
REIHE INFORMATIK
18/95

VIRIM: A Massively Parallel Processor for
Real-Time Volume Visualization in Medicine

T. Günther, C. Poliwoda, C. Reinhart, J. Hesser,
R. Männer, H.-P. Meinzer, H.-J. Baur

Universität Mannheim
Seminargebäude A5
D-68131 Mannheim

VIRIM: A Massively Parallel Processor for Real-Time
Volume Visualization in Medicine

T. Günther†, C. Poliwoda†, C. Reinhart†, J. Hesser†, R. Männer†¶, H.-P. Meinzer*, H.-J. Baur*

† Lehrstuhl für Informatik V, Universität Mannheim, Mannheim, Germany

¶ Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Univ. Heidelberg, Heidelberg, Germany

 * Abt. Med. u. Biolog. Informatik, DKFZ Heidelberg, Heidelberg, Germany

Abstract
Architecture and applications of a massively parallel processor
are described. Volumes of 256×256×128 voxels can be
visualized at a frame rate of 10 Hz using volume oriented
visualization algorithms. A prototype of the scalable and
modular system is currently set up. 3D rotation around an arbi-
trary rotation axis, perspective, zooming, and arbitrary gray
value mapping are provided in real-time. Multi-user access over
high-speed networks is possible.
A volume oriented visualization algorithm is used that is
tailored to the requirements in medicine [5]. With this
algorithm, small structures of a size down to the pixel
resolution, and structures without defined surfaces can be
visualized as well as semi-transparent objects. One application
of the system is therapy planning in heart surgery.

Introduction
Data drawn from computer tomography (CT) or nuclear
magnetic resonance (MR) allow in principle to look inside the
patient's body using visualization of these data. Today's imaging
machines have a resolution on the mm scale so that many
details important for diagnosis and therapy can be recorded.
However limitations of the visualization process have up to now
narrowed the application area of 3D visualization of such data.
Typical visualization problems to be solved in the medical
context are e.g. tissues that have no defined surface (e.g. ramify
into its surrounding healthy tissue) or blood vessels whose size
is close to the limit of imaging resolution. Also, the
visualization of semi-transparent objects, where objects can be
visualized within their anatomical context, has shown to give
decisive information for successful diagnosis or therapy.
Volume visualization is currently done using two different
approaches: surface oriented and volume oriented algorithms.
Surface oriented methods are standard for nearly all 3D visual-
ization problems. The surfaces of the relevant objects are ex-
tracted from the data according to some criteria, and—for
visualization—incoming light interacts with these surfaces only
[1,2,3]. With dedicated vector hardware, these models can be
calculated very efficiently. However, surface oriented methods
leave the typical problems in medical visualization of the kind
described above unsolved.
In contrast, in volume oriented methods [4,5] each voxel is illu-
minated and contributes to the final 2D projection. Although
they do not suffer from the problems of surface oriented

methods, they have not yet found widespread application in
medicine. The reason why they were hindered from introduction
into clinical practice is their immense computational demand
which is about three orders of magnitude higher than with
surface oriented methods. The calculation of one 2D projection
with the Heidelberg Raytracing Model [5] e.g. currently takes
about 5 minutes for data volumes of 256×256×128 voxels using
a standard workstation like a SUN Sparc2.
The aspect of computational demand becomes decisive when
real-time visualization is required. Real-time calculation of
arbitrary views not only enables the physician to capture the
real 3D shape of the objects under study but also allows
interactive optimization of visualization parameters.
Despite the demand for real-time volume visualization in
medical applications, only recently have parallel architectures
been suggested for real-time visualization using volume
oriented methods, and few prototypes are currently under
development [6,7,8,9].
While real-time visualization hardware using surface oriented
visualization algorithms is state-of-the-art (Reality Engine
(SGI), HP, SUN, IBM, PIXAR) [10,11,12], these systems are
far from providing real-time visualization when running volume
based algorithms. One reason is the sheer computational
demand of Å5-10 GFlops, the other reason is the data
communication problem in parallel systems, when views of the
data volume from different angles are desired.
Up to now no commercial system is available for real-time
visualization with volume oriented algorithms. The urgency to
support the physician in his interpretation of 3D data from CT
or MR lead us to the design of a massively parallel machine
dedicated to this task, which will be embedded into a clinic
information system to provide full use of other information
techniques.
Below the Heidelberg Raytracing Algorithm is described, which
is the underlying volume visualization approach. This is
followed by a detailed description of the architecture of the
parallel computer system and finally, the application areas of
the system are described.

