[5] Motorola MC68040 Microprocessors User’s Man-
wal, MOTOROLA INC. (1992).



that they cooperate in a practical manner.
7.4 nAPL; Message Layer

The lowest level of nAPL consists of an object—
oriented interface to the coprocessor. There are two
types of messages which can be sent from the host to
the coprocessor:

1. Remote procedure calls (RPCs). These are
“blocking” messages, i.e., the host waits until
the procedure to be executed by the coprocessor
is completed. RPCs are used to control opera-
tions which cannot be executed in parallel and,

moreover, require only a short processing time.

2. Job Calls. These are “non-blocking” messages,
1.e., when the corresponding C++ method is
called, an order is issued to a task on the co-
processor to start a job, but the host does not
wait for the end of the job. In this way it is pos-
sible to start a number of parallel running jobs
one after the other. It is normal for several jobs
to work simultaneously on processing a nAPL
instruction. The coprocessor’s operating system
1s responsible for control and administration of
these jobs. On the higher software levels the
host can make use of this to prepare the next
jobs during that time.

Beneath the software pyramid as described above
there are additional layers. They are related to the
coprocessor’s operating system and the hardware im-
plementation of the jobs by means of microprograms.
This software can be classified as firmware.

All of the software layers described here are open to
users for the development of programs for SYNAPSE-
1. The demands made of the users at each level are
summarized below:

SENN++ No programming required.
simulator:
SENN++ C++ programmer. No knowledge of

class library:  the hardware architecture necessary.

nAPL matrix C4+4 programmer. Knowledge of the
level: multiprocessor and memory architec-
ture necessary.

nAPL

message level:

C++ programmer. Knowledge of the
multiprocessor and memory architec-
ture and of the coprocessor operating
system necessary.

The performance that can be attained with the pro-
grams increases from the top downwards. For real-
time applications and compute intensive simulations,
therefore, 1t 1s advisable to use nAPL.

8 Conclusions

The Neurocomputer SYNAPSE-1 is a very pow-
erful and flexible device. Its size 1s adaptable to the
applicational needs in terms of processing power and
memory size. The time critical operations of neural
network algorithms, e.g., the calculation of matrix—
vector and matrix—matrix products, are accelerated by
a systolic array of special purpose neural signal pro-
cessors MA16. Depending on the algorithm used less
time critical operations of neural network models are
calculated by a multiple pipelined Arithmetic Units or
by a multiprocessor system of general purpose micro-
processors.

The system can be operated with a frequency of up
to 40 MHz. The prototype system SYNAPSE-1 oper-
ates with computation rates of 5 - 10° connections per
second and a weight storage capacity of 128 MBytes,
and is therefore well suited for the VISION regions of
the DARPA study [?]. One prototype system is oper-
ating since autumn 1992, other two systems are under
test.
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Figure 6: Programmable Sequencer.

The SENN-++ class library i1s based on a package
of subroutines containing an extensive range of opera-
tions defined on the basis of matrices and vectors. The
operations are in the category of compute-intensive
parallel operations, and are therefore closely linked
with SYNAPSE-1 and the nAPL language.

7.3 nAPL; Matrix Layer

In its topmost layer, the nAPL C++ class library
provides a simple interface for C+4 programmers.
Thanks to the use of the special hardware, program-
mers have new data types at their disposal: block—
floating—point matrices and look—up tables (vectors
are treated as special cases of matrices). A block—
floating—point matrix comprises one 16-bit mantissa
per matrix element and an exponent for the matrix as

a whole. Look—up tables constitute the high-speed

and universal hardware implementation of function
evaluations in SYNAPSE—-1. Programmers can access
predefined function tables, or define new ones them-
selves.

There is a separate matrix class for each type of
memory, Y, W and Z, each containing the elemen-
tary operations that can be executed for that mem-
ory. Thanks to the generous SYNAPSE-1 hardware
it 1s possible to execute concatenations of compute—
intensive and non—compute—intensive operations in
one step. For example, an entire layer of neurons can
be processed with a single nAPL instruction contain-
ing all parameters for the operations involved. This
means that extremely powerful hardware—optimized
instructions are available for execution.

Each of these instructions is executed with the
aid of messages which initiate the parallel processes
(tasks) on the Control Unit and Data Unit, ensuring



trol word is read out and used to generate the control
signals for these units. For more compact program
coding two nested hardware loops are available with
loop counters and address registers. An additional re-
peat function allows to repeat one instruction for a
programmable number of clock cycles.

