
Y7 = f((e1; e2); �) j e1 2 E�a

1 ; e2 2 E�a
2 ; l1(e1) = l2(e2) 2 Ag

Y8 = f((e1; e2); qi) j e1 2 Ea
1 ; e2 2 Ea

2 ; i 2 f1; 2gg
�S= f(((e1; e2); q); ((e01; e02); q0)) j (e1 �1 e

0
1)(FSa)

_(e2 �2 e
0
2) (FSb)

_(e1 = e01 6= ? & (q �Q0 q0) (FSc)
_(e2 = e02 6= ? & q = q1; q

0 = q2) (FSd) g
#S = f(((e1; e2); q); ((e01; e02); q0)) j (e1#1e

0
1) (KSa)

_(e2#2e
0
2) (KSb)

_(e1 = e01 6= � & q = q0 & e2 6= e02) (KSc)
_(e2 = e02 6= � & q = q0 & e1 6= e01) (KSd)
_(e1 = e01 = � & q = q0 & e2 = e02 & l2(e2) 2 A) (KSe)
_(e2 = e02 = � & q = q0 & e1 = e01 & (l1(e1) 2 A n fag _ q; q0 2 fq1; q2g)) (KSf)
_(e1 = e01 6= � & q#Qq

0) (KSg)g

lS(((e1; e2); q)) =

8>>>>>><
>>>>>>:

lQ(q) if q 2 EQ

a1 if q = q1
a2 if q = q2
l2(e2) if e1 = � & e2 2 E�a

1

l1(e1) otherwise

The sets Y0; Y3; Y4; Y6 only contain self-con
icting events, the other sets do not contain any
self-con
icting event.

A.2 Comparison of ER and ES

As one can easily see the sets X0 and Y0, X1 and Y1, X3 and Y3, X4 and Y4, X5 and Y5, X6

and Y6, X7 and Y7 and X8 and Y8 correspond to each other. Even the following identities
hold: X0 = Y0, X1 = Y1, X4 = Y4, X5 = Y5, X7 = Y7, X8 = Y8, (instead of = one could use �=
(set-isomorphism) if the events were renamed).

The sets X3 and X6 contain more events than Y3 and Y6.

The main di�erence lies between X2 and Y2: X2 can contain much more events than Y2 since
any combinations between events labelled with a in E1 and E2 are allowed. Syntactic
re�nement does not lead to any combination with events of E2.

Let CR :=Conf(ER) and CS :=Conf(ES) (and ECR =
S
X2CR X;ECS =

S
X2CS X). In order to

show that ER �=d ES, one has to �nd a bijection f : CR ! CS such that
8X;Y 2 CR : X � Y ) f(X) � f(Y ).

First of all de�ne f on ER and then lift f to sets. Note that f : ER ! ES is not bijective.

Let x = ((e1; e2); q) 2 ER.

33



Then f(x) :=

8>>><
>>>:

x if x 2 X0 [X1 [X4 [X5 [X7 [X8

x if x 2 X3 [X6 & q 2 fq1; q2g
((e1; e2); q1) if x 2 X3 [X6 & q 2 EQ

((e1; �; q) if x 2 X2

Note that f is even de�ned on events that are not contained in ECR. As you see f is a
well-de�ned surjective mapping from ECR to ECS .

We want to show that f : CR ! CS is an isomorphism of domains. if a is not
auto-concurrent in P1 kA P2. We will show the following:

� f : CR ! CS (i.e. all images of f are con�gurations of ES: 8X 2 CR : f(X) 2 CS)

� 8x 2 ECR : lR(x) = lS(f(x))

� 8X;Y 2 CR : X � Y , f(X) � f(Y )

� If a is not auto-concurrent in P1 kA P2 then f : CR ! CS is bijective.

A.3 8X 2 CR : f(X) 2 CS

Let y 2 ES. Then f�1(y) = fx 2 ER j f(x) = yg. We have 80 � i � 8 : x 2 Xi , f(x) 2 Yi
and y 2 Yi , f�1(y) � Xi.

Let X be a con�guration of ER, i.e. X satis�es the conditions (i),(ii),(iii), (iv): Then f(X)
also satis�es these conditions:

(i) 8y; y0 2 f(X) : :(y#Sy
0)

(ii) �f(X)= (� \(f(X) � f(X)))� is a partial order

(iii) 8y 2 f(X): fy0 2 f(X) j y0 �f(X) yg is �nite
(iv) 8y 2 f(X);8y0 2 ES n f(X): y0 �S y ) 9y00 2 f(X) : y0#Sy

00 �S y.

