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• Abstract. A new procedure is proposed to synchronize processors of a distributed

system, which concurrently execute a common process consisting of a sequence of opera-

tions. The procedure is an extension of that used for the 1987 IEEE Futurebus Standard. It

is based on global synchronization lines and a distributed synchronizer, and requires only

minor modifications of existing hardware. The procedure allows to carry out two alterna-

tive synchronization protocols. As usual, an operation may be terminated by the last pro-

cessor having finished its part of the operation. Alternatively, the operation may also be

terminated by the first processor being ready. Application of this second procedure, e.g., to

bus arbitration, allows to reduce the arbitration time in average by a factor of 2.

1. Introduction. We consider a     process   1 that consists of a sequence of     operations   , e.g.,

search, comparison or sorting, that are executed distributively by multiple processors. The pro-

cessors execute their local parts of every operation. Then they are synchronized so that every

operation is finished by all processors before the next one is started.

A distributed system (DS) consists of a number of processors that operate in the general

case asynchronously at different speeds and with different input data. Generally a varying

number of processors participate in an operation, and the duration of an operation depends on

the set of participating processors and their characteristics. Assuming a high number of proces-

sors and a short duration of the operations, it is not possible to exchange these characteristics

before the start of an operation. Therefore a     distributed        hardware       synchronization     between the

processors is required so that each one can determine when the current operation will be

finished; using only its own characteristics, and characteristics specified for the whole system.

The proper type of synchronization is the topic of this paper.

In many cases synchronization in a DS is done using an asynchronous (hand-shake)

protocol. Such a synchronization does not need a common clock and has a number of well

known advantages. One of them is that the end of an operation can be determined dynamically

[1] which can speed up the operation on average. This may considerably reduce unnecessary

waiting time and processing overhead. The synchronization procedure introduced in this paper

exploits this fact.

                                                
¶ This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) under grants Ma 1150/8-1,

Ma 1150/8-2, and 436-WER-113-1-0 (438 113/117/0).
1 Here and below we underline terms that are newly defined.
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2. Taub's synchronization procedure. Synchronization of processors can be done

according to the following procedure that was originally designed by Taub [2,3] for the IEEE

"Futurebus" backplane bus standard. In this paper we simply call it "Taub's synchronization

procedure". Each processor of a DS can be considered to consist of two parts, a processing

element (PE) and a synchronization unit (SU), where the lines Li are used for data exchange

between PEs (Fig. 1).
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Fig. 1. A multiple processor system with distributed synchronization.

The general principle of Taub's synchronization procedure is that    any    processor can

start a new operation, and the operation is finished only when    all    participating

processors completed their individual parts.

Let Z be a set of processors in the system. It takes an    individual         waiting       time    t(j,W) for

the j-th processor to complete its part of an operation W. Therefore the operation will be

finished within the time Max{t(j,W), j∈∈∈∈ Z}. We call this value the     global         waiting       time   .

Taub's procedure is based on a synchronizer that uses three bus lines P , Q, R. Each SU

is connected to these lines and can assert onto them its individual binary signals pj, qj, rj
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through open-collector drivers. Thus every line computes the wired-OR of the signals asserted

by the SUs, and all SUs read back this value. If we assume, e.g., that a line is set to a logic 0 ,

then it will be switched to the logic 1 state if any processor asserts a 1 signal. In contrast, the

line will change its state from 1 to 0 only if all processors withdraw their 1 signals.

Suppose that the initial signals pj, qj, rj, j∈∈∈∈ Z, generated by all SUs, have the values of

0, 0, 1 respectively, and therefore also P, Q, R. Then the sequence of events in the synchro-

nization procedure according to [2] is described by Tab. 1.

Tab. 1. Synchronization according to Taub [2,4].