To ease programming and to avoid programming
errors the sequencer words are not used directly for
controlling the hardware. Rather additional hardware
automatically inserts opcodes for refreshs of the dy-
namic memories into the instruction sequence from
the program memory. During refreshs opcodes for
“no operation” are generated to the other units like
the MA16 array.

The program code for the sequencer is generated
using a C++ cross compiler and a special assembler.
Usual programs, like for standard matrix—vector prod-
ucts, are already compiled and can be loaded directly
from a library. After some modifications the sequencer
needs only to be started. Such modifications are, e.g.,
to set the start address for the weights and the loop
counters. Due to the capacity of the SRAM of 256 k
control words, several programs can be stored at the
same time.

7 Software Architecture

The programming language for SYNAPSE-1 is
based on the decomposition of each algorithm accord-
ing to compute—intensive and non—compute—intensive
operations.  Since this decomposition equally de-
termines the processor and memory architecture of
SYNAPSE-1, the syntax of the programming lan-
guage is a high level language mapping of the underly-
ing hardware architecture of SYNAPSE-1. The decla-
ration of a variable or a function is therefore accompa-
nied by the specification of the memory or processor
to which it is assigned. The programming language for
SYNAPSE-1 is called nAPL (neural Algorithms Pro-
gramming Language). Tt is embedded in C++ and is
implemented as a class library. The power of nAPL is
based on an extensive matrix library, which also con-
tains complex operations (such as the complete pro-
cessing of an entire layer of neurons, including transfer
functions, with only one instruction). SYNAPSE-1
executes these nAPL operations at optimum perfor-
mance. Its orientation with a matrix model also makes
nAPL interesting for non—neural applications, such as
general signal preprocessing.

Additional software layers (see Fig. ?7) are re-
quired in order on one hand to establish the connec-
tion between nAPL and the procedures running on

the Control and Data Units, and on the other hand
to give users the option of non—-hardware—dependent
programming. The top two layers are entirely inde-
pendent of the hardware, while the two layers beneath
them are increasingly hardware-dependent.

SENN-++; simulator

SENN++; classlibrary

NAPL, malrx rayer
(matrices, 1ook-up-tables)

nAPL; message layer
(RPCs and task management)

Figure 7: Software architecture of SYNAPSE-1.

7.1 SENN+4+; Simulator

The top level is occupied by the simulator compo-
nent of SENN++ (Simulation Environment for Neu-
ral Networks). This is where the topology of a neural
network, the algorithms to be used, and the data to
be learned are entered, with the aid of an easy—to—use
description language. An interactive graphical user in-
terface allows users to monitor the simulation, change
parameters, select data records for learning, and so on.
Progress of the simulation can be illustrated on-line
with a variety of graphics features.

At this level users are dependent on the existing
objects (neurons, synapses, algorithms, etc.), and do
not have to program anything nor have any knowledge
of SYNAPSE-1. The option of programming by the
user 18 provided on the next lower level.

7.2 SENN+4+; Class Library

The simulator is implemented with a class library
which provides users with objects such as neurons,
synapses, clusters of neurons, connectors between clus-
ters, various methods of visualization, complete learn-
ing algorithms, administration of learning patterns,
etc. A C++ programmer can use these classes for his
or her own programs, derive new classes from the ex-
isting ones, and add new properties. This makes it
possible to develop new algorithms with a minimum
of programming effort. Provided that the program-
mer adheres to certain standards, the new classes au-
tomatically become available in the simulator and can
be integrated there and manipulated interactively.
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The Control Unit has two main responsibilities. \—
First it coordinates all activities of SYNAPSE-1. This Address Generator Y-Memory
is done by a programmable sequencer that generates addresses
appropriate control signals and addresses for the other

units. Second it provides the communication of the
neurocomputer with a host system, usually a worksta-
tion used for programming and as the user interface.

On the Contol Unit there is also a Motorola CPU
MC68040 with local memory and a VME interface,
similar to the Data Unit. This CPU is used for the
communication with the host and the CPUs of the
Data Units, and for data transfer (Fig. 77). An Ad-
dress Generator supplies the addresses used by the
DMA controller for data transfer from the Y-Memory
on the Data Unit to the Neuroprocessor Units. This
Address Generator provides two programmable nested
loops. Also single addresses generated by the CPU of
the Control Unit can be processed.

