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Abstract

It has been argued that some sort of control must
be introduced in order to perform update ope-
rations in deductive databases (see e.g. [1, 17]).
Indeed, many approaches rely on a procedural
semantics of rule based languages and often per-
form updates as side-e�ects. Depending on the
evaluation procedure, updates are generally per-
formed in the body (top-down evaluation) or in
the head of rules (bottom-up evaluation).
We demonstrate that updates can be speci�ed

in a purely declarative manner using standard
model based semantics without relying on pro-
cedural aspects of program evaluation. The key
idea is to incorporate states as �rst-class objects
into the language. This is the source of the addi-
tional expressiveness needed to de�ne updates.
We introduce the update language Statelog+-,
discuss various domains of application and outli-
ne how to implement computation of the perfect
model semantics for Statelog+- programs.

1 Introduction

When modelling a dynamically changing world
or revising knowledge about an application do-
main, databases must re
ect these dynamics. In
this context, updating a database is an issue of
fundamental importance.
Deductive databases extend traditional rela-

tional systems and have become attractive in
the past for several reasons. By describing re-
lations intensionally, i.e. as rules, a more concise
and conceptually clear representation is attained,
which is often more user-friendly and facilitates
database maintenance. These advantages are al-
ready known from view de�nitions of relational
systems. In addition, the rule language of a de-

ductive database extends the expressive power of
traditional query languages and their view me-
chanisms by allowing recursive de�nitions. On
the other hand, rule languages can also be used
as database programming languages. Because of
their logical foundation they allow programming
on a high level of abstraction, thereby relieving
the programmer of many details of implementa-
tion and optimization.

Despite its popularity, the most prominent de-
ductive database language Datalog lacks con-
cepts to specify the dynamics of updates: the
model of a Datalog program is static. Exi-
sting extensions of Datalog often rely on proce-
dural aspects of program evaluation by perfor-
ming updates in the body (top-down evaluation,
e.g. [16, 17]) or in the head of rules (bottom-up
evaluation, e.g. [2, 9]), sometimes as side-e�ects.

By relying on procedural semantics, a major
advantage of Datalog , its declarative semantics
is usually sacri�ced. However, a procedural se-
mantics for updates does not inevitably exclude
a declarative counterpart: e.g. in [16] a decla-
rative semantics based on Kripke-structures is
proposed. In fact, by leaving the simple model
theoretic framework of Datalog declarative foun-
dations of updates can be achieved. Examples
for this trend are the more recent approaches of
[20, 11, 5] (see also [25] for a survey of many
other approaches). In contrast, we show that it is
possible to specify update operations for databa-
ses in a purely declarative way using a language
which closely resembles Datalog .

We introduce Statelog+-, a Datalog -like lan-
guage, which allows updating a database in a
state-oriented way. We continue work star-
ted in [13], where a preliminary rule-based up-
date language was suggested, which could on-
ly process a �xed number of states (because
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states had to be denoted by constants). In con-
trast, Statelog+- is a much more general state-
oriented language which imposes less restrictions
on states. In Statelog+- states may be denoted
by variables which range over a potentially in-
�nite set of states. Furthermore, while the se-
mantics of the language in [13] was de�ned as
the �xpoint of a modi�ed immediate consequence
operator, Statelog+- has a clean model-theoretic
semantics thereby allowing the study of formal
properties of programs and their implementation
based on standard deductive database technolo-
gy. Statelog+- has several desirable properties,
e.g., updates are always deterministic and con-
sistent. Evaluation of update programs can be
done either bottom-up, e.g. implemented as a
front-end to CORAL [19], or top-down, e.g. im-
plemented as a front-end to XSB-Prolog [21].
The structure of the paper is as follows. In

section 2 we exhibit the main underlying ideas
of Statelog+-. We continue with a discussion of
various examples in section 3. Section 4 presents
syntax and semantics of Statelog+- in a more for-
mal manner. The perfect model semantics and
its computation are covered in sections 5 and 6.
We conclude with a short summary and outlook
on future work.

2 Basic Ideas

In this section we try to clarify the basic ideas
of our work by means of informal arguments. A
formal presentation will be given subsequently.
We state updates in the head of rules. Such

update rules can be read as follows: \if the bo-
dy of the rule is true, then the speci�ed update
operation should be performed". Possible upda-
te operations are insert and delete. In such a
framework, without any additional means, it is
easy to write inconsistent programs. Let \+" de-
note an insert and \-" a delete operation. Then
the following simple program contains con
icting
update requests:

[-] q(a)  p(a).
[+] q(a)  p(a).

If p(a) is true in the database, then q(a) should
be deleted and inserted at the same time, which
clearly has to be considered as an inconsistent si-
tuation. An obvious solution would be to assign
di�erent priorities to insert and delete, and gene-

rally prefer one operation to the other. However,
this approach is not compatible with a declara-
tive reading of the rules. We therefore propose
a di�erent solution which preserves declarativen-
ess.
Assume that the database is organized in dif-

ferent states . Let us denote the initial state of
the database by [�]. Then the inconsistent si-
tuation in the above example can be removed
by assuming two further states in addition to
the initial state: a state denoted by [+�1], to
which the insert is directed, and a state [-�2],
to which the delete is directed. Since [+�1] and
[-�2] are distinct states, no update con
ict may
arise. The question remains how to relate these
di�erent states.
A simple, yet general concept is to organize

states in an alternating sequence of insert and
delete states : updates of one type (i.e., insert or
delete) may be accumulated in the same state.
As soon as an update of the other type has to
be performed, a transition of the database to a
corresponding new state is necessary.
The ordering of states can be made explicit

by denoting states as alternating strings of \+"
and \-": [�], [-], [+-], [-+-], [+-+-], etc. Delete
states like [-], [-+-], : : : have \-" as their leftmost
character, while \+" is the leftmost character of
insert states [+-], [+-+-],: : : (additionally, the in-
itial state [�] is an insert state). The correspon-
dence between states and update operations is
straightforward: if the current state is an insert
state, tuples can only be inserted into relations,
while in delete states only deletions are possible.
Obviously, by directing insert and delete operati-
ons to di�erent states, inconsistent situations be-
come impossible. In addition, the order in which
update rules are applied during evaluation does
not a�ect the result of the updates. In this way
we achieve determinism in an area where usually
nondeterminism prevails.1