Algorithm
As our basic visualization algorithm, we use the Heidelberg
Raytracing Model of Meinzer et al. [5]. It has been modified so
that rotation around an arbitrary axis, perspective, scaling of
original gray values, background identification, stereo view, and
other features became possible.

The Heidelberg Raytracing Model is a volume oriented
algorithm which uses ray tracing and Phong shading (with x and
y gradient only) for the generation of projections of the 3D data
cube. The algorithm operates with 2 light sources that emit
parallel light. One light source lies in the direction of the
viewer, one 45° apart.
Before raytracing, the data cube is rotated and the volume is
resampled such that the viewer looks along the y axis into the
rotated data cube. After the rotation, the bundle of light rays
from both sources enters the volume parallel to the x-z plane
(see Fig. 1). Then, it is possible to calculate the interaction
between light and optical density slice by slice (reflected light
does not enter into other planes), and the amount of light which
is emitted into the viewer's direction (y) gives the resulting
image.
For perspective view, x-z planes, which are perpendicular to the
viewing direction, are resized after rotation. The planes that are
next to the viewer are expanded, while those that are apart from
the user are shrinked (s. Fig. 2).
In order to allow arbitrary changes of the transparency of
objects, the values of the voxels in the data cube can be mapped
by a look-up-table (LUT) before rotation and raytracing. We
have therefore the following sequence of operations before the
raytracing begins:

apply LUT to data cube ->
rotate data cube ->

affine transform of data cube for
perspective

During raytracing, each light ray is first attenuated according to
the density of the voxel passed through. The energy deposited in

the voxel due to absorption determines the maximal amount of
light that is scattered in the viewing direction; no scattering
components to other voxels are considered (low albedo).
Light from the viewing direction is scattered only by diffuse
scattering while light from 45° is scattered by diffuse and
specular scattering. Self-luminosity proportional to the light
intensity is the fourth component of the scattered light. A Phong
shading model [13] is used to calculate the first three
components whereby the required x and y gradient is realized
by a x and y Sobel operator [13]. The norm of the gradient
vector is taken as measure for the probability for a surface. It is
multiplied with the specular scatter component.
To this basic algorithm a background identification step has
been added that allows the separation of the background from
dark fields in the image. When the light intensity leaving the
most distant depth coordinate in an x-z plane is above a certain
threshold, a marker is set which indicates that the viewer can
see the background behind the data cube.
Finally, stereo view of the data is provided by producing two
images with a 4° inclination angle.

Visualization System
In this section, the software and hardware concept of our visual-
ization system are described. Rotation has been identified to
consume as much as 80% of the computation time for
visualization. Being a fixed operation for which the best
possible algorithm is already known, the rotation algorithm is
mapped directly into hardware (rotator). Raytracing—which
should be modifiable—is performed by an array of digital signal
processors (DSPs).
One rotator and 16 DSPs constitute one module; linear scaling
of the system's performance is achieved by addition of further
modules. Four modules are required for real-time visualization
of volume data of 256×256×128 voxels.
The modules are attached to a VME bus which is connected to a
host system. The host system provides the base for the control
software and the graphical user-interface. Alternatively, the host
system can operate as a server allowing multi-user access over
high-speed networks.
Our real-time system with four modules will be integrated into
one crate. At peak speed, 160 million voxels/s can be rotated
and a floating point performance of 2.5 GFlops is achieved.
Below the three components of the system, the rotator, the ray-
tracing processor, and the software concept are described in
detail.

rotator board

DSP board
host

memory rotator

ray-tracing

Fig. 4: Schematic of the hardware.

