
REIHE INFORMATIK
26/95

VIRIM, A Real-Time Volume Rendering
 System for Medicine

A. Gröpl, T. Günther, J. Hesser, J. Kröll,
R. Männer, C. Poliwoda, C. Reinhart

Universität Mannheim
Seminargebäude A5
D-68131 Mannheim

VIRIM, A Real-Time Volume Rendering
System for Medicine 1

A. Gröpl, T. Günther, J. Hesser, J. Kröll, R. Männer, C. Poliwoda, C. Reinhart
Lehrstuhl für Informatik V, Universität Mannheim, Germany

email: hesser@mp-sun1.informatik.uni-mannheim.de

Abstract

VIRIM, a real-time direct volume rendering system is presented. The system is freely

programmable and supports models like α-compositing, front-to-back (back-to-front)

techniques, and the slab method. The hardware system is divided into two units, a geometry

unit and a raycast unit. The geometry unit performs resampling and gradient estimation and is

mapped directly into hardware. It supports different resampling filters in order to reduce

resampling artifacts. The raycast unit consists of 16 digital signal processors that perform the

programmable ray-casting.

The software of VIRIM is layered and provides manipulation tools for the data during real-

time visualization like arbitrary gray-value mapping and setting the region of interest.

The system is under test and will be available as prototype 1995.

Introduction

Various imaging systems like computer tomography (CT), magnetic resonance imagery

(MRI), ultrasound tomography (UST), and other systems produce large amounts of data in

short time, the physician has to work with and analyze for diagnostic and therapy planning

purposes [1]. This huge amount of data forces the physician to switch from investigating one

slice after the other to viewing 3D reconstructions.

The current acceptance of 3D reconstruction is severely hampered by limited visualization

quality of currently used surface oriented visualization algorithms [2]. Determining surfaces

of objects in medical volume data sets can be very difficult and requires detailed

segmentation. In other cases however, surfaces do not exist, e.g. for a tumor ramifying into

the surrounding tissue.

1This project is supported by the German Ministry for Education and Research (BMBF) under grant 01 IR 406
A 8.

Direct volume rendering algorithms overcome the problem of finding surfaces in the data

volume by calculating the interaction light matter throughout the volume. Semi-transparency

and the visualization of small structures, while posing problems for current algorithms, turn

out to be realizable very naturally. Semi-transparency is obtained by objects with opacity

values less than one. Small structures are visible because they reflect some part of incoming

light which is projected on the viewing plane.

A high computational demand has to be taken into account when using these algorithms. For

a class of front-to-back algorithms interactive visualization rates have been achieved by

preprocessing and the use of multiprocessors or graphics workstations [3]. Especially pre-

calculations are of limited use since interactive classification and modification of data

properties like opacity or movements of the viewer are not possible. Real-time rates and user

interaction seem therefore to be restricted to special purpose rendering systems.

Among all volume rendering architectures, VIRIM is nearest to realization. The main design

issues have been programmable real-time volume ray-casting as well as modularity and scala-

bility. In the first section the most widespread volume rendering algorithms are introduced,

section 2 is concerned with the VIRIM hardware, section 3 describes the user-interface, and

the software structure.

Visualization Methods Supported by VIRIM

Direct volume rendering algorithms have in common that the interaction light-matter is calcu-

lated throughout the data volume. Their differences originate from the exactness the physical

process of illumination is realized.

α-compositing does not require complex shading and can be realized efficiently in texture

mapping hardware [4]. To each volume element α, R, GB values are assigned in a preproces-

sing step. The data volume is first resampled in a new coordinate system, then each slice

parallel to the projection plane is blended in a frame buffer for each RGB color:

slice(i+1) = (1-α)*slice(i) + voxel_color*α,

The connected physical process is self-lumination, which however does not allow to see the

orientation of local surfaces.

