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Abstract

Neural network and statistical classi�cation methods were applied to derive an
objective grading for moderately and poorly di�erentiated lesions, based on charac-
teristics of the nuclear placement patterns. Using a multilayer network after abbrevi-
ated training as a feature extractor followed by a quadratic Bayesian classi�er allowed
grade assignment agreeing with visual diagnostic consensus in 96% of �elds from the
training set of 500 �elds, and a 77% of 130 �elds of a test set.

2



1 Introduction

Prostate cancer is now the most commonly diagnosed cancer in men and cause of death
from cancer among men in the Western world. Localized prostate cancer encompasses a
wide spectrum of disease, with highly variable biological behavior and response to therapy.
Prognosis thus varies widely. Grading and staging are the standard methods of prognos-
tication. Numerous grading schemes have evolved [6, 8, 13, 12, 14, 21, 26, 22, 24, 25, 27,
33, 34]. The most widely used schemes are the systems of Gleason and Mosto� [13, 22],
in practice many pathologists apply a three grade system combining criteria used both by
Mosto� and Boecking [6, 22]. In the US, the Gleason system, which relies primarily on
histologic features, has found widespread acceptance. It correlates well with other mea-
sures, such as ploidy [?], or PSA serum levels [28]. The Gleason system rests on a two tier
assessment, of a primary grade, and an assessment of the predominant secondary grade,
combining the two into a \Gleason sum". The Gleason system has been found to lead to
variable scores between the di�erent diagnosticians, for this, the second tier assessment
may be responsible. As Mosto� points out [24], even in Gleasons's hands the Gleason
grading system did not exeed a reproducibility of 80%. Poor reproducibility between di-
agnosticians is a major problem for the grading of prostatic lesions. A critical review
of attempts to improve diagnostic and prognostic capabilities has been given by Mosto�
[23, 24, 25].

The point is made that the sole reliance on histologic structure may be a major cause
for diagnostic and prognostic lack of consensus among pathologists. In fact, the National
Prostate Cancer Project Task Force, as reported by Murphy and Whitmore [27], recently
recommended that future studies should consider nuclear and cytologic characteristics.
Mosto� presents strong arguments for the inclusion of nuclear features for the grading
of prostatic lesions [24, 25]. Bibbo et al. reported high reproducibility in primary grade
assignments, for medium power microscopic �elds, in a Gleason scoring scheme augmented
by a set of nuclear grading features [5].

A number of research e�orts are aimed at the development of an objective grading
system for prostatic lesions, so the development of an interactive image comparison work-
station with computer graphic enhancement of diagnosis clues and decision support by
a Bayesian Interference Network [5] at the University of Chicago, the development of a
diagnostic decision support system also based on an interference network for the classi-
�cation of premalignant prostatic PIN lesions at the University of Ancona by Montironi
et al. [1], and the image analytic studies by Irinopoulos and Rigaut to identify cases with
poor prognosis, based on nuclear morphology [2].

For small, low grade lesions the outcome is highly predictable. This is also the case for
widely metastatic high grade tumors. However, for most prostate lesions visual grading
has been of limited value.

For an objective, automated procedure one has to keep in mind that lesions spanning
the range from low grade to high grade form a continuum, characterized by increasing
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loss of tissue di�erentiation, and increasing nuclear anaplasia. The decision maker is faced
with the need to assign a given lesion to a fuzzy set|such as the fuzzy set of \poorly
di�erentiated" lesions|and there exists a fairly wide zone of transition from moderately
di�erentiated lesions to poorly di�erentiated lesions. The de�ning of discretely labelled
diagnostic categories for a continuous process of progression should not lead to an ex-
pectation that a decision procedure now should \correctly" classify lesion. Also, certain
histologic and nuclear features do not change at the same points along a grading scale, so
that it is not readily possible to identify single \grade indicating" features. Nevertheless,
if a monotonic, multivariate characterization could be found that might allow an objective
determination of the grade for a given lesion, and if rules could be de�ned how the sec-
tion or biopsy material should be systematically sampled to derive such a grading, then
both reproducibility of grading, correlation to clinical outcome, and consistency of patient
management might be attained.

Loss of tissue di�erentiation can be measured by assessing the nuclear placement pat-
tern. In this study an e�ort is made to explore the utility of neural networks for assessing
nuclear placement patterns. The advantage of this approach would be the potential for
a high speed implementation, as the networks would be directly applied to the image
domain. This would make extensive sampling feasible. Also, one would not have to pre{
de�ne discriminating features of the nuclear placement patterns, suitable for the intended
mapping, as the network would learn these features by itself.

