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Abstract
The future Large Hadron Collider (LHC), to be built at CERN, presents among other

technological challenges a formidable problem of real-time data analysis. At a primary event rate
of 40 MHz, a multi-stage trigger system has to analyze data to decide which is the fraction of
events that should be preserved on permanent storage for further analysis. We report on
implementations of local algorithms for feature extraction as part of triggering, using the
detectors of the proposed ATLAS experiment as a model. The algorithms were implemented for
a decision frequency of 100 kHz, on different data-driven programmable devices based on
structures of field-programmable gate arrays and memories. The implementations were
demonstrated at full speed with emulated input, and were also integrated into a prototype
detector running in a test beam at CERN, in June 1994.

1. Introduction: the LHC triggering challenge

The community of High Energy Physics has just decided to go forward with the next
generation collider to be built at CERN, the ‘Large Hadron Collider’ or LHC. This new
instrument will allow the international community of researchers to explore unknown areas of
physics at the smallest scale, as it collides two counter-rotating beams of protons each at an
energy of 7000 GeV, not attainable today. The development of critical components for this
collider, to be installed in the existing LEP underground ring, is well advanced: in particular, the
critical superconducting magnets with fields around 9 T have been industrially produced and
successfully tested. Experimentation in that ring is expected to start at the beginning of the next
century, in an optimistic scenario around the year 2002.

One characteristic property of the future collider [1] arises from the fact that the collisions
giving clues to the physics of interest are rare, and in particular the ratio between the interesting
and the overall collision rate is very small, like one in a million. The accelerator builders,
therefore, put their ingenuity to work for achieving the highest possible ‘luminosity’, i.e. beam
density and collision rate. They do this by fine focusing the largest possible number of protons
into packets (‘bunches’) which follow each other at very short time intervals (25 ns -
corresponding to not a very long inter-bunch distance, about 8 m at the speed of light). The
detectors studying the collisions will then have to deal with very high rates of events and must
attempt to achieve a time separation that takes advantage of the bunch structure - the limit being
that some of the physics processes put to use in detectors take longer than the bunch separation.



Although only partially true at high luminosity (multiple collisions will occur in a single
bunch crossing, and appear as one ‘supercollision’), let us assume that the problem of
separating collisions recorded in the detector into individual signals can be solved. There
remains yet another challenge, though: to use the signals from a single collision, or at least a
subset of them, for deciding if the collision at hand should be analyzed in more detail and
eventually recorded. The detectors are, of course, constructed to provide signals corresponding
to the signatures of interesting collisions, in nearly all cases characterized by high transverse
momenta and by the occurrence of leptons (electrons, muons, tau-s, and neutrinos). This
selection procedure of entire collisions is called ‘triggering’, and is familiar to physicists from
past experiments, albeit at rates much lower than those imposed by the LHC. Our present
contribution discusses briefly the structure of triggers at the LHC, and a specific implementation
possibility of one critical trigger part.

2. Trigger structure

Physics at the LHC will start with a primary event rate of 40 MHz, the bunch crossing
frequency. Each event is characterized by several Mbytes of information, once it is fully
digitized. In real time at high frequency before rate-reducing triggers, this volume of
information is transmitted (in analog or digital form) in parallel into many thousands of
individual buffers, with characteristics specific to the different subdetectors. The task of the
trigger is to find the small number of interesting physics events, not more than a few (to be
specific, certainly less than a hundred) per second.

2.1. Overall structure

A succession of event selection algorithms is applied; close to the detectors they have to run
at bunch crossing frequency and must be simple enough to be implemented in custom-made or
specifically adapted hardware, with limited or no programmability. As there is a finite latency,
viz. delay between the availability of data and a final ‘yes/no’ decision, transmission and
operations have to be pipelined and all data stored in a buffer, to avoid dead time.

As the successive stages of event selection reduce the rates, algorithms of increasing
complexity and implemented in processors of some generality become necessary and possible.
We concentrate in this paper on an implementation of ‘second-level’ algorithms, where the
assumed input rate of events does not exceed 100 kHz. The algorithms to be implemented at this
level in order to achieve another rate reduction of a factor of ~100, are experiment-dependent,
examples are discussed below.

This somewhat idealized trigger structure is completed by a ‘third-level’ trigger. We assume
that it can be implemented as a group of general-purpose processors, each of which is served a
full event (~ 1000 events/s), and executes high-level code that allows a final data reduction in
real time. See Fig. 1.

2.2. Structure of the second-level trigger, functional

In R&D work over the last few years2 2, several guiding principles have emerged which are
by now quite generally accepted. One of them is the fundamental Region-of-Interest (RoI)
concept for level-2 triggering, very critical at least at high luminosity (viz. at high level-1 rates).
The RoI concept relies on the level-1 trigger to identify those parts of the detector containing
candidate features (electrons, photons, muons, jets). Only the data fraction in this candidate
region (of order a few % of the total) is considered relevant and is moved to the level-2
processors; the restricted readout alleviates the very stringent bandwidth requirements on
providing data for algorithms from distributed buffers, at high frequency. Simultaneously, the
RoI concept considerably simplifies algorithms: local algorithms convert limited data from a
single subdetector into variables containing the relevant physics message ('features'), in order to
confirm or disprove a hypothesis known from level-1.

