
REIHE INFORMATIK
15/96

A generalized inverse expansion

for pure interleaving
Huu Trung Do

Universit�at Mannheim

Fakult�at f�ur Mathematik und Informatik

Seminargeb�aude A5
D-68131 Mannheim



A generalized inverse expansion
for pure interleaving

Huu Trung Do

Universit�at Mannheim, Fakult�at f�ur Mathematik und Informatik, Germany
Lehrstuhl f�ur Praktische Informatik I

do@pi1.informatik.uni-mannheim.de

16. October 1996

Abstract

Inverse expansion for pure interleaving which is introduced in [PHQ+92] is a method for
transforming a sequential �nite-state process given in Basic LOTOS into two subprocesses
running independently. Thereby, the sets of the gates occurring in these subprocesses are
disjoint and must be given as the input parameter by a user. The property ful�lled by this
transformation is the strong equivalence according to [Mil89]. In this paper this method is
generalized, i.e. the given process is transformed into more than two processes. Moreover,
it is also applicable to the class of the recursive processes which is not treated in [PHQ+92].

Contents

1 Introduction 1

2 Syntax and semantic 2

3 Transformation 9

3.1 Formal description of the transformation problem : : : : : : : : : : : : : : : : : : 10
3.2 Transformation method : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

4 Application 12

5 Correctness proof 16

6 Conclusion 22

A The Kleene's theorem 23

1 Introduction

In the design of complex systems it is desirable to have a set of tools which support the system
designer and implementors along the trajectory from an inital, abstract speci�cation, down to
concrete design and implementation. For this purpose many so-called correctness preserving
transformations have been investigated in the last years [BvdLV95].

These transformations can help a designer to transform a given LOTOS speci�cation S1

into a new LOTOS speci�cation S2 that ful�lls some new design properties and, at the same
time, preserves the correctness by guaranteeing that S1 and S2 are semantically equivalent.

1



One of these correctness preserving transformations is Inverse expansion which is based on

the inversion of the Expansion Theorem and introduced in [PHQ+92]. There are two types of
Inverse expansion to be distinguished:

1. The Pure Interleaving

This method decomposes a sequential �nite-state process into two subprocesses running

independently.

2. The Visible Communication Decomposition

This method decomposes a sequential �nite-state process into the parallel composition of

two subprocesses running asynchronously.

In this paper we only concern with the inverse expanssion 1 in the case of pure interleaving.
The other case will not be discussed further.

The formal description of Pure Interleaving is as follows.: Let P be a sequential process and

A be the set of gates in P with A = A1 [ A2 and A1 \ A2 = ;. Then P is transformed into
Q = Q1 jjjQ2 with P � Q. jjj means that Q1 and Q2 are running independently and � stands
for the strong equivalence according to [Mil89]. The set of gates performed by Qi for i = 1; 2 is
Ai.

Unfortunately, the case where P is recursive is not treated in [PHQ+92]. It is therefore
desirable to have a generalized method which allows P to be recursive and transforms P not
only into two, but more than two processes, e.g. Q = Q1 jjjQ2 jjj � � � jjjQn where n 2 IN and
A = A1 [ A2 � � �An with Ai \ Aj = ; for i; j 2 f1; : : : ; ng and i 6= j.

In this paper such a generalized method is presented. The idea of this method is di�erent
from [PHQ+92] and has some analogies with the idea of the method presented in [Jan85] for
the COSY Formalism. However, the notion of equivalence de�ned by Janicki is not a strong

bisimulation equivalence and has absolutely an another intention which we do not follow here.
The rest of the paper is organized as follows. Section 2 gives the syntax and semantic of

the subset of Basic LOTOS. In section 3 the transformation problem and the transformation
method are explained. For application section 4 recalls a demonstration example that was

already discussed in [BvdLV95] for inverse expansion, but to which the inverse expansion's
method presented in [PHQ+92] cannot be applied since it is not applicable to the class of
recursive processes. The solution found there is just computed by hand. Here we will show

that this solution can be obtained by our method. In section 5 the correctness of the method
discussed in section 3 is proven. Section 6 concludes the paper.

2 Syntax and semantic

This section recalls the syntax and the operational semantic of the subset of Basic LOTOS.
Moreover, the strong bisimulation equivalence according to [Mil89] and some basic notations
that will be used in section 3 are also introduced. For the details to LOTOS the reader is
referred to [ISO89].

De�nition 2.1 Let G be a set of action names, PN a set of process names, g 2 G, G � G and

P 2 PN . Then L is de�ned by the following grammar:

B ::= stop j (g;B) j (B []B) j (B j[G]jB) j P

2

1In the framework of this paper Inverse Expansion is understood as Inverse Expansion for Pure Interleaving.

2



stop represents an inactive process that cannot o�er anything to the environment. g;B is a

process that �rst executes g and behaves after that like B. [] is a nondeterministic operator, e.g.
B1 []B2 behaves either like B1 if the �rst action resolved in interaction with the environment

stems from B1 or like B2 if otherwise. The parallel composition of two processes is represented
by B1 j[G]jB2 where g 2 G is a synchronisation action, i.e. an action that can only be performed
if g is performed by B1 and B2 in co-operation, in other words at the same time. P denotes a
process instantiation. With P it is possible to de�ne a process to be recursive.

For the rest of the paper j[;]j is also denoted by jjj. Each B 2 L is called a process. Note the
parentheses enclosing the process terms are omitted if they are not important. Let A be a �nite
set then

P
a2A a;B(a) stands for a1;B(a1) [] a2;B(a2) : : : [] an;B(an) if A = fa1; a2; : : : ; ang.

Analogical to this, as a shorthand for B1 jjjB2 : : : jjjBn we write jjjni=1Bi or jjji2I Bi where
I = f1; : : : ; ng.

Remark 2.1 For technical reasons we assume that the following holds:

1. The letter 'S' occurs in PN .

2. If P 2 P then P n 2 PN , where n 2 IN0. 2

De�nition 2.2 A �nite set P � (PN � L) is called a process environment if

8(P;B); (P 0; B0) 2 P : (P;B) 6= (P 0; B0) =) P 6= P 0:

The set of all process environments is denoted with EnvL, i.e.

EnvL := fP jP is a process environmentg:
2

We de�ne a function that assigns the set of all action names occurring in B to each process
B.

De�nition 2.3 Let B 2 L and P 2 EnvL. Then

� Act(B) is inductively de�ned as follows:

1. B = stop =) Act(B) := ;.

2. B = (g;B0) =) Act(B) := fgg [ Act(B0).

3. B = (B1 []B2) =) Act(B) := Act(B1) [ Act(B2).

4. B = (B1 j[g1; : : : ; gn]jB2) =) Act(B) := Act(B1) [ Act(B2).

5. B = P =) Act(B) := ;.

� Act(P) :=
S
fAct(B) j (P;B) 2 Pg.

� Act(B;P) := Act(B) [ Act(P). 2

The operational semantic of L is a function that assigns a transition system to each B 2 L
and is de�ned with the transition rules. We �rst give the de�nition of transition system as
follows.

De�nition 2.4 Let L be a set. Then T = (Q;�!; q0) with

� Q is a set ( of states).

3



� �!� Q� L�Q (transition relation)

� q0 2 Q (initial state)

is called a transition system. T S denotes the class of all transition systems. We say T is �nite

if Q and L are �nite. 2

Note, for a shorthand p
e
�! q stands for (p; e; q) 2�!.