Figure 1: Microscopic image of a moderately di�erentiated prostate lesion (left) and a

poorly di�erentiated prostate lesion (right), �400.

On the other hand, the well established usefulness of traditional classi�cation methods
is fully recognized. The second objective of this study was to examine the utility of such
classi�cation techniques based on features extracted from the imagery.
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2 Materials and Methods

The clinical materials consisted of whole mount sections obtained from the National Reg-
istry of Pathology, AFIP, Washington, D.C., and histological sections from the University
of Arizona, Dept. of Pathology. Sections had been cut to 5 micron, and stained by H&E.

Images were recorded under a 20:1 objective, N.A. 0.75, and a SONY MED 1234 three
color CCD camera. For the study of nuclear placement patterns the nuclei of the digitized
512 � 512 images were segmented and their position represented in 64 � 64 binary pixel
arrays by single pixels. Fig. 1 shows a �eld of a moderately and poorly di�erentiated lesion
respectively, Fig. 2 shows the derived representations used to assess the nuclear placement
patterns.

3 Classi�er Design

In this section we give a brief discussion of the design of a classi�cation system for moder-
ately di�erentiated tissues (m) and poorly di�erentiated tissues (p), i.e., for the two classes
!m and !p. Although most of the material presented here is widely known it is included
for completeness.

A sample is described by an observation vector X of dimension n. The elements of X
consist of the original data or of measured features.

3.1 Classi�cation Strategy: Bayes Classi�er

To decide whether an observation vector X belongs to !m or !p the Bayes classi�er [11]
can be used. Here the decision rule which maps X onto !m (resp. !p) is based on the
probabilities qm(X) that the observation vector X belongs to class !m (resp. qp(X) for
!p). If

qm(X) > qp(X)

X is considered as belonging to class !m. The a{posteriori probability qi(X); i 2 fm; pg
can be calculated according to the rule of Bayes using the frequency of occurrence Pi
of a member of class i, the conditional density function pi(X), and the mixture density
function p(X) of both classes as

qi(X) =
Pipi(X)

p(X)
:

The decision rule for !m can now be expressed as

Pmpm(X) > Pppp(X) :
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Thus the likelihood ratio l(X) is de�ned as

l(X) =
pm(X)

pp(X)

and the decision rule for !m becomes

pm(X)

pp(X)
>

Pp

Pm

The discriminant function h(X) is de�ned as

h(X) = � ln(l(X)) = � ln(pm(X)) + ln(pp(X))

and a test sample is thus assigned to class !m if

h(X) < ln(
Pm

Pp
) :

This comparison of probabilities is called the Bayes test for minimum error. The decision
rule is theoretically optimal in minimizing the error probability.

However, to �nd the best classi�er for two classes !p and !m the statistical properties
of each class are needed. These are given by the conditional density functions pp(X)
and pm(X). To estimate these functions requires su�ciently many training data. If the
dimensionality of the observation vector X is high it is in most cases not possible to provide
enough training data. The available data are sparsely scattered in the con�guration space
and reliable statistical distributions cannot be obtained.

In order to simplify the determination of the unknown statistics of the observation
vectors, assumptions have to be made for the density functions. These lead to di�erent
classi�cation schemes like the linear, quadratic, polynomial, k{nearest{neighbor classi�er,
etc.. All these classi�cation algorithms tend to minimize the Bayes error.

Quadratic classi�cation algorithm

Very often it can be assumed that the measured observation vectors are normally dis-
tributed. Then the pi(X)'s are determined by the expectation vectors Mi and the covari-
ance matrices �i

pi(X) =
1

(2�)
n
2 j�ij

1

2

e�
1

2
(X�Mi)

T��1
i

(X�Mi) :

If the frequencies of occurrence Pi are equal for both classes, the decision rule for !m
becomes

h(X) =
1

2
(X �Mm)

T��1m (X �Mm)�
1

2
(X �Mp)

T��1p (X �Mp) +
1

2
ln
j�mj

j�pj
< 0 :
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The decision boundary becomes a quadratic boundary in the n{dimensional space.
This boundary separates the two classes optimally in the Bayesian sense. This classi�cation
algorithm often shows good classi�cation results even if not all features or elements of the
observation vector are exactly normally distributed.

3.2 Feature Extraction

In most cases it does not make sense to use original data as supplied by a data recording
system directly for classi�cation. As an example the binary images that represent the
nuclear placement pattern used to grade prostate tissues contain 64�64 pixels. Thus
there are 24096 � 101229 possible feature vectors so that the corresponding con�guration
space can never be explored for an estimate of the conditional density functions or the
statistical parameters.