The synchronous parts of the system like the MA 16
array, the Weigth Memory Unit and the FIFOs, which
connect the asynchronous Y-Memory or the Arith-
metic Unit, are controlled by a programmable se-
quencer. Programming and control of the sequencer is

Figure 5: Control Unit.

done by the CPU. Partly integrated in this sequencer
is the interface to the Weight Memory Unit. This al-
lows to access the weight memory directly by the CPU.

6.1 Programmable Sequencer

The main part of the programmable sequencer is
a SRAM in which programs are stored that consist of
very—long—instruction—words (VLIW) of 64 bits width.
The VLIW is divided into individual fields that are in-
terpreted as coded commands for the units controlled
by the sequencer. These are (see Fig. ??) the top,
upper, and lower row of MA16 chips; the accumula-
tion and data output FIFOs, the backplane drivers;
and the weight and Z—memories. Every step one con-



floating point unit, a memory management unit, and
cache memories for instructions and data. The CPU
is currently operated at 33 MHz. The next version
is planned to operate at 40 MHz. To provide high
flexibility the processor allows I/O via two serial ports
(RS232), and one 16-bit parallel port. For storing
of monitor/debugger code and consolidated program
modules 256 kBytes of EPROM are provided. The on—
board I/O devices are able to generate interrupts of
the MC68040 CPU. In addition some other conditions
may also generate interrupt or bus error exceptions.
These are overflow of the Arithmetic Unit, VMEbus
slave interrupt, parity error in memory, and VMEbus
error.

The memory consists of up to 32 MBytes DRAM
and is used as instruction and data memory. It
is multiported and can be accessed by the CPU
and by external VMEbus masters via the VMEbus
slave interface logic. Arbitration for memory ac-
cess 18 normally performed cycle by cycle. In addi-
tion “locked” transfers are possible. Examples are
RMW (read/modify/write) access by the MC68040
(TAS and CAS2 instructions), burst transfers for fill-
ing the on—chip cache memories, and RMW transfers
and block transfers of the VMEbus slave logic.

Single memory accesses of the CPU can be executed
at a rate of one transfer every 120 ns (33 MBytes/s).
To perform burst mode transfers of the MC68040 in
one clock cycle only, the memory architecture is two—
fold interleaved. This allows a maximum transfer rate
of 132 MBytes/s. Because three burst transfers re-
quire one “normal” transfer, the effective transfer rate
is about 75 MBytes/s.

The VME master interface of the CPU supports
“normal” and block transfers in extended address
space. Fast read-out of data from another VME
board, 1.e., video boards, to the CPU or the Y-
Memory of the Data Unit are handled by a dedicated
VMEbus DMA (direct memory access) controller, that
allows a transfer speed of up to 16 MBytes/s. This
DMA controller operates in parallel with the CPU.

The VME slave interface is functionally completely
independent of the master interface. It allows par-
allel access to the multiported data and instruction
memory of the CPU, to the data memory of the Neu-
roprocessor Unit, and to control registers of the DMA
controller and the Arithmetic Unit. To insure cache
consistency of the on—chip caches of the MC68040 and
the data and instruction memory it 1s planned to pro-
vide control logic that uses the snoop protocol of the

CPU.

5.2 Y-Memory

In the Y-Memory the input data for the two rows
of MA16 processors of the Neuroprocessor Unit are
stored. After postprocessing by the Arithmetic Unit
the results are also stored in this memory. For full-
speed operation the Y-Memory consists of two banks
of up to 16 MBytes each; one bank for read transfers
and one bank for storing the results. The bank for
storing results is simultaneously accessible via VME-
bus. The different ports of each memory bank can be
selected by a bank select register.

A DMA controller is provided that reads out data
and transfers them to the Neuroprocessor Units. Dur-
ing learning a DMA controller writes back updated
weights computed by the Arithmetic Units. For these
accesses high speed FIFO buflers are used. With two—
fold interleaved memory blocks and fast page mode
access, transfer speeds of up to 100 MBytes/s are pos-
sible for reads and writes independently.

5.3 Arithmetic Unit

For postprocessing of the accumulated results of
the matrix—vector products, as they are calculated by
the Neuroprocessor Units, there is a special-purpose
pipeline processor. In this Arithmetic Unit (Fig. 77)
scaling factors and the transfer function of the neural
algorithm are computed.