Returning to our previous example, we may
choose to let �1 = - and �2 = �. Thus [+-] is
the �nal state of the update, while [-] is only
an intermediate state. After modi�cation of the
�rst rule, the rules can be read as:

� Delete q(a) in state [-].

� Insert q(a) into state [+-].

1Rule-languages, which allow insert and delete opera-
tions are usually nondeterministic. A well known example
is OPS5.
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It is crucial to understand the di�erence in
comparison to the aforementioned ad-hoc prio-
rities. Since such priorities are de�ned outside
the language, they can only be considered du-
ring evaluation of rules. Therefore, they are a
procedural means. In contrast, we treat states as
�rst-class objects by incorporating them into the
semantics of our language. In this way, rules can
be given a declarative reading.

In addition to the explicit insert and delete
operations, states are related by a frame axiom
which intuitively says: whenever something is
true in some insert state and it is not explicit-
ly deleted in the next delete state then it will
also be true in the next insert state. Thus, tup-
les which have been inserted in some insert state
(including the initial state) are propagated into
subsequent states, until a deletion prevents fur-
ther propagation. The �nal state will then con-
sist of the updated relations.

A set of update rules is called an update pro-
gram. What is the result of such a program, i.e.
what is the new state of the database? Every up-
date programde�nes a sequence of states. The �-
nal state of such a sequence is taken as the result
of the whole program and is used to replace the
initial state of the database. Thus, after having
evaluated the program on intermediate, tempo-
rary states, the update can be materialized. As
will be seen later, this simple, intuitive approach
is not su�cient when using variables to denote
states. Then an update program may refer to
arbitrarily many states. Fortunately, the notion
of a �nal state can still be given a well-de�ned
meaning, as we will show later in the paper.

In the following sections we shall introduce
Statelog+-, a variant of Datalog with negation
in rule bodies, extended by a facility to explicit-
ly manipulate states in the aforementioned way.
We discuss two variants of Statelog+-. The �rst
variant is called Statelog+�

* . Its distinctive fea-
ture is that reasoning is progressive, i.e. directed
from \past" to \future" states: in Statelog+�

* the
state referred to in the head of a rule is no \ear-
lier" in the ordering of states than any of the
states in the body of that rule. The other va-
riant, called Statelog+�

*) , extends Statelog+�
* to

allow full temporal reasoning about states. In
Statelog+�

*) one can also reason backwards in ti-
me, i.e. from states to preceding states. In the
context of database updates it is generally not
necessary and often unnatural to change the hi-

story of the database by reasoning backwards in
time. Therefore we shall concentrate on the pro-
gressive language Statelog+�

* .

3 Statelog+- by Example

We start by discussing several examples of up-
dates on extensional (EDB) relations. A typical
update operation is modi�cation: for some tup-
les, an existing value has to be modi�ed. The de-
clarative counterpart of modi�cation is insertion
of the \new" (updated) tuples and retraction of
the \old" tuples.
Consider the proverbial and oversimpli�ed

employee-salary example. Assume the EDB
contains facts es(E,S) describing the initial
employee-salary relation, i.e. in state [�]. If we
want to increase the salary of all employees by
5%, we can simply write the following insert ru-
le:

[+-] es(E,S1)  [�] es(E,S), S1 := 1.05 * S.

Because of the built-in frame axiom, a modify
operation additionally requires for removal of old
tuples, hence a corresponding delete operation
has to be de�ned. This is accomplished by the
following delete rule

[-] es(E,S)  [�] es(E,S).

A more concise notation can be achieved by
allowing heads with multiple atoms. The two
rules above can be rewritten into a single rule:

[+-] es(E,S1), [-] es(E,S)  
[�] es(E,S), S1 := 1.05 * S.

(3.1)

Then this rule declaratively describes a modify
operation. Notice further that the use of arith-
metic in this rule is safe. This may not be self-
evident since the rule is recursive in the relation
es. However, only a �nite number of new states
| in this case exactly one state [+-] | is created.
In general, rules with arithmetic may become

unsafe as is indicated by the following extended
example

[+-�] es(E,S1), [-�] es(E,S)  
[�] business boom,
[�] es(E,S), S1 := 1.05 * S.

(3.2)

Here � is a variable ranging over arbitrary in-
sert states. Moreover, assume that this rule is
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part of a larger update program, in which busi-
ness boom is de�ned by some other update rules,
which are not of interest here. As long as the
business booms at �nitely many states (which
seems to be a reasonable assumption), only �ni-
tely many new salary amounts are created. Let
us add the fact

[�] business boom.

which expresses that initially, i.e. in state [�],
business booms. However, the frame rule for
business boom propagates this fact to all subse-
quent states. This results in triggering in�nitely
many salary increases and the generation of in-
�nitly many growing salary amounts, which is
clearly not desired (not only from the employers
point of view, but also because it is unsafe).
For relations like business boomwhich are true

only at certain states, propagation by the frame
rule has to be \disabled". This can be simply
achieved by a corresponding delete rule:

[-�] business boom [�] business boom.