A.3.1 (i)

Suppose 9y = ((e1; e2); q); y
0 = ((e01; e

0
2); q

0) 2 f(X) such that y#Sy
0. Note that

8y; y0 2 f(X) : 9x 2 f�1(y); x0 2 f�1(y0) with x; x0 2 X. One of the following must hold:

(e1#1e
0
1) (KSa)

) 8x 2 f�1(y)8x0 2 f�1(y0) : x#Rx
0 (KRa)

Therefore 9x; x0 2 X with x#Rx
0. Contradiction!

or (e2#2e
0
2) (KSb)

) 8x = ((e1; e2); qx) 2 f�1(y)8x0 = ((e01; e
0
2); q

0
x) 2 f�1(y0) : x#Rx

0 (KRb)

Therefore 9x; x0 2 X with x#Rx
0. Contradiction!

34



or (e1 = e01 6= � & q = q0 & e2 6= e02) (KSc)

Then e2 6= � _ e02 6= �. Let w.l.o.g. e2 6= � ) e02 6= � (otherwise q 6= q0)
) 8x 2 f�1(y) : x = ((e1; e2); q)8x0 2 f�1(y0) : x0 = ((e1; e

0
2); q) and with (KRc) x#Rx

0.

Therefore 9x; x0 2 X with x#Rx
0. Contradiction!

or (e2 = e02 6= � & q = q0 & e1 6= e01) (KSd)

) 8x 2 f�1(y)9qx : x = ((e1; e2); qx)8x0 2 f�1(y0)9q0x : x0 = ((e01; e2); q
0
x) and with

(KRd) x#Rx
0

Also 9x; x0 2 X with x#Rx
0. Contradiction!

or (e1 = e01 = � & q = q0 & e2 = e02 & l2(e2) 2 A) (KSe)

) y = y0;8x 2 f�1(y)9qx : x = ((�; e2); qx). With (KRe) follows x#Rx.

Therefore 9x 2 X with x#Rx. Contradiction!

or (e2 = e02 = � & q = q0 & e1 = e01 & (l1(e1) 2 A n fag _ q; q0 2 fq1; q2g)) (KSf)
) y = y0;8x 2 f�1(y)9qx : x = ((e1; �); qx) with l1(e1) 2 A. With (KRf) follows x#Rx

Therefore 9x 2 X with x#Rx. Contradiction!

or (e1 = e01 6= � & q#Qq
0) (KSg)

) y; y0 2 Y2;8x 2 f�1(y)9e2x 2 E2 : x = ((e1; e2x); q);8x0 2 f�1(y0)9e02x 2 E2 : x
0 =

((e1; e
0
2x); q) If e2x = e02x, then with (KRg) x#Rx

0.
If e2x 6= e02x, then follows with (KRc) x#Rx

0

Therefore 9x; x0 2 X with x#Rx
0. Contradiction!

A.3.2 (ii)

We have to show that �f(X)= (� \(f(X) � f(X)))� is a partial order. It su�ces to show
that 8y; y0 2 f(X) : (y �f(X) y

0 & y0 �f(X) y)) y = y0. For this it's enough to show that no
sequence y = y1 �S ::: �S yn = y 2 f(X) with n � 2 exists.

Suppose there exists a sequence y1; :::; yn, n � 2. Consider the set fx1; ::; xng � X with
f(x1) = y1; :::; f(xn) = yn. If 8x 2 X : f(x) �S f(x

0)) x �R x0, then x1 �R ::: �R xn would
also be a cycle and therefore X would be no con�guration. Contradiction!

So we will show for all events x; x0 2 X that f(x) �S f(x
0)) x �R x0. Since x is

self-con
icting i� f(x) is self-con
icting one does not have to consider
y; y0 2 Y0 [ Y3 [ Y4 [ Y6. Let x; x

0 2 X with x = ((e1; e2x; qx); x
0 = ((e01; e

0
2x; q

0
x), and

y = f(x) = ((e1; e2); q); y
0 = f(x0) = ((e01; e

0
2); q

0). Then f(x) �S f(x
0) i�

e1 �1 e
0
1

) x �R x0 (FRa)

or e2 �1 e
0
2

) (e2x = e2 & e02x = e02)) (x �R x0) (FRb)

35



or e1 = e01 6= � & q �Q0 q0

Case 1: y 2 Y2, d.h. y = ((e1; �); q) with q 2 EQ () x = ((e1; e2x); q) with e2x 2 Ea
2 )

If y0 2 Y2 then x0 = ((e1; e
0
2x); q

0) with e02x 2 Ea
2 . If e2x 6= e02x then x#Rx

0 (KRc) and
therefore x; x0 62 X. If e2x = e02x then x �R x0 (FRc).

If y0 2 Y8 then y0 = x0 = ((e1; e
0
2x; q2). In analogy to this reasoning we conclude

e2x = e02x and therefore x �R x0 (FRc)

(If y0 2 Y3 then x0 = (e01; �; q2) and therefore :(x �R x0) { thus the
assumption is not true for arbitrary events)

Case 2:y 2 Y8, i.e. y = ((e1; e2); q1) = x

If y0 2 Y2 with y0 = ((e1; �); q0); q0 2 EQ then x0 = ((e1; e
0
2x; q

0) and therefore e2 = e02x
and x �R x0 (FRc)

If y0 2 Y8 with y0 = ((e1; e
0
2); q2) = x0 then with the same reasoning x �R x0 (FRc).

or e2 = e02 6= � & q = q1; q
0 = q2

) (y; y0 2 Y8)) (x = y; x0 = y0)) (x �R x0) (FRc)

A.3.3 (iii)

8y 2 f(X) ist fy0 2 f(X) j y0 �f(X) yg is �nite since only �nite event structures are taken
into account.