2  This work is executed in various R&D projects reviewed by the ‘Detector Research and Development Committee’
(DRDC). Second-level triggers are specifically studied by the project called EAST or RD11.



We can decompose the problem of second-level triggering in some detail, using as model the
detector design as pursued in the ongoing work on LHC experimental proposals (two proton-
proton experiments are planned, they are known under the names ATLAS and CMS). This
structuring of the problem is vital to limit the choices of transmission and processing
technology, and to introduce the use of natural parallelism. We consider three phases:

Phase 1 consists of the buffering of level-1 selected data, and the collection of regions of
interest. Raw detector data, after a level-1 (L1) trigger has occurred, are transmitted via cables
or fibers and collected in multiple local non-overlapping memory modules, the L2 buffers,
which hold information over the duration of level-2 (L2) operation. A device guided by L1, the
RoI-builder, indicates regions of interest, which in general extend across the boundaries of
physical L2 buffers. The data pertaining to RoI-s can be selected making use of both the
subdetector and the RoI parallelisms, we term this RoI collection.

Phase 2 consists of 'feature extraction', or local processing of the data in a single RoI of a
subdetector. On data collected for a single RoI, a relatively simple feature extraction algorithm
can perform a local pre-processing function. Features are variables containing the relevant
physics message, like cluster or track parameters that can be used to corroborate or disprove the
different physics hypotheses. Feature extraction algorithms have a locality that permits to exploit
the natural double parallelism of RoI-s and subdetectors. Future simulation will have to show if
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and to which extent this simple concept has to be diluted (the fate of nearly all simple
concepts), in order to avoid physics losses. This could be true in regions of overlap of detector
parts (e.g. barrel/end cap), where each subdetector only has a weak signal. This paper
concentrates on implementations of feature extraction algorithms for different types of
subdetector.

Phase 3 finally contains global decision making on the basis of features, viz. processing full
RoIs and then full events. As shown in Fig. 2, the order of processing is to combine first all
subdetectors that have 'observed' the same physics 'object', into decision variables which are
again local (same RoI), followed by combining all RoIs into an event decision. The bandwidth
requirements are substantially reduced by feature extraction; implementations of this phase deal
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with fewer and smaller packets. The trigger frequency of 100 kHz is, of course, unchanged.
Although implementable in a data-driven structure, we posit that in this (global) phase 3 of

level 2, general programmability must provide the reserves for introducing quickly new ideas in
an unknown future of experimentation. The present paper does not expand on this subject.

3. Algorithms

Our discussion concentrates on how the first two phases, RoI collection and feature
extraction, can be implemented in programmable hardware, fast enough to follow the imposed
decision frequency of 100 kHz, and general enough to be adapted to different detectors by
reprogramming only. The focus is more on feature extraction than on RoI collection, as the
latter is a largely non-algorithmic task requiring detailed knowledge of the detector readout.
Feature extraction, on the other hand, results in algorithms that have properties of image
processing tasks, particularly if data are transmitted in iconic (uncompressed) form. We present
demonstrated implementations that fulfill all requirements outlined above, with hardware
available today. The following examples are all taken from the proposed experiment ATLAS
[2], for which detailed information was available to us.

3.1. Router

The Router is the functional unit collecting data for regions of interest (RoIs) for a single
subdetector [3]. In a present implementation for the transition radiation tracker (TRT) prototype
of RD6  (see section 3.3 below), it is placed between the detector and the level-2 buffer, spying
into the data flow and performing, beyond RoI collection, various functions of data formatting
and preprocessing [4].

3

These functions arise from the necessity to keep the feature extraction processors as free as
possible from algorithm parts dealing with the physical layout of the detector readout and of
decoding the transmission format. Data are locally arranged in a 'natural' order of all or large
parts of the detector data, an 'image' of the data or (for thresholded data) ordered lists3. In the
example of the TRT, data from groups of 16 planes in z-direction were transmitted in successive
32-bit HIPPI words, in separate groups for even and odd straws, and containing three
successive bunch crossings (as the drift time of the chambers requires). The Router reduces the
signals from three bunch crossings into one, and arranges the data, depending on straw signal
amplitudes, into two binary images in memory corresponding to data with low and high
threshold. Only the part of the image corresponding to an RoI (indicated from level 1's RoI
builder) has to be transmitted to the feature extractor.

3 'Images' are data on all detector channels ('pixels') arranged in a fixed geometrical order. 'Ordered lists' result from
thresholding, when only some channels are transmitted; the transmitted data will then have to be identified by some
channel address.



For a later generalization of this Router unit to other and larger detectors the challenge
consists in routing information from hundreds of data carriers (fibers) and buffers to a single
output per RoI. A data-driven implementation using specialized connections and programmable
devices (FPGA-s) has been proposed [5]. A particular difficulty arises from thresholded data
transmitted in lists of dynamic length, as is necessary for low-occupancy devices like the Si
tracker (SCT). Potentially, these data can be accumulated for each RoI in a variable-length list,
one for every potential part of the RoI. Only the parts corresponding to active RoIs will then be
combined and transmitted for feature extraction.