The rule guarantees that business boom only be-
comes true in those states, where a corresponding
insert rule explicitly supports this.
The next example shows how Statelog+- can

be used for some kind of hypothetical reasoning .
We intend to determine whether after a hypo-
thetical (non-linear) salary-raise to all employ-
ees, the employee peterwould be the highest-paid
employee of the enterprise:

[+-] es(E,S1), [-] es(E,S)  
[�] es(E,S),
[�] factor(E,F), S1 := S * F.

[+-+-] es(E,S), [-+-] es(E,S1)  
[+-] es(E,S1), [�] es(E,S).

[+-] highest paid(peter) 
true.

[-+-] highest paid(peter) 
[+-] es(E,S),
[+-] es(peter,S1), S > S1.

Here the �rst two rules realize the hypothetical
salary-raise by performing and revising it right
away. For each employee the salary in state
[+-+-] is identical to the salary in the initial
state. The hypothetically raised salary is con-
tained in state [+-]. The third and fourth rule
determine | by referring to the state of the hy-

pothetical raise | whether peter would be the
highest paid employee of the enterprise. Note,
that in the �nal state [+-+-] the initial salaries
are valid; in addition, if it is not retracted by the
fourth rule, highest paid(peter) is valid.

In the next example, we do not know in ad-
vance how many states are required to perform
the update. The program simulates a version
of the game of life (cf. [2]): a graph is de�ned
using the relation edge. The nodes of the graph
correspond to a set of cells, some of which are
initially \alive", while the edges are used to de-
scribe the neighborhood relation between cells.
Let the initial state in the database contain the
edges f(a,b), (a,c), (a,d),(b,c),(c,d)g (represented
as facts edge(X,Y)) and a relation alive to record
the living cells. Assume that initially alive(b) and
alive(c) holds.2

2The use of round brackets in this example should be
self-explanatory.
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% de�ne the neighborhood relation
[�] neighbor(X,Y) [�] edge(X,Y).
[�] neighbor(X,Y) [�] edge(Y,X).

% � 3 neighbors; cell dies
[-�] alive(C)  

[�] (alive(C), has3neighbors(C)).

% = 2 neighbors; cell is born
[+-�] alive(C)  

[�] has2neighbors(C),
[�] : has3neighbors(C).

% cell has � 2 living neighbors
[+�] has2neighbors(C) 

[�] neighbor(C,N1),
[�] neighbor(C,N2),
N1 6= N2,
[+�] (alive(N1), alive(N2)).

% cell has � 3 living neighbors
[+�] has3neighbors(C) 

[�] neighbor(C,N1),
[�] neighbor(C,N2),
[�] neighbor(C,N3),
N1 6= N2, N2 6= N3, N1 6= N3,
[+�] (alive(N1), alive(N2), alive(N3)).

% disable frame-rule for has2neighbors
[-�] has2neighbors(C) 

[�] has2neighbors(C).

% disable frame-rule for has3neighbors
[-�] has3neighbors(C) 

[�] has3neighbors(C).

The update to be performed is to compute the
�nal state of the game in the database. To fully
understand this example, the reader should ob-
serve how the frame axiom acts here. We provide
rules to capture birth resp. death of cells. The
frame axiom guarantees that a cell will stay ali-
ve once it has been born until a corresponding
rule states the death of a cell. On the other side,
the last two rules disable the frame axiom with
respect to has2neighbors and has3neighbors be-
cause these relations have to be computed anew
for each state. We could also disable the frame
axiom with respect to neighbor and edge; this
might be reasonable to keep new states as small
as possible.

It is easy to verify that a na��ve bottom-up eva-
luation of the rules will not terminate because
the cell-culture will grow and shrink inde�nitely.
By generalizing a result in [8] we will show later,

that the perfect model of a strati�ed Statelog+-

program is ultimately periodic. Therefore, we
can take the �rst occurrence of the period as a
generalized �nal state of the database. In our ex-
ample, the period is de�ned by the states [�],[-]
and [+-].
So far, we have focused on updates to exten-

sionally de�ned relations. However, Statelog+-

can be equally well applied for updating inten-
sionally de�ned (IDB) relations. This is due to
the fact that no distinction is made whether the
to be updated relation in the head of a rule is
extensionally de�ned or intensionally via rules.
In the previous example, we have already upda-
ted IDB-relations, e.g. the relation has2neighbors.
The way updates are de�ned by Statelog+- is clo-
se in spirit to deterministic updates as described
in [14] for a language operating on a single state
only: insertions and deletions of facts can be seen
as (positive or negative) exceptions to the rules
de�ning an IDB-relation. In fact, we can apply
the same ideas to materialize updates as presen-
ted there. A detailed discussion is beyond the
scope of this paper and will be presented in a
forthcoming paper.

4 A Statelog+- Framework

We review some basic terminology and �x our
notation. The syntax and a general framework
for the semantics of Statelog+- is given. As an
important example we de�ne the perfect model
semantics for Statelog+- in section 5.

4.1 Syntax

We adopt standard logic programming and de-
ductive database terminology and assume the
reader is familiar with the basic concepts. The
new concepts of Statelog+- are de�ned �rst.

De�nition 4.1 (States)
The sets of insert states �+ and delete states ��

are de�ned as

�+ = (+-)� = f�; +-; +-+-; : : :g
�� = -(+-)� = f-; -+-; -+-+-; : : :g

The set of all states � = �+ [�� can be identi-
�ed with the set of natural numbers N0 via the
bijection

� 2 � 7! j�j 2 N0
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where j�j denotes the length (i.e., the number of
+'s plus the number of -'s) of the representation
of � 2 �. When we use a state � in an arithme-
tical expression, we refer to the natural number
j�j. Obviously, �+ and �� correspond to the
sets of even and odd numbers, respectively.

