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Abstract:

Teacher neural networks are a systematic experimental approach to study neu-
ral networks. A teacher is a neural network that is employed to generate the
examples of the training and the testing set. The weights of the teacher and the
input parts of the examples are set according to some probability distribution.
The input parts are then presented to the teacher neural network and recorded
together with its response. A pupil neural network is then trained on this data.
Hence, a neural network instead of a real or synthetic application de�nes the
task, according to which the performance of the pupil is investigated. One issue
is the dependence of the training success on the training set size. Surprisingly,
there exists a critical value above which the training error drops to zero. This
critical training set size is proportional to the number of weights in the neural
network. A sudden transition exists for the generalization capability, too: the
generalization error measured on a large independent testing set drops to zero,
and the e�ect of over�tting vanishes. Thus, there are two regions with a sudden
transition in-between: below the critical training set size, training and general-
ization fails, and severe over�tting occurs; above the critical training set size,
training and generalization is perfect and there is no over�tting.
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1 Introduction

Neural networks are trained to map a given training set of input-output pairs as
accurate as possible. In most applications, the training set models a task, which
the neural network has to complete | it should not just learn the training data.
This generalization is estimated by measuring how accurate the neural network
maps an independent testing set. However, it is hard to know in advance how
well a neural network can generalize. Two major questions arise: Is su�cient
data available to model the task? Which architecture �ts the given task best?
Typically, both questions must be answered by trial and error due to the lack
of sound knowledge that would allow to predict the number of training samples
required and the optimal architecture.

We have tackled these questions by means of teacher neural networks. This
is an experimental approach which is su�ciently general to provide meaningful
insights. The results reported here show, to start with, that there exists a
critical training set size at which both the generalization error and over�tting
drop to zero and, secondly, that this critical training set size is proportional to
the number of parameters of the neural network.

2 Experiments

Teacher. A teacher is a neural network with �xed weights1 which is employed
to generate the training and testing sets. Hence, the teacher de�nes the task,
instead of a (real or synthetic) data set. There are several advantages of this
approach. First, one knows that a perfect solution of the task exists. Second,
as many input-output pairs as desired can be produced. Third, the complexity
of the task can be scaled by varying the architecture of the teacher.

Our teacher has an n{n{n architecture: an input layer, one hidden layer, an
output layer; each n neurons. The weights are uniformly drawn from [�1;+1].
The transfer function is tanh. Pairs for the training and testing set are produced
by presenting random input ~� 2 f�1;+1gn to the teacher in order to get the

corresponding target output ~� 2 [�1;+1]n. Let pt and pg be the size of the
training and testing set.

Pupil. The pupil neural network is trained on the training set produced by the
teacher using online back propagation (Rumelhart et al., 1986). The pupil and
teacher architectures are identical. We have scanned a wide range of training
lengths. For reasons of lucidity, none of the well-known modi�cations that
increase convergence speed have been applied. Thus, only one parameter is left,
the learning rate 
.

Error measure. The training error is �t = 1

npt

Pp
t

�=1

Pn

i=1 jz
�
i � �

�
i j, where

z
�
i is the actual output of the pupil for input ~��. Regardless of n and pt, this

1Here and in the following weights include thresholds.
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error measure is bounded to [0; 2]. Analogously, the generalization error �g is
de�ned on the testing set.

Training set size. Our interest is to quantify how generalization depends on
the number of training samples. The training samples are used to adjust the
parameters of the pupil neural network. Therefore, we expected the training set
size to scale with the number of pupil parameters to be �xed, i.e. the numberw =
2n(n+1) of weights. This choice is upheld by bounds on the generalization �g(pt)
found for linear threshold networks (Baum and Haussler, 1989). Accordingly,
we have measured the training set size in units of w, in order to investigate
comparable ranges for di�erent neural network sizes.

Parameter settings. We have studied �g(pt) for 13 di�erent n{n{n networks,
with n = 5; 10; : : :; 65. The size of the training set varied over the range [0; w],
pt

w
= 1

16
; 2

16
; : : : ; 16

16
. The testing set must be large enough to measure general-

ization accurately; we used pg = w. The pupil was trained with a learning rate

 = 0:01. Weights were initialized with random values uniformly drawn from
[�0:01;+0:01].