3.2 .Feature extraction in a silicon tracker (SCT)

The conversion of raw hits from a Si detector at radii up to 100 cm and at large angles (|η| <
1.4) to tracks was discussed in Ref. [6]. Although the layout of the Si tracker undergoes
frequent changes of detail, the principle of the feature extraction algorithm remains unchanged;
this detector is powerful by its high resolution in the bending plane (100 µm pitch in rφ), and
characterized by a modest redundancy (four high-precision hits in a good track). The ATLAS
tracker considered is arranged on six cylindrical surfaces, four of which are high precision in
the rφ coordinate, radii go from 30 to 105 cm. Strips are arranged on wafers of a size of roughly
6 x 6 cm2, pairs of wafers are read out via a single fiber in a thresholded format, indicating
wafer and strip addresses for hits only. This thresholding, or zero-suppression, is needed
because of the large number of strips, in excess of a million, and the low occupancy (1%,
dominated by noise).

In our algorithm we use only four rφ layers, because the two remaining cylinders contain z-
measuring pads, with no precision information in φ. The input to our algorithm consists of
ordered lists of na,nb,nc,nd points in layers a,b,c,d at the radii ra,rb,rc,rd. We want to find at
least three points aligned in a narrow road. The standard least-squares fit through all alignment
permutations of the points was discussed in Ref. [6]. For small n = na+nb+nc+nd, this four-fold
loop is acceptable, even if for each quadruple five least squares fits have to be tried, through
abcd, abcm, abmd, amcd, mbcd, where m stands for a potentially missing layer. The best fit is
chosen by some χ2 criterion. A quite different method consists of forming variable slope
histograms with very narrow bins. As in all histogram techniques one has to use either
overlapping roads or combine two neighboring bins. This method behaves linearly in n =
na+nb+nc+nd, and has been selected for implementation.

3.3.Feature extraction in a transition radiation tracker (TRT)

The endcap TRT is a device based on radial straw tubes of small (4 mm) diameter with
interspersed foils for transition radiation. This device serves simultaneously as a precision and
high-redundancy tracker, and (by pulse height analysis) as an electron identifier ([7-9]). It is
arranged in sixteen wheels, each containing eight planes equidistant along z. Wheels are
mounted non-equidistant along z, from z=109 to z=320cm. Each plane contains 600 radial
straws at equal distance in φ, but with small φ offsets from plane to plane. The inner radius of
all straws is 0.5m, the outer 1.0 m. The total number of straws is 76800 in one endcap. The
barrel TRT uses similar technologies, with straws arranged longitudinally, and the analysis can
be reduced to a near-identical algorithm

The endcap tracking algorithm works in the projection natural for the TRT, i.e. in the φ/z
plane which corresponds closely to the readout coordinates straw/plane number. Tracks in this
projection appear as straight lines, with the slope dφ/dz directly related to pT, the position along
φ indicating azimuth, and start and end point are crudely indicative for z and η. The algorithm
recognizes patterns of digitizings that correspond to high-momentum tracks, taking into account
the pulse height distribution of digitizings for identification of electrons. It is assumed that two
rectangular images are transmitted, one for a low, the other for a high threshold on pulse height.
Pixel positions, however, can not directly be used as z and φ; the detailed knowledge of the
geometry is used to convert into true straw coordinates, and thus to refine the histogramming
and get improved results for position and pT. The algorithm consists of making a large number
of histograms whose bins correspond to roads of different dφ/dz and to different offsets in φ.
The method can be extended to include the use of drift time measurement, should this become



necessary: drift time improves the resolution along φ by a factor of ten or better, although it
introduces a left-right ambiguity on each single hit.

3.4. Feature extraction in a calorimeter

Various calorimeter segmentations and different technologies are foreseen to cover the
different angular regions of the future LHC detectors with electromagnetic and hadronic
calorimeters. Our generic calorimeter algorithm assumes a single electromagnetic and a single
hadronic layer, and a cell size of 0.025 x 0.025 in ∆η x ∆φ. The algorithm is based on an RoI of
20x20 towers (pixels). The objective of the algorithm is to find features (decision variables)
suitable to distinguish electrons from hadronic jets or from pions, or even pions from jets.
Inside the RoI, a near-circular region is defined in which the peak energy deposition is fully
contained (cluster area). The cluster area is defined by all pixels at radius less than five pixels
distant from the cluster center, defined as center of gravity xcm, ycm (obtained from summed
electromagnetic and hadronic cells with energy Ei,j ):

xcm =  Σ(xi,jEi,j)/ΣEi,j ,      ycm =  Σ(yi,jEi,j)/ΣEi,j ,     summed over the RoI.

Simple variables like hadronic energy fraction over the cluster area, or more complicated
features like the second moment of the cluster radius in two dimensions weighted with energy,
or energy sums in different ring-shaped zones and longitudinal volumes of fine granularity, are
then calculated over the cluster area. These features are derived from the ones used in off-line
programs, and contain relevant information for electron/pion/jet discrimination that can not be
explored in a level-1 algorithm. In a simulation [10] the analysis over an RoI of ∆η x ∆φ = 0.5 x
0.5 gives a factor around ten in background rate reduction, disregarding information from other
detectors (rejecting the background of level-1-accepted QCD jets in an electron sample). Feature
output also includes the position of the cluster area, refining the position resolution inside the
RoI.

4. Implementing functions in programmable hardware

Two opposite and extreme ways seem possible to implement a specific high-speed digital
processing task. The apparently simplest is to program some general-purpose processor to
perform the processing at hand. In this software approach, one effectively maps the algorithm
of interest onto a fixed machine architecture. The structure of that machine has been highly
optimized by its manufacturer to process arbitrary code. In many cases, it is poorly suited to the
specific algorithm. This is particularly true if the algorithm includes low-level bit handling as in
our case. On the other hand, a general-purpose processor can be programmed to process any
computable function, and thus is infinitely flexible. Due to high-volume production, such
solutions may still be cost-effective overall.