A.3.4 (iv)

We show that 8y 2 f(X);8y0 2 ES n f(X): y0 �S y ) 9y00 2 f(X) with y0#Sy
00 �S y.

Let y = ((e1; e2y); qy) 2 f(X); y0 = ((e01; e
0
2y); q

0
y) 2 ES n f(X); y0 �S y. Let

f�1(y) = fx 2 ER j f(x) = yg, f�1(y0) = fx0 2 ER j f(x0) = yg. Four cases have to be
examined:
FSa) e01 �1 e1
FSb) e02y �2 e2y
FSc) e01 = e1 6= � & q0y �Q0 qy
FSd) e02y = e2y 6= � & q0y = q1 & qy = q2

� e01 �1 e1 (FSa)

8x0 2 f�1(y0) : x0 62 X and 8x0 2 f�1(y0)8x 2 f�1(y) : x0 �R x. Let
x0 = ((e01; e

0
2); q

0) 2 f�1(y0) and x 2 f�1(y) \X. Then
x0 2 X0 [X1 [X2 [X3 [X7 [X8 holds.
If x0 2 X2 choose �x

0 = ((e01; �); q0) 2 X3.
If x0 2 X7 choose �x

0 = ((e01; �); �) 2 X0.
If x0 2 X8, choose �x

0 = ((e01; �); q0) 2 X3.
Otherwise choose �x0 = x0. Then �x0 = ((e01; �); q0) 2 X0 [X1 [X3

Now �x0 62 X holds and �x0 �R x. Then 9x00 = ((e001; e
00
2); q

00) 2 X; �x0#Rx
00 �R x, and so:

(KRa) e001#1e
0
1 or

(KRb) (impossible) or

36



(KRc) e001 = e01 6= � & e002 6= � or
(KRd) (impossible) or
(KRe) (impossible) or
(KRf) (impossible) or
(KRg) e001 = e01 & e002 = � & q00#Qq

0

{ e001#1e
0
1 (KRa)

With lemma A-2a there exists ~x = ((~e1; ~e2); ~q) 2 X with ~e1#1e
0
1 & ~e1 �1 e1. Then

we conclude f(~x) �S f(x) & f(~x)#sf(�x) & f(~x)#sf(x
0)

{ e001 = e01 6= � & e002 6= � (KRc)
Obviously x00 = ((e01; e

00
2); q

00) and f(x00) �S f(x). If e
00
2 2 Ea

2 (this is the case i�
q00 6= �) we conclude with lemma A-1a and A-1b that x1 = ((e01; e

00
2); q1) 2 X and

x2 = ((e01; e
00
2); q2) 2 X. And therefore f(x1) �S f(x), f(x2) �S f(x).

Case 1 �x0 = x0 2 X0 [X1, therefore x
0 = ((e01; �); �); e01 2 E�a

1 , and f(x0) = x0.
Since e01 = e001 2 E�a

1 , q00 = � follows, hence x00 = ((e01; e
00
2); �) 2 X7 and f(x00) = x00.

With (KSc) f(x0)#Sf(x
00) follows. So choose y00 = f(x00).

Case 2 �x0 2 X3; x
0 2 X2

Consequently e01 2 Ea
1 and e002 2 Ea

2 . Suppose 9~e2 2 E2 : ((e
0
1; ~e2); q

0) 2 X Then
~e2 = e002 holds, since otherwise ((e

0
1; ~e2); q

0)#Rx
00 = ((e01; e

00
2); q

00) with (KRc)). Thus
((e01; e

00
2); q

0) 2 X. Since x0 2 X2 q
0 2 EQ and therefore ((e01; ~e2); q

0) 2 X2. But then
f(x0) = f(((e01; ~e2); q

0)). Contradiction!

Thus 8~e2 2 E2 : ((e
0
1; ~e2); q

0) 62 X. With lemma A-1c one concludes
9~x = ((e01; e

00
2); ~q) 2 X such that ~q#Qq

0. Then f(~x) = ((e01; �); ~q) �S f(x) and
f(x0) = ((e01; �); q0) and therefore f(x0)#Sf(~x) (KSg). So choose y

00 = f(~x).

Case 3 �x0 = x0 2 X3, thus x
0 = ((e01; �); q0) with e01 2 Ea

1 . And
x00 = ((e01; e

00
2); q

00) 2 X2 [X8. f(x
0) = ((e1; �); q1) _ f(x0) = ((e1; �); q2).

e002 2 Ea
2 ) x1; x2 2 X. Therefore either f(x0)#Sf(x1) or f(x

0)#sf(x2).
Depending on x0 choose y00 = f(x1) or y

00 = f(x2).