Instead the original data have to be preprocessed, i.e., features have to be extracted
that still contain all information needed for the classi�cation task but lack irrelevant
information. In this way the dimensionality of the original data is reduced to the number
of features used. Often some preprocessing steps are obvious. In our case, e.g., it is
irrelevant for the classi�cation if a microscopic image is shifted or rotated. Without
extracting translation and rotation invariant features every translation and rotation of an
image is considered as an independent sample. More often, however, expert knowledge on
the classi�cation problem has to be used in feature selection.

In most classi�cation tasks the selection and extraction of good features is the most
important and sometimes also the most demanding work. The quality of the optimal
classi�er expressed as the Bayes error depends only on the choice of the feature vector.

3.3 Principal component analysis

For e�ciency reasons, a small set of features should be found that represent the samples
accurately. But mostly all that can be done is to identify a larger number of features
that only could be important for the classi�cation. If chosen in this way some informa-
tion represented by the features may be redundant, and some components of the feature
space may contain no information at all. But even if this is not the case some features
are less important than others and could be dropped without noticeably diminishing the
classi�cation ability.

In principal component analysis (PCA) the information on the feature space is exam-
ined and expressed in terms of the variances of the samples in several directions in the
space. Directions with small variances correspond to features that are very similar for all
presented training patterns. These features can be eliminated. The usual procedure is the
following:

1. Calculation of the mixture covariance matrix.
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2. Determination of the eigenvectors and eigenvalues of the covariance matrix.

3. Ordering of the eigenvectors according to the eigenvalues �i in descendant manner.

4. Elimination of eigenvectors with the smallest eigenvalues. These are directions in
the feature space with the smallest variances.

5. Mapping of the feature vector X into the space of the remaining eigenvectors. Thus
the dimension is reduced with a minimal loss of information.

3.4 Neural Networks as Classi�ers

The motivation for using arti�cial neural networks to solve complex tasks comes from the
information processing power of biological brains. These are capable to perform extremely
di�cult pattern recognition and classi�cation tasks with noisy and incomplete data. One
example is the recognition of partially hidden faces. Brains do such tasks by orders of
magnitude faster than today's supercomputers. It is thus worthwhile to investigate brain{
like information processing structures for tasks as the classi�cation of prostate tissues.

Extremely simpli�ed the human brain consists of about 1010 processing elements called
neurons. They are connected by a network of about 1013 synapses. Every synapse transfers
the activity of a neuron to another one according to the synaptic weight which expresses
the relative importance of the in
uence of the source neuron to the destination neuron.
Every neuron sums the arriving weighted inputs and answers with a signal to the connected
neurons if the sum exceeds a certain threshold. The complex and parallel dynamics of
the network e�ect the huge computing power of a brain. Two attributes in
uence this
dynamics.

� External inputs are given by sensory perception and stimulate the neuron's activi-
ties. Starting from a certain neuron state this state changes on a fast time scale as
determined by the synaptic weights.

� In addition the weights of the synapses change on a slow time scale depending on
the current activities of the neurons. This process is called learning.

Thus the neurons represent the processing elements of the brain, the synapses the memory.

Arti�cial neural nets imitate only the most basic features of real neural networks.
Moreover only very small networks of typically up to 103 neurons can today be set up in
hardware or can be simulated. Two learning schemes can be distinguished. In supervised
learning the learning samples and the desired network response are known and simultane-
ously presented to the network. The output of the network is compared with the desired
output, and the synaptic weights are adjusted to diminish the di�erence. In unsupervised
learning only the input patterns are presented and the network �nds output classes by
self{organization.
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Supervised Learning Classi�er Systems

If an input pattern and the corresponding output pattern is presented the neural network
should change its internal state so that it answers with the corresponding output if a
similar input pattern is presented after learning.

The simplest model of an arti�cial neural network is the perceptron proposed by Rosen-
blatt [30]. It consists of a layer of input neurons Si which are activated by the input pat-
tern, and a single output neuron o. It has synaptic links of weight wi to all input neurons.
The output neuron sums the weighted input and produces an output using a nonlinear
function, e.g., a threshold or a sigmoid function f(x)

o = f(
nX

i=1

wiSi )

f(x) =
1

1 + e�x
:

The most common (supervised) learning rule is the delta rule [30]. It calculates the
di�erence between the network output and the desired output and adjusts the weights
whenever a learning sample is presented. This has to be done iteratively.