Rotator Board

AA
AA

AA
AA

AA
AA
AAAA

AAAAA
AA

y

xz

45°

viewer
light source 0°

light source 45°

Fig. 1: Schematic of lighting sources, viewer and rotated data
cube.

viewer viewer

Fig. 2: Schematic of the transformation for the projective view.
A pyramid out of the rotated data cube is mapped onto a cube.

interpolation
processor

gradient
processor

gradient x

gradient y

density

geometry
processor

data cube

mask

data cube

mask

LUT

LUT

In principle, the rotation and the volume sampling of the data
cube can be realized in two ways. Either only light sources and
viewer are rotated, or the data cube is rotated while light source
and the viewer are fixed [7]. The first choice has the advantage
that the position of the light sources can be chosen freely
without affecting the performance. However, for each ray the
fraction of energy deposited in each voxel has to be computed
by interpolation. For two light sources this is twice the number
of time critical interpolations compared to our choice where
only the data cube is rotated1.
For the parallelization of the rotation operation, two different
approaches are reported in literature. Either the data are dis-
tributed over many memories which are attached to processor
elements over interconnection structures [8], or a dedicated
hardware rotator is used [9,6]. The first approach has the
advantage that no data duplication is necessary, but it suffers
from the problem of the interconnection network that states a
bottleneck due to high latency times. Moreover, communication
problems will occur when projection and zooming are allowed.
As the rotation is a fixed operation, a direct mapping of the
algorithm into hardware has the advantage that this operation
can be executed very fast, and only a small number of such
rotators is necessary for real-time visualization.
For our system, we chose the latter solution of a hardware
rotator. Different approaches for the rotation algorithm have
been investigated, rotation using distortion matrices [6],
trilinear interpolation [5], and Gaussian interpolation masks
[15]. For the last method, the gray value of the voxel v in the
rotated coordinate system is interpolated by the gray values of
its 8 neighbors vr ' in the original coordinate system. Here, a
64×64×64 mask w with values wi j k ~ exp(i2 + j2 + k2), (i, j, k
= 0,…,63) is used for the interpolation weights of the vr ' , where
i/64, j/64, k/64 indicate the x, y, and z distance between v and
the corresponding vr ' 2. The discretization error is invisible if a
discretization with 6 or more bits for each coordinate is used.
Distortion matrices smooth the data significantly causing infor-
mation loss, which is not the case for the other two methods.
Compared to trilinear interpolation, the least artifacts (Moiré
patterns) are obtained by mask interpolation using a Gaussian
filter mask, which we use for our system.

1 In our case we use 0° and 45° light sources. Here, the ray

passes through the center of each voxel on its way, and
therefore no partitioning between neighboring voxels is
necessary.

2 Cases where the distance = 1 for one coordinate are handled
separately.

In the following the realization of the rotator board as a parallel
pipeline processor is described. The board consists of three
parallel pipeline processors, a geometry processor, an
interpolation processor, and a gradient processor.
The geometry processor calculates the addresses of the voxels
to be interpolated using the rotation matrix, the matrix for the
perspective, and the zooming factor. The addressees are fed into
the eight-fold divided data RAM containing the data cube. Each
RAM unit contains only 1/8th of the whole data such that each
eight-neighborhood can be accessed in parallel3. The eight
values from the RAM are mapped onto density values using a
freely modifiable LUT. Besides, the geometry processor
additionally generates eight interpolation weight addresses for
weight memories. Using eight density values and eight weights
the interpolation processor interpolates the density values and
produces the density of one rotated voxel.
Finally, the gradient processor applies the Sobel operator for x
and y direction, which serve as the x and y gradient for Phong
shading.
All three pipeline processors are controlled by a local bus
master that is additionally responsible for the communication
with the host system e.g. to read parameters for rotation,
perspective, and zoom.
The data produced by the rotation board—density value plus x
and y gradient—is transferred over a 48 bit wide unidirectional
rotator-DSP bus with a peak transfer rate of 240 MB/s. 16 DSPs
are attached to this bus whereby only the selected DSP receives
the data.

DSP Board
The DSP board is a multiprocessor board that executes the ray-
tracing part of our algorithm. Its flexibility allows the imple-
mentation of different visualization models, e.g., the Heidelberg
Raytracing Algorithm [5] or the volume visualization algorithm
of Levoy [4].
One board consists of 8 digital signal processors (DSPs) and a
local bus master CPU that handles all communication, i.e., the
distribution of visualization parameters among the DSPs, and
the transfer of parts of the final 2D image calculated by the

3 Each RAM unit contains one combination of even/odd data

cube addressed voxels. To allow fast r/w accesses, each unit
is subdivided into two banks that each contains half the
data. This way a ping-pong readout is possible. Accesses on
the same address are suppressed and the old data is held on
the line; addresses that lie out of the data cube range
(determined by software) produce a 0 as data value. Using
these additional features, the mean access time can be
reduced by more than a factor of two.