# Protocol steps Current stage of signals Next stage
signal lines outputs trigger outputs trigger outputs
run P Q R Op1 Op2 Op3 sp rp sq rq sr rr p  q  r

1 Initial condition for the
1st operation

0 0 0 1 0     0     0 0  x  0  x  1  0 0  0  1

2a Start of the 1st opera-
tion by any PE

1 0 0 1 0     0     0 1  0  0  x  1  0 1  0  1

2b Start of the 1st opera-
tion by other PEs

0 1 0 1 0     0     0 1  0  0  x  1  0 1  0  1

3 Execution of the 1st
operation (stable state)

x 1 0 1 1     0     0 1  0  0  x  1  0 1  0  1

4 End of the 1st operation
by any PE

x 1 0 1 1     0     0 1  0  0  x  1  0 1  0  0

5 End of the 1st operation
by all PEs

x 1 0 0 0     0     0 1  0  1  0  0  x 1  1  0

6 Execution of the 2nd
operation (stable state)

x 1 1 0 0     1     0 0  0  1  0  0  x 1  1  0

7 End of the 2nd opera-
tion by any PE

x 1 1 0 0     1     0 0  1  1  0  0  x 0  1  0

8 End of the 2nd opera-
tion by all PEs

x 0 1 0 0     0     0 0  x  1  0  1  0 0  1  1

9 Execution of the 3rd
operation (stable state)

x 0 1 1 0     0     1 0  x  0  0  1  0 0  1  1

10 End of the 3rd opera-
tion by any PE

x 0 1 1 0     0     1 0  x  0  1  1  0 0  0  1

11 End of the 3rd opera-
tion by all PEs2

x 0 0 1 0     0     0 1  0  0  x  1  0 1  0  1

One example for the corresponding signal waveforms is shown in Fig. 2. Here three par-

ticipating PEs are assumed with numbers A, B and N.

3. Alternative Synchronization Procedure. To reduce the global waiting time in the DS

we introduce an alternative synchronization procedure. Unlike Taub's procedure it is based on

the principle that    any    processor can start a new operation, and    any    processor can

terminate it. The latter is possible if a processor recognizes either that all output signals are

settled or that all further changes of the signals in the DS cannot longer influence the final result

of the operation3.

                                                
2 If run=1 the PEs will execute the sequence of the next three operations starting from step 2a. If, however,

run=0 PEs will be waiting for initiation of the next sequence of operations that corresponds to step 1.
3 A trivial example is the case in which a processor with the highest possible (unique) bus access priority arbi-

trates for bus mastership. It can stop the arbitration process immediately since it will become bus master
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Fig. 2. Signal timing example corresponding to Taub's synchronization procedure.

run

end Op2 end Op3 end Op1

Op1 Op2 Op3

P
Q
R

p q r

S

Q

RS R

Q

S R

Q

                                                                                                                                                      
definitively.



6

Fig. 3. Control circuit for Taub's synchronization procedure.

The corresponding alternative synchronization procedure is also based on a synchronizer

that uses three open-collector bus lines P , Q, R. Suppose as above that the initial signals pj,

qj, rj, generated by all PEs, have the values of 1 , 0 , 0 respectively, and therefore also P , Q,

R. Then the sequence of events of the synchronization procedure is given by Tab. 2.

Tab. 2. Synchronization protocol for the alternative procedure.