De�nition 2.5 Let B 2 L. Then the operational semantic of L is a function OS : (L �
EnvL)! T S de�ned as

OS(B;P) := (L;�!P ; B);

where �!P� L � G � L is de�ned as follows: �!P is the least set which ful�lls the following

transition rules:

1. (g;B)
g
�!P B

2.
B1

a
�!P B0

1

(B1 []B2)
a
�!P B0

1

3.
B2

a
�!P B0

2

(B1 []B2)
a
�!P B0

2

4.
B1

a
�!P B0

1 ^ a 62 G

(B1 j[G]jB2)
a
�!P (B0

1 j[G]jB2)

5.
B2

a
�!P B0

2 ^ a 62 G

(B1 j[G]jB2)
a
�!P (B1 j[G]jB0

2)

6.
B1

a
�!P B0

1 ^ B2
a
�!P B0

2 ^ a 2 G

(B1 j[G]jB2)
a
�!P (B0

1 j[G]jB
0
2)

7.
(P;B) 2 P ^B

a
�!P B0

P
a
�!P B0

2

Based on the transition systems the strong bisimulation equivalence according to [Mil89] is

de�ned as follows:

De�nition 2.6 Let Ti = (Qi;!i; qi) with i = 1; 2 be a transition system. T1 and T2 are

(strongly bisimilar) equivalent (T1 � T2) if there exists a relation R � Q1�Q2 with (q1; q2) 2 R

and for all (p; q) 2 R the following holds:

1. If p
a

�!1 p
0 then 9q0 2 Q2 : q

a
�!2 q

0 and (p0; q0) 2 R.

2. If q
a

�!2 q
0 then 9p0 2 Q1 : p

a
�!1 p

0 and (p0; q0) 2 R.

Such relation R is called a bisimulation between T1 and T2. 2

De�nition 2.7 Let B;B0 2 L and P;P 0 2 EnvL. B in P and B0 in P 0 are (strongly bisimilar)
equivalent (B1 �P ;P 0 B2) if OS(B;P) � OS(B;P 0). 2

4



The following lemma shows that OS(B;P) is equivalent with the transition system whose

set of states consists of all states which can be reached from an initial state via �!P . This
property will be often used in section 3 and 5.

De�nition 2.8 Let B 2 L and P 2 EnvL. Re(B;P) is the least set ful�lling the following:

� B 2 Re(B;P).

� 8C 0 : (9C 2 Re(B;P) : 9g : C
g
�!P C 0) =) C 0 2 Re(B;P). 2

De�nition 2.9 Let B 2 L and P 2 EnvL. Then

TS(B;P) := (Re(B;P);�!; B);

where �! = �!P \(Re(B;P)� Re(B;P)). 2

Lemma 2.1 Let B 2 L and P 2 EnvL. Then OS(B;P) � TS(B;P).

Proof: Easy and omitted. 2

Now we show that Re(B;P) can be identi�ed with the least �xpoint of a continuous function
on the so-called c.p.o (complete partial order). The notions like c.p.o., �xpoint of a continuous
function, poset ... stem from the well-known domain theory and are summarized briey in
appendix A. For details see e.g. [Win93].

To prove this statement we �rst construct a c.p.o. on which we then de�ne a function and

show that this function is continuous. Applying the Kleene's theorem (see appendix A) the
proof of this statement is straightforward.

De�nition 2.10 Let B 2 L. Then

1. M(B) := fm j m � L ^ fBg � mg.

2. Pos(B) := (M(B);�; fBg). 2

Lemma 2.2 Pos(B) is a c.p.o.

Proof: Easy and omitted. 2

De�nition 2.11 F1B;P :M(B)!M(B) is de�ned as

F1B;P(m) := m [ fC 0 j 9C 2 m : 9g : C
g
�!P C 0g:

2

Lemma 2.3 F1B;P is continuous.

Proof: Let M �M(B) be a chain and L =
S
M . We obtain:

F1B;P(L) = L [ fC 0 j 9C 2 L : 9g : C
g
�!P C 0g Def. 2.11

= L [ fC 0 j 9m 2M : 9C 2 m : 9g : C
g
�!P C 0g

= fC 0 j(9m 2M : C 0 2 m) _ (9m 2M : 9C 2 m : 9g : C
g
�!P C 0)g

= fC 0 j 9m 2M : C 0 2 m _ 9C 2 m : 9g : C
g
�!P C 0g

= fD j 9m 2 M : D 2 m [ fC 0 j 9C 2 m : 9g : C
g
�!P C 0gg

= fD j 9m 2 M : D 2 F1B;P(m)g

= fD j 9X : (9m 2M : X = F1B;P(m))^D 2 Xg

= fD j 9X 2M 0 : D 2 Xg;

where M 0 = fX j 9m 2 M : X = F1B;P(m)g:

=
[
fX j 9m 2M : X = F1B;P(m)g

2

5



Corollar 2.1 Re(B;P) =
S
i2IN0

F1iB;P(fBg). 2

As the aim of this paper is to give an approach to transform a sequential �nite-state process

into n processes running independently we restrict ourselves to the subset of L (denoted by
Lseq) in which the opportunity of describing the parallel processes is not given, i.e. only the
sequential processes are considered.

De�nition 2.12 Let G and PN be the sets in the de�nition 2.1. Let g 2 G and P 2 PN .

Then Lseq is de�ned by the following grammar:

B ::= stop j (g;P ) j (B []B)

2

It is obvious that Lseq is a subset of L. Therefore, the semantic de�ned for L is also valid
for Lseq.

De�nition 2.13 A process environment P 2 EnvL is called sequential if 8(P;B) 2 P : B 2
Lseq holds. The set of all sequential process environments is denoted by Envseq, i.e.

Envseq := fP jP is sequentialg:

2

Note that the transition system OS(B;P) with B 2 L and P 2 EnvL is dependent on P.
There can be a case where a state P (process name) in Re(B;P) does not have a transition, i.e.

:(9B0 2 L : 9g : P
g
�!P B0), because of :(9C : (P;C) 2 P). Such P as a process environment

is not complete and so not praticable. That's why we now introduce for L a new notion of the
so-called closed processes. For a closed process B 2 Lseq in an environment P 2 Envseq we will
show that the following statement

8P 2 PN : P 2 Re(B;P) =) 9C : (P;C) 2 P (�)

holds. Moreover, if a process B 2 Lseq is closed in a process environment P 2 Envseq then B

is �nite-state in P. Thereby, a process B 2 L in a process environment P 2 EnvL is called
�nite-state if Re(B;P) is �nite.

De�nition 2.14 Let B 2 L and P 2 P. Pv(B) is inductively de�ned as follows:

1. B = stop =) Pv(B) := ;.

2. B = (g;B0) =) Pv(B) := Pv(B0).

3. B = (B1 []B2) =) Pv(B) := Pv(B1) [ Pv(B2).

4. B = (B1 j[g1; : : : ; gn]jB2) =) Pv(B) := Pv(B1) [ Pv(B2).

5. B = P =) Pv(B) := fPg. 2

Pv(B) is a set of all process names occuring in B.

De�nition 2.15 Let P 2 EnvL. Then PN(P) := fP j (P;B) 2 Pg. 2

De�nition 2.16 Let B 2 L and P 2 EnvL. Then Rpv(B;P) is the least set which ful�lls the

following:

6



1. Pv(B) � Rpv(B;P).

2. 8P 2 Rpv(B;P) : 9B0 : (P;B0) 2 P =) Pv(B0) � Rpv(B;P). 2

We de�ne the notion of a closed process B in an process environment P as follows.

De�nition 2.17 A process B 2 L is closed in P 2 EnvL if Rpv(B;P) = PN(P). 2

To prove the proposition (�) we �rst show that by analogy with Re(B;P) the set Rpv(B;P)
can be identi�ed with the least �xpoint of the continuous function on the c.p.o. which is de�ned
as follows.