Fig. 5: Schematic of the rotator board.

DSPs. That way the full performance of the DSPs can be
dedicated to the raytracing itself.
Data from the rotator board arrives over the rotator-DSP bus
and are temporarily stored in a FIFO. Using the internal
parallelity of the DSP (two floating point operations together
with two move operations) the ray tracing and scattering of the
light is calculated. Additional devices perform data format
mapping (16 bit integer to floating point) and the branch
operations, which are unsuited for DSPs but nevertheless
substantial to our algorithm. Running at a speed of 40 MHz,
each DSP with its additional devices calculates one line (256
pixel) of the final 2D image within 50 ms (Å66 million opera-
tions/s).

Communication structure and User
Interface

The control software of the visualization system is organized
into two layers, a user-interface layer UIL and a communication
layer CL. The UIL handles the user input over input devices like
a mouse or keyboard, and converts these signals into control
parameters like rotation angles etc. These signals are transferred
to the communication structure that handles all communication
between host and visualization system. Due to the separation of
both layers, remote access to the visualization system is
possible. Here, the UIL operates e.g. on an X-terminal and
communicates over a high-speed network with the host
computer where the communication layer resides.
The UIL provides three different interaction components to the
user. With the first component the user can modify freely the
weights of the reflection parameters (diffuse and specular parts
for each light source). The second component allows arbitrary
rotation, moving, and zooming of the data cube; with a 3D
mouse as input device. Finally, the third component enables the
user to directly modify the data cube. Arbitrary cubic regions of
the original data cube can be selected for visualization.
Moreover, the UIL supports simple 3D segmentation. Our
segmentation approach is based on an arbitrary mapping of
feature vectors onto density values. Feature vectors which
consist of elements like gray value, local variance, or texture
measures are calculated and mapped to a density value for each
voxel before visualization.
Besides standard I/O functions—loading the data cube, storing
the result image—, a recording feature has been added. This
feature allows to record the visualization result while
manipulating the control parameters, e.g., reflection parameters,
rotation parameters etc.
For visualization each 100 ms the user input is transferred to the
communication layer. This layer maps the parameters obtained
from the UIL into the control structure used by rotator and DSP
board, and it handles all communication protocols between host
and visualization hardware. DSP and rotator board read actively
their parameters from the structure and calculate the resulting
2D projection according to the underlying algorithm. The 2D
projection is transferred to the communication unit which
passes the data through to the UIL for representation on the
screen.

Fig. 6: The DSP board

Fig. 7: Two modules of the user interface for the modification of the light components and the gray value mapping.

Medical Applications
The system described here has a wide range of applications in
the medical field. With the user interface UIL, it becomes
possible for the physician to use the real-time rotator/raytracer
as a 'digital endoscope', enabling him to navigate through any
hollow organ found in the human body. Moreover, if resolution
of the CT and MR scanners is accordingly improved, it is
conceivable to simulate operations like catheterizing a hollow
organ or a vessel in the digital, virtual world. This opens a wide
field of application in education and training of physicians.
More precisely, heart surgery, e.g., can benefit substantially
from the work described here. The surgeons would appreciate
an interactive method of presenting cardiac morphology in a
way that allows detailed preoperative study. This intravital
study would support planning and execution of surgical
procedures in several aspects [16]:
- the presentation of the morphology is directly transferable to

the in vivo situation, in contrast to the intraoperative situation
in which the cardioplegic heart lies in the thorax with an
altered form,

- complete preoperative information reduces the time of intra-
operative evaluation and thus the time of aortic cross-clamp
time,

- preoperative decision about the optimal surgical access to the
heart increases surgical success rate,

- in complex malformations, complete and reliable diagnosis
can be facilitated.