Case 4 �x0 2 X0; x
0 2 X7. Then f(x0) = x0 = ((e01; e

0
2); �), e01 2 E�a

1 and thus
f(x00) = x00 = ((e01; e

00
2); �) 2 X7.

e002 6= e02, (otherwise x
0 = x00), consequently with (KSc) f(x00)#Sf(x

0). Choose
y00 = f(x00).

Case 5 �x0 2 X3; x
0 2 X8. Then f(x0) = x0 = ((e01; e

0
2); q

0) with
e01 2 Ea

1 ; q
0 2 fq1; q2g and x00 = ((e01; e

00
2); q

00) 2 X2 [X8. e
00
2 2 Ea

2 ) x1; x2 2 X. If
e002 = e02, then x0 = x1 _ x0 = x2 { this is impossible and therefore e002 6= e02 and
consequently f(x0)#Sf(x1)_ f(x0)#Sf(x2). Depending on q0 choose y00 = f(x1) or
y00 = f(x2).

{ e001 = e01 & e002 = � & q00#Qq
0 (KRg)

In this case x00 2 X3 and thus x00#Rx
00 and x00 62 X. Contradiction!

� e02y �2 e2y (FSb)

8x0 2 f�1(y0) : x0 62 X and 8x0 2 f�1(y0)8x 2 f�1(y) : x0 �R x. Let
x0 = ((e01; e

0
2); q

0) 2 f�1(y0) and x 2 f�1(y) \X. Then x0 2 X4 [X5 [X6 [X7 [X8

holds.
If x0 2 X7, choose �x

0 = ((�; e02); �) 2 X4.
If x0 2 X8, choose �x

0 = ((�; e02); q0) 2 X6.

37



Otherwise choose �x0 = x0. Then �x0 = ((�; e02); q0) 2 X4 [X5 [X6 holds.

But �x0 62 X and �x0 �R x. Therefore 9x00 = ((e001; e
00
2); q

00) 2 X; �x0#Rx
00 �R x, thus:

(KRa) (impossible) or
(KRb) e002#2e

0
2 or

(KRc) (impossible) or
(KRd) e002 = e02 6= � & e001 6= � or
(KRe) (impossible) or
(KRf) (impossible) or
(KRg) e001 = � & e002 = e02 & q00#Qq

0

{ e002#2e
0
2 (KRb)

With lemma A-2b there exists ~x = ((~e1; ~e2); ~q) 2 X with ~e2#2e
0
2 & ~e2 �2 e2. Then

f(~x) �S f(x) & f(~x)#sf(�x) & f(~x)#sf(x
0) holds. Choose y00 = f(~x).

{ e002 = e02 6= � & e001 6= � (KRd)
In any case f(x00) �S f(x) and l2(e

0
2) 2 A and

x0 = ((e01; e
0
2); q

0) 2 X4 [ x6 [X7 [X8.

Case 1 q0 = �, also x0 = ((e01; e
0
2); �) 2 X4 [X7 ) e02 2 E�a

2 ,
x00 = ((e001; e

0
2); �) 2 X7 ) f(x0) = x0; f(x00) = x00 and with (KSd) f(x00)#Sf(x

0).
Thus choose y00 = f(x00).

Case 2 q0 2 EQ [ fq1; q2g, also x0 2 X6 [X8 and therefore

f(x0) =

(
((e01; e

0
2); q1) if q 2 EQ [ fq1g

((e01; e
0
2); q2) otherwise

Moreover e02 2 Ea
2 ) x00 = ((e001; e

0
2); q

00) 2 X8 With lemma A-1a and A-1b we
conclude x1 = f(x1) = ((e001; e

0
2); q1) 2 X and x2 = f(x2) = ((e001; e

0
2); q2) 2 X and

f(x1); f(x2) �S f(x) .

With (KSd): f(x0)#Sf(x1)_ f(x0)#Sf(x2). Depending on q0 choose y00 = f(x1) or
y00 = f(x2).

{ e001 = � & e002 = e02 & q00#Qq
0 (KRg)

In this case x00 would be in X6 and therefore x00#Rx
00 and thus x00 62 X.

Contradiction!

� e01 = e1 6= � & q0y �Q0 qy (FSc)

In this case e1 2 Ea
1 and therefore y 2 Y2 [ Y8 and y0 2 Y2 [ Y3 [ Y8. Then there exists

e2 2 Ea
2 with x = ((e1; e2); q) 2 X and f(x) = f(((e1; e2); q)) = y, so that

x 2 X \ f�1(y). With lemma A-1a conclude that x1 = ((e1; e2); q1) 2 X and therefore
f(x1) = ((e1; e2); q1) 2 f(X) and with (FSc) f(x1) �S y.