Unfortunately the perceptron is capable to distinguish only linearly separable classes
[20], i.e., classes that have hyperplanes as the decision boundary in the con�guration space.
To perform more complex classi�cation tasks the architecture of the perceptron has been
extended to the multilayer perceptron [32]. The multilayer perceptron consists of two or
more layers of perceptrons. A proposed iterative learning rule for this architecture is error
backpropagation [32]. This learning rule starts with an arbitrary decision boundary and
tends to minimize the classi�cation error in a successive process. Every time a new pattern
is presented the output of a network is calculated and the classi�cation error estimated.
The error is then propagated backward through the network to adjust the weights for
all layers. This process is called learning cycle. When all training patterns have been
presented, an epoch is complete. Learning in a multilayer perceptron is very slow. Even
a small problem like XOR [32] needs approximately 1000 epochs until the function was
learned.

In principle the multilayer perceptron is able to learn every classi�cation task [17].
But for large networks and di�cult classi�cation tasks a multilayer perceptron requires an
extremely high computational e�ort and an extremely large training set, i.e., extremely
long learning time. Moreover the convergence of the learning algorithm to correct synaptic
weights is not guaranteed. Depending on the initialization of the weights the algorithm
may converge toward a local minimum and never reach the real optimum, the Bayes error.

Since the convergence of backpropagation learning is very slow many acceleration al-
gorithms have been proposed in recent years [10, 37]. Hofmann [16] has shown that these
techniques tend to work very well and much faster for small problems, but generally do
not improve the convergence speed for complex classi�cation tasks.
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4 Results

To build a classi�cation system we have investigated di�erent methods. First the classi�-
cation abilities of a neural network were tested on arti�cial data �elds similar to the binary
nuclear placement patterns. The chosen arti�cial classi�cation problem was much simpler
than the grading problem. Second the binary prostate data samples were processed and
the classi�cation abilities of statistical classi�cation schemes and neural networks were
measured. Eventually the di�erent advantages of the neural networks and statistical clas-
si�cation methods were combined to build a hybrid classi�cation system.

4.1 Neural Network Processing of Arti�cial Data Fields

4.1.1 Arti�cial data �elds

4000 data �elds were created to test the classi�cation abilities of multilayer perceptrons
on binary nuclear placement patterns. Each �eld consists of 30� 30 pixels with 36 points
placed on a regular grid. The position of each point is varied randomly according to a
normal distribution. To create two classes only one parameter is varied: the standard
deviations di�er by about 40% (Figure 4).

Thus the two classes are linearly separable. We chose this kind of data to test the
ability of neural networks to distinguish subtle di�erences in the statistics of random dot
patterns as a simple model of the nuclear placement patterns of prostate nuclei in tumour
tissues.

4.1.2 Multilayer perceptron classi�cation of arti�cial data �elds

To classify the arti�cial data �elds by a multilayer perceptron the input pattern was
presented as a 900{dimensional binary vector to the input layer. It turned out that this
classi�cation task is easy to learn|in contrast to the di�culties that a person encounters.
We tested several multilayer perceptrons with a di�erent number of hidden units. Only a
perceptron is necessary to learn the training samples and to classify all 300 test samples
correctly. This result is in accordance with the theory of Minsky and Papert [20] after
which a simple perceptron is su�cient to learn linearly separable classi�cation tasks.

Figure 5 shows the number of training epochs needed until the test set was recognized
completely versus the size of the training set. Training with only a few (e.g. 10) training
samples needs many epochs, but the the network is still able to generalize the di�erence
of the variance of the displacement to perform the classi�cation task.
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4.2 Quadratic Classi�er

Like the test problem of classifying arti�cial data, the given classi�cation task, the auto-
matic grading of prostate tumours, is di�cult for human observers, even for well trained
pathologists. In order to simplify the problem and to make it more comparable to the test
problem, we did not aim at assigning a certain grade to an unknown sample but rather
to distinguish two grades of prostate tumours,moderately and poorly di�erentiated ones.
For that a quadratic classi�er as described above was applied.

Applying the classi�er to the original data was not possible. The size of the binary
images of 64�64 results in an observation vector of length 4096. Only 250 training samples
per class were available. These were by far not su�cient to estimate the statistical distri-
bution of the data in the observation space. Thus feature extraction is required to reduce
the dimensionality of this space, and the observation vector contains selected features.

4.2.1 Feature selection

The identi�cation of useful features is based upon some knowledge on the given prob-
lem. Since the original observation space is so huge it is important to exploit all available
a{priori knowledge, problem independent as well as problem dependent. In addition as-
sumptions have to be made whose validity can only be tested. These assumptions have to
be based on expert knowledge about di�erences between moderately and poorly di�eren-
tiated tissue sections.