For higher quality demands, the local orientation of the surfaces has to be visible which

requires the introduction of the shading process into the algorithm. The methods are known as

front-to-back or back-to-front techniques, which are in widespread use [5]. The shading

process is usually realized by Phong models [6]:
Iλ = IaλkaOdλ + ƒatt I pλ kdOdλ N ⋅L()+ ksOsλ R ⋅ V()n[]

where Iλ is the intensity reflected to the viewer direction V, Iaλ is the spectral intensity for

ambient light, Ipλ is the spectral light source intensity, ka, kd, ks are the coefficients for

ambient light, diffuse, and specular reflection, Odλ is the object's diffuse, and Osλ is the

object's specular color, ƒatt takes into account that the light intensity decreases with the

distance to the light source, n is a constant defining the pointness of the reflection, N is the

normal direction of the surface, V is the direction of the viewer, and R, the direction of

reflection, is given by
R =2N N ⋅ L()− L ,

where L is the direction of the light source.

In many cases shading can be simplified considerably. Omitting color, ambient light and
setting n=1, ƒatt=1 reduces the amount of computations significantly and nevertheless gives

acceptable visualization results.

However, lacking shadows is an unphysical process and comes from the neglect of the

absorption of incident light. Shadows can be generated by calculating the interaction of

incident light with matter. At least two light sources are required for evading dark shadow

areas in the image. The slab method [7] is one example of this more physical visualization

model. It operates with two light sources at 0° and 45° from the viewer using parallel or point

light sources and relies on Phong shading for the light-matter interaction.

αRGB, self-lumination

compositing plane

αα-compositing

αRGB, (Phong-) shading

compositing plane

back-to-front-technique

αRGB, (Phong-) shading

compositing plane

slab-method

light source

light source

absorptio

Fig.1 Schematic of three different volume visualization algorithms.

VIRIM Hardware

Direct volume rendering algorithms have in common that the data set has to be resampled in

new coordinates and except for α-compositing local gradients are required for shading using

the slab method. These operations consume 80% of the computation time and have been

mapped directly into hardware for the VIRIM system. After volume resampling and gradient

estimation shading and compositing must be flexible and programmable in order to

implement the different visualization models mentioned above. Due to their high I/O and

computing resources VIRIM uses digital signal processors to carry out these operations.

VIRIM has a modular design where each module consists of one geometry unit and a raycast

unit with 16 DSPs. Four modules are required for real-time visualization of 256x256x128

data volumes.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

VME-bus

VME-Sparc
(host)

Geometry-Raycast-bus

DSP-board DSP-board

VIRIM-module

Ethernet

geometry-
unit

raycast-unit

Fig.2 Sketch of VIRIM-hardware

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

A
A

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

A
A
A

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AA
AA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AA
AA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Parameters for ray starting point
and vector to the next resample
location