At the input of the Arithmetic Unit the data of the
accumulation bus are stored in a FIFO buffer. Since
these data have a width of 48 bits the most significant
bits have to be selected for processing in the Arith-
metic Unit. This is done by a barrel shifter that is
controlled by the information provided by a max de-
tector. During processing this max detector snoops
on the accumulation bus of the Neuroprocessor Unit
in order to detect and to store the position of the most
significant bit.

The Arithmetic Unit consists of an ALU, a multi-
plier, and a look—up table. This unit 1s used alter-
nately by both rows of neuro signal processors. ALU,
multiplier, and look—up table operate in parallel in a
pipelined structure. This allows to calculate one re-
sult in every clock cycle. Currently a clock of 33 MHz
(max. 50 MHz) is used. Function parameters for the
ALU and the multiplier are supplied by FIFOs, or
by registers if constants are used. The data for these
FIFOs and registers are supplied by the CPU. ALU
and multiplier operation modes are programmable via
control registers.

To calculate the transfer function, i.e., a threshold,
a programmable look—up table is used. Two functions,
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16 x 16 bits fixed point integers whereas the results
are summed up in 48 bits. With a 2x4 array of neuro
signal processors MA16, a single Neuroprocessor Unit
can compute up to ~ 5 - 10° connections per second.

Each MA16 is accompanied by a local memory for
intermediate data (Z-Memory). Both processors of a
column are connected to the same weight bus. Thus
they execute the same neural network operations for
different input patterns. With a frequency of 40 MHz
for the MA16 array and for the data buses, each MA16
has a bandwith of 320 MBytes/s on the weight bus
and 80 MBytes/s at the data input. Since all process-
ing elements operate in SIMD mode, i.e., execute the
same operation on different data, programming of the
systolic array is not difficult.

4 Weight Memory Unit

The Wewght Memory Unit stores the synaptic
weights. According to the 2x4 arrangement of the
MA16 processors, the memory is divided into four
identical parts. They are controlled such that data
are provided synchronously to the systolic operation
of the MA16 array. The four data streams are fed
into the two MA16 processors that belong to the re-
spective stage of the systolic chain. This is done via
a special synchronous bus on the system backplane
(Weight Bus) that transfers data at the system fre-

quency of 40 MHz. With the bus width of 4x64 bits
a total bandwidth of 1.28 GBytes/s is obtained. The
total storage capacity of one unit is up to 512 MBytes.
Because of the large storage capacity needed, DRAMs
have been used for the memories. To reach the re-
quired high data rate, each memory module i1s two—
fold interleaved and the DRAMs are operated in fast
page mode.

For initialization of the weights, and for reading
out and storing of learned weights, there is also an
interface to the Control Unit for direct access. Via
this connection the Weight Memory can be addressed
sequentially using single and block transfers.

48

4_/+
accumulationin
accumulation in

l

to/from neuroprocessor units

CPU
Arithmetic
Unit

L accumulation out
’ 48

16 daagut
Y-Memory »

| 16 daaout
—F~———

48
——
accumulation out

accumulation
buffer

VME-bus

4

Figure 3: Data Unit.

5 Data Unit

A Data Unit feeds the data to be processed by
the selected neural algorithm into the two rows of
MA16 processors that are implemented on one Neu-
roprocessor Unit, receives their results, and postpro-
cesses them (Fig. 7?7). The Data Unitis controlled by
a Motorola MC68040 CPU with local memory and a
VMEbus Interface. The data to be processed in the
Neuroprocessor Unit are stored in a separate on—board
memory (Y-Memory). In most cases postprocessing is
done by a special purpose arithmetic unit tailored to
the operations required in most neural algorithms.

5.1 CPU and VMEDbus Interface

The processor module uses a Motorola MC68040 as
CPU [?]. This 32-bit microprocessor has internally a
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the results are routed back to the Date Units. Here
all computational steps are executed that cannot be
done in the processing array itself. Processing is done

under central control by the Control Unit.