De�nition 2.18 Let B 2 Lseq and P 2 Envseq. Then

1. M(B;P) := fm j m � (Pv(B) [ (
S
(P;B0)2P Pv(B

0)))^ Pv(B) � mg.

2. Pos(B;P) := (M(B;P);�; Pv(B)).

2

Lemma 2.4 Pos(B;P) is a c.p.o. 2

Proof: Easy and omitted. 2

De�nition 2.19 F2B;P :M(B;P) �!M(B;P) is de�ned as

F2B;P(m) := m [ (
[
fX j 9P 2 m : 9B0 : (P;B0) 2 P ^X = Pv(B0)g):

2

Lemma 2.5 F2B;P is continuous on Pos(B;P).

Proof: Let M �M(B;P) be a chain and L =
S
M . We obtain:

F2B;P(L) = L [ (
[
fX j 9P 2 L : 9B0 : (P;B0) 2 P ^X = Pv(B0)g) Def. 2.19

= L [ (
[
fX j 9m 2M : 9P 2 m : 9B0 : (P;B0) 2 P ^X = Pv(B0)g)

= fC j(9m 2M : C 2 m) _ (9X : (9m 2M : 9P 2 m : 9B0 : (P;B0) 2 P

^ X = Pv(B0)g) ^ C 2 X)g

= fC j 9m 2M : C 2 m _ (9X : (9P 2 m : 9B0 : (P;B0) 2 P

^ X = Pv(B0)g) ^ C 2 X)g

= fC j 9m 2M : C 2 m [

(
[
fX j 9P 2 m : 9B0 : (P;B0) 2 P ^ X = Pv(B0)g)g

= fC j 9m 2M : C 2 F2B;P(m)g

= fC j 9X 2M 0 : C 2 Xg;where M 0 = fX j 9m 2M : X = F2B;P(m)g

=
[
fX j 9m 2M : X = F2B;P(m)g

2

Corollar 2.2 Rpv(B;P) =
S
i2IN0

F2iB;P(Pv(B)). 2

This corollar is now used for proving the equation Rpv(B;P) = Re(B;P) n fBg which then
implies obviously the proposition (�). We �rst need some preliminaries.

7



Lemma 2.6 Let B 2 Lseq and P 2 Envseq. Then

8B0 : (9g : B
g
�!P B0), B0 2 Pv(B):

Proof: Structural induction on B. Easy and omitted. 2

Lemma 2.7 Let P 2 PN(P) and P 2 EnvL. Then

8B : 9g : P
g
�!P B , 9C : (P;C) 2 P ^ C

g
�!P B:

Proof: This is a consequence of de�nition 2.5. 2

Lemma 2.8 Let B 2 Lseq, P 2 Envseq and i 2 IN . Then

F1iB;P(fBg) n fBg = F2i�1B;P(Pv(B)):

Proof: We show with mathematical induction on IN . For i = 1 it is obvious. We assume that
the induction hypothesis holds for i� 1 where i > 2. The induction step can now be shown as
follows: Let L = F1i�1B;P(fBg) and L0 = F2i�2B;P(fBg). We obtain:

F1iB;P(fBg) = L [ fP 0 j 9P 2 L : 9g : P
g
�!P P 0g

= L [ fP 0 j 9g : B
g
�!P P 0g [ fP 0 j 9P 2 L n fBg : 9g : P

g
�!P P 0g

= L [ fP 0 j 9P 2 L n fBg : 9g : P
g
�!P P 0g; da Pv(B) � L:

= L [ fP 0 j 9P 2 L n fBg : 9g : 9B0 : (P;B0) 2 P ^ B0 g
�!P P 0g;

Lemma 2.7: Note that P 2 L n fBg(= L0) is a process name.

= L [ fP 0 j 9P 2 L n fBg : 9B0 : (P;B0) 2 P ^ 9g : B0 g
�!P P 0g

= L [ fP 0 j 9P 2 L n fBg : 9B0 : (P;B0) 2 P ^ P 0 2 Pv(B0)g;

Lemma 2.6

= L [ fP 0 j 9X : (9P 2 L n fBg :

9B0 : (P;B0) 2 P ^X = Pv(B0))^ P 0 2 Xg

= L0 [ fBg [ (
[
fX j 9P 2 L0 : 9B0 : (P;B0) 2 P ^X = Pv(B0)g)

= F2i�1B;P(Pv(B))[ fBg

2

Proposition 2.1 Let B 2 Lseq and P 2 Envseq. Then Rpv(B;P) = Re(B;P) n fBg.

Proof:

Rpv(B;P) =
[

i2IN0

F2iB;P(Pv(B))

=
[

i2IN0

(F1i+1B;P(fBg) n fBg)

= (
[

i2IN0

(F1i+1B;P(fBg)) n fBg

= (
[

i2IN0

(F1iB;P(fBg)) n fBg

= Re(B;P) n fBg

2

From this proposition we conclude that a process B 2 Lseq in a process environment P 2
Envseq is �nite-state if B is closed in P. For a �nite transition system T we give in the following
a function to construct a process in Lseq whose transition system is equivalent with T .

8



De�nition 2.20 Let T = (Q;�!; q0) be �nite, q 2 Q and f : Q ! IN0 an injective function.

Then

1. Out(q; T ) := f(g; q0) j q
g
�! q0g.

2. Proc(T; S f(q)) :=

( P
(g;q0)2Out(q;T ) g;S f(q0) if Out(q; T ) 6= ;

stop if else otherwise

3. PE(T; f) := f(S f(q); Proc(T; S f(q))) j q 2 Qg 2

Note the letter 'S' is a process name in PN (see remark 2.1). The parentheses in Proc(T; S f(q))
are omitted because we have in fact (B1 []B2) []B3 � B1 [](B2 []B3), where Bi = gi;Pi with
i = 1; 2; 3, gi 2 G and Pi 2 PN , and � is de�ned as follows:

B � B0 :$ B
g
�! B00 , B0 g

�! B00

That means that [] is associative relating to �. The proof of this proposition is not di�cult and

therefore omitted.

Lemma 2.9 Let T = (Q;�!; q0) be �nite. Then

T � OS(Proc(T; S f(q0)); PE(T; f)):

Proof: Since OS(Proc(T; S f(q0)); PE(T; f)) � OS(S f(q0); PE(T; f)) holds (it is easy to
construct a bisimulation between these transition systems) we show

T � OS(S f(q0); PE(T; f)):

Let R = f(q; S f(q)) jq 2 Qg. Clearly that R � (Q � P). We show that R is a bisimulation

between T and OS(S f(q0); PE(T; f)). Let (q; S f(q)) 2 R.

1. From q
g
�! q0 we have (a; q0) 2 Out(q) which implies

S f(q) = (
X

(b;q00)2M

b;S f(q00)) [] a;S f(q0)

where M = Out(q; T ) n f(a; q0)g. Hence we can follow that S f(q)
g
�! S f(q0). As q0 2 Q

holds so (q0; S f(q0)) 2 R holds.

2. By analogy with 1.

Since (q0; S f(q0)) 2 R holds we obtain T � OS(S f(q0); PE(T; f)). 2

3 Transformation

The aim of the transformation in this section is to obtain from a sequential process B an

equivalent process C with a higher degree of parallelism. That means that B is decomposed
into at least two processes running independently (see the �gure below).

B

. . .

A

B1

.
B2

.
Bn

.
. . . . . .