3 Results

Quantities. We measured the training error �t and the generalization error �g

during the training process, at � = 0; 1; 2; 4; : : :; 131072 = 217 weight updates.
So, instead of the usual choice of epochs (presentations of the entire training set),
� gives the number of presentations of input-output pairs that are presented to
the pupil. The reason for this is that we wanted to compare the results for
di�erent training set sizes; this would not be possible if we measured training
time in epochs, because in this case a larger training set size would mean longer
training.

Generalization and over�tting. Figure 1 shows the generalization error
during training for a 50-50-50 network. The di�erent curves correspond to
di�erent training set sizes pt, and illustrate that the behaviour depends dra-
matically on this parameter; one has either over�tting and bad generalization
(pt � 5

16
w) or no over�tting and perfect generalization (pt � 6

16
w). This is true

for all neural network sizes that we have observed.
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Figure 1: Generalization error as a func-
tion of training time for di�erent training

set sizes 16pt

w
= 1; 2; : : : ; 8. The �rst out

of 40 runs for n = 50 is shown.
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Figure 2: Perfect generalization above
critical training set size. The general-
ization error �g vanishes.

Scaling behaviour. For the results presented now, we picked the smallest
values �topt and �

g
opt and recorded these together with the corresponding times

� topt and �
g
opt. The di�erence 2

17� �
g
opt between the entire training time and the

time for optimal generalization is then a measure for over�tting. This becomes
clear in Figure 1: the training time for optimal generalization � gopt di�ers from
the training length 217 for curves 1{5; over�tting has occured.

The results for �
g
optand�

g
opt presented in the following are the mean of 40

values measured for di�erent weight initializations.
Figure 2 shows the dependence of the generalization error on the training set

size for di�erent neural networks. Over a wide range of layer sizes n, the neural
networks show the behaviour discussed above for Figure 1. A critical training
set size ptc �

6

16
w exists with no generalization below and perfect generalization

above. The results deviate from this idealized behaviour for both the smallest
and the largest neural networks (n � 10 and n � 55).

First, we discuss the graph in the region of perfect generalization. The curves
are rather ragged for small n, due to bad statistics; for large n, the residual
error increases. The latter e�ect has two reasons. The �rst reason is trivial;
the training length is not su�cient large, as Figure 1 indicates already. The
second reason is not that evident; the choice of 
 = 0:01 is not adequate. We
know from other experiments we have carried out with teacher neural networks
that larger networks require smaller 
. To check on that, we have rerun the
simulation for n = 65 with 
 = 0:004. This yielded perfect generalization after
approximately 219 pairs.

Secondly, considering the region with low generalization, the residual error
increases with the layer size n, particularly for small n. This suggests better
generalization for small n, which is not really true, because the condition for
measuring generalization | independent training and testing set | is no longer
ful�lled2.

Figure 3 displays the time at which generalization is optimal for di�erent
neural networks. Indirectly, this shows the dependence of over�tting on the
training set size. Be aware that the training set size axis is reversed compared
to Figure 2! Again, over a wide range of layer sizes n, the neural networks show
the behaviour described above for Figure 1. A critical training set size ptc �

6

16
w

exists with no over�tting above and clear over�tting below. As to the smallest

2For small n, the training set size pt / 2n(n+ 1) becomes comparable to 2n, the number
of possible inputs. Hence, the lower n, the more input-output pairs exist that reside in both
the training and testing set.
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Figure 3: No over�tting above criti-
cal training set size. � gopt = 217. The
smallest generalization error �g is at
the very end of training.

training set, for example, the best generalization is achieved at approximately
4096 pairs, i.e. only the 256th part of the entire training time is exploited.

4 Discussion

We have trained neural networks on tasks de�ned by teacher neural networks.
It has been shown how generalization and over�tting depend on the training
set size. We expected that the generalization error decreases as the number
of training samples is increased. This has been observed for tasks de�ned by
(real or synthetic) data, too. Surprisingly, our studies revealed that there are
two distinct regions | one with low generalization and severe over�tting and
one with perfect generalization without over�tting | with a sudden transition
between them. This transition identi�es a critical training set size, which we
could show to be proportional to the number of weights in the pupil neural
network. Although tasks de�ned by teacher neural networks do not compare
directly with real applications, teacher neural networks are a valuable tool to
investigate neural networks beyond the scope of speci�c applications. Our ex-
perience with neural networks used for signal processing proved this conjecture.
Regarding a critical learning rate, our results from teacher experiments applied
directly to the application. Further results dealing with the question of the
optimal architecture are promising, too.
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