The processing power and the storage capacity of
the memories can be adapted to the application needs.
The minimal system configuration, which is operat-
ing since autumn 1992, consists of one Neuroprocessor
Unit, one Weight Memory Unit, one Data Unit, and
one Control Unit (see marked box in Fig. ?77). For
applications needing a higher input data rate the sys-
tolic array can be extended using more rows of Data
Units and Neuroprocessor Units. In this way higher
data parallelism is obtained by e distributing the same
data over more processors operating with the same
weights. For applications that require larger neural
networks, i.e., more processing power as well as more
weight memory space, the systolic array can be ex-
tended using more columns of Weight Memory Units
and Neuroprocessor Units. System extension is easily
achieved by using the appropriate number of boards
in a system crate. The interconnection is provided by
two special-purpose buses for weights and control sig-
nals, and a system bus. The VMEbus has been chosen

as the system bus for simple interfacing to off-the—
shelf hardware like the host computer or I/O devices.

3 Neuroprocessor Unit

The Neuroprocessor Unit executes the most time
critical computations required for any simulation of
neural networks including learning, e.g., the compu-
tation of matrix—vector products. It consists of a
two-dimensional systolic array of neural signal proces-
sors MA16 [?], arranged in two rows by four columns
(Fig. 7?). For large matrix—vector products the MA16
processors calculate the results in several passes. In
addition to the data and weight ports, each chip there-
fore provides input/output ports for partially accumu-
lated results. These ports are horizontally connected
between adjacent MA16 processors. In this way a row
of MA 16s form a linear systolic array where input data
as well as partial results propagate from the Data Unit
through the MA16s back to the Data Unit.

Each MA16 contains four systolic chains of four
processing elements. A single MA16 processor, op-
erating at 40 MHz, represents a computing power of
640 - 10° connections/s. Products are computed as
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Abstract

This paper describes the general purpose neurocom-
puter SYNAPSE-1 which has been developed in coop-
eration between Siemens Munich and the University
of Mannhetm. This system contains one of the most
powerful processors available for neural algorithms, the
neuro signal processor MA16. The prototype system
executes a test algorithm 8,000 times as fast as a
Sparc—2 workstation. This processing speed has been
achieved by using a system architecture which is op-
timally adapted to the general structure of neural al-
gorithms. It is a systolic array of MA16 processors
embedded in a multiprocessor system of general pur-
PoSe MicCToprocessors.

1 Introduction

Neural algorithms are often well suited for indus-
trial or medical image processing tasks. However it
was not possible up to now to use such algorithms
in real-time since the required computing power is
much higher than provided by most computers [?].
SYNAPSE-1 is a neurocomputer that has new ar-
chitecture which is optimally adapted to the general
structure of neural algorithms. Its parallel architec-
ture, a combination of a systolic array and a multi-
processor, allows SYNAPSE-1 to calculate artificial
neural networks so fast that it will be possible, e.g.,
to process large images (up to 1024 x 1024 pixels) in
real-time.

For the simulation of neural networks the most time
critical operation is the computation of matrix—vector
products. Since a new neuron state is calculated by
multiplying the vector of the old neuron state by the
synaptic matrix, such a product has to be calculated
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every iteration step. In many models of neural net-
works the number of iteration steps is comparable to
the number of pixels in the image. Thus processing
of even a single image is computationally demand-
ing. If more than one image has to be processed as
it is the case for real-time image processing as well as
during the training phase of a neural network, matrix—
matrix products have to be computed. Obviously only
a highly parallel system is able to provide the required
computation speed. In SYNAPSE-1 a systolic array
of special neuro signal processors “MA16” [?] is used
for this purpose. Each neuro signal processor contains
16 multipliers, 16 adders, and support logic like accu-
mulators and FIFOs (first—in first—out memories).
For the calculation of the other parts of a neural
algorithm, like scaling factors or the transfer func-
tion, the systolic matrix—vector calculation is embed-
ded in an asynchronous multiprocessor system using
Motorola’s MC68040 CPUs. This allows to program
the system easily in high level programming languages.

2 System Architecture

SYNAPSE-1 is a modular system whose building
blocks are arranged in a two—dimensional structure
[?, ?]. The building blocks are (Fig. ??) a two-
dimensional array of neuro signal processors MA16,
weight memories, data units, and a control unit.

The central part of the neurocomputer is the ma-
trix of processing elements. The processing elements
receive data from data units at the left edge of the
processing array. The synaptic weights that are re-
quired for processing are input from the weight mem-
ories at the top edge. Partial results are computed
and pipelined along the rows of the matrix to the right.
After the matrix—vector products have been computed
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