Another field of application in which we are presently working
is orthopedics. The meniscus of the knee, for example, can be
diagnosed with the tool presented here.
Presently, we are developing the user interface to our real-time
visualization system which can be intuitively operated by e.g.
the cardiac surgeon. A first prototype will use a 3D mouse for
the interactive navigation through the digital data volume, and
zooming in/out can be set with a slider.
The non-invasive 'digital endoscope', applied to study the
anatomy and morphology of organs without harm to the patient
(in fact, the patient can leave the hospital after the CT or MR
scan was taken) is a first step to be taken in the direction of
introducing virtual reality to medicine. Here, volume based
rendering of the data has undoubtedly advantages against vector
based models which are today standard in virtual reality
applications. For reliable diagnosis, the texture and morphology
of organ or vessel surfaces is essential and has to be presented
as realistically as possible. In this sense, vectorized models
seem to be of limited application in the medical field.
Once real-time visualization is available, the next step in the
direction of virtual reality in medicine is interactive
manipulation of the data. Appropriate tools for resection or
implantation of material have to be designed in order to provide
a realistic means of preoperative simulation of surgical actions.
The volume data model has to be extended in order to be able to
specify features like tissue elasticity or flexibility for every
voxel in the data cube.

Conclusions
Our visualization system will be operable as a prototype by
autumn 1994. Its application in clinical routine is planned for
1995.
A full system amounts to about 100 kECU and has currently
three limitations, the z gradient is not used, only two fixed light

sources are considered, and the size of the image memory in the
rotator processors limit the maximal cube size. We are currently
investigating a system without these limitations.

Acknowledgments
We gratefully acknowledge the support of R. W. Günther and
M. Drobnitzky from RWTH Aachen who provided the MR data
set of the heart shown in Fig. 7.

References
[1] A. Watt, M. Watt. Advanced Animation and Rendering

Techniques: Theory and Practice. ACM Press, NY,
1992.

[2] G.T. Herman, D. Webster. Surfaces of Organs in
Discrete Three-Dimensional Spaces. In G.T. Herman, F.
Natterer (Ed.): Mathematical Aspects of Computerized
Tomography, Springer, Berlin, 1980, pp. 204.

[3] M.W. Vannier, J.L. Marsh, M.H. Gado, W.G. Totty,
L.A. Gilula, R.G. Evens. Clinical applications of 3-
dimensional surface reconstruction from CT-scans.
Electromedica 4 83, 1983, pp. 121.

[4] M. Levoy. Design for a real-time high-quality volume
rendering workstation. Conf. Proc. of the Chapel Hill
Workshop on Volume Viszalization, Chapel Hill, North
Carolina, May 18-19, 1989, pp. 85.

[5] H.-P. Meinzer, K. Meetz, D. Scheppelmann, U. Engel-
mann, H.J. Baur. The Heidelberg Ray Tracing Model.
IEEE Comp. Graphics&Appl., Nov. '91, pp. 34.

[6] J. Lichtermann, G. Mittelhäußer. Eine
Hardwarearchitektur zur Echtzeitvisualisierung von
Volumendaten durch “Direct Volume Rendering”.
Workshop Visualisierungstechniken, Anwendungen und
Entwicklungstendenzen, Stuttgart, 1991.

[7] J. Lichtermann, priv. comm.
[8] W.L. Nowinski. A SIMD Architecture for Medical

Imaging. Lecture Notes in Computer Science 634,
Parallel Processing: CONPAR 92 - VAPPV, Springer,
1992.

[9] W.L. Nowinski. Design for a ray casting integrated cir-
cuit. Institute of Systems Science, National University
of Singapore, Singapore, 1992.

[10] N. Ewart, L. Thayer; B. Fleming; D. Voorhies. Three
Ways to 3-D. Byte, Nov. '93, pp. 215.

[11] R. Yoshida, T. Miyazawa, A. Doi, T. Otsuki. Clinical
Planning Support System—CliPSS. IEEE Comp. Graph-
ics&Appl., Nov. '93, pp.76.

[12] SGI priv. comm.
[13] Foley, van Dam, Feiner, Hughes. Computer Graphics:

Principles and Practice. Add&Wesley, Reading, MA,
2d. ed., 1990.

[14] G. Zorpette. The power of parallelism. IEEE Spectrum,
Sept. '92, pp. 28.

[15] P.-E. Danielsson , M. Hammerin. High Accuracy Rota-
tion of Images. In Graphical Models and Image Process-
ing, Vol. 54, Nr. 4, July 1992.

[16] C.F. Vahl, H.-P. Meinzer, S. Hagl. Three-dimensional
Presentation of Cardiac Morphology. Thorac.
cardiovasc. Surgeon, Vol. 39 (Suppl.), 1991, pp. 198