Every state � 6= � is determined by the number
of occurrences of its leftmost character. There-
fore we can use a shorthand notation where we
leave out the intermediate characters: e.g. +-+-
can be abbreviated to ++.

De�nition 4.2 (State-Terms)
Let � = f�1; �2; : : :g be the set of state-variables ,
which is distinct from the set of \ordinary" data-
variables V .
A state-term � can be either a state �, or a

state-variable which is preceded by a pre�x �:

� =

�
[�] ; � 2 �

[��] ; � 2 �; � 2 �

The set of possible pre�xes is � = � [ �:+ =
f�; -; +; -+; +-; : : :g.
Depending on its particular form a state-term

� represents a (possibly in�nite) set of states, its
extension [[� ]]. Let � be a state, � a state-variable
and � a pre�x, then we de�ne

[[�]] = f�g

[[��]] = f�� j �� 2 �g

Note that [��] denotes either a set of insert
states or a set of delete states if � 6= �, i.e., either
[[��]] � �+ or [[��]] � ��. Therefore we have
[[��]] = f� + 2k j k 2 N0g for some state �.
The shorthand notation for states is extended

to include state-terms. An abbreviation denotes
the smallest \proper" state-term which can be
built from the abbreviation, for instance one can
write [--�] instead of [-+-�], or [++-�] instead of
[+-+-�] etc.

De�nition 4.3 (Statelog+-)
A Statelog+- program P is a �nite set of rules .
A rule r is of the form

�0A0  �1B1; : : : ; �nBn

where A0 (the head of the rule) is an atom.3

B1; : : : ; Bn are literals (the body of r), �0; : : : ; �n

3We do not consider negation in the head of rules like
in Datalog:� [2]. This notion of deletion is replaced by
our delete rules.

are state-terms. r is called a fact if the body is
empty, i.e. if n = 0. The extensional database
(EDB) of P consists of those predicates which
occur only as facts, all other predicates belong
to the intensional database (IDB).
A literal is either an atom p(t1; : : : ; tm) or a

negated atom :p(t1; : : : ; tm), where the terms ti
are constants or data-variables of V . Especially,
state-variables may not occur inside literals.
We say r is an insert rule if the state-term

�0 in the head of r denotes insert states (i.e., if
[[�0]] � �+), otherwise r is a delete rule (since �0
denotes delete states).

Note that r is a Datalog: rule [22], if all �i
are equal to �. Therefore Statelog+- is a proper
extension of Datalog: .
In order for a Statelog+- rule r to be correct,

we have to ensure that all occurrences of state-
variables in r are well-de�ned and consistent with
each other. This syntactical notion is captured
by the following de�nition.

De�nition 4.4 (+-Correct Rules)
A rule r is +-correct or correct for short if for
each state-variable � occurring in r

1. there is a state-term [��] in r, such that � 6=
�, and

2. [[��]] \ [[�0�]] 6= ; for any two state-terms
[��], [�0�] occurring in r.

Condition 1 states that an \unde�ned" rule
like [�] p  [�] q is not correct: it is not clear
whether p should be inserted or deleted.
In contrast, condition 2 circumvents \incon-

sistent" rules like [+�] p  [-�] q, where it is
impossible to instantiate � such that both [+�]
and [-�] denote valid states.

4.2 Semantics

We outline a general framework for the two ver-
sions of Statelog+-.

Updates and Statelog+�
* In the context of da-

tabase updates, the evolution of a database over
time is modelled with states. Therefore, it is re-
asonable to de�ne a new state using knowledge
about previous states. In contrast, as soon as a
new state has been introduced, it should not be
allowed to change past states (i.e. by insertions
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or deletions) nor should it be possible to make
assumptions about future states. Both require-
ments are met as long as rules are interpreted
progressively .
Then the intuitive reading of a rule like

[+�1] p [-�2] q is

\Insert p into state [+�1] provided q has
been deleted in a state [-�2] which pre-
cedes [+�1]."

Progressiveness seems to be a very natural pre-
requisite for traditional update policies. The lan-
guage where the meaning of rules is de�ned by
their progressive extension [[r]]* (see def. 4.5) is
called Statelog+�

* .

Temporal Deductive Databases and
Statelog+�

*) In the context of temporal deductive
databases , it is necessary to abandon the restric-
tion of progressiveness in order to reason forward
and backward in time. Then the meaning of the
above rule becomes

\Insert p into state [+�1] provided q is
deleted in some state [-�2]."

The resulting language is called Statelog+�
*) and

can be conceived as a temporal deductive databa-
se language in the sense of [4].
We use the term Statelog+- to refer to both

versions of the language.

The Frame Axiom A basic requirement for
a semantics SEM to be suitable for our state-
oriented approach is that SEM is compatible
with the following frame axiom:

If a proposition (tuple) p is true in some
insert state �, and it is not marked for
deletion in -� (i.e., [-�] p is false) then
p must still hold at the next insert state
+-�.

Possible candidates for SEM include the per-
fect model semantics [18], the well-founded se-
mantics [24] and the stable semantics [10], re-
spectively. Since it can be computed e�ciently
in our context, the perfect model semantics is of
particular interest (sections 5 and 6).