In our case the only problem independent knowledge available is the obvious fact that
the correct assignment of a presented sample to one of the two grades cannot depend on
the position and orientation in which the sample is presented to the system. Thus all
features have to be invariant under translation and rotation. All other features relate to
the spatial distribution of the pixels in the image, the positions of cell nuclei. To reduce the
dimensionality of the observation space two approaches are possible. Some global features
can be extracted that compute a few numbers from the whole image. However there are
more local features which extract a value by assessing only onto a rather small area of
the image. Hereby it is assumed that many clues for a correct assignment can be found
in these small areas and that an appropriate combination of such clues leads to a more
con�dent classi�cation.

If local feature detectors are applied to all parts of an image in all orientations (if the
detector is not itself rotational invariant), one or a few numbers are computed for every
feature at every position and orientation (if not rotational invariant). In the simplest case
the output of every feature detector is averaged, so that invariance against translation
and rotation is obtained. One should note that even this primitive kind of preprocessing
reduces the dimensionality of the observation space by a huge factor. There are, e.g.,
2100 � 1030 feature detectors in total that look onto a �eld of 10�10 pixels. Assuming that
only structures not larger than this are relevant for the classi�cation, the 24096 � 101232{
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dimensional observation space is reduced by about 1200 orders of magnitude without loss of
information! Thus it is still di�cult but not impossible to �nd the classi�cation boundary
in the reduced space. The dimensionality of the observation space can be reduced further
if not all possible features detectors are used but only those that might be problem speci�c.

In Table 1 the most important features found are described. The discriminating ability
of the selected feature using a quadratic Bayes classi�cation algorithm is also given.

Feature class Number of pa-

rameter values

Accuracy

on the train-

ing set (%)

Accuracy

on the test set

(%)

Number of cell nuclei 1 63 60
Circle masks 9 66 59
Holes 8 66 63
Circle masks and holes 17 74 67
Linear aggregates 5 58 54

Local density distribution 2 67 66
Walsh basis functions 28 79 55
Fractal dimension 15 69 62
Euler relation 2 68 68
Minimum distances 2 55 54
Local co{occurrence 120 94 58
Local contrast 120 95 60

Neural features 63 96 77

Table 1: Accuracy of feature classes averaged over di�erent assemblies of training and test

sets. The feature classes are explained in the text.

In principle two di�erent kinds of features can be distinguished: structual features

describe information which correlates with histopathologic attributes, texture and statistics
describing features extract information about statistical attributes and the \texture" of
tissue structures.

Structural features

Number of cell nuclei: The number of cell nuclei in an image varies from 50 to 350.
The cellularity of poorly di�erentiated tissues is higher than that of moderately
di�erentiated ones. A moderately di�erentiated tissue section contains in the average
119 nuclei, a poorly di�erentiated one 150. This means that the number of cell nuclei
in an image is an important attribute for the discrimination.

Circle masks: Prostate tissues consist of glands, roundish to elliptically shaped histo-
logic structures lined by glandular cells. The proliferation of malignant glandular
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nuclei disrupts the glandular structure, leading to a loss of tissue di�erentiation,
ranging from well-di�erentiated lesions to poorly di�erentiated lesions. In moder-
ately di�erentiated lesions the gland structure appears partially disrupted to several
disturbed, in poorly di�erentiated lesions the glandular structure is practically no
longer discernible (see Figure 1).

Thus, the detection of structures of circular to elliptical shape in the binary nuclear
placement patterns in moderately and poorly di�erentiated lesions may provide a
diagnostic discrimination criterion. The boundary of fragments of round structures is
determind by convolving the binary pixel images with circle masks. Di�erent masks
with circle diameters from 1 to 9 pixels are used. The averages of the convolved
images represent the resemblance of the processed histologic structures to circular
structures as a function of diameter.

Holes: The lumen of a gland is free of nuclei in normal and well di�erentiated lesions,
and even in moderately di�erentiated lesions few nuclei are located in the interior
of the gland. Larger open areas free of nuclei are less frequently found in poorly
di�erentiated lesions. Circular holes, not enclosing any nuclei are counted to measure
this diagnostic clue. The diameter of the hole masks is varied from 2 to 9 pixels to
detect structures of di�erent sizes.

Linear aggregates of nuclei and isolated nuclei: In moderately di�erentiated lesions
segments of glandular epithelium are preserved. Here, nuclei form linear aggregates.
In poorly di�erentiated lesions isolated nuclei predominate. The number of linearly
aggregated pixels representing cell nuclei in di�erent orientations is searched by con-
volution of the binary images with 3�3 masks containing lines of di�erent orientation
each. The averages of the resulting images are used to measure the quantity existing
lines.

To detect isolated nuclei the number of isolated pixels in the middle of an 3�3 area
is counted.