The opposite extreme is to design custom circuitry for the specific algorithm. In this
hardware approach, the entire machine structure is tailored to the application. The result is much
more efficient in execution time, with less actual circuitry than what general-purpose computers
require. The drawback of the hardware approach is that a specific architecture is limited to
processing a single or a small number of specified algorithms. If we add special-purpose
hardware to a universal machine, say for image processing tasks, we may speed up the
processor, but we know well that this is limited to the fraction of the code concerned (Amdahl’s
law of disappointing returns).

This paper discusses an alternative architecture offering the best from both worlds: software
versatility and hardware performance. One such device has been used for RoI collection in a
very scaled-down case, and has served to understand the principle of generalizing the data
collection of subsets of a very large (multi-crate) data acquisition system. Two devices have
been used for feature extraction, DECPeRLe-1 and Enable. They differ in that DECPeRLe-1
was conceived with multiple applications in mind, whereas Enable is a configuration optimized
for a specific algorithm. On both devices, pipelined algorithms were implemented that could
keep up with the required data flow corresponding to a decision frequency of 100 kHz.
Excellent adaptability was demonstrated in the number of implemented algorithms on
DECPeRLe-1.



4.1 General-purpose machines based on FPGAs

We describe an architecture called Programmable Active Memories (PAMs), which should be
seen as a novel form of universal hardware co-processor44 . Based on Field Programmable
Gate Array (FPGA) technology, a PAM can be dynamically configured into a large number of
devices of very different performance and software characteristics. The first commercial FPGA
was introduced in 1986 by Xilinx [11]. This revolutionary component has a large internal
configuration memory; in download mode, this memory can be written into from some external
device. Once configured, an FPGA behaves like a regular application-specific integrated circuit
(ASIC). Any synchronous digital circuit can be emulated on a large enough FPGA or array of
FPGAs, through a suitable configuration. PAM programming thus is an alternative to classical
gate-array and full-custom ASIC design, but also has aspects of high-level programming.

An FPGA is simply a regular mesh of n x m simple programmable logic units, 'gates'. It is a
virtual circuit which behaves like a specific ASIC if fed with the proper configuration bits. A
PAM implements, from multiple FPGAs, a virtual machine dynamically configurable as a large
number of specific hardware devices. A generic PAM consists of a matrix of FPGAs connected
through links to a host processor. The host downloads configuration bit streams into the PAM,
making it behave electrically and logically like a machine defined by the specific bit stream. It
may operate in stand-alone mode, or communicate with some external system through links. It
may operate as a co-processor under host control, specialized to speed-up some crucial
computation. It may operate as both, and connect the host to some external system, like an
audio or video device, a specific particle detector, or some other PAM.

The reprogramming facility means that prototypes can quickly be made, tested and corrected.
The development cycle of circuits with FPGA technology is typically measured in weeks, as
opposed to months for hardwired gate array techniques. FPGAs, however, are not only used
for prototypes, they also get directly incorporated in many production units. In all branches of
the electronics industry other than the mass market, the use of FPGAs has been increasing,
despite the fact that their cost is higher than ASICs in volume production. In 1992/93, FPGAs
were the fastest growing part of the semiconductor industry, increasing output by 40%,
compared with 10% for chips overall. As a consequence, FPGAs are at the leading edge of
silicon devices. The future development of the technology has been analyzed in [12,13].  A
current World Wide Web site lists more than 40 different FPGA-based computer architectures,
spread all over the world: http://bongo.cc.utexas.edu/~guccione/HW_list.html. The prediction is
that the leading edge FPGA of 1992 with 400 gates operating at 25 MHz, will by the year 2001
contain 25k gates operating at 200 MHz.

4.2 A general PAM realization: DECPeRLe-1

DECPeRLe-1 is a specific PAM implementation; it was built as an experimental device at
Digital's Paris Research Laboratory in 1992. Over a dozen copies operate at various scientific
centers in the world. We review here the important general architectural features of PAMs using
the example of DECPeRLe-1. The overall structure of DECPeRLe-1 is shown in Fig. 3.

4 To justify the name PAM, note that a PAM is attached to some high-speed bus of a host computer, like
any RAM memory module. The processor can write into, and read from the PAM. Unlike RAM however, a
PAM processes data between write and read instructions, which makes it ‘active’ memory. The specific
processing is determined by the contents of its configuration bit stream, which can be updated by the host in a
matter of milliseconds, thus the ‘programmable’ qualifier.
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Fig. 3 shows DECPERLE-1's FPGAs as squares (Xilinx XC3090-s, M stands for Matrix, S
for Switch, C for Controller) and memories as rectangles (each R for 1 MByte of static RAM).
Lines are connections 32 wires wide, physically laid out on the printed circuit board. This
structure hosts the diverse networks of processing units required for different applications.
Depending upon the application, individual processing units are implemented within one to
many FPGAs; look-up tables (LUT) may use the local RAM; some slow processes can be
implemented by software running on the host. Connections between processing units are
mapped, as part of the design configuration, either on the board or internally in the FPGA.