Case 1: y0 2 Y3 ) y0 = ((e1; �); q1)
With (KSc): f(x1)#Sy

0. Choose y00 = f(x1)

Case 2: y0 2 Y8 ) y0 = ((e1; e
0
2y); q1)

Since y0 62 f(X) and f(x1) 2 f(X) we conclude: e02y 6= e2 and with (KSc) f(x1)#Sy
0.

Thus choose y00 = f(x1).

Case 3: y0 2 Y2 ) y0 = ((e1; �); q0)
Then f�1(y0) = f((e1; e02); q0) j e02 2 Ea

2g. Therefore x0 = ((e1; e2); q
0) 2 f�1(y0) and

x0 �R x.
There exists x00 2 X with x00 �R x;:(x00#Rx); x

00#Rx
0. This is only possible with

(KRg), thus x00 = ((e1; e2); q
00) for some q00 2 EQ with q00#Qq

0. In order that x00 �R x,

38



q00 �Q0 q must hold. With this we conclude x00 2 X2 and f(x00) = ((e1; �); q00) with
f(x00)#Sy

0 (KSg) and f(x00) �S y with (FSc). Choose y00 = f(x00)

� e02y = e2y 6= � & q0y = q1 & qy = q2 (FSd)

So y 2 Y8 and y0 2 Y6 [ Y8. Therefore x = ((e1; e2y; q2) 2 f�1(y) \X and with lemma
A-1a x1 = ((e1; e2y); q1) 2 X and f(x1) = ((e1; e2y); q1) 2 f(X). With (FSd)
f(x1) �S y.

Case 1: y0 2 Y6 ) y0 = ((�; e2y); q1)
With (KSd) y0#Sf(x1), thus choose y

00 = f(x1).

Case 2: y0 2 Y8 ) y0 = ((e01; e2y); q1)
Since y0 62 f(X) and f(x1) 2 f(X) we conclude e01 6= e1. With (KSd) f(x1)#Sy

0, thus
choose y00 = f(x1).

A.4 8x 2 ECR : lR(x) = lS(f(x))

Let x = ((e1; e2); q) 2 CR. Since f(x) = x, if x 62 X2, f(x) = ((e1; e
0
2); q) follows. Therefore:

lR(x) = lQ(q) = lS(f(x)) if q 2 EQ

lR(x) = a1 = lS(f(x)) if q = q1
lR(x) = a2 = lS(f(x)) if q = q2
lR(x) = l2(e2) = lS(f(x)) if e1 = � & e2 2 E�a

2 , therefore e02 = e2
lR(x) = l1(e1) = lS(f(x)) otherwise

A.5 8X;Y 2 CR : X � Y , f(X) � f(Y )

X � Y ) f(X) � f(Y ) evident.

Let f(X) � f(Y ). Suppose X 6� Y , i.e. 9x 2 X : x 62 Y , but f(x) 2 f(Y ). Then 9y 2 Y
with f(x) = f(y), but x 6= y.

Since 8x 2 CR : x 6= f(x)) x 2 X2, it follows that x = ((e1; e2); q) 2 X2 and therefore
x 6= y but as f(x) = f(y) conclude y = ((e1; e

0
2); q). With lemma A-1a x1 = ((e1; e2); q1) 2 X

and y1 = ((e1; e
0
2); q1) 2 Y . But then x1 2 Y , Contradiction, since x1#Ry1.

A.6 f bijective if a is not auto-concurrent in P1 kA P2

A.6.1 f injective

Let X;X 0 2 CR; X 6= X 0. Then 9x 2 X : x 62 X 0 _ 9x0 2 X 0 : x0 62 X. Let w.l.o.g.
x 2 X : x 62 X 0.

We show: 9y 2 f(X) : y 62 f(X 0)

x 2 X1 [X2 [X5 [X7 [X8, since x is not self-con
icting.

If x 2 X1 [X5 [X7 [X8, we have f(x) = x; f�1(f(x)) = fxg. Thus if y = f(x) 2 X 0, there
exists x00 2 f�1(y) 2 X 0, since f�1(y) = fxg, so x 2 X 0. Contradiction!

Since x = ((e1; e2); q) 2 X2, we have f(x) = ((e1; �); q) and
f�1(f(x)) = f((e1; e02); q) j e02 2 Ea

2g.

39



With lemma A-1a also x1 = ((e1; e2); q1) 2 X. Since x1 2 X8 we conclude as above that
x 62 X 0 ) f(x) 62 f(X 0), and thus X 6= X 0 ) f(X) 6= f(X 0).

A.6.2 f surjective

We want to show that 8Y 2 CS9X 2 CR with f(X) = Y .

For each Y 2 CS de�ne gY : Y ! CR with

gY (y) =

(
((e1; h(y; Y )); q) if y = ((e1; �); q) 2 Y2
y otherwise

(h from lemma A-3 is used here.)