Texture and statistics describing features

Local density distribution: The spatial density of nuclei di�ers within the tissue sec-
tions. In moderately di�erentiated sections the remaining glandular structures lead
to density 
uctuations within an image. In Figure 6 it is obvious that poorly di�er-
entiated sections are more homogeneous in the nuclear density.

Counting the nuclei within subareas of 10�10 pixels the average local density of the
image and the local density variance are determined.

Walsh basis functions: Walsh basis functions can be used for oriented frequency �lter-
ing [7]. We use these functions as frequency �lters (Figure 7) to examine periodical
structures in the binary nuclear placement patterns. The binary images are con-
volved with a basis �lter, and the resulting grey level image is averaged.
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Fractal dimension: Structures within binary images are composed of the elementary
structures (a) isolated points (dimension: 0), (b) lines (dimension: 1) and (c) areas
(dimension: 2). The fractal dimension of a given structure is, roughly speaking, a
measure for the similarity between this structure and these elementary structures. It
is determined by looking at a given structure with di�erent resolution. Resolutions
of size 2, 4, 8,: : :, 64 are examined. In an image derived from the original one by
lowering the resolution, a pixel was set if at least one pixel in the corresponding area
of the original 64 � 64 image was set. The fractal dimension is calculated as the
number of set pixels as a function of the resolution.

To describe the properties of nuclear placement pattern of prostate tissue sections the
fractal dimension can be used to distinguish structures consisting of linear aggregates
of nuclei or of single nuclei.

Euler relation: The Euler relation [35] determines for an image the number of connected
areas minus the number of included holes. In the original 64� 64 pixel images only
a few connected areas exist. To measure structural information the resolution was
reduced to 32� 32 respectively 16� 16.

Minimum distances: In some sections the remaining segments of glandular structures
do not resemble round or elliptic structures. Rather, nuclei form linear aggregates of
arbitrary shape. To detect the existence of such fragments of glandular epithelium
we measure the average and the variance of the distance of cell nuclei to their nearest
neighbors. The nearest neighbor of a point as a member of a linear aggregate is most
likely also a member of this aggregate and the distances between both are very low.
If a point is not member of a linear aggregate its nearest neighbor has a greater
distance.

Local co{occurrence: We use the local co{occurrence and the local contrast to deter-
mine some statistical properties of the distribution of pixels within a neighborhood.
The covariance between pixels in di�erent distances �x and �y up to 11 pixels is
measured:

cov(�x;�y) = Ef[I(x; y) �EfI(x; y)g][I(x +�x; y +�y)�EfI(x; y)g]g;

where I(x; y) is the value of the pixel on position (x; y) and Efzg the expectation
value of z.

Local contrast: The local contrast is de�ned as the squared di�erence of two pixels at
several distances [39]. Here distances of up to 11 pixels were used:

con(�x;�y) = Ef[I(x; y) � I(x+�x; y +�y)]2g;
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4.2.2 Classi�cation results

To design a classi�er system the best combination of features should be determined. Ap-
plying principal component analysis to all 400 features is not practical since all eigenvalues
and eigenvectors of a 400�400 matrix have to be calculated.

We used random search to �nd good combinations of features. From all considered
features 10 to 80 were randomly selected for the feature vector. A training set and a test
set were also randomly selected from all available images. Principal component analysis
was applied and the parameters of a quadratic Bayes classi�er were calculated according to
the formulas in section 3.1. The resulting classi�cation success for the training set and the
test set (a consequence of generalization) is shown in Figure 8 for some arbitrary feature
combinations. Each point represents a quadratic classi�er. The x{axis shows the accuracy
on the training set; the y{axis the accuracy on the test set, i.e., the generalization success.

The discriminating abilities of a feature combination of high training and generaliza-
tion success are shown in Figure 9. The classi�er is a quadratic Bayes classi�er using
a promising set of features of Figure 8. We chose a classi�er with a high accurancy on
the training set and a high accurancy of the test set. Feature combinations with these
discriminanting abilities are found in the upper right area of the cluster of classi�ers in
Figure 8.

A single point in Figure 9 represents a sample of class \moderately di�erentiated" (m)
or class \poorly di�erentiated" (p). Each sample vector X is mapped onto the x{axis
according to

1

2
(X �Mm)

T��1m (X �Mm)

and to the y{axis according to

1

2
(X �Mp)

T��1p (X �Mp) :

These terms are called the Malahanobis distances of a vector X to class m resp. p. It
is obvious that both classes can be easily separated. The classi�cation success of this
classi�er is 98.7% on the training set and 78.3% on the test set. The likelikood ratio
distribution of the training samples concerning the described quadratic classi�er is shown
in Figure 10. The small overlap of both curves represents the remaining misclassi�cation
rate of 1.3% on the training set.