# Protocol steps Current stage of signals Next stage
 signals from
 PE

lines  signals to
 PE

trigger outputs trigger
outputs

run trm ack P Q R Op1 Op2stop sp rp sq rq sr rr p  q  r

1 Initialization of the system 0 x x 1 0 0 0   0 0 1  0  0  x  0  0 1  0  0
2 System is initialized

(stable state)
0 x x 1 0 0 0   0 0 0  0  0  x  0  0 1  0  0

3a Start of the 1st operation
by any PE

1
x

x
x

x
x

1 0 0
1 0 1

0   0
0   0

0
0

0  0  0  x  1  0
0  1  0  x  x  0

1  0  1
0  0  1

3b Start of the 1st operation
by other PEs

0 x x 1 0 1 0   0 0 0  1  0  x  x  0 0  0  1

4 Execution of the 1st opera-
tion

x x x 0 0 1 1   0 0 0  x  0  0  x  0 0  0  1

5a The 1st operation is fin-
ished by any PE

x 1 0 0 0 1 1   0 0 0  x  1  0  x  0 0  1  1

5b The first operation is fin-
ished by other PEs

x x 0 0 1 1 0   0 1 0  x  1  0  0  0 0  1  1

6 Confirmation of the end of
the 1st operation

x 0 1 0 1 1 0   0 1 0  x  x  0  0  1 0  1  0

7 Execution of the 2nd
operation (stable state)

x x x 0 1 0 0   1 0 0  0  x  0  0  x 0  1  0

8a The 2nd operation is fin-
ished by any PE

x 1 0 0 1 0 0   1 0 1  0  x  0  0  x 1  1  0

8b The first operation is fin-
ished by other PEs

x x 0 1 1 0 0   0 1 1  0  0  0  0  x 1  1  0

9 Confirmation of the end of
the 1st operation

x 0 1 1 1 0 0   0 1 x  0  0  1  0  x 1  0  0

10 End of a pair of operations x x x 1 0 0 0   0 0 0  0  0  x  0  0 1  0  0

A control circuit of a SU for the alternative synchronization is presented in Fig. 4. The

example of signal timing (Fig. 5) clarifies the interaction between the processors participating

in the described synchronization procedure.

It is possible to combine Taub's synchronization procedure with the one suggested in this

paper. This is important for applications where both synchronization principles must be used to

execute one process, i.e., where some operations are finished when individual processors

terminate, and others only when all participating processors are ready with the current opera-

tion. In this case a control circuit with four common lines can be used (Fig. 6).

As mentioned above, it is possible sometimes to take a decision about the result before the

end of an operation, i.e., before the resulting signals appear on the output lines Li of the DS.
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This can happen, e.g., in an arbitration operation as discussed in the following section.
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Fig. 4. Control circuit of a synchronization unit for the alternative synchronization procedure.

4. Synchronization of the arbitration operation. Taub's synchronization procedure

was especially designed for the arbitration operation [4,5]. The objective of arbitration is to

find a processor having the highest arbitration priority, i.e., the highest arbitration word,

among all processors participating in the operation. The arbitration operation is executed by a

distributed arbitration circuit that consists of PEs connected by open-collector arbitration lines

L1,…,LN (Fig. 1). After begin of the operation all PEs assert the bits of their unique arbitra-

tion words Aj = <aj,1,…,aj,N> onto the corresponding arbitration lines. Until the end of the

operation the PEs simultaneously compare their own bit values aj,i with the current signals on

the arbitration lines. If a line Li, i∈∈∈∈ Z, is set to a logic 1 and the corresponding bit aj,i of the

word is 0 then the PE j withdraws all less significant bits aj,i+1,…,aj,N from the lines

Li+1,…,LN. If this condition is not longer true the PE asserts the withdrawn bits again.

Every PE consists of combinatorial logic which compares all bits of its arbitration word

with the signals on the corresponding arbitration lines. Let T(j) be the gate delay time to

process one bit for PEj. The computation of the wired-ORs on the bus lines requires an

additional bus-propagation delay ττττ . This delay is identical for all arbitration lines [3].

Obviously, as the arbitration scheme considered is a combinatorial circuit, each PE starts to

compare every bit automatically when the signals on the lines belonging to more significant bits
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are changed [5-7]. Thus the operation can be considered as a sequential procedure.
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Fig. 5. Signal timing example for the alternative synchronization procedure.

The duration of the operation is t(Z,W) = ΣΣΣΣ
j∈∈∈∈ Z

Cj(Z,W)T(j) + ΣΣΣΣ
i=1,…,N

ττττ i,

where

Cj(Z,W) = ΣΣΣΣ
i=1,…,N

di,j, is the number of the individual propagation delays T(j) intro-

duced in the operation W by the j-th PE,

TL≤≤≤≤T(j)≤≤≤≤TH, where TL and TH are upper and lower bounds identical for the whole DS,

d i,j = 1 if the j-th PE takes longest to complete the i-th distributed part of the operation W,

di,j = 0 else, so that ΣΣΣΣ
j∈∈∈∈ Z

di,j=1.

On one hand it is very difficult to find exactly the minimal upper bound for the duration

t(Z,W). The reason is the lack of information on the current set Z of PEs participating in the

operation, and on their individual speed characteristics, i.e., T(j). On the other hand the PEs

can find the minimal upper bound of the duration of the operation if they cooperate according to

the following algorithm.