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AA
AA

AA
AA
AA
AA
AA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AA
AA

AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA

AAAA
AAAA

A
A

AAA
AAA
AAA
AAA
AAA

AAAA
AAAA

AAAA
AAAA

AA
AA

AAA
AAA
AAA
AAA
AAA

AAAA
AAAA

AA
AA
AAAA
AAAA

AA
AA
AAAA
AAAA

AA
AA
AAAA
AAAA

AA
AA
AAAA
AAAA

AA
AA
AAAA
AAAA

AA
AA

AAAA
AAAA

AAA
AAA
AAAA
AAAA

AA
AA

AA
AA
AA
AA
AA

AAAA
AAAA

AA
AA
AAAA
AAAA

AA
AA
AAAA
AAAA

AA
AA
AAAA
AAAA

AA
AA
AAAA
AAAA

AAA
AAA
AAAA
AAAA

AAA
AAA
AAAA
AAAA

AA
AA
AAAA
AAAA

AA
AA

AA
AA
AA
AA
AA

AA
AA
AA
AA
AA

AAAA
AAAA

AA
AA
AAAA
AAAA

AA
AA
AAAA
AAAA

AA
AA
AAAA
AAAA

AA
AA
AAAA
AAAA

AA
AA
AAAA
AAAA

AA
AA

AAAA
AAAA

AAA
AAA
AAAA
AAAA

AA
AA

AA
AA
AA
AA
AA

AAAA
AAAA

AA
AA
AAAA
AAAA

AA
AA
AAAA
AAAA

AA
AA
AAAA
AAAA

AA
AA
AAAA
AAAA

AAA
AAA
AAAA
AAAA

AAA
AAA
AAAA
AAAA

AA
AA
AAAA
AAAA

AA
AA

AA
AA
AA
AA
AA

Host

2 Independent Banks of 8 Units each Interpolation Weight Memory

density LUT

DSP DSP

Interpolation Tree

X-, Y-Gradient Processor

Address Generator

Board
Master

Board
Master

Geometry
Unit

Raycast
Unit

Fig.3 Sketch of hardware architecture

The system has the following technical data:

• modular and scalable system

• programmable

• real-time change of the viewer position

• real-time gray-value segmentation

• perspective projection

• real-time setting of the region of interest

High Accuracy Resampling

Mapping rotation directly into hardware fixes the rotation algorithm used; which has

therefore be chosen very carefully. In other words, rotation with the least amount of artifacts

has to be realized.

The starting point for each rotation algorithm is the given discrete 3D-image. The Fourier

image of the original data, which is of limited size, is periodic. Rotation in the Euclidean

space is realized by sampling in rotated coordinates. Due to the spatial limitation of the

resulting image, its Fourier transform has to be periodic again.

In the Fourier space the following happens (see fig. 4). Sampling in rotated coordinates

means that the image area in the Fourier space is rotated with regard to the original Fourier

transform. Periodicity means that all surrounding areas fold their information into the Fourier

image; which leads to artifacts.

Box filters allow the exclusion of these artifacts by removing all information around the

interesting image region. Its Euclidean counterpart is a sin(x)/x filter that is not bounded in

space. Hardware realization however is only feasible with small (2x2x2) filters. Consequently

we have chosen a local approximation of sin(x)/x (fig. 5).

The rotation algorithm proceeds as follows:

1 the distance of the sample point to its 8 neighbors in the original image is determined,

2 the distance is considered as address value of a mask memory that stores the weights,

3 the gray values of the 8 neighbors are interpolated using the weights from mask

memory

box-filterlocal approximation
of sin(x)/x

x

y

x

y

Fig.4 Folding operation in the Fourier space. Fig.5 Image filters: box(x) in the Fourier space equal

Sin(x)/x in the real space.

Geometry Processor

Rotations are the most important geometry operations and they pose two problems for

hardware architectures, data access and data distribution.

Data distribution Problem

Geometry operations like rotation lead to bottlenecks for massively parallel processors. Given

a certain part of the final projection, the required data for visualization can lie anywhere in

the original data cube thus leading to data distribution and communication problems. Mainly

the question how to distribute data over the local memories of processing elements (PEs)

poses the most severe difficulties. Two main distribution strategies can be identified, original

image data distribution, and final image data distribution, which are defined as follows:

For original image data distribution the data set is assigned to local memories of processing

units once when loaded. No redistribution is necessary during visualization since high-speed

channels between processing units guarantee the necessary transport of partial results between

these units.

Final image data distrubtion assumes that visualization is performed in two steps, first a

geometric transformation of the original data set into new coordinates, second the simulation

of interaction of light with virtual matter. In these new coordinates the viewer looks into one

of the main axis directions (in our case the y-axis). This transformation is performed by

geometry units whereby each unit resamples one or more slabs of the rotated data set. Now,

wih final image data distribution each geometry unit contains only that data of the original

data set which is required to resample the slabs. After each rotation of the slabs data transfer

is necessary to newly resample the rotated slabs.

Original image data distribution poses data transfer problems with the slab method for

visualization. Since each digital signal processor (DSP) calculates one or more scanlines of

the final projection it requires the corresponding slabs from the geometry units. For original

image data distribution the slab data is calculated by several geometry units. It follows that

each DSP must have access to all geometry units. As consequence an interconnection network

is required with high flexibility and data transfer rates in the order of Gbytes/s; which is

difficult to realize with current technology. Therefore, this solution has not been considered

for VIRIM.