The computational core of DECPeRLe-1 is a 4 x 4 matrix of XC3090 chips (M). Each FPGA
has 16 direct connections to each of its four nearest neighbors, implemented as two 16-bit
buses. In addition, the board holds an FPGA which contains firmware to control the state of the
PAM through software from the host. Adapting from TURBOchannel to some other logical bus
format, such as VME, HIPPI or PCI can be done by re-programming this FPGA, in addition to
re-designing a small host-dependent interface board. DECPeRLe-1 has four 32-bit-wide
external connections. Three of these link edges of the FPGA matrix to external connectors.
They are used for establishing real-time links, at up to 33MHz, between DECPeRLe-1 and
external devices such as the Router's HIPPI output links in our application. Their aggregated
peak bandwidth exceeds 400 MByte/s. The fourth external connection links to the host
interface, via a 100 MByte/s TURBOchannel adapter. Host data transit through two FIFOs and
a switch FPGA, so that synchronisation between host and PAM is through data.

PAM designs are synchronous circuits: all registers are updated on each cycle of the same
global clock. The maximum speed of a design is directly determined by its critical path. As this
varies from one PAM design to another, the clock distribution speed can be programmed as part
of the design configuration; fine tuning is possible with increments of about 0.01%, for
frequencies up to 100 MHz. A typical DECPeRLe-1 design receives a logically uninterrupted
flow of data, through the input FIFO. It performs some processing, and delivers its results
through the output FIFO. The host or attached special hardware is responsible for filling and
emptying the other side of both FIFOs. Firmware automatically halts the application clock when
DECPeRLe-1 attempts to read an empty FIFO or to write into a full one, effectively providing
fully automatic and transparent flow-control. The full firmware functionality may be controlled
through host software. Most of it is also available to the hardware design. This allows a design
to synchronize with some of the external links. Dynamic tuning of the clock is also possible,
e.g. in designs where a slow and infrequent operation coexists with fast and frequent
operations. A thorough presentation of the issues involved in PAM design, with alternative
implementation choices, is given by Bertin in Ref. [14].

A PAM program consists of three parts: the driving software, which runs on the host and
controls the PAM hardware; the logic equations describing the synchronous hardware
implemented on the PAM board, and the placement and routing directives that guide the
implementation of the logic equations onto the PAM board. The driving software is written in C



or C++ and is linked to a runtime library encapsulating a device driver. The logic equations and
the placement and routing directives are generated algorithmically by a C++ program. As a
deliberate choice of methodology, all PAM design circuits are digital and synchronous.
Asynchronous features, such as RAM write pulses, FIFO flag decoding, or clock tuning, are
pushed into the firmware where they get implemented once and for all.

A full DECPeRLe-1 design is a large piece of 'hardware'. The designer encodes, through a
stream of 1.5 Mbits, the logic equations, the placement and the routing of fifteen thousand
gates, to express the 'algorithm'. We chose a C++ library as basis, which enables one to
describe the design algorithmically at the structural level, and supply geometric information to
guide the final implementation. This type of low-level description is made convenient by the use
of basic programming concepts such as arrays, loops, procedures and data abstraction. A
second library facilitates the writing of driver software and provides simulation support. In
addition, powerful debugging and optimization tools have been developed, enabling the
designer to visualize in detail the states of every flip-flop in every FPGA of a PAM board.

Our experience with these programming tools is that PAM programming is far easier than
ASIC development; complex applications spanning dozens of chips can be developed even by
newcomers in a matter of a few months.

4.3. Implementing the trigger algorithms in DECPeRLe-1

The general-purpose idea underlying the DECPeRLe-1 board has been demonstrated by
mapping all currently defined ATLAS feature extraction algorithms (see Chapter 3) onto this
device. The following remarks concern these implementations, and their limitations.

Feature extraction in a silicon tracker (SCT)

For all existing implementations of the SCT algorithm, the same minimal specifications have
been used. The task is to find the best track in a set of 64 slopes x 32 φ intercepts, assuming an
occupancy of 1%  equivalent to about 30 active pixels per RoI. Software implementations in
general-purpose processors are currently 2 or 3 orders of magnitude slower than the required
100 kHz. Using the simple histogramming algorithm based on sequential processing of the list
of active pixels, DECPeRLe-1 can keep up with this rate. As the algorithm computation time
grows linearly with the number of hits, bursts of high-occupancy images can be absorbed by
buffering. The histogram solution uses look-up tables, resulting in flexibility of the search
patterns used. In the implementation on DECPeRLe-1 described in Ref. [15], a 64 x 16
histogram containing 4 bits for each search pattern (1 for each row) is filled by a look-up table
while the coordinates of hits arrive one per clock cycle. The histogram peak is extracted by
shift-registers and max-units. At 23 MHz, with an event frequency of 100 kHz, it is possible to
process 230 pixels per event. The circuit also provides all the needed functionality to do multiple
passes and extract the best of all the passes. It is also possible to do a zoom after the first pass
around the best track to increase the overall precision. Thus, in two passes, a full 64 x 32 grid
can be scanned with an average of 115 pixels per event, which is faster than the required
performance.