After the PEs have recognized the begin of the operation, they assert their 1 signals pj

onto the wired-OR line P. During execution each PE j waits for a specified individual period of

time t(j,W) before it switches pj from 1 to 0 . After the slowest PE has switched its pj to 0 ,

line P changes to the 0 state and all PEs recognize the end of the operation. In modular systems
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where different PEs can be combined arbitrarily, t(j,W) must be independent of Z and of the

technical characteristics of other PEs. Therefore – according to Taub's synchronization

procedure – has the global waiting time for the end of the operation to be chosen as

Max{t(j,W), j∈∈∈∈ Z}.

S

Q Q

S R

Q Q

R

QQ

run

trm

stop

end

Op1 Op3Op2

T
P
Q
R

SS RR

Q

Fig. 6. Control circuit of a SU for combined synchronization.

After this time all output signals of the participating PEs are settled. Obviously the opera-

tion is executed correctly if the global waiting time Max{t(j,W), j∈∈∈∈ Z} is not shorter than the

duration of the operation. This means that the condition

Max {t(j,W), j∈∈∈∈ Z} ≥≥≥≥ ΣΣΣΣ
j∈∈∈∈ Z

Cj(Z,W)T(j) + ΣΣΣΣ
i=1,…,N

ττττ i, (1)

must be true for all possible T(j), TL≤≤≤≤T(j)≤≤≤≤TH. The less this value the higher is the perfor-

mance of the DS. The alternative synchronization procedure allows to reduce this global

waiting time.

Relation (1) guarantees the correct result of the operation. However the PEs generally

know neither which PEs participate in the current operation nor their the individual propagation

delays. This means that the values t(j,W) cannot be found from (1) directly. Therefore –
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according to [7,8] – every PE j has to take into account relations (1) for every possible set of

participants and to assume the worst case, i.e., the maximal individual waiting time

t(j,W) = NT(j) + ( N
2      +2)ττττ . (2)

In this case the global waiting time Max{t(j,W), j∈∈∈∈ Z} is usually much higher than the

actual duration of the operation. This can degrade the speed of the system considerably. The

probability for this to happen is the higher the more PEs participate in the operation.

Let us consider for example an arbitration operation with N=4 . If we use Taub's syn-

chronization procedure then follows from (2) that the global waiting time t(j,W) is equal to

Max{4T(j)+4ττττ , j∈∈∈∈ Z}4. However the PE having the maximal arbitration word <1111>

could correctly decide to get next bus mastership immediately after begin of the operation.

Also, the PE having the arbitration word <0111> must wait only the time TH+ττττ  and can then

terminate the operation. For such cases the alternative synchronization procedure has consider-

able speed advantages.

If a PE recognizes at the time ta(j,W) that every bit aj,i of its arbitration word Aj is

    greater        or       equal    than the value of the signal on the corresponding bus line Li, it concludes that

it has the highest priority among the arbitrating PEs. This happens usually before the arbitration

lines are settled. The minimal waiting time is obtained if the PE acts as the next bus master

from this time on. The second column of Tab. 5 gives for every PE the time ta(j,W) after

which it knows the arbitration result independently of the set Z of participating processors and

their speed.

However the other PEs still have to wait for the result of the arbitration operation, i.e.,

they have to wait until the arbitration lines have settled. For that, the new bus master can

terminate the operation using the alternative synchronization procedure. For this case the third

column of Tab. 5 gives the individual waiting time tb(j,W) for all PEs which, again, is

independent of the set Z of participating processors and their speed.

If the alternative synchronization procedure is used, i.e., if every processor can terminate

the operation, the average global waiting can be reduced by 50% as shown in Tab. 5. This is

the case either if all processors are of comparable speed, i.e., all T(j) have similar values, or if

the number of participating processors is high.

5. Conclusions. The suggested synchronization procedure allows to use different hardware

synchronization procedures. Using this procedure, it is also possible to identify the end of the

operation dynamically and to reach a minimal upper bound for the duration of asynchronous

operations. This can considerably reduce the processing time in distributed processing

systems. One advantage of the suggested synchronization is that it does not require modifica-

tions of standard hardware, i.e., backplanes, connectors, etc. The only requirement is to

                                                
4 Using a modification of Taub's synchronization procedure [7], the global waiting time can be reduced to

TH+ττττ  if only one processor participates in the arbitration.
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extend slightly the logic of the distributed synchronization circuits.

Tab. 5. Duration of the arbitration operation with 4-bit arbitration words.
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