Final image data distribution in contrast demands that each geometry unit obtains only the

data it requires for calculating the slabs that are sent to the DSPs (see. Table 1). Replication

of data poses the least problems with communication bandwidth but requires high data

storage. Sharing the volume memory to all geometry units, while reducing the demand on

data storage, has to cope with high data rates and access conflicts when several geometry

units want to access the same data; not to mention the problems to provide the high data rate

from the volume memory.

Caching data seems to offer a good compromise in terms of data storage and communication

bandwidth.

replicated data cached data shared data

communication

bandwidth

no moderate high

data storage high moderate low

Table 1 Data distribution solutions

Considering that for VIRIM only 4 geometry units are required for achieving real-time frame

rates of typical data sets with 8 M volume elements, concrete figures can be determined for

communication and storage (s. Table 2).

Currently VIRIM can visualize data sets of size 2563, where each volume element occupies 2

bytes. In total, the volume memory requires 32 MByte data storage.

Data replication requires no data communication but 128 MByte data storage (4 geometry

units with 32 MBytes volume memory each). Shared data strategies require only one volume

memory of 32 MByte but the necessary communication bandwidth is 16 MByte per data set *

10 Hz visualization rate * 8 interpolation neighbors for resampling = 1.28 GByte/s.

Concerning caching strategies only a static distribution of image data before visualization is

considered. Redistribution of data during the visualization process depends on many factors

like cache size, maximal data transfer rates of dynamic memory and the used bus architecture,

as well as the time for bus arbitrartion. Optimization of all these figures under technical

constraints will be an issue of redesigning VIRIM.

If the data set is rotated by 1° around its center the slabs are rotated out of their original

position by up to 2 volume elements. The newly required data amounts to 2562 * 2 volume

elements. Each volume elements requires 2 bytes, i.e., for each geometry unit and each frame

500 kBytes data have to be exchanged, in total 4 (geometry units) * 10 (Hz) * 500k = 20

MBytes/s, which is achievable with bus systems of current technology. Static data distribution

however demands that the cache size of all geometry units together is at least as large as the

data volume. It follows that the cache memory in all geometry units plus the volume memory

is 64 MByte.

From this point of view the advantage for a cache solution is marginal over the use of

replicated data. But it has to be paid for with additional hardware on the board. An address

translation buffer is required that translates the data set relative addresses into the address of

the location of the related data block on the cache memory. Additionally a cache controller

has to be implemented.

Using only 4 geometry units, replication of data seems to provide the least amount of

complexity and is realized for the prototype. For higher parallelism a cache strategy will be

imperative in the future and will be investigated using the first VIRIM prototype.

replicated data cached data shared data

communication

bandwidth

no estimated:

16 MByte/s

1.28 GByte/s

data storage 4x 32 MByte 32 MByte for volume

memory and 32

MByte for cache

memory

32 MByte for volume

memory

hardware overhead no high high

cost memory 1-2 k ECU no no

Table 2 Data distribution solutions for VIRIM with 4 geometry units that require the access to the volume data

Data Access Problem

The high processing power of VIRIM is achieved by using a fast memory architecture. The

data transfer rates underlines these requirements. 8 neighboring gray values of 16 bit each

have to be read out at a rate of 20 to 40 MHz; which leads to a read-out rate of 320-640

MBytes/s. More important, for low cost, only commercial DRAM can be taken into

consideration. How can this high data rate be achieved?

AA
AA
AA
AA
AA

AA
AA
AA

rotated data element

eee eeo

eoe

oee oeo

ooo

eoo

ooe

y

x

z

Fig.6 Distribution of volume data over memory units

The solution is the sampling along rays using three approaches.

The first approach relies on the observation that each neighbor has a different combination of

even and odd x-, y-, and z-coordinates that allows the use of 8 separate memory units. Each

unit contains data from one combination of even and odd x-, y-, and z-coordinates.

Next, DRAMs have the possibility to read out contiguous data much faster than for random

access (fast page mode). Subdividing the data cube into many sub-cubes, that fit into one

page each, makes use of this feature.