De�ne g : CS ! CR: g(Y ) = fgY (y) j y 2 Y g.
We see

� 8Y 2 CS gY is well-de�ned and therefore 8y 2 Y : gY (y) 2 ER, therefore
8x 2 g(Y ) : x 2 ER.

� 8Y 2 CS : 8x 2 g(Y ) : g�1(x) = f(x) (with f as above)

� 8Y 2 CS : 8x 2 g(Y ); x 62 X2 : g
�1(x) = x and 8y 2 Y : g�1

Y (gY (y)) = y

If we can show that

� g : CS ! CR well-de�ned

� f � g = idCS

then f is surjective. But we can show this only for terms P1; P2 with a not being
auto-concurrent in P1 kA P2.

Let us assume for the rest of this paragraph that a is not auto-concurrent in P1 kA P2.

f � g = idCS obvious

g : CS ! CR is well-de�ned We will show 8Y 2 CS : g(Y ) 2 CR. Let Y 2 CS.

(i) Suppose 9y = ((e1; e2); q); y
0 = ((e01; e

0
2); q

0) 2 Y : x = ((e1; e2x); q) = gY (y)#Rx
0 =

((e01; e
0
2x); q

0) = gY (y
0). With lemma A-3a and A-3b choose

z =

8><
>:

((e1; h(y; Y )); q1) if y 2 Y2
((e1; e2); q1) if q = q2
y otherwise

, z0 =

8><
>:

((e01; h(y
0; Y )); q1) if y0 2 Y2

((e01; e
0
2); q1) if q0 = q2

y otherwise
, Then

z; z0 2 Y .

Let x#Rx
0. Because of

KRa) ) y#Sy
0

KRb) ) z#Sz
0

KRc) ) z#Sz
0

KRd) ) z#Sz
0

KRe) and KRf) impossible and

40



KRg) ) y#Sy
0

Thus Y contains a con
ict. Contradiction!

(ii) Suppose there exists a sequence y = y1; :::; yn = y 2 Y with
gY (y1) �R gY (y2) �R ::: �R gY (yn). Choose the following sequence in Y : z1; :::; zn with

zi =

(
((e1i; h(yi; Y )); qi) if yi = ((e1i; �); qi) 2 Y2
yi otherwise

Then 81 � i � n : zi �S zi+1 (and z1 = zn, as KRa) and KRb) lead to KSa) and KSb),
and KRc) implies KSc).

Therefore Y is no con�guration of ES. Contradiction!
(iii) obvious

(iv) g(Y ) is left-closed up to con
icts, i.e. 8x 2 g(Y );8x0 2 ER n g(Y ):
x0 �R x) 9x00 2 g(Y ) with x0#Rx

00 �R x.

Let y 2 Y , x0 2 ER n g(Y ); x0 �R gY (y).

Choose z0 =

(
((e01; e

0
2); q2) if x0 = ((e01; e

0
2); q

0) 2 X2 & x0 �R gY (y) (FRb)
x0 otherwise

If y = ((e1; �); q) 2 Y2 we will write y1 for the unique event ((e1; e2); q1) 2 Y . Then
f(z0) 62 Y and f(z0) �S y _ f(z0) �S y1.

Since Y is a con�guration there exists y00 2 Y with y00 �S y _ y00 �S y1 and y00#Sf(z
0).

With lemma A-4 it follows that gY (y
00) �R gY (y) _ gY (y

00) �R gY (y1).

Now we have to show that gY (y
00)#Rx

0. If y00#Sf(z
0) holds because of KSa),KSb),KSc)

or KSd) then obviously gY (y
00)#Rx

0. If y00#Sf(z
0) holds because of KSg) (i.e.

e001 = e1 6= � & q00#Qq) then either e002 = e02 and therefore gY (y
00)#Rx

0 with KRg) or
e002 6= e02 and therefore with KRc) gY (y

00)#Rx
0.

A.7 Some lemmata and propositions

ER; E1 = [[P1]]; E2 = [[P2]] are de�ned as before.

Proposition A Let X 2 Conf(ER). Then �1(X) 2Conf(E1) and �2(X) 2Conf(E2).
Proof:
With Lemma 4.3.1 X':=f(e1; e2) j 9q : ((e1; e2); q) 2 Xg 2Conf([[P1]] kA [[P2]]). Obviously
�1(X

0) = �1(X) 2Conf([[P1]]) and �2(X
0) = �2(X) 2Conf([[P2]]).

Lemma A-1 Let X 2 Conf(ER), x = ((e1; e2); q) 2 X.

a) If e1 2 Ea
1 ; e2 2 Ea

2 ; q 2 EQ [ fq1; q2g, then x1 := ((e1; e2); q1) 2 X.

Proof:
((e1; e2); q1) �R x. Suppose x1 62 X. Then (iv) implies 9x0 = ((e01; e

0
2); q

0) 2 X with
x0#R((e1; e2); q1) and :(x0#Rx = ((e1; e2); q)). But this is excluded by
(KRa),(KRb),(KRc),(KRd),(KRe),(KRf),(KRg). So only (KRg) remains for x0#Rx1:
e01 = e1; e

0
2 = e2; q

0#Qq1. But q
0#Qq1 is impossible. Contradiction!