A1 A2 An

C

9



where A is the set of gates performed by B, Ai the set of gates performed by Bi for i = 1; : : : ; n,

A =
Sn
i=1Ai and Ai \ Aj = ; for i; j 2 f1; : : : ; ng with i 6= j.

For applying this transformation we assume like [PHQ+92] that the following must be given

as input: 1) The closed process B 2 Lseq which is closed in P 2 Envseq and 2) the sets Ai

mentioned above.
The method presented in this paper di�ers from [PHQ+92] in the following items:

1. It is also applicable to the class of recursive processes which is not allowed in [PHQ+92].

2. The approach chosen in this paper is not the same like this in [PHQ+92]. The idea of the

method in this paper has some analogy with the idea of the method presented in [Jan85]

for the COSY Formalism. However, the notion of equivalence de�ned by Janicki is not a
strong bisimulation equivalence and has absolutely an another intention.

3. A given process is transformed into more than two processes. These processes can be

computed independently of each other.

In the remainder of this section we �rst formalise the transformation problem. After that
we present a method to solve it.

3.1 Formal description of the transformation problem

The formal description of the transformation problem is given in the following de�nition.

De�nition 3.1 Let B 2 Lseq and P 2 Envseq where B is closed in P. Let Ai � Act(B;P)
with Ai 6= ; and i = 1; : : : ; n where the following holds:

� Act(B;P) =
Sn
i=1Ai.

� Ai \ Aj = ; for i; j 2 f1; : : : ; ng and i 6= j.

B in P is splitted under A, where A = fA1; : : : ; Ang, if there is a process C 2 L with C =
jjjni=1Ci such that the following holds:

1. Ci 2 Lseq for i = 1; : : : ; n.

2. For each i there exists Pi 2 Envseq such that Ci is closed in Pi.

3. Act(Ci;Pi) = Ai

4. PN(Pi) \ PN(Pj) = ; for i; j 2 f1; : : : ; ng with i 6= j.

5. B �P ;P 0 C, where P 0 =
Sn
i=1Pi.

We say, C in P1; : : : ;Pn is a solution for B in P under A. 2

Note that jjj is associative relating to � (see section 5). Thus the parentheses in C can be

omitted. In addition P 0 is in fact a process environment.

10



3.2 Transformation method

To de�ne a method solving the transformation problem we �rst need some preliminaries.

De�nition 3.2 Let B 2 Lseq, A � G and i 2 IN . Then Pj1(B;A; i) is inductively de�ned as

follows:

� If B = stop then Pj1(B;A; i) := stop.

� If B = (g;B0) then

Pj1(B;A; i) :=

(
(g;B0 i) if g 2 A

stop else otherwise

� Let B = (B1 []B2).

{ If Pj1(B1; A; i) = stop = Pj1(B2; A; i) then Pj1(B;A; i) := stop.

{ If Pj1(B1; A; i) 6= stop = Pj1(B2; A; i) then Pj1(B;A; i) := Pj1(B1; A; i).

{ If Pj1(B1; A; i) = stop 6= Pj1(B2; A; i) then Pj1(B;A; i) := Pj1(B2; A; i).

{ If Pj1(B1; A; i) 6= stop 6= Pj1(B2; A; i)
then Pj1(B;A; i) := (Pj1(B1; A; i) []Pj1(B2; A; i)). 2

In Pj1(B;A; i) only such subprocesses of B which are pre�xed with an action in A are
numerated with i. The others are omitted. Note that Pj1(B;A; i) 2 Lseq. This can easy be

proven with the structural induction on B.

De�nition 3.3 Let P 2 Envseq, A � G and i 2 IN . Then

Pj2(P; A; i) := f(P i; Pj1(B;A; i)) j (P;B) 2 Pg:

2

De�nition 3.4 Let B and A be de�ned as in the de�nition 3.1. Then Inv(B;A) := jjjni=1Ci

where Ci = Pj1(B;Ai; i) for i = 1; : : : ; n. 2

De�nition 3.5 Let P 2 EnvL and X � PN(P). Then

Del(P;X) := f(P;B0) jP 2 X ^ 9B0 : (P;B0) 2 Pg
2

The transformation method is based on the following important theorem:

Theorem 3.1 Let B, P and A be de�ned as in the de�nition 3.1. Let Inv(B;A) = jjjni=1Ci,

where Ci = Pj1(B;Ai; i) for i = 1; : : : ; n, and P 0 =
Sn
i=1Pi, where

Pi = Del(Pj2(P; Ai; i); Rpv(Ci; P j2(P; Ai; i))):

Then

a) If B �P ;P 0 Inv(B;A) then Inv(B;A) in P1; : : : ;Pn is a solution for B in P under A.

b) B in P is splitted under A i� B �P ;P 0 Inv(B;A).

11



Proof: The proof is postponed to the section 5. 2

We use this theorem to de�ne the transformation method as follows: Let B, P and A be

de�ned as in the de�nition 3.1.

1. Compute Ci = Pj1(B;Ai; i) and Pi = Del(Pj2(P; Ai; i); Rpv(Ci; P j2(P; Ai; i))) for i =
1; : : : ; n.

2. Let C = jjjni=1Ci and P
0 =
Sn
i=1Pi. Use e.g. the CWB-Tool (Concurrency WorkBench)

[CPS93] to examine whether B �P ;P 0 C holds. If this is true then C is a solution.
Otherwise, no solution does exist.

Note that to compute the set Q = Rpv(Ci; P j2(P; Ai; i)) we have to compute the least
�xpoint of the function F2Ci;Q because of the corollar 2.2. As P is �nite Q is also �nite. Thus
Q is always computable.

Example 3.1 Let B = a;P1 [] c;P2 and P the process environment consisting of the following

process instantiations:

- P0 = B

- P1 = c;P3 [] b;P0

- P2 = a;P3 [] d;P0

- P3 = d;P1 [] b;P2

It is easy to see that Re(B;P) = fP0; P1; P2; P3g holds, i.e. B is closed in P. LetA = fA1; A2g
with A1 = fa; bg and A2 = fc; dg. We have

1. C1 = Pj1(B;A1; 1) = a;P1 1 and P1 = Del(Pj2(P; A1; 1); Rpv(C1; P j2(P; A1; 1))) con-

sists of

- P0 1 = a;P1 1

- P1 1 = b;P0 1

2. C2 = Pj1(B;A2; 2) = c;P2 2 and P2 = Del(Pj2(P; A2; 2); Rpv(C2; P j2(P; A2; 2))) con-

sists of

- P0 2 = c;P2 2

- P2 2 = d;P0 2

Let C = C1 jjjC2 and P 0 = P1[P2. Using the CWB-Tool to analyse the strong bisimulation

equivalence results B �P ;P 0 C. Thus C is the solution of the transformation problem. 2

4 Application

In this section we demonstrate the practical applicability of the method presented in section 3.2.

For it we recall an example that has already been discussed in [BvdLV95] for inverse expansion's
method presented in [PHQ+92]. The solution found in [BvdLV95] for this example is computed
just by 'hand' because the method in [PHQ+92] is not applicable to the class of the recursive
processes. For this reason we like now to show how to obtain this solution systematically with

the method presented in this paper.
In this example we deal with the Programmable Sound Sequencer whose function is described

as follows (originally from [BvdLV95]):

12



The Programmable Sound Sequencer is a system which can accept requests for

producing prede�ned sequences of sounds. More precisely, a user, identi�ed by a
password (Psw1 or Psw2) can require the execution of a programm called Prog1,

consisting of the sequence of sounds (a, d), or of Prog2, consisting of sequence (b,
c, d). In fact, an elementary constraint is imposed, which increases the selectivity
associated with the passwords: Psw1 (resp. Psw2) entitles the user to select only
Prog1 (resp. Prog2).