De�nition 4.5 (Extensions of Rules)
A rule r without state-variables, i.e., of the form

[�0] A0  [�1] B1; : : : ; [�n] Bn

where all �i are states is called �-grounded .
A �-grounded rule is called progressive if �0 �

�i for i = 1; : : : ; n; strictly progressive if �0 > �i.
A �-grounded rule r� which is obtained from

a rule r by substituting state-variables is called
a �-instance of r.
The full extension [[r]]*) of a correct rule is the

set of all �-instances which can be constructed
from r. We say that r is strictly progressive if all
rules in [[r]]*) are strictly progressive.
The progressive extension [[r]]* of r is the sub-

set of progressive rules of [[r]]*).
If [[r]]* 6= ; then r is called (potentially) pro-

gressive.4

We write [[r]], whenever we want to refer to
both [[r]]*) and [[r]]*.

Example 4.6
The rule r : [+�] p  [-+�] q is correct but not
potentially progressive, since [[r]]* = ;.
On the other hand, r0 : [++] p  [-�] q is

potentially progressive, since

[[r0]]* = f[++] p [-] q; [++] p [--] qg:

No other �-instance of r0 is progressive.

The Semantical Framework The language
LP of a Statelog+- program P is determined by
the set of constants C and predicate symbols P
occurring in P .
The Herbrand universe UP and the Herbrand

base BP are de�ned as usual, i.e., UP = C and
BP is the set of ground atoms that can be con-
structed from UP and P . Note that we do not
consider states nor state-terms �i of P to be part
of UP . This is to exclude \ill-typed" atoms like
p(-a; +; b) from BP . Another possibility is to de-
�ne a two-sorted language L�P , with � and the
state-variables � belonging to one sort and the
\ordinary" constants C and variables V to the
other sort.
Since we generally disallow the use of function

symbols5, UP and BP are �nite.

De�nition 4.7 (�-Interpretation)
A �-interpretation I� is a mapping from � to

4In the context of Statelog+�* , we can leave out \po-
tentially" (since [[r]]* is the \meaning" of r) and simply
call r progressive.

5This restriction can be relaxed to include a safe use
of function symbols.
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2BP which is compatible with the frame axiom in
the following sense. Each state � 2 � is assigned
a Herbrand interpretation I� � BP

I� : � 7! I�

such that

I+-� � I� n I-�: (4.1)

Sometimes I� is called the snapshot of I�

at �. A (possibly in�nite) sequence of succes-
sive snapshots I�; I�+1; : : : ; I�+w�1 where w 2
N0[f1g is called a window of I�. It is denoted
Ih�;wi, where � is the start , w the width of Ih�;wi.

Since the frame axiom (4.1) is �rst-order, it
can be expressed with a �nite set of frame rules
F(P ):
For every n-ary relation R of a given program

P , F(P ) contains the rule

[+-�] R(X1; : : : ;Xn) 
[�] R(X1; : : : ;Xn); [-�] : R(X1; : : : ;Xn):

De�nition 4.8 (Models)
A �-interpretation I� is a model of a �-grounded
rule r, i.e.

I� j= [�0] A0  [�1] B1; : : : ; [�n] Bn

i�

I�1 j= B1; : : : ; I
�n j= Bn implies I�0 j= A0:

In other words, if for all i, Bi holds at �i then
A0 must be true at �0.
Given a rule r, we de�ne I� j= r i� I� j= r0

for all r0 2 [[r]].
I� is called a model of a program P i� I� j= r

for all rules r 2 P [ F(P ).

It is possible to stay within the standard
framework of deductive databases by reifying
states, i.e., states are placed in one distinguished
argument of predicate symbols (e.g. the �rst).
This is desirable because it enables us to apply
any semantics for logic programs to Statelog+-

programs. For instance, a �xpoint semantics can
be de�ned using the standard immediate conse-
quence operator TP [15] instead of de�ning a mo-
di�ed operator which incorporates states [13].

De�nition 4.9 (State-Rei�cation P ?)
With a Statelog+- program P we associate a cor-
responding set of rules P ?, the state-rei�cation of
P :

P ? = fr? j r 2 [[P [ F(P )]]g:

Given a rule r 2 [[P [ F(P )]] of the form

[�0] A0( �X0) 
[�1] B1( �X1); : : : ; [�m] Bm( �Xm)

the rei�ed rule r? is

A0(�0; �X0) 
B1(�1; �X1); : : : ; Bm(�m; �Xm):

Here �Xi is shorthand for a sequence of terms
ti1 ; : : : ; tik .

A program P and its rei�ed version P ? are
directly related:

Proposition 4.10
Every model M? of P ? de�nes a model M� of P
and vice versa in the following way:

M� j= R(x1; : : : ; xn)

i�
M? j= R(�; x1; : : : ; xn)

for all � 2 �, R(x1; : : : ; xn) 2 BP .

Obviously, since M? is a model of the rei�ed
frame rules, M� satis�es (4.1) and thus is a �-
interpretation.
Strictly speaking, we have to exclude models

M? that make true some R(�; : : : ; �0; : : :), where
�0 2 �, since this would result in de�ningM� j=
R(: : : ; �0; : : :) for some R(: : : ; �0; : : :) =2 BP . It is
obvious, how this can be accomplished by using
two-sorted logic. Then BP? does not contain \ill-
typed" atoms like R(: : : ; �0; : : :).
Due to proposition 4.10 we may use M� and

M? synonymously in the sequel.

5 Perfect Model Semantics

The perfect model semantics is generally accep-
ted to be the \right" respectively \intended" se-
mantics for the class of locally strati�ed pro-
grams [18]. Since it restricts the use of negation
in a certain way (no recursion through negation
is allowed), the meaning of a (locally) strati�ed
program can be easily grasped by a programmer.
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Even more important, it is amenable to ef-
�cient implementation provided a strati�cation
can be easily computed.