Feature extraction in a transition radiation tracker (TRT)

The TRT prototype for our DECPeRLe-1 test run contained two sectors covering an angle (φ)
of about 30° (32 straws), each sector made of 16 planes spaced along z. An RoI for the
prototype was assumed to be 32 x 16 straws (in z x φ); a typical RoI in a future endcap TRT is
expected to consist of 16 straws in the φ direction and most of the 128 planes. As described in
Section 3.3, the aim of the feature extraction task is to identify a straight line in the z-φ plane of
the RoI. Based on the number of low and high threshold hits along the track, an electron
identification can be made. As for the SCT implementation, the track finding is done by
histogramming and peak finding. Instead of using lookup tables, the histogramming is
performed by a 'Fast Hough Transform'. The FHT is a variation of the Hough Transform, and
has been fully described in Ref. [16].



The algorithm uses a 128 x 128 pixel grid covering the RoI, giving a φ resolution of 1/8 of
the inter-straw distance. The found track is defined by two numbers referring to this grid (see
also Ref. [17]), the φ offset (or intercept) denoting the pixel where the line enters the RoI, and
the slope expressing how many pixels the line ascends or descends across the RoI. Searching
for nearly horizontal tracks, the present implementation is limited to slopes 0, ±1, ±2, ... ±15.
The output of the algorithm consist of 4 words: track intercept (7 bits), track slope (5 bits),
number of low threshold hits along the track (6 bits), and number of high threshold hits along
the track (6 bits). These data are packed into one 32-bit word, and written into the output FIFO
of DECPeRLe-1, subsequently read by the host program. This makes it just possible to fit a
histogrammer using 31 slopes and 128 intercepts in one DECPeRLe-1 board, with a total of
31x128 = 3968 possible patterns in the pixel grid described above, close to the maximum that
can be handled by DECPeRLe-1. A 64-bit sequential processor would need to run at a clock
rate of more than 1 GHz (with matched input) to achieve the same computational result.

Using a wider range of slopes (0, ±2,±4, ...,±30 pixels), the number of intercepts would be
reduced to 64. In a full TRT detector, the RoI will consist of 80-100 planes, giving 3 times the
volume of data as in the present prototype. In addition, drift time data may be included. The
PAM provided by DECPeRLe-1 will not be able to handle this data rate. As faster and larger
PAMs are likely be available in near future, we are confident that a similar implementation for a
full detector RoI is a realistic possibility.

Feature extraction in a calorimeter

The calorimeter algorithm appears as an ideal image processing application. We have
implemented the algorithm as a double-pass operation, due to the need to find center-of-gravity
values first. In a high-level language algorithm, the two passes could be combined, if no
numerical problems arise; on an FPGA-based device, high-precision multiplication would be
unduly penalized. The high input bandwidth (160 MByte/s) and the (self-imposed) low latency
constraint constitute a serious challenge to any implementation. In a previous benchmark
exercise [18], the possible implementations of the calorimeter algorithm have been discussed at
length: PAMs are the only structure found to meet the requirements.

This algorithm was implemented on DECPeRLe-1 with input from the host. Using the
external I/O capabilities described for the TRT, detector data input could use two off-the-shelf
HIPPI-to-TURBOchannel interface boards plugged directly onto DECPeRLe-1. The data path
inside DECPeRLe-1 uses only about 25% of DECPeRLe-1's logic and all the RAM resources,
for a virtual computing power of 39 Giga-operations/s (binary). The initial input of
2 x 32bit at 25 MHz is reduced to two 16-bit pipelines at 50 MHz, after summing Eem and
Ehad. The total accumulation of Ei,j and xi,jEi,j is done in carry-save accumulators.
Meanwhile, the raw data (Eem and Etot) are stored in an intermediate memory. The
masking/summing operations on clusters are performed by using, in a second pipeline, matrices
pre-computed for all possible positions of the center of gravity (a relatively small number, due
to the limited size of RoI and cluster).
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4.4. A PAM realization for a specific problem: Enable

The Enable Machine is a systolic second-level trigger processor for feature extraction in the
transition radiation tracker (TRT) of ATLAS/LHC [19,20]. Designed at the University of
Mannheim for a benchmark exercise published previously [18], the concepts provided by the
FPGA matrix made the Enable Machine the only candidate which satisfied all given requirements
(DECPeRLe-1 was introduced later). The Enable architecture is specifically tailored to this
application so as to fit the required full-scale TRT functionality on a single PAM board. This is
achieved by two PAM matrices of a total of 36 FPGAs, handling the two input images in
parallel. Enable can be seen, however, as a PAM implementation optimized for a general class of
systolic algorithms with similarities in the data flow. All algorithms implemented so far for the
different ATLAS trigger tasks are systolic algorithms.

A complete Enable system consists of  several boards each providing a distinct function: the
VME host CPU, the I/O interface (HIPPI), the active backplane, and one or more PAM matrix
boards. All boards are housed in a 9U VME crate. Due to the synchronous design of the
backplane, even the extension of the bus into another crate is possible, thus allowing the use of
additional PAM matrix boards. The PAM unit of the Enable Machine consists of 36 Xilinx
XC3190 FPGAs arranged in a square matrix of 6 x 6 chips. The principal communication
scheme of this matrix is nearest-neighbor connection, which is well adapted to systolic
implementations of typical 2nd level trigger algorithms. Operations are performed on a constant
data flow in a pipeline mode. The entire matrix operates at 50 MHz. For optimization to the
TRT algorithm the FPGA connection scheme is not entirely regular; the 6 x 6 matrix is divided
into two blocks of 18 chips each, connected by a 32 bit wide bus. Thus the two data streams for
low and high threshold can easily be processed in parallel.