The system can store up to two di�erent requests, but does not necessarly satisfy

them in order in which they are accepted. The system's structure consists of two
modules `interface' and `music box'. The interface is responsible for a communi-

cation with the user environment and the music box for the output of sounds. Every
time, whenever the parameter Prog1 (resp. Prog1) with the consistent password is

received at the gate command then it will be forwarded by the interface via a channel
channel1 (resp. channel2) (see the �gure below). The music box will start to play
the sound a and b (resp. b, c and d ) if the program Prog1 (resp. Prog2) is received.

interface

command

music_box

channel1

a b c d

channel2

The speci�cation of the Programmable Sound Sequencer written in Full LOTOS is given as
follows (Note in Full LOTOS there are many new constructs which cannot be explained within
the framework of this paper. Reader are therefore referred to [ISO89, BB87].):

specification programmable_sound_sequencer [command, a, b, c, d] : noexit

type Password is

sorts Password

opns Psw1, Psw2 : --> Password

endtype (*Password*)

library Set, Boolean, NatrualNummber endlib

type Program is Boolean

sorts Program

opns Prog1, Prog2 : --> Programm

_ eq _, _ ne _ : Program, Program --> Bool

eqns

ofsort Bool forall p,q: Program

Prog1 eq Prog1 = true; Prog1 eq Prog2 = false;

Prog2 eq Prog1 = false; Prog2 eq Prog2 = true;

p ne q = not(p eq q);

endtype (*Program*)

type ProgramSet is Set actualizedby Program using

13



sortnames Bool for FBool

Program for Element

Program_Set for Set

endtype (*ProgramSet*)

type Consistency is Password, Program, Boolean

opns consistent : password, program --> Bool

eqns

ofsort Bool

consistent(Psw1, Prog1) = true;

consistent(Psw2, Prog2) = true;

consistent(Psw1, Prog2) = false;

consistent(Psw2, Prog1) = false;

endtype (*Consistency*)

behaviour

hide channel1, channel2 in

( interface[command, channel1, channel2]({})

|[channel1, channel2]| music_box[channel1, channel2, a, b, c, d]

)

where

process interface[command, channel1, channel2](prog_set: Progam_Set) : noexit :=

[Card(prog_set) eq 0] -->

command ?psw: Password ?prog: Program [consistent(psw, prog)];

interface[command, channel1, channel2](Insert(prog, prog_set))

[] [Card(prog_set) eq Succ(0)] -->

( command ?psw: Password ?prog: Program

[consistent(psw, prog) and (prog NotIn prog_set)];

interface[command, channel1, channel2](Insert(prog, prog_set))

[] (choice prog: Program [] [prog IsIn prog_set] -->

( channel1 !prog [prog = Prog1];

interface[command, channel1, channel2](Remove(prog, prog_set))

[] channel2 !prog [prog = Prog2];

interface[command, channel1, channel2](Remove(prog, prog_set))

)

)

)

[] [Card(prog_set) eq Succ(Succ(0))] -->

choice prog: Program [] [prog IsIn prog_set] -->

( channel1 !prog [prog = Prog1];

interface[command, channel1, channel2](Remove(prog, prog_set))

[] channel2 !prog [prog = Prog2];

interface[command, channel1, channel2](Remove(prog, prog_set))

)

endproc (*interface*)

process music_box[channel1, channel2, a, b, c, d] : noexit :=

channel1 ?p: Program [p = Prog1];

a; d; music_box[channel1, channel2, a, b, c, d]

[] channel2 ?p: Program [p = Prog2];

b; c; d; music_box[channel1, channel2, a, b, c, d]

endproc (*music_box*)

Let us look at the process interface initialized with the empty program set, i.e.

14



interface[command, channel1, channel2](fg).

So we' d like to know whether it's possible to split the interface process into two subpro-
cesses interface1 and interface2 (that handle separately the requests of Prog1 by the user
with Psw1, and of Prog2 by the user with Psw2) such that interface[command, channel1,

channel2](fg) and interface1 jjj interface2 are equivalent. To answer this question we
have �rst to compute the semantic (i.e. a transition system) of the interface process, denoted
by T . Afterwards, we apply our method on Proc(T; S f(q)) (see de�nition 2.20) to obtain

interface1 and interface2 if such a solution does exist.
The semantic of a full LOTOS process is a transition system that is derived with the rules

given in [ISO89]. Deriving the interface's transition system with these rules we obtain �gure 1.

Thereby, the states in T are numerated with 1; 2; 3 and 4. Since T is �nite we obtain with the

function Proc(: : :):

1

2

4

3

command.psw1.prog1
command.psw2.prog2

command.psw2.prog2

command.psw1.prog1

channel1.prog1

channel2.prog2

channel1.prog1
channel2.prog2

T :

Figure 1: Transition system of the interface

Proc(T; S f(1)) = command:psw1:prog1;S f(2) [] command:psw2:prog2;S f(3)

= command:psw1:prog1;S 2 [] command:psw2:prog2;S 3

and PE(T; f) consists of the following process instantiations:

S f(1) = S 1 = command:psw1:prog1;S 2 [] command:psw2:prog2;S 3

S f(2) = S 2 = channel1:prog1;S 1 [] command:psw2:prog2;S 4

S f(3) = S 3 = channel2:prog2;S 1 [] command:psw1:prog1;S 4

S f(4) = S 4 = channel1:prog1;S 3 [] channel2:prog2;S 2

where f(i) = i for i = 1; : : : ; 4. Let be B = Proc(T; S f(1)) and P = PE(T; f). We try now to
split B into two processes (i.e. interface1 and interface12) according to A = fA1; A2g with

A1 = fcommand:psw1:prog1; channel1:prog1g

and A2 = fcommand:psw2:prog2; channel2:prog2g. As we know from example 3.1 that such
solution exists we obtain the following similar result:

1. C1 = Pj1(B;A1; 1) = command:psw1:prog1; (S 2) 1
and P1 = Del(Pj2(P; A1; 1); Rpv(C1; P j2(P; A1; 1))) consists of

15



- (S 1) 1 = command:psw1:prog1; (S 2) 1

- (S 2) 1 = channel1:prog1; (S 1) 1

2. C2 = Pj1(B;A2; 2) = command:psw2:prog2; (S 3) 2

and P2 = Del(Pj2(P; A2; 2); Rpv(C2; P j2(P; A2; 2))) consists of

- (S 1) 2 = command:psw2:prog2; (S 3) 2

- (S 3) 2 = channel2:prog2; (S 1) 2

Because C1 (resp. C2) and (S 1) 1 (resp. (S 1) 2) are equivalent, interface1 (resp. interface12)
can be identi�ed with (S 1) 1 (resp. (S 1) 2). Thus we can now give an equivalent speci�cation

of the interface process as follows:

process interface[command, channel1, channel2] : noexit :=

interface1[command, channel1] ||| interface2[command, channel2]

where

process interface1[command, channel1] : noexit :=

command.psw1.prog1; channel1.prog1; interface1[command, channel1]

endproc

process interface2[command, channel2] : noexit :=

command.psw2.prog2; channel2.prog2; interface2[command, channel2]

endproc

endproc

In [BvdLV95] this speci�cation is computed just by hand, i.e. without using the method-
ological approach, because B is recursive.

5 Correctness proof

This section gives the proof of the theorem 3.1. We �rst need some lemmata.