Both approaches have also been suggested independently by other authors [8] for high-speed

data read-out architectures. However, the rate is still below 20 MHz and therefore not

sufficient for our design. Further improvements are necessary.

Before discussing these improvements, a detailed sketch of the realization of one memory

unit is shown in fig. 7. Data comes from the address generator and is buffered in the left

FIFO. The comparator reads the addresses in the FIFO and sends it to the two memory banks

associated with a controller. Data is read out from one memory bank and stored in a register

(1-entry level cache), which has its own controller. Finally the data is written into a FIFO

from which it can be read for the interpolation. The controllers are activated by the

comparator using key-words.

r egi ster
control l er

FIFO FI FO

DRAM

compar ator

DRAM-
contr ol ler

r egi ster

fr om
addr es s
gener at or

to
i nt er polator

Fig.7 Sketch of the Memory Unit

The first method for increasing memory read-out speed is to bypass the memory whenever

possible. This is the case when the data lies outside the original data cube and has gray value

0; the comparator produces a control word out-of-bound which invokes the register controller

to reset the register.

Another case occurs when the same data is re-used. The comparator outputs a same-data

control word and causes a hold-data on the register through its controller.

The second method is to use two memory banks which allow an alternate read-out when the

subsequent data are stored in different banks. The following example clarifies the interplay of

these two methods.

Example

Let us assume only a 2D rotation for simplicity. In fig. 8 one plane of the original data cube is

shown. One memory unit is considered next, where data from that unit is marked by circles.

White circles denote data stored in memory bank 0 and black circles denote data of memory

bank 1. Data of all other memory units are on the other grid intersections and in other planes

of the data cube.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA

x

1

2

3

4

Fig.8 Example

Let us assume that we are sampling the point that is indicated by a cross. I.e., its density is

obtained by interpolation from 1) data from the black circle, 2) three further memory units

denoted by 2,3,4 respectively; and 3) additional four other memory units that are in the next

plane.

Assume first, that the next point is sampled in one of the neighboring squares of the grid.

Three different cases can be observed:

In the first case, the point falls within the hatched area. For interpolation of the gray value of

the sample point, the same data (black circle, i.e., bank 1) is required from the considered

memory unit. The same-data word is issued by the comparator allowing the availability of the

data at a 40 MHz rate.

In the second case, the sample point falls into the meshed squares. Data from bank 0 (white

circles) has to be read-out from the memory unit, i.e., a alternate read-out is possible. Again,

the rate is 40 MHz.

Only in the dotted square, different data from the same bank of the memory unit has to be

read, reducing the read-rate to 20 MHz. As sampling along a ray will yield the next point in

the gray square, again the same data is required, i.e., case 1 occurs with a read-out rate of 40

MHz. In total, sampling along this direction gives an overall read-out rate of 30 MHz.

One could argue that if the next sample point lies in the gray square, different data from the

same bank has to be read for the second sample point, which reduces the read-out rate to 20

MHz. However, in this example, the distance between the sample points is about three times

the base length of the grid. Therefore it can be assumed that most of the sampled data cube

lies outside the original one. Sampling in that outer region however is done at a 40 MHz rate

that levels out the lower rate within the data cube.

The example that has just been discussed gives only the motivation why all hardware features

are tightly connected for fast memory read-out. Simulations are necessary in order to obtain

nearly real figures. Our simulation that has been carried out before designing the system was

based on mean, worst, and best cases. The observed rate has been in the range of 26 to 36

MHz with an average read-out rate of 30 MHz.

Raycast Unit

While the geometry unit has been designed for maximal data throughput the raycast unit has

to be flexible. 16 DSPs per geometry unit, 8 per board, are used for rendering where each

DSP calculates one or more lines of the final image.