One main characteristic of the Enable PAM implementation is distributed memory. Each of
the 36 FPGAs in the matrix is equipped with a 128 kB synchronous SRAM accessible with up
to 66 MHz frequency, for a total RAM size of 4.5 MB. The whole memory thus can be
addressed in parallel, resulting in an aggregated RAM bandwidth of 2 GByt/s. This organization
uses fewer routing resources for memory access from the FPGAs compared to the use of global
RAM. Distributed RAMs are optimal for algorithms based on a massive use of table lookup, but
also are advantageous for many other systolic algorithms requiring large block transfers. No
wait states have to be introduced and there is no need for any kind of specialized firmware.

For the setup of a scalable system, the use of a high-speed bus system is critical. Enable uses
a synchronous high-speed backplane bus system with broadcast capability. It is split into two
buses for each data flow direction with a total bandwidth of 600 MByte/s. This bus connects the
I/O system of the Enable Machine with a certain number of PAM boards. A transfer along that
bus is routed one slot per cycle. Although the transfer latency increases with the slot distance,
this disadvantage is compensated by the 50 MHz frequency of the bus. For block transfers,
common in trigger applications, the 64 bit wide bus is able to transfer incoming detector images
at a rate of 400 MByte/s. Due to the much less stringent communication requirements, a 32 bit
wide bus is used in the opposite direction.
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This concept has major advantages for system scalability. Unlike traditional bus systems the
transfer frequency is not influenced by the number of boards involved and is independent of the
length of the backplane. The most serious limitation is the physical size of backplane and crate
rather than electrical parameters. Theoretically, an unlimited number of boards could be
involved. In the Enable Machine prototype a seven slot system is used over an entire VME
crate. For an application in high energy physics experiments, the separation of I/O subsystem
and PAM boards has one obvious advantage: An adaptation to various bus systems provided by
different detectors affects only the I/O board that has to be redesigned.

The Enable prototype provides two external links, the HIPPI interface located on the I/O
board, and the VMEbus. Input data of up to 256 x 32 x 2 bits are routed to Enable´s Interface
board via two HIPPI lines, for a combined input data rate of up to 200 MByte/s. Four FPGAs
(Xilinx XC3190) on the Interface board allow data formatting and coupling to the backplane
bus. In a system equipped with several PAM boards a final decision can be extracted by the
Interface board, based on the data from all Histogrammer units. The VMEbus is mainly used for
communication with the host system, but as a widely used bus it was invaluable during beam
tests, e.g. for testing the prototype or for receiving the trigger control logic.

The PAMs are programmed by downloading a configuration program into the FPGA devices
from the host CPU through VME. To provide maximum configuration speed, all chips of the
FPGA matrix are configured in parallel. Broadcasting of the same configuration to multiple
chips increases the configuration speed further, leading to a configuration time of 20 ms. We
use this also for internal control functions: for entering LUT data to the RAM, the FPGAs are
temporarily loaded with a RAM controller configuration, saving a dedicated RAM controller
logic.

High design speeds can be achieved only if placement of the FPGA logic is done by hand,
leaving the routing for the automatic tools. Our own graphical interface tool XILLIB has been
developed to assist interactively in FPGA placement. Completed by a library editor and a
commercial schematic layout tool (PADS) for creating the netlist of the connections, we have a
powerful toolset for creating and updating FPGA designs. The preplaced FPGA design is
routed by the standard tools (APR). A library generator allows to preserve user-optimized
design elements; a large number of re-usable library elements is already available. XILLIB
interfaces to several commercial software tools; our experience shows that this fast placement
tool increases the design speed and flexibility considerably.

Enable also provides powerful tools for off-line design verification and on-line debugging. A
special microcontroller-based test environment has been developed, to be fully integrated into the
simulation software. Simulations run transparently on a software basis, or are executed on a test
board. Running a design at full speed for a given number of clock cycles and analyzing the
internal states results in much shorter time for design verification than full software simulation.
By performing such tests with various clock frequencies a close estimation of the timing



constraints of the actual design can be obtained. In on-line debugging data are collected from
different stages of Enable's data path and checked while the Enable Machine is operating. Data
may be captured on the (HIPPI) input lines  or as they travel from the Enable input board to the
Enable backplane; they are copied to FIFOs on-the-fly, and read by the controlling CPU.

4.5. Implementing the TRT algorithm on Enable

Enable allows maximum flexibility in the pattern definition by using an algorithm based on
histogramming along pre-defined search roads that correspond to general template matching.
The search patterns are stored in the distributed memory and do not have to be straight or curved
lines; nearly arbitrary road shapes can be programmed. The non-equidistant planes along z and
the small φ offsets inside planes, damaged straws or other unpredictable image distortions are
handled in this way.

In the first step two histograms are accumulated from the images corresponding to the two
energy thresholds. In a second step the track with the highest electron probability is determined,
using a weighting function (implemented as table lookup) for corresponding histogram channels
in the two images; the maximum of this function is evaluated. Simulations have shown that fine-
tuning of this function (e.g. dependent on luminosity) is important for maximum trigger
efficiency. Each three FPGAs form a processing unit with two FPGAs calculating histograms
for two slopes and 20 offsets (low and high threshold), and the third FPGA calculating the
weighted maximum. The distributed RAM allows to run all of these units locally and in parallel.