Lemma 5.1 Let Bi; Ck 2 L with i = 1; 2; 3 and k = 1; 2, and P;Q 2 EnvL. Then

1. B1 jjj (B2 jjjB3) �P ;P (B1 jjjB2) jjj B3.

2. B1 jjjB2 �P ;P B2 jjjB1

3. B1 jjjB2 �P ;Q C1 jjjC2, if Bk �P ;Q Ck holds.

Proof: For 1.: Let C = B1 jjj (B2 jjjB3), D = (B1 jjjB2) jjj B3 and R � (L� L) with

R = f(q1 jjj(q2 jjj q3); (q1 jjj q2) jjj q3) j qi 2 Re(Bi;P)g:

It is easy to show that R is a bisimulation (relating to P). Since (C;D) 2 R holds we have
C �P ;P D. For 2.: Trivial. For 3.: Let Rk be a bisimulation betweenOS(Bk;P) andOS(Ck;P).
De�ne R � (L� L) as follows:

R = f(q1 jjj q2; q3 jjj q4) j (q1; q3) 2 R1 ^ (q2; q4) 2 R2g

It is easy to show that R is a bisimulation between OS(B1 jjjB2;P) and
OS(C1 jjjC2;Q). Thus we have B1 jjjB2 �P ;Q C1 jjjC2. 2

16



Lemma 5.2 Let B 2 Lseq, P 2 Envseg and (P;C) 2 P. Then

1. Pv(B) � PN(P), if B is closed in P.

2. Pv(C) � PN(P), if B is closed in P.

3. Pv(Pj1(B;A; i)) � fP i jP 2 Pv(B)g.

Proof: For 1.: From Pv(B) � Rpv(B;P) and de�nition 2.17 it follows Pv(B) � PN(P). For
2.: Since P 2 Rpv(B;P) holds we have Pv(C) � Rpv(B;P) because of de�nition 2.16. Thus
Pv(C) � PN(P). For 3.: Structural induction on B. Easy and omitted. 2

Lemma 5.3 Let B 2 Lseq be closed in P 2 Envseq, A � Act(B;P), C = Pj1(B;A; i) and

Q = Pj2(P; A; i). Then
F2kC;Q(Pv(C)) � PN(Q):

Proof: Mathematical induction on k

� k = 0

By lemma 5.2(3) Pv(C) � fP i jP 2 Pv(B)g holds and with Lemma 5.2(1) we have

Pv(C) � fP i jP 2 PN(P)g. From that it follows Pv(C) � PN(Q).

� Induction hypothesis for k � 1

� Induction step:

F2kC;Q(Pv(C)) = F2C;Q(F
k�1
C;Q (Pv(C)))

= F2k�1C;Q(Pv(C)) [

(
[
fX j 9P 2 F2k�1C;Q(Pv(C)) : 9B

0 : (P;B0) 2 Q ^X = Pv(B0)g)

� F2k�1C;Q(Pv(C)) [ (
[
fX j 9(P;B0) 2 Q ^X = Pv(B0)g)

� F2k�1C;Q(Pv(C)) [

(
[
fX j 9(P;B0) 2 P : X = fP 0 i jP 0 2 Pv(B0)gg);

by Lemma 5.2(3)

� PN(Q); by induction hypothesis and since for (P;B0) 2 P

we have Pv(B0) � PN(P) because of lemma 5.2(2):

Thus fP 0 i jP 0 2 Pv(B0)g � PN(Q):

2

Lemma 5.4 Let B 2 Lseq and P 2 Envseq. Then

1. Act(B) = fg j 9B0 : B
g
�!P B0g.

2. Act(B;P) = fg j 9B0; B00 2 Re(B;P) : B0 g
�!P B00g, if B is closed in P.

Proof: For 1.: Structural induction on B. Easy and omitted. For 2.: Let

M = fg j 9B0; B00 2 Re(B;P) : B0 g
�!P B00g:

17



� `�':

For g 2 Act(P) we have 9(P;B0) 2 P : g 2 Act(B0). By 1. g 2 fa j 9B00 : B0 a
�!P

B00g holds and consequently g 2 fa j 9B00 : P
a
�!P B00g. Since P 2 Re(B;P) holds

(Re(B;P) = PN(P) [ fBg because B is closed in P) it follows g 2 M . By analogical
reasoning the same is true for g 2 Act(B).

� `�':

For g 2M we have 9B0; B0 2 Re(B;P) : B0 g
�!P B00. As Re(B;P) = PN(P)[fBg holds

it follows B0 2 PN(P) or B0 = B. If B0 2 PN(P) then 9C : (B0; C) 2 P ^ C
g
�!P B00.

By 1. g 2 Act(C) holds and therefore g 2 Act(P). If B0 = B then by analogical reasoning
we have g 2 Act(B). 2

Lemma 5.5 Let B 2 Lseq, P;Q 2 Envseq and P 2 PN(P). Then

1. 8g : 8B0 : B
g
�!P B0 , B

g
�!Q B0.

2. 8g : 8B0 : P
g
�!P B0 , P

g
�!Q B0, if P � Q.

3. Re(B;P) = Re(B;Q), if B is closed in P and P � Q.

4. B �P ;Q B, if B is closed in P and P � Q.

Proof: For 1.: Structural induction on B. Easy and omitted. For 2.:

a) `)': From P
g
�!P B0 it follows 9C : (P;C) 2 P ^ C

g
�!P B0. By 1. C

g
�!Q B0 holds

and hence P
g
�!Q B0.

b) `(': By analogy with a) we have 9C : (P;C) 2 Q ^ C
g
�!Q B0. We show that (P;C) 2

P. Assume (P;C) 62 P. Then we have (P;C) 6= (P;C 0) with (P;C 0) 2 P because of
P 2 PN(P). Since Q is a process environment we have P 6= P and consequently a

contradiction. Thus (P;C) 2 P. By 1. this implies P
g
�!P B0.

For 3.: Evidently, it su�ces to show that F1kB;P(fBg) = F1kB;Q(fBg). We show this with
mathematical induction on k.

� k = 0. Trivial.

� Induction hypothesis for k � 1.

� Induction step: Let L = F1k�1B;P(fBg) and L0 = F1k�1B;Q(fBg). So we have

F1kB;P(fBg) = L [ fC 0 j 9C 2 L : 9g : C
g
�!P C 0g

= L0 [ fC 0 j 9C 2 L0 : 9g : C
g
�!P C 0g; by induction hypothesis

= L0 [ fC 0 j 9C 2 L0 : 9g : C
g
�!Q C 0g; since B is closed in P

and thus either C 2 PN(P) or C = B holds:

By 1. and 2. we have C
g
�!Q C 0:

= F1kB;Q(fBg)

Zu 4.: With 1, 2 und 3 it is easy to show that R = f(q; q) j q 2 Re(B;P)g is a bisimulation
between TS(B;P) and TS(B;Q). Since (B;B) 2 R holds we have B �P ;Q B. 2

18



Lemma 5.6 Let B 2 L and P 2 EnvL. Let TS(B;P) � T , where T = (Q;�!; q0), and

R � (Re(B;P)�Q) be a bisimulation with (B; q0) 2 R belonging to it. Then

8C 2 Re(B;P) : 9q 2 Q : (C; q) 2 R:

Proof: Let C 2 Re(B;P). Then we have by Korollar 2.1 9k : C 2 F1kB;P(fBg). With

mathematical induction on k it is easy to show that there are Ci 2 Re(B;P) and gi 2 G with
i = 0; : : : ; k � 1 such that the following holds:

B = C0
g0
�!P C1

g1
�!P C2 � � �Ck�1

gk�1

�!P Ck = C

Since R is a bisimulation there exists qh 2 Q with h = 0; : : : ; k � 1 such that

q0
g0
�! q1

g1
�! q2 � � � qk�1

gk�1

�! qk

and (Ci; qi) 2 R holds. Hence it follows 9q 2 Q : (C; q) 2 R. 2

Lemma 5.7 Let C1; C2 2 L, P 2 EnvL, D = C1 jjjC2. Then Re(D;P ) �M , where

M = fp jjj q j p 2 Re(C1;P); q 2 Re(C2;P)g:

Proof: We show with mathematical induction on k that F1kD;P(fDg) �M .