In the presence of state-terms, the usual noti-
on of strati�cation is not su�cient and a slightly
generalized version called �-strati�cation is ne-
cessary. To see why, consider the following ex-
ample:

[+-] p  [�] : q.
[�] q  [�] p.

The standard notion of strati�cation only in-
corporates the names of relations in order to de-
termine dependencies between rules. Hence, this
program would be rejected as not strati�able,
since p seems to depend negatively on itself (the

dependency graph is p
:
! q! p). However, it is

clear that in an actual computation, the truth of
p will never depend negatively on itself since the
two occurrences of p refer to di�erent states [�]
and [+-].
In the following, we formally de�ne the notion

of �-strati�cation. For every �-strati�ed pro-
gram there exists a unique perfect modelMperf .
The computation of Mperf is outlined in secti-
on 6.

De�nition 5.1 (�-Strati�cation)
Let P be a Statelog+- program. The dependency
graph DP is a directed graph whose nodes corre-
spond to the rules of P [F(P ). Given two rules
r; r0 2 P

r : �0A0  �1B1; : : : ; �nBn

r0 : � 00A
0
0  � 01B

0
1; : : : ; �

0
mB

0
m

there is a positive arc from r to r0, denoted r0 ! r
i� there are �-instances r� 2 [[r]]; r0� 2 [[r0]] of the
form

r� : �0A0  �1B1; : : : ; �iBi; : : : �nBn

r0� : �00A
0
0  �01B

0
1; : : : ; �

0
mB

0
m

such that �i = �00 and Bi� = A0
0� for some

substitution �.6

There is a negative arc r0
:
! r, if Bi is a nega-

ted atom, i.e. of the form :Ai and Ai� = A0
0�.

P is called �-strati�ed i� DP contains no cy-
cles with negative arcs.

6We assume that rules are variable disjoint.

Note, that the dependency graph DP contains
non-ground rules. This is important from a prac-
tical point of view, since a premature instantia-
tion of program rules is avoided.
It is easy to verify that P ? is locally strati�ed,

if P is �-strati�ed. The converse is not true,
however: the program with the single rule

[+-�] p  [�] : p.

is not �-strati�ed since the rule depends nega-
tively on itself, but

P ? = f p(+-)  : p(�),
p(+-+-)  : p(+-),

... g

is locally strati�ed.
It is well-known that a locally strati�ed pro-

gram has a unique perfect model [18], which can
be computed according to a given strati�cation.
Although it is in general undecidable whether a
logic program (with function symbols) is locally
strati�ed [6], the more restrictive notion of �-
strati�cation is decidable and can be e�ciently
computed. Summarizing, we have the following
result.

Theorem 5.2
Every �-strati�ed Statelog+- program P has a
unique perfect model Mperf .

It will be shown in section 6 that for Statelog+-

basically an iterated �xpoint computation [3] is
su�cient to computeMperf .
Recall that in context of database updates, ru-

les are interpreted progressively. This fact can be
exploited when computing the dependency graph
DP of a Statelog+�

* program, as we will show in
the following.

Proposition 5.3
A Statelog+�

* program P is �-strati�ed i� the
subset of rules of P which are progressive, but
not strictly progressive is �-strati�ed.

Proof For the non-trivial direction, assume
that P is not �-strati�ed. Then DP contains
a cycle with a negative arc. Let r�1 ! : : : !
r�n ! r�1 be this negative cycle and r�i ! r�j an

arbitrary arc thereof. Let �Hi ; �
B
j be the states

occurring in the head respectively body of r�i and
r�j that belong to the arc r�i ! r�j (cf. de�niti-

on 5.1). We have �Hi = �Bj and, since all rules
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in the negative cycle are progressive, the states
occurring in it satisfy the following inequalities:

�H1 = �B2 � �
H
2 = �B3 � : : : � �Hn = �B1 � �

H
1

Therefore �H1 occurs in the head of all rules r�i .
This implies that no rule of the cycle is strictly
progressive. Hence, the cycle is also present in
the subset P 0 of rules of P which are not strictly
progressive. It follows that P 0 is not �-strati�ed.

An important consequence of proposition 5.3
is that strictly progressive rules of P need not
be considered when computing DP , since cycles
in DP can only occur within but never across
states. Especially, the dependency graph can
be computed without considering the frame rules
F(P ).

6 Computing Mperf for

Statelog+�*

In the following we outline howMperf can actual-
ly be computed. Most of the steps can be perfor-
med using standard evaluation techniques. The
computation of DP needs some re�nement, ho-
wever, in order to avoid \pseudo-dependencies"
between rules.

6.1 Rule Normalization

In de�nition 5.1 dependencies are de�ned using
the (possibly in�nite) extensions of rules. On the
other hand, it is desirable to determine depen-
dencies only from \looking" at the rules directly,
i.e. by using uni�cation. In the case of Statelog+�

*)

this could indeed be done. For Statelog+�
* howe-

ver, one has to take care not to introduce more
dependencies than necessary.
Consider the following rules:

r1 : [+++] p  [-�] : q.
r2 : [----] q  [�] b.

s1 : [+�0] m  [-�0] n, [---�1] c.
s2: [--] n  [�] b.

Apparently, there are dependencies r2
:
! r1 and

s2 ! s1 between these rules. However, looking
at the progressive extensions of r1 and s1, it is
easy see that the state in the head of r2 is \too

large" to match the body of r1; similar for s2
which is \too small".
The solution to this problem is to use normal

forms for progressive rules in order to exclude
these \pseudo-dependencies". E.g. the normal
form of s1 is

[+++�0] m [---�0] n; [---�1] c:

Given this normal form, it is obvious that s1 does
not depend on s2 since the corresponding terms
[---�0] n and [--] n no longer \unify", similar
for r1 and r2.