Built to the specifications of the early TRT benchmark algorithm, Enable handles image sizes
up to 255 x 32 pixels of 2 bits each. 400 search roads can be processed in one PAM board for
each low and high threshold in parallel. All of these search roads belong to the relevant part of
the image, tracks at the edges with less than a minimal contribution to the image (here 32 pixels)
are ignored. Because the latency depends linearly on the image size, Enable is able to process
full detector images (128 planes) within 3.5 µs. For a RoI size of the TRT prototype
(16 x 32 pixels of 2 bits) up to 12 RoIs could be processed on one PAM board,
corresponding to about 4800 search roads at 100 kHz.

A different algorithm could be implemented if TRT drift time information had to be
considered, to obtain higher precision in the trigger. In this alternative, detector data are
assumed to arrive as a list of 16-bit coordinates from hits (pixel addresses), and a massive LUT
converts each hit into histogram channel numbers. Again using a general Hough transform for
arbitrary search patterns, every pixel addresses one RAM word, each data bit of this word
corresponds to one histogram channel. The total number of possible histogram channels
depends on the width of the RAM data path. Enable´s distributed RAM provides a possible
scaleable implementation for this algorithm. The list of hits is routed systolically through the
FPGA matrix configured as a linear string of FPGAs. Each FPGA maps the hits onto its
dedicated RAM and builds up part of the Hough space. Each RAM may process approximately
8 banks of histogram channels serially which leads to more than 3000 search roads per PAM
matrix board at 100 kHz.

5. Test runs including Router, DECPeRLe-1 and Enable

Prototypes of a data-driven Router and an Enable Machine were built and used in 1992/93
with the TRT prototype of RD6. A DECPeRLe-1 board was acquired in 1993.

We have used multiple runs in the laboratory using our own hardware emulator SLATE [21]
to test the functioning of the components at full speed, with programmed simulated TRT data.
We have also connected the Router together with Enable [22] or DECPeRLe-1 in turn, to a
prototype TRT detector running during beam test periods in September 1993 and June 1994.
Although parasitic to detector tests, both setups were able to take tens of thousands of individual
events on tape. The Router demonstrated that its input board was operating in a fully transparent
way to the detector's data taking, and showed its programmability by supplying data in different
formats to the feature extraction devices.



The TRT output, preprocessed by the Router, consists of two images, one for the high and
one for the low threshold signal. Each image has 16 32-bit words, each word corresponding to
output from 32 straws. The Router was connected to the feature extractors by two HIPPI lines,
using for DECPeRLe-1 two commercially available HIPPI-to-TURBOchannel Interface boards
(HTI). The HTI units could be directly plugged into DECPeRLe-1's extension slots, so the
DECPeRLe-1 board could be used without any hardware changes, only loading the necessary
configuration file. Enable has its own HIPPI input board.

During the 1994 beam run the Enable Machine was integrated in the test detector data
acquisition system supplied by project RD13. The Enable VME crate was coupled to the data
acquisition crate via a VIC bus module containing 4 MByte of memory. During accelerator
bursts the memory was filled by Enable data. In the time gap between bursts the data acquisition
system read this buffer. In debug mode the Enable Machine provides data output of several
kBytes per event. These data contain the full histogram content and preprocessed event data
from different stages within the machine. This feature has successfully been used for a detailed
analysis of the electronics. Off-line analysis verified that both the z-φ corner turning and the
histogrammer produced correct results.

During the tests of DECPeRLe-1 an incompatiblility between the Router and the HTI boards
was discovered, causing word losses at the end of each accelerator burst; less than a percent of
the events was lost. Events that were successfully transmitted to DECPeRLe-1 were subjected
to off-line analysis after the tests. Data from DECPeRLe-1 were transmitted by Ethernet at the
end of each accelerator burst, and read out together with the raw detector data (a direct
connection between DECPeRLe-1 and the DAQ crate was established through VME-based
software only later). The results were associated by event number, and compared bit-by-bit to
the output of a simulation program fed with the raw data; a 100% correspondence was found.

6. Conclusions

The concept of programmable active memories (PAMs) has been presented as a general
alternative for low-level and I/O-intensive computing tasks. Two feature extraction devices in
this technology were realized for trigger tasks at a 100 kHz event rate. Both were benchmarked
to be far superior in performance to conventional general-purpose and parallel machines in
many aspects. The Enable Machine is a TRT-specialized PAM realization. Its power is in the
bandwidth of the distributed RAM and of the I/O system. DECPeRLE-1 has been built for more
general applicability, and several trigger algorithms have been implemented on this device.
Parallel synchronous bus systems with high bandwidth are used in both systems. High
flexibility is obtained through the reprogrammability of the basic elements, and by the scalable
design. Software tools assure short development times for designs or design changes.

The devices were extensively tested with high-speed input emulating LHC conditions, and
were also run as part of beam tests of a TRT detector prototype, using a region-of-interest (RoI)
collecting device also based on FPGAs; they behaved as specified. We have thus demonstrated
with PAM implementations a fully programmable concept which can implement data-driven
processing tasks in the second-level trigger, for all presently proposed detector parts and in
existing technology. The field-programmable gate array technology used in PAMs is evolving
fast. Plans exist in industry for designing larger and faster PAMs, able to cope with a variety of
general image processing problems.
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