� k = 0. Trivial.

� Induction hypothesis for k � 1.

� Induction step: Let L = F1k�1D;P(fDg). We obtain

F1kD;P(fDg) = L [ fC 0 j 9C 2 L : 9g : C
g
�!P C 0g

� M [ fC 0 j 9C 2 L : 9g : C
g
�!P C 0g; by induction hypothesis

� M; since C 0 2M holds.

From corollar 2.1 it follows Re(D;P ) �M . 2

Lemma 5.8 Let Ci 2 Lseq be closed in Pi 2 Envseq with i = 1; : : : ; n. Let P 2 Envseq with

Pi � P, D = jjjni=1Ci and q 2 Re(D;P). Then

8q0 : 8g : q
g
�!P q0 =) g 2

n[
i=1

Act(Ci;Pi):

Proof: We show with mathematical induction on n.

� n = 1. It follows from lemma 5.4(2).

� Induction hypothesis for n� 1.

� Induction step: Since jjj is associative and commutative relating to � we can writeD �P ;P
Cn jjj (jjj

n�1
i=1 Ci). Let C = Cn jjj C 0 and C 0 = jjjn�1i=1 Ci. From lemma 5.6 it follows

9p; p0 2 Re(C;P) : p
g
�!P p0. By Lemma 5.7 we have p = p1 jjj p2 with p1 2 Re(Cn;P)

and p2 2 Re(C 0;P). Thus

1) either 9p01 : p1
g
�!P p01 or

19



2) 9p02 : p2
g
�!P p02 holds.

For 1): Since by lemma 5.5(3) Re(Cn;P) = Re(Cn;Pn) holds and consequently by lemma

5.5(1,2) p1
g
�!Pn p

0
1, we have by lemma 5.4(2) g 2 Act(Cn;Pn).

For 2): g 2
Sn�1
i=1 Act(Ci;Pi) holds by induction hypothesis.

This concludes that g 2
Sn
i=1Act(Ci;Pi). 2

De�nition 5.1 Let B 2 L, P 2 EnvL and A � Act(B;P). Then Res(B;A;P) := (L;�!; B)
is a transition system where �! = �!P \(L�A� L). 2

Lemma 5.9 Let B;Ci 2 Lseq, P;Qi 2 Envseq and i = 1; : : : ; n. Let

� C = jjjni=1Ci,

� Ci be closed in Qi,

� PN(Qi) \ PN(Qj) = ; for i 6= j, Q =
Sn
i=1Qi,

� Ai = Act(Ci;Qi), Ai \Aj = ; for i 6= j and

� B �P ;Q C.

Then TS(Ck ;Q) � Res(B;Ak;P) for k = 1; : : : ; n.

Proof: Since jjj is associative and commutative relating to � we have B �P ;Q D, where

D = Ck jjjD
0 andD0 = (jjjni=1;i6=k Ci). Let R be a bisimulation between TS(D;Q) and TS(B;P),

and Res(B;Ak;P) = (L;�!; B). De�ne S � (Re(Ck;Q)� L) as follows:

S = f(p; q) jp 2 Re(Ck;Q) ^ 9p
0 : p jjjp0 2 Re(D;Q) ^ (p jjjp0; q) 2 Rg

We show that S is a bisimulation between TS(Ck;Q) and Res(B;Ak ;P). Let (p; q) 2 S.

1. Firstly, we have 9p00 : (p jjjp00; q) 2 R. If p
g
�!Q p0 then p jjjp00

g
�!Q p0 jjjp00. From that

it follows 9q0 : q
g
�!P q0 ^ (p0 jjj p00; q0) 2 R. Since because of lemma 5.5(1,2,3) p

g
�!Qk

p0

holds we have by lemma 5.4(2) g 2 Ak. Thus q
g
�! q0. It is obvious that (p0; q0) 2 S.

2. If q
g
�! q0 then q

g
�!P q0. Thus 9z : p jjjp00

g
�!Q z ^ (z; q0) 2 R. Since g 2 Ak and

Ak \ Aj = ; for j 6= k holds we can follow because of lemma 5.8 that p
g
�!Q p0, and

consequently z = p0 jjj p00. From that it follows (p0; q0) 2 S.

This concludes that S is a bisimulation. Since (D;B) 2 R holds we have (Ck; B) 2 S. Thus
TS(Ck ;Q) � Res(B;Ak;P). 2

Lemma 5.10 Let B 2 Lseq, P;Q 2 Envseq, A � G, g 2 A and i 2 IN . Then

8B0 : B
g
�!P B0 , Pj1(B;A; i)

g
�!Q B0 i:

Proof: Structural induction on B. 2

Lemma 5.11 Let

� B 2 Lseq be closed in P 2 Envseq.

� A � Act(B;P).

20



� C = Pj1(B;A; i) for i 2 IN .

� Q = Del(P 0; Rpv(C;P 0)), where P 0 = Pj2(P; A; i).

Then Res(B;A;P) � OS(C;Q).

Proof: Let Res(B;A;P) = (L;�!; B) and R � (L� L) with

R = f(P;P i) jP 2 PN(P)g [ f(B;C)g:

We show that R is a bisimulation between Res(B;A;P) and OS(C;Q). Let (p; q) 2 R.
There are two cases:

1. p = B and q = C

(a) If B
g
�! B0 then B

g
�!P B0. By lemma 5.10 we have C

g
�!Q B0 i. Since B is closed

in P and B0 2 Re(B;P) holds we have by proposition 2.1 B0 2 PN(P)[ fBg. Since
by lemma 2.6 B0 is a process name, i.e. B0 2 PN(P), we can follow (B0; B0 i) 2 R.

(b) If C
g
�!Q C 0 then by lemma 5.10 B

g
�!P B0 (i.e. B

g
�! B0) and C 0 = B0 i. By

analogy with (a) we have B0 2 PN(P) und hence (B0; C 0) 2 R.

2. p = P and q = P i, where P 2 PN(P)

(a) If P
g
�! P 0 then P

g
�!P P 0. Thus 9B0 : (P;B0) 2 P ^ B0 g

�!P P 0. Let D =

Pj1(B0; A; i). By Lemma 5.10 D
g
�!Q P 0 i holds und thus P i

g
�!Q P 0 i. By

analogy with 1(a) we obtain (P 0; P 0 i) 2 R.

(b) By analogy with 2(a). 2

Now we are prepared to prove the theorem 3.1.

Proof of theorem 3.1:

� For a):

1. Ci 2 Lseq for i = 1; : : : ; n. Trivial.

2. Ci is closed in Pi for i = 1; : : : ; n, i.e. Rpv(Ci;Pi) = PN(Pi).

We �rst show that the following holds:

Rpv(Ci; P j2(P; Ai; i)) = PN(Pi)

'�': Trivial.

`�': Let P 2 Rpv(Ci;Q), where Q = Pj2(P; Ai; i). Because of corollar 2.2 we
have 9k 2 IN0 : P 2 F2kCi;Q

(Pv(Ci)) and by lemma 5.3 P 2 PN(Q). That means

9B0 : (P;B0) 2 Q. Thus P 2 PN(Pi).