De�nition 6.1 (Normal Form of Progressi-
ve Rules)
Given a progressive Statelog+�

* rule r of the form

�0A0  �1B1; : : : ; �nBn

we de�ne the normal form of r as follows:
If �0 = [�0], �0 2 � then the normal form of

r is the �nite set of progressive �-instances of r,
i.e. [[r]]*.
Otherwise let �0 be the state-variable that oc-

curs in �0. For i = 0; : : : ; n we de�ne

�i = min [[�i]]

� =

�
max�i � �0

2

�
� 2

�i =

�
�i +� if �0 occurs in �i;
�i otherwise:

It is straightforward to verify that �rst, �0 � �i
and second, every progressive rule in [[r]]* is of
the form

[�0 + 2k0] A0  
[�1 + 2k1] B1; : : : ; [�n + 2km] Bn

(6.2)
where (k0; : : : ; km) 2 I0 � : : : � Im such that
�0 + 2k0 � �i + 2ki. Here Ii = N0 if �i contains
a state-variable, I i = f0g otherwise.
The �i together with the occurrences of state-

variables in r de�ne the normal form of r. A mo-
re conventional way is to write the normal form
as a rule (note, that some �i may coincide)

[�0�0] A0  
[�1�1] B1; : : : ; [�n�m] Bn:

Provided that normal forms of rules are used,
the dependency graph of a Statelog+- program
P can be computed in a standard way: a rule
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r depends on a rule r0 i� the head of r0 \uni-
�es" with some subgoal in the body of r. It is
straightforward to extend uni�cation to include
state-terms: + and - have to be interpreted as
unary function symbols and the shorthand nota-
tion for state-terms has to be expanded. Thus,
e.g. [++�] becomes +(-(+(�))) with the additio-
nal proviso that � may only be bound to delete
states.

6.2 Iterated Computation of Mperf

Given DP , the computation of Mperf can be ac-
complished by a modi�cation of the well-known
iterated �xpoint computation [3]. In what fol-
lows, we con�ne ourselves to the basics of this
computation.
First, the subset P 0 of rules of P which are not

strictly-progressive (cf. proposition 5.3) is parti-
tioned into strata S1; : : : ; Sk. This strati�cation
can be computed using standard algorithms (see
e.g. [22, 12]) in time linear in the size of the IDB.
Note, that the perfect model of a program is in-
dependent from the chosen strati�cation.
After this preprocessing step, the actual com-

putation of Mperf proceeds by successively com-
puting the snapshots for �; -; +-; : : : until a ter-
mination condition is satis�ed (see below).
For a given state �, the computation of the

snapshotM�
perf is accomplished as follows:

In the �rst step, the strictly progressive rules
P 0 (including frame rules) are iterated until a
�xpoint is reached (note, that each snapshot is
�nite). P 0 corresponds to the lowest stratum S0
w.r.t. the current state �, since the rules in P 0

solely depend on already computed predecessor
states of �.
The second step consists in iterating the remai-

ning (not strictly progressive) rules according to
the strati�cation S1; : : : ; Sk, until the complete
snapshotM�

perf is computed.

Termination The question arises how termi-
nation of the above described iteration can be
guaranteed in the presence of an in�nite number
of states. It turns out, that although Mperf is
in�nite, it can be �nitely represented due to its
periodic structure:
In appendix A we show that Mperf is ultima-

tely periodic, i.e., M�+T
perf = M�

perf for all � � �0
and some �0 and T .

Therefore, the �nite initial windowM
h�;�0i
perf to-

gether with the periodic window M
h�0;T i
perf com-

pletely characterizeMperf . The period T can be
determined as follows:
For every Statelog+�

* rule r of a given program
P , the width wr of the window of predecessor
states on which the head of r depends is deter-
mined. Call wr the range of r. Provided r is in
normal form (def. 6.1), the range wr can be cal-
culated by a simple syntactical operation. Then,
the maximal range w of rules of P can be com-
puted.
During the computation of Mperf one has to

check for the earliest repetition of a window

M h�;wi
perf of width w. As soon as a repetition is

encountered, the �rst occurrence of the period

M
h�0;T i
perf is declared to be the generalized �nal

state of the database. The length T of this pe-
riod is simply the distance between the repeated

windows M
h�;wi
perf . The situation can be depicted

as follows:

� � � �
M
�

� � � �
M
�+w�1

�| {z }
Mh�;wi

� � � � � � �

| {z }
T

M
�

� � � �
M
�+w�1

�| {z }
Mh�;wi

� � �

Note further, that it is not necessary to store
the complete history of states in order to ans-
wer queries on the (generalized) �nal state of the
database. Instead, it is su�cient to remember

M
h�;wi
perf .