4.3 Neural Network Classi�er

Because neural networks are capable to �nd their own features by self{organization, the
original data of the binary images were chosen as input to the system. In principle the
data processing steps in a multilayer perceptron are similar to those in a statistical classi-
�cation system. The patterns are presented to the input layer and processed through the
hidden units to the output unit. The number of hidden units is much smaller than the
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number of input units to force the network to process only signi�cant information for the
discrimination process to the output neuron. This processing step can be regarded as a
feature extraction by self{organization.

For two reasons it is not practical to present the full 64� 64 input image to the neural
network directly. First, the array is too large. The required computation time grows
approximately with the square of the number of input units [16], because all connections
must be modi�ed during a learning step. Even a multilayer perceptron with 45�45 inputs
uses several weeks computing time on a SUN 4. Second, the histologic structures whose
preservation is indicative of the remaining di�erentiation may not fall into the imaged
512 � 512 �eld. No provisions are made to pre{position the subimages so that such
structures would be fully covered when presented to the neural network. An adjustment
would not be feasible anyway in a fully automated system. Such a system would have
to rely on features which are independent of translation and rotation. Therefore, the
following procedure has been used.

1. The position of a 45 � 45 subimage was randomly chosen. With respect to the
size of the assumed typical structures observed in Figure 1 this size should be big
enough. By choosing the location of the subimage randomly we attained translation
invariance.

2. The subimage was randomly turned by 0, 90, 180, or 270 degrees to get a very rough
approximation of rotation invariance.

3. The rotated subimage was presented to the network.

For the classi�cation of a speci�c sample it is not su�cient to present only one subimage
to the network. By chance the selected subimage may not contain typical structures of
a class so that classi�cation will fail. We therefore presented 20 randomly chosen and
rotated subimages of a sample and we averaged over all outputs.

4.3.1 Multilayer perceptron

The classi�cation abilities of multilayer perceptrons trained with an error backprop-
agation learning rule depend mainly on the network architecture, the initial weights and
the learning parameters. In principle a multilayer perceptron consisting of one input, one
hidden, and one output layer is su�cient to learn every binary mapping [29].

We tested such multilayer perceptrons with di�erent numbers of hidden units and
di�erent learning parameters. The number of hidden units was varied from 10 to 100, and
the learning rate from 0.1 to 1.0. We trained a multilayer perceptron until the network did
not further improve its recognition abilities on the training set. Training of a multilayer
perceptron with 35 hidden units required three weeks computing time on a SUN 4. Thus
the training and test sets could not be varied and the classi�cation results depend on the
chosen sets.
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The multilayer perceptron producing the best results consists of 2025 input units, 35
hidden units, and one output unit; it uses a learning rate of 0.4. Such a neural network is
able to classify the training set with an accuracy of 82% and the test set with an accuracy
of 65% (Figure 11).

4.3.2 Hybrid classi�cation system

The advantage in using multilayer perceptrons as classi�cation systems is the self{organizing
feature extraction process performed by the neural network. The main disadvantages are
the computational expenses, the di�cult tuning of parameters, and the uncertain con-
vergence. Figure 12 show a part of a trained multilayer perceptron and the synaptic
connections of the hidden units to the input layer. It turns out that these units organize
�lters which are sensitive to di�erent properties of the input patterns. It can be shown
that the principal structure of these �lters develops very early at the beginning of learning,
but the network classi�es the patterns wrongly because the synapses of the output unit
are still badly developed. Learning in multilayer perceptrons generally tends to optimize
the whole system at once. If a pattern is classi�ed wrongly the learning algorithm mod-
i�es all synapses and not only those of the output unit. This is one reason for the slow
convergence of the back{propagation learning rule.

In contrast the use of statistical methods as shown above is based on prede�ned fea-
tures. If e�ective features are found they result in good classi�cation systems. Regarding
the classi�cation of prostate tumours the costly part in designing a statistical classi�er is
the feature extraction.

It is possible to combine the advantages of multilayer perceptrons|the self{organizing
feature extraction|and the outstanding discriminating abilities of statistical classi�cation
systems in a hybrid system. As a study we trained four multilayer perceptrons with
di�erent initial synaptic initializations and di�erent number of hidden units. The training
was aborted after 4�6 days. This is approximatly 1

4 of the training time that a multilayer
perceptron normally requires for convergence. At this stage the neural network had not
yet learned to discriminate the classes but it had already developed a set of more or
less speci�c feature �lters, one for every hidden unit. Important hidden units|and thus
feature �lters| were selected according to the strength of their synaptic link to the output
unit. In order to use these feature �lters for a statistical classi�er, the strengths of the
synapses from such a hidden unit to the input layer were interpreted as a 45 � 45 image.
These images were used as convolution masks which were applied to the sample images.
The average of the pixel values of the resulting 20 � 20 image is de�ned as a neural
feature (Figure 13). We extracted the neural features of 63 di�erent hidden units of our
trained networks. To this feature vector, principal component analysis and quadratic
Bayes classi�ers were applied to determine the discriminating surface. The discriminating
abilities of such a classi�er using 63 features is shown in Figure 14.