We show now that Rpv(Ci;Pi) = Rpv(Ci;Q). Obviously, it is su�cient to show that

F2kCi;Pi
(Pv(Ci)) = F2kCi;Q

(Pv(Ci)):

We show this with mathematical induction on k.

k = 0. Trivial.

Induction hypothesis for k � 1.

21



Induction step: Let L = F2k�1Ci;Pi
(Pv(Ci)) and L0 = F2k�1Ci;Q

(Pv(Ci)). We obtain:

F2kCi;Pi
(Pv(Ci)) = L [ (

[
fX j 9P 2 L : 9B0 : (P;B0) 2 Pi ^X = Pv(B0)g)

= L0 [ (
[
fX j 9P 2 L0 : 9B0 : (P;B0) 2 Pi ^X = Pv(B0)g);

by induction hypothesis

= L0 [ (
[
fX j 9P 2 L0 : 9B0 : (P;B0) 2 Q ^X = Pv(B0)g);

since from P 2 L0 it follows P 2 Rpv(Ci;Q)

and from (P;B0) 2 Q it follows (P;B0) 2 Pi:

= F2kCi;Q
(Pv(Ci))

3. Act(Ci;Pi) = Ai

`�': Trivial.

`�': Let g 2 Ai. Because B is closed in P we have by lemma 5.4(2)

9B0; B00 2 Re(B;P) : B0 g
�!P B00:

As B �P ;P 0 Inv(B;A) holds and jjj is associative we can follow B �P ;P 0 D, where

D = Ci jjj (jjjk2M Ck) and M = f1; : : : ; ng n fig. By lemma 5.6 we have 9q; q0 2

Re(D;P 0) : q
g
�!P 0 q0. By lemma 5.7 q = q1 jjj q3 und q0 = q2 jjj q4 holds, where

q1; q2 2 Re(Ci;P
0) und q3; q4 2 Re( jjj

k2M

Ck;P
0):

From lemma 5.8 it follows q1
g
�!P 0 q2 and because of lemma 5.5(1,2)

q1
g
�!Pi q2. By lemma 5.4(2) we have g 2 Act(Ci;Pi).

4. PN(Pi) \ PN(Pi) = ; for i 6= j. Trivial.

5. B �P ;P 0 C holds because of the assumption.

� For b):

`(': It follows from a).

`)': Let D = jjjni=1Di in Q1; : : : ; Qn be a solution for B in P under A. By Lemma 5.9
and 5.11 we have TS(Di;Q) � Res(B;Ai;P), where Q =

Sn
i=1Qi, and Res(B;Ai;P) �

OS(Ci;Pi). Since by lemma 5.5(4) Ci �Pi;P 0 Ci holds we obtain Di �Q;P 0 Ci. From

lemma 5.1(3) it follows D �Q;P 0 Inv(B;A), i.e. B �P ;P 0 Inv(B;A). 2

6 Conclusion

The method presented in this paper is a generalization of the so-called inverse expansion in-
troduced in [PHQ+92] in the case of pure interleaving. It transforms a �nite-state process
written in Basic LOTOS into more than two subprocesses running independently. The correct-

ness property ful�lled by this transformation is the strong bisimulation equivalence according to
[Mil89]. The method is seen as 'generalized' because it is also applicable to the class of recursive
processes which is not treated in [PHQ+92].

Since both in [PHQ+92] and in this paper the set of gates of the subprocesses into which

the given process has to be transformed must be known for the transformation, this work can
be extended in the following direction: How can one obtain the subprocesses without using the
set of gates where the number of the subprocesses should be maximal? In other words, is it

22



possible to decompose the initial process into an equivalent process with a maximal degree of

parallelism? For the class of deterministic processes the positive answer for this question can
be found in [Do96a]. For the class of nonrecursive nondeterministic processes this question has

been answered in [Do96b]. The treatment of recursive nondeterministic processes is, to our best
knowledge, still an open problem.

Acknowledgment: I am grateful to Markus Roggenbach for a critical reading of this
paper.

A The Kleene's theorem

In this appendix we recall the Kleene's theorem from the domain theory that is needed in section
2. For an introduction to this topic reader are referred to [Win93].

De�nition A.1 Let D be a set and v � (D �D) a relation which is:

1. refexive: 8d 2 D : d v d

2. transitive: 8d; d0; d00 2 D : d v d0 ^ d0 v d00 =) d v d00

3. antisymmetric: 8d; d0 2 D : d v d0 ^ d0 v d =) d = d0

Then v is called a partial order and (D;v) a partial order set (poset). 2

De�nition 1.2 Let (D;v) be a poset and D0 � D.

1. d 2 D is an upper bound of D0 if 8d0 2 D0 : d0 v d.

2. d 2 D is a least upper bound of D0 (l.u.b.), denoted by tD0, if d is an upper bound and

8d00 2 D : d00 is an upper bound of D0 =) d v d00.

3. D0 is a chain, if D0 6= ; and 8d; d0 2 D0 : d v d0 _ d0 v d. 2

Note when D = fdi j i 2 Ig for an indexing set then we also write tD as ti2Idi.

De�nition 1.3 (D;v;?) is a complete partial order (c.p.o.) if (D;v) is a poset, each chain

in D has a l.u.b. and ? is a least element in D (i.e. 8d 2 D : ? v d). 2

De�nition 1.4 Let (D;v;?) and (D0;v0;?0) be c.p.o. and F : D ! D0. F is continous if for

each chain E in D the following holds:

F (
G

E) =
G

F (E):

Thereby, F (E) stands for fF (e) j e 2 Eg. 2

Theorem 1.1 (Kleene's Theorem) Let (D;v;?) be a c.p.o. and F : D ! D continous.

Then G
n2IN0

Fn(?)

is the least �xed point of F . Thereby, d 2 D is a �xed point of F if F (d) = d. 2

23



References

[BB87] T. Bolognesi and E. Brinksma. Introduction to the ISO Speci�cation Language
LOTOS. In Computer Networks and ISDN Systems 14, pages 25{59. Elsevier Science

Publishers B.V. North-Holand, 1987.

[BvdLV95] T. Bolognesi, J. van de Lagemaat, and C. Visser. LOTOSphere: Software Develop-

ment with LOTOS. Kluwer Academic Publisher, 1995.

[CPS93] R. Cleaveland, J. Parrow, and B. Ste�en. The Concurrency Workbench: A
Semantics-Based Tool for the Veri�cation of concurrent Systems. ACM Trans-

actions on Programming Languages and Systems, 14(1):36{72, January 1993.

[Do96a] H. T. Do. Maximal process decomposing with recursion. Internal note, October
1996.

[Do96b] H. T. Do. Maximale Zerlegung von parallelen Prozessen ohne Rekursion.
Manuskripte der Reihe Informatik Nr. 12/96, Fakult�at f�ur Mathematik und In-

formatik der Universit�at Mannheim, Juni 1996.

[ISO89] ISO/BS. ISO 8807 - Information processing systems - Open Systems Interconnec-

tion - LOTOS- A formal description technique based on the temporal ordering of

observational behaviour. BSI, 1989.

[Jan85] R. Janicki. Transforming sequential systems into concurrent systems. In Theoretical

Computer Science 36, pages 27{58. North-Holand, 1985.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall International, 1989.

[PHQ+92] S. Pav�on, M. Hultstr�om, J. Quemada, D. Frutos, and Y. Ortega. Inverse Expansion.
In Formal Description Technique IV, pages 297{312. Elsevier Science Publishers
B.V. North-Holand, 1992.

[Win93] G. Winskel. The Formal Semantics of Programming Languages, An Introdution.

The MIT Press, 1993.

24