Data from the geometry unit enters the board over an geometry-raycast-interface. The

geometry unit selects that DSP which should receive the information and sets the write enable

signal for the respective DSP-FIFO before writing the data to it. Asynchronously the DSP

accesses its FIFO which automatically maps integer data from the geometry unit into

floating-point data used by the DSP. The DSP calculates the absorption, Phong shading, and

compositing. A cut register is used to determine if the light is reflected to the viewer. It

returns 0 for negative input and leaves the input unchanged otherwise.

When the DSP has finished one line of the projection, it invokes the local board master by

interrupt to read the result and transfer it to the host system.

VIRIM System Software

One mayor design issue has been the embedding of VIRIM into existing clinic information

systems and networks. VIRIM uses the possibilities of the UNIX environment for integration

into a local area network (LAN) which allows the use of VIRIM from any possible X-

terminal or UNIX workstation that are attached to the LAN. Ideally all data processing

devices in the clinic are attached to the network, the diverse scanners, data servers,

workstations and X-terminals, as well as VIRIM. One or more physicians can log in the

visualization system for inspection of the image volumes or for detailed analysis of possible

diagnosis or therapies.

The layered software model used for VIRIM ideally adapts to these demands. It basically

consists of four layers. In the lowest layer (layer 1), the system is programmed to perform the

visualization task, i.e., software for the DSP executing the raycast operations —determining

the visualization model used.

In the next layer 2, raycast units and geometry units each are controlled over a local board

master CPU. Its purpose is the control of the visualization process like reset, start, and the

feeding of the registers with visualization parameters like orientation of the data set, its

magnification etc.

Layer 3 is the communication layer, which runs on the host system. It has mainly the task to

map the data from external sources like user interfaces or other devices into visualization

parameters, and to transfer these parameters to the respective units. Additionally this layer

does the synchronization of the visualization process so that a continuous flow of visualized

data is represented on the screen.

X X X

Server

CT
VIRIM

LAN

Fig.9 Embedding of VIRIM into a clinic network

In the fourth layer, the user interface is operated, which will be described next.

Control

Raycast DSP

Raycast-
Master-
CPU

Geometry-
Master-
CPU

LAN
UIF

Communication

4

3

1

2

raycast
unit

geometry
unit

HOST




Fig.10 Software layers in VIRIM

In the layer structure the interface between the layers is specified so that changing the

visualization algorithm or a new communication layer only requires the exchange of the

respective layer while the other software remains unchanged. Ease of generalization and

extensibility is therefore guaranteed.

layer # Processor Operations

1 Ray-casting DSP • ray-casting operations,

• visualization algorithms

2 Control master CPU on ray-

cast/geometry board

control operations like

• reset,

• start,

• load programs,

• load parameters,

• read-out results,

• test modes

3 Communication Sparc-VME-host

(eventually other sy-

stems)

• data transfer/communication

• parameter mapping

• synchronization

• communication with other modules

4 UIF any UNIX system

accessible via LAN

• display of visualization result

• user interactions

• manipulation of data

• i/o purposes

Table 3 Software layers of VIRIM

User Interface and Image Manipulation Tools

The user interface window of VIRIM is divided into two parts, an image presentation part on

the left side, and an image manipulation part. The image presentation part shows the results

of image manipulation and visualization.

Three different modes for manipulation are possible which are shown separately in their own

sub-window.

In the first mode, the lighting parameters can be varied, i.e., diffuse light from 0° and 45°,

and specular light form 45°. Higher proportions of diffuse light increases the cloudiness of

objects, which is especially important for semi-transparent objects. The specular part

emphasizes the surfaceness and produces light spots which ease the recognition of sharp

boundaries and the 3D structure of surfaces.

In the second mode, the user can define the region he wants to visualize. By moving the

edges and corners of the cube depicted on the manipulation part, the respective part of the

data cube is cut out for visualization.

Finally, in the third mode, the user has the possibility to modify the density values of the

original data cube arbitrarily. This mode is especially interesting for setting objects semi-

transparent. Gray-value segmentation is possible in real-time. When using pre-segmented data

by using a code for each object, organs can be made transparent by simple button clicks.

A 3D input device with 6 degrees of freedom like a 3D mouse will be used for 3D rotation

and translation of the data cube.