Both classes (m and p) can be separated and the boundary between the clusters is
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nearly as sharp as in the case were features have been de�ned \by hand". The classi�cation
success of this hybrid classi�er is 96.0% on the training set and 77.3% on the test set.
This example shows that the information �lters developed by self{organization extract
in principle the same information as the features described in chapter 4.2.1. Combining
these features with neural features improves the generalization ability only by about 2%.
Thus the Bayes classi�er and the hybrid classi�cation system|a combination of a neural
network and statistical classi�er|do not show signi�cant di�erences in their classi�cation
results. The remaining generalization error of �22% could not be reduced further.

5 Conclusions

The objective assessment of tissue di�erentiation in prostatic lesions is a complex problem.
Algorithms for automatic classi�cation like the quadratic Bayes classi�er or multilayer
perceptrons are in principle able to perform the classi�cation task. The advantage of
the Bayes classi�cation algorithm is its accuracy after a set of su�ciently discriminating
features is determined. Its disadvantage is the time required to compute all feature values
of a given binary nuclear placement pattern. Therefore this method seems to be ine�cient
to assess the grade of large tissue areas. On the other hand multilayer perceptrons as an
example for a neural network classi�cation system do not need expensive feature extraction
by hand as a preprocessing step. Important features are developed by self{organization
as connections between the layers of units during the training of the network. After
training the resulting network could be easily implemented in hardware resulting in a
very fast classi�cation system. Unfortunately training takes 3 weeks of computing time,
the convergence to an optimal discriminating surface is not guaranteed, and the resulting
accurancy is worse than that of the Bayes classifer.

A hybrid classi�cation scheme as a combination of a multilayer{perceptron and a
quadratic classi�er is proposed. It does not show signi�cant di�erences in the classi�cation
abilities to the Bayes classi�er and the preprocessed feature extraction. This may lead
to the assumption that the classi�cation tasks and the statistical properties of the binary
image may be nearly optimally described by the features. The main advantages of the
hybrid classi�er are:

1. The training costs are reduced.

2. The feature �lters develop by self-organization.

3. High accuracy.

4. The convolution and discriminant surface can easily be implemented in hardware for
high speed histologic grading of large tissue �elds.

The binary nuclear position images carry only information about the glandular structure
of the tissue. By mapping the microscopic images to these images the information of
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nuclear properties like size, structure, and form is lost. Adding these informations to the
nuclear features may lead to better classi�cation results.

In large tissue �elds this improved classi�er can be applied to assess the primary grade
of local areas and to determine the distribution of the primary grades within the �eld.
According to the statistics the secondary grade is computed and the \overall" grade is
concluded. This automatic grading system may lead to more reliable results in clinical
diagnosis.
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Figure 2: Reduced and binary representation of nuclear placement for Fig. 1.

input units hidden units output units

Figure 3: Structure of a multilayer perceptron.

Figure 4: Arti�cial data �elds. The pixels of both images are put on a regular grid and

displaced randomly. The variance of the displacement of the right image is 40% larger

than of the left one. The human eye is not capable perceive and assess this di�erence.
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Figure 5: Training duration vs. number of training samples.

Figure 6: Reduced and binary representation of nuclear placement for Fig. 1.
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8 × 8

Figure 7: The �rst 3 Walsh basis �lters in vertical orientation, the �rst 4 in horizontal

orientation and the corresponding mixture �lters are shown. Each �lter consists of an 8�8
pixel array. White and black denote +1 and �1, respectively.
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Figure 8: Classi�cation success of 1000 quadratic Bayes classi�ers using arbitrary feature

combinations.
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Figure 9: Discriminating abilities of a given set of features found in Figure 7. The mapping
is described in the text.
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Figure 14: Discriminating abilities of a quadratic Bayes classi�er that uses \neural" fea-
tures developed by multilayer perceptrons (compare Fig. 6 and explanations there in the

text).

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

-1000 -500 0 500 1000

Frequency of
occurrence

Logarithmic likelihood ratio: log(pm(X)
pp(X) )

poorly moderately
� -

poorly
moderately

Figure 15: The distribution of the logarithmic likelihood ratio of the tissue samples classi�ed
by the hybrid classi�er of Figure 10.
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