7 Conclusion and Future

Work

In this paper we have presented an extension of
Datalog called Statelog+- which allows to specify
updates in a clean and declarative manner. De-
clarativeness is accomplished by directly incor-
porating states into the language. Through the
introduction of two kinds of states, insert states
and delete states , con
icting update requests and
inconsistencies are avoided.
We have shown that a clear, model-based se-

mantics can be given to updates without sa-
cri�cing e�ciency. It is planned to implement
Statelog+�

* on top of CORAL [19]. First results
using XSB-Prolog [21] as an implementation lan-
guage con�rm the principle feasibility of the ap-
proach.
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Theoretical research is focusing on the connec-
tions to the related �eld of temporal deductive
databases and the applicability of our approach
in that area.
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A Periodicity of Mperf

In section 5 we showed that every �-strati�ed
Statelog+- program has a unique perfect model
Mperf . In our framework for database upda-
tes,Mperf is the intended model of a �-strati�ed
Statelog+�

* program.
The feasibility of using Mperf in a practical

application essentially depends on whether it is
possible to �nitely represent query answers w.r.t.
Mperf .
Fortunately, since Mperf has a periodic struc-

ture this is indeed the case, as we will show in
the following.
Generally, in the presence of negation, peri-

odicity of models can not always be guaranteed.
The intuitive reason is that we have two sources
of complexity in Statelog+-, one is the in�nite
number of states which results in in�nite mo-
dels, the other is negation. In [7, 8] it has be-
en shown that the minimal model of a Datalog1S
program without negation is ultimately periodic.
However, their result can not be directly used in
our context. Especially, the progressive reading
of Statelog+�

* rules can be seen as an additional
constraint imposed on state-terms which can not
be directly expressed in Datalog1S . Furthermore,
negation is needed in our context and the distinc-
tion between insert and delete states is crucial.
In the following de�nitions we identify � and

N0.

De�nition A.1
A �-interpretationM� is called ultimately peri-
odic if there exist �0; T 2 N0 such that

M�+T =M� for all � � �0:

De�nition A.2
A �-interpretationM� is called progressively de-
terministic if there exist �0; w 2 N0 such that for
all � � �0 the snapshotM� functionally depends
on its w predecessor states, i.e.

M� = f(M h��w;wi) for all � � �0

and some function f : (2BP )w ! 2BP .

In what follows, we generally assume that a
Statelog+- programP is function free, so the Her-
brand universe UP and the Herbrand base BP are
�nite.7

It is easy to see that the following proposition
holds.

7If we want to use function symbols however, e.g. to

Lemma A.1 Every progressively deterministic
�-interpretation M� is ultimately periodic.

Proof Since BP is �nite there are at most
2w�jBP j many di�erent windows of width w.
Hence there must be a window repetition inM�,
i.e. there exist states  1 >  0 � �0 such that

M h 0;wi =M h 1;wi:

As every state � � �0 is determined by its w
predecessors, we have M 0+i = M 1+i for all
i 2 N0. So let T =  1 �  0, and the lemma
follows.

Theorem A.3
The perfect model Mperf of a �-strati�ed

Statelog+�
* program is ultimately periodic.

Proof Let P � be the program which results
from substituting data-variables in P by terms
from UP in all possible ways. Since BP is �-
nite we may assume without loss of generality
that the rules of P � are built from �nitely many
propositional atoms p1; : : : ; pk. Similar to de�ni-
tion 4.9, we can reify the rules of P � such that
state-terms �i are considered as the arguments of
unary predicates p1(�1); : : : ; pk(�l).
Without loss of generality, we further assume

that rules are in normal form and do not contain
�-grounded state-terms. Then the general form
of a rule r (including frame rules) is

pr(�0�0) 
L1(�1�0); : : : ; Lm(�m�0); (A)

L0
1(�

0
1�1);
... (B)

L0
n(�

0
n�n):

All literals Li which contain the same state-
variable �0 as the head are grouped together in
(A). �i; �0i are pre�xes from � such that �0 �
�i; �0j (since r is progressive and in normal form).

express arithmetical operations, we may relax this restric-
tion and admit programs with the bounded term size pro-

perty [23]. Then for every query Q with maximal term
size k, it is su�cient to consider derivations where the size
of terms is bound by k. Consequently, if we include Q in
the program P , a �nite subset of the Herbrand universe
is su�cient to answer Q. Since it is in general undecida-
ble whether a given program has the bounded term size
property one has to de�ne some decidable criterion which
approximates the bounded term size property. An exam-
ple of this are syntactical safeness conditions like in [22].
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Let Mperf be the unique perfect model of P �.
We show that Mperf is progressively determini-
stic, from which the desired result follows.
Consider an arbitrary �-instance r0 of r. Let

pr(�0) be the head of r0, i.e. �0 = �0�0� for so-
me �-grounding substitution �. Whether pr(�0)
can be derived by r depends on the subgoals in
(A) and (B). In (A), only a �xed number of
predecessor states of �0 and possibly �0 itself are
referenced, while the validity of (B) apparently
depends on arbitrarily many predecessors of �0.
However, P � can be rewritten into P 0 such that
Mperf (P

�) =Mperf (P
0), and all rules in P 0 have

(B) vacuous. This is accomplished as follows.
Let (B0) be a �-instance of (B) such that

Mperf j= (B0) (for de�niteness we may choose
the smallest �-instance). If no such (B0) exists,
i.e. Mperf 6j= (B) then r can be deleted. Clearly,
the resulting program will have the same perfect
model Mperf (recall that all true facts in Mperf

are supported by some rule). Otherwise, we show
that (B) can be discarded since it is true for all
states � � �0 for some �0.
Let �r be the maximal state occurring in (B0).

Then for all states � 2 [[�0�0]], � � �r, the head
pr(�) is derived by r i� (A) becomes true.
(B) can be ignored since the state-variable

�0 may be instantiated independently from the
state-variables �1; : : : ; �n of (B). Thus, as soon
as (B) becomes true at some state �r, it remains
true for all subsequent states.
Let �0 = maxr2P�(�r). For all � � �0 the

derivation of pr(�) depends on at most w prede-
cessor states of � and possibly � itself (w is the
maximal range of rules of P 0; cf. section 6.2).

Finally, if a window M
h��w;wi
perf of w predeces-

sor states of � is given (note, that � does not
belong to the window), there is one and only one
snapshot M�

perf which is supported by the rules
of the program. HenceMperf is progressively de-
terministic.
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