41



b) If e1 2 Ea
1 ; e2 2 Ea

2 ; q 2 EQ [ fq1; q2g, and 9x0 = ((e01; e
0
2); q

0) 2 X with
e1 �1 e

0
1 _ e02 �2 e

0
2, then x2 = ((e1; e2); q2) 2 X.

Proof:
Suppose ((e1; e2); q2) 62 X. Since ((e1; e2); q2) �R x0, (iv) implies 9�x = ((�e1; �e2); �q) 2 X
with �x �R x0 and �x#R((e1; e2); q2). Since x = ((e1; e2); q) 2 X �x#R((e1; e2); q) is not
allowed. Thus all possibilities for con
ict are forbidden. Contradiction! So x2 2 X.

c) Let e01 2 Ea
1 ; q

0 2 EQ and 8e02 2 Ea
2 : ((e

0
1; e

0
2); q

0) 62 X.
If there exists x00 = ((e01; e

00
2); q

00) 2 X with e002 2 Ea
2 ; q

00 2 EQ [ fq1; q2g and e01 �1 e1 or
e002 �2 e2 holds,

then there exists ~q 2 EQ such that ((e01; e
00
2); ~q) 2 X and q0#Q~q.

Proof:
With lemma A-1b one sees that ((e01; e

00
2); q2) 2 X.

Since q0 �Q0 q2 we have ((e
0
1; e

0
2); q

0) �R ((e01; e
0
2); q2). Since ((e

0
1; e

0
2); q

0) 62 X, (iv)
implies that 9x00 2 X with x00 �R ((e01; e

0
2); q2) and x00#R((e

0
1; e

0
2); q

0) and
:(x00#R((e

0
1; e

0
2); q2)). This is only compatible with (KRg), thus 9q00 2 EQ with q00#Qq

0

and x00 = ((e01; e
0
2); q

00) 2 X.

Lemma A-2 Let X 2 Conf(ER).

a) If 9x = ((e1; e2); q) 2 X and x0 = ((e01; e
0
2); q

0)ER nX with e1; e
0
1 2 E1, then

9~x = ((~e1; ~e2); ~q) 2 X with e01#1~e1 �1 e1.

Proof follows directly from proposition A.

b) If 9x = ((e1; e2); q) 2 X and x0 = ((e01; e
0
2); q

0) 2 ER nX with e2; e
0
2 2 E2, then

9~x = ((~e1; ~e2); ~q) 2 X with e02#2~e2 �2 e2.

Proof follows directly from proposition A.

Lemma A-3

a) Let Y 2 Conf(ES), y = ((e1; �); q) 2 Y with e1 2 Ea
1 ; q 2 EQ. Then there exists a

uniquely determined e2 2 Ea
2 with y1 = ((e1; e2); q1) 2 Y . It will be denoted by h(y; Y ).

Proof:
Existence of e2:
Let y0 = ((e1; �); q1) 62 Y , since y0 self-con
icting, but y0 �S y. Thus
9y00 2 Y : y0#Sy

00 �S y
0, and therefore :(y00#Sy). Thus

y00#S((e1; �); q1);:(y00#S((e1; �); q)). Then the only possible reason for con
ict is
(KSc): e001 = e1 & q00 = q1 & e002 6= �. Thus 9e2 = e002 with y00 = ((e1; e2); q1) 2 Y
(y00 �S y).

Uniqueness of e2:
Suppose there exists e02 6= e2 such that ((e1; e

0
2); q1) 2 Y . With (KSd) ((e1; e

0
2); q1)

con
icts ((e1; e2); q1) { thus they cannot be both contained in Y .

b) If l(e1) = l(e2) = a is not auto-concurrent in P1 kA P2 for all Y 2 Conf(ES):
y2 = ((e1; e2); q2) 2 Y ) y1 = ((e1; e2); q1) 2 Y .

42



Proof:
One easily shows that a is auto-concurrent in P1 kA P2 i� a1 is auto-concurrent in PS.
So we show: If there exists a con�guration Y with y2 2 Y and y1 62 Y then a1 is
auto-concurrent in PS.

Let y2 2 Y and y1 62 Y . Consider ((e1; �); q1) �S y2 and ((�; e2); q1) �S y2, both being
self-con
icting and therefore not contained in Y . So there must be y01; y

00
1 2 Y with

((e1; �); q1)#Sy
0
1 �S y2 and ((e2; �); q1)#Sy

00
1 �S y2. The only possibilities for this are

y01 = ((e1; e
0
2); q1); y

00
1 = ((e001; e2); q1) with e02 6= e2; e

00
1 6= e1.