A menu allows load/store of data cubes and LUTs, to set the size for the sampled data cube,

and to report the results of the manipulations.

Fig.11 One module of the user interface for the modification of the light components.

Applications

VIRIM opens a wide field of applications in training, diagnosis, and therapy planning for

physicians. Besides others, application areas for the system are operation planning in heart

surgery, neuro endoscopy, and orthopedics.

In heart surgery [9] the detailed morphology of the heart is not known by the physician before

operation. Detailed diagnosis and therapy have to be made at the open heart during the

operation. Possible diagnosis is the insufficiency of the cardiac.

Modern ultra fast CT scanners allow the imaging of the beating human heart. The pre-

segmented data set will be loaded onto the machine and the segmentation results will be

improved. E.g., we can map identical areas of oversegmented images into one gray value

region using the gray value mapping feature. Next the surgeon will inspect the morphology of

the heart, e.g., disfunctions of the cardiac. VIRIM allows the visualization of the heart in

action; which is a decisive advantage since the functioning of the cardiac and possible other

defects can be observed whereas during operation the heart is relaxed and its morphology can

be estimated only hardly.

Endowed with this information the surgeon will be able to plan the surgery in detail, i.e., he

can spend much more time for the operation itself. Benefits like shorter operation time and

better diagnosis and therapy will follow.

Conclusions

VIRIM, due to its free programmability, provides many options for image manipulation,

especially gray-value segmentation. Currently the segmentation is done by directly

manipulating the mapping LUT leaving the problem of finding the appropriate mapping to

the user. Segmentation tools will be developed which are tailored to the different applications

areas and which allow the physician more easily to define grayscale windows for the different

objects and to manipulate their density more naturally.

Another demand arised when only a small part of the image is interesting to the physician.

Here he likes to select arbitrary regions of interest. For this task we will develop additionally

tools to perform this operations as ergonomic as possible.

Real-time visualization of time dependent data is another feature that will be implemented by

software on our system. At the moment the volume memory on the geometry unit is limited

to 2563 data sets. This allows to visualize up to eight 1283 or sixty-four 643 data sets, which

may either be different in modality (CT vs. MRI or ultrasound images) or data imaged at

different times. An example of the latter case it the real-time visualization of a beating heart.

References
[1] Adam, J.A. Medical Electronics. IEEE Spectrum, Jan. 1995, pp. 80-83.
[2] T. Günther, C. Poliwoda, C. Reinhart, J. Hesser, R. Männer, H.-P. Meinzer, J.-J. Baur.

VIRIM: A Massively Parallel Processor for Real-Time Volume Visualization in
Medicine. W. Straßer, 9th Eurographics Workshop on Graphics HW, Oslo, Norway,
1994, pp. 103-108.

[3] P. Lacroute and M. Levoy. Fast Volume Rendering Using a Shear-Warp factorization
of the Viewing Transform. Computer Graphics, Proc. of SIGGRAPH '94, Orlando, FL,
1994, pp. 451-457.

[4] Wilson, O., Van Gelder, A., Wilhelms, J. Direct Volume Rendering via 3D Textures.
subm. to Proc. Vis. '94.

[5] M. Levoy. Display of Surfaces From Volume Data. EEE Comp. Graphics & Appl, Vol.
8, No. 5, 1988, pp. 29-37.

[6] B.-T. Phong. Illumination for Computer Generated Pictures. CACM, Vol. 18, No. 6,
June 1975, 1975, pp. 311-317.

[7] J. Kajiya, B. v. Herzen. Ray tracing volume densities. Proc. Siggraph '84, pp 164-174.
[8] Knittel, G., Straßer, W. A Compact Volume Rendering Accelerator. Proc. IEEE 1994

Symp. Volume Vis., Washington, October 17-18, 1994, pp. 67-74.
[9] C.F. Vahl, H.-P. Meinzer, S. Hagl. Three-dimensional Presentation of Cardiac Morpho-

logy. Thorac. cardiovasc. Surgeon, Vol. 39 (Suppl.), 1991, pp. 198.