De�ne Z = fx 2 ES j x �S y
0
1 _ x �s y

00
1g \ Y n fy01; y001g. Then Z 2Conf(ES). Moreover

Z 0 = Z [ fy01g 2Conf(ES), Z 00 = Z [ fy001g 2Conf(ES) and
Z 0 [ Z 00 = Z [ fy1;0 y001g 2Conf(ES). Thus
Z 0 6= Z 00; Z !a1 Z 0 & Z !a1 Z 00 & Z 0 [ Z 00 2Conf(E). Therefore a1 is auto-concurrent
in PS.

Lemma A-4 If l(e1) = l(e2) = a is not auto-concurrent in P1 kA P2 and
y = ((e1; e2); q); y

0 = ((e01; e
0
2); q

0) 2 Y 2 Conf(ES), y �S y
0, then gY (y) �R gY (y

0).

Proof
If y �S y

0 holds by FSa), FSb), then gY (y) �R y0 holds by FRa), FRb).
If y �S y

0 holds by FSc), i.e. e01 = e1 6= �; q0 �Q0 q, then
gY (y) = ((e1; e2x); q); gY (y

0) = ((e01; e
0
2x); q

0) with
e2x = e2 _ e2x = h(y; Y ); e02x = e02 _ e02x = h(y0; Y ). If e2x 6= e02x then
((e1; e2x); q1)#S((e

0
1; e

0
2x); q1) and with lemma A-3 ((e1; e2); q1); ((e

0
1; e

0
2); q1) 2 Y ,

Contradiction. Thus (FRc) can be applied.
If y �S y

0 holds by FSd), i.e. e02 = e2 6= �; q0 = q1 & q = q2. Then with lemma A-3
((e01; e

0
2); q1) 2 Y and therefore e01 = e1, so again (FRc) can be applied.

43



References

[AH91] L. Aceto, M. Hennessy, \Adding Action Re�nement to a Finite Process
Algebra", in J. Leach Albert, B. Monien, M. R. Artalejo (eds.): Automata,
Languages and Programming, LNCS 510, pp. 506-519, Springer-Verlag, 1991.

[AH93] L. Aceto, M. Hennessy, \Towards action-re�nement in process algebras",
Information and Computation, vol. 103, pp. 204 -269, 1993.

[Bo90] G. Boudol, \Flow Event Structures and Flow Nets", in I. Guessarian (ed.):
Semantics of Systems of Concurrent Processes, LNCS 469, pp. 62-95,
Springer-Verlag, 1990.

[BC91] G. Boudol, I. Castellani, \Flow models of distributed computations: Three
equivalent semantics for CCS", Information and Computation, vol. 114, pp.
247-314, 1994.

[BMC94] C. Baier, M.E. Majster-Cederbaum, \The connection between an event
structure semantics and an operational semantics for TCSP", Acta
Informatica, 31, 1994.

[Co95] R. Costantini, \Abstraktion in ereignisbasierten Modellen verteilter
Systeme", Ph.D Thesis, University of Hildesheim, 1995.

[CZ89] I. Castellani, G.Q. Zhang, \Parallel product of event structures", Rapports
de Recherche 1078, INRIA, 1989.

[DG95] P. Degano, R. Gorrieri, \A Causal Operational Semantics of Re�nement",
Information and Computation, vol. 122, pp. 97-119, 1995.

[DGR93] P. Degano, R. Gorrieri, G. Rosolini, \Graphs and Event Re�nement", Proc.
Workshop on Semantics: Theory and Applications, 1993.

[GG90] R. J. van Glabbeek, U. Goltz: \Equivalences and Re�nement", in
I. Guessarian (ed.): Semantics of Systems of Concurrent Processes, LNCS
469, pp. 309-333, Springer-Verlag, 1990.

[GGR92] U. Goltz, R. Gorrieri, A. Rensink, \On Syntactic and Semantic Action
Re�nement", Hildesheimer Informatik-Berichte 17/92, 1992.

[LG91] R. Loogen, U. Goltz, \Modelling nondeterministic concurrent processes with
event structures", in Fundamenta Informatica, vol. XIV, pp. 39-74, 1991.

[NEL89] M. Nielsen, U. Engberg, K. S. Larsen, \Fully Abstract Models for a Process
Language with Re�nement", in J. W. de Bakker, W. P. de Roever, G.
Rozenberg (eds.): Linear Time, Branching Time and Partial Order in Logics
and Models for Concurrency, LNCS 354, pp. 523-548, Springer-Verlag, 1989.

[Sch91] S. Schreiber, \Fluss-Ereignisstrukturen als Modell fuer eine Sprache",
Master's thesis, Rheinische Friedrich-Wilhelms-Universitaet Bonn, 1991.

44



[Wi89] G. Winskel, \An Introduction to Event Structures ", in J. W. de Bakker, W.
P. de Roever, G. Rozenberg (eds.): Linear Time, Branching Time, and
Partial Order in Logics and Models for Concurrency, LNCS 354, pp.
364{397, Springer-Verlag, 1989.

45


