
Updates in a Rule-Based Language

for Objects�

Michael Kramery Georg Lausenz Gunter Saakex

Abstract

The integration of object-oriented concepts into deductive databases

has been investigated for a certain time now. Various approaches to

incorporate updates into deduction have been proposed. The current

paper presents an approach which is based on object versioning ; dif-

ferent versions of one object may be created and referenced during

an update-process. By means of such versions it becomes possible to

exert explicit control on the update process during bottom-up evalu-

ation in a rather intuitive way. The units for updates are the result

sets of base methods, i.e. methods, whose results are stored in the

object-base and are not de�ned by rules. However, the update itself

may be de�ned by rules. Update-programs have �xpoint semantics;

the �xpoint can be computed by a bottom-up evaluation according to

a certain strati�cation.

1 Introduction

The integration of object-oriented concepts into deductive databases has been
discussed and investigated for a certain time now [Ban86, DOO89, Abi90,

�This paper is a slightly revised version of a paper appeared in the Proceedings of the
18th VLDB Conference in Vancouver, British Columbia, Canada 1992.

yFakult�at f�ur Mathematik und Informatik, Universit�at Mannheim, W-6800 Mannheim,
Germany

zFakult�at f�ur Mathematik und Informatik, Universit�at Mannheim, W-6800 Mannheim,
Germany

xFakult�at f�ur Informatik, TU Braunschweig, W-3300 Braunschweig, Germany

AK89, KL89, KLW90, DOO91]. Various approaches to incorporate updates
into deduction have been proposed. However, only a few of these take object-
orientation into account. In the current paper we present an approach which
is based on object versioning ; di�erent versions of one object may be cre-
ated and referenced during an update-process. By means of such versions
it becomes possible to exert explicit control on the update process during
bottom-up evaluation in a rather intuitive way. As units for updates we con-
sider the result sets of base methods, i.e. methods, whose results are stored
in the object-base; we do not consider derived methods, i.e. methods, whose
results are de�ned by rules. However, the update itself may be de�ned by
rules.

In deductive databases, depending on whether top-down or bottom-up
evaluation strategies are applied, updates are done in rule-bodies or rule-
heads. In top-down approaches, updates are contained in the rule-bodies
and are performed as side-e�ects of the refutation process. Much work has
been done on the topic of updating derived (intensional) predicates. These
approaches typically rely on SLD-, SLDNF-Resolution or Abduction (e.g.
[AT91, Dec90, KM90, Tom88]). Examples for approaches considering up-
dates of base predicates are Prolog, LDL [NT89] and DLP [MW87]; DLP
manages updates of derived predicates, too. Bottom-up approaches for up-
dates also have been proposed. In [AV91] various extensions of Datalog in-
cluding deletions are investigated, and the language RDL1 [dMS88] provides
a seperate component for explicit control of the bottom-up evaluation. More-
over, updates in production systems (e.g. OPS5 [BFKM86]) and correspond-
ing extensions of relational databases by rules (e.g. [SJGP90, WF92, ZH90])
are realized by applying the rules in a bottom-up way, and, �nally, also some
database programming languages which incorporate rules follow this way
(e.g. [PDR91, HJ91]).

From those deductive languages involving object-oriented features, only
a few provide update concepts, eg. Logres [CCCR+90] and LOCO [LVVS90].
Logres is a typed extension of Datalog, supporting object-identity, classes
and isa-hierarchies. Updates can be expressed by using rules with deletions
in the head; the evaluation of the rules may be done according to strati�ed
or in
ationary semantics. In addition, the set of relevant rules may also
be updated; based on this feature also derived methods can be updated.
LOCO is based on ordered logic [LSV90]: a set of Datalog-like rules (allowing
negation in rule-heads) may be ordered in a isa-hierarchy to allow inheritance.

2

Updates are done by making the new rules an instance of the to-be-updated
object; applying inheritance with overriding yields the instance as updated
object.

In this paper we present a di�erent approach to the update problem. The
intentions are to provide a rule-language which allows to exert explicit control
on the update process during bottom-up evaluation in a rather intuitive way.
Control is based on so called version-identities (VIDs), which are special
object-identities, built-up by function symbols denoting types of updates
(insert, delete, modify) in such a way, that they admit tracing back the
history of updates performed on each object. This approach is stimulated
by F-logic [KL89, KLW90], where general terms are used to denote objects
(see also [CW89, KW89]) and to control versions; however, updates are not
considered in these works. VIDs have temporal characteristics, denoting
di�erent versions of an object during its update-process. Each object-version
can be considered as a single stage { corresponding to a certain time-step {
of the entire process of updating the object. A set of update-rules forms an
update-program. Update-programs have �xpoint semantics; the �xpoint can
be computed by a bottom-up evaluation according to a certain strati�cation.

Object-versions are a well established concept in object-oriented databases
[Kim91]. Object-versions are used to manage the (long-term) evolution of
an object, e.g. to support cooperative work. In the current paper we use
versions in a di�erent context. We consider versions as a means to support
single updates, several of them may give rise to introduce a new version in
the usual sense. Thus our approach outlines a complementary application of
the version concept in rule-based object-oriented databases.

The rest of this paper is organized as follows: In Section 2, we introduce
a simple rule-language to de�ne updates, outline our ideas, give a motivating
example and a discussion of related approaches. In Section 3 we introduce
an immediate consequence operator, which is the basis for bottom-up eval-
uation. Bottom-up evaluation is discussed in Section 4. In Section 5 the
construction of the updated object-base is outlined, and, �nally, Section 6
suggests extensions of our language and indicates future work.

3

2 Updates by Versioning

2.1 An Update-Language for Objects

We are interested in a language for objects, by which we can de�ne up-
dates using rules. The alphabet of our update language consists of (1) a
nonempty set O of object-identities (OIDs) to denote the relevant objects,
(2) an in�nite set V of variables to denote objects, (3) an in�nite set M
of method-names, and (4) a set F := f ins, del, mod g of function symbols
of arity one denoting certain update types. Here ins/del/mod stand for
insert/delete/modify , respectively. Methods are functions to express proper-
ties of objects. The result of a method-application either is a value, or is an
OID which denotes an object to describe a relationship between objects. For
formal simplicity, we do not introduce types for values - we consider values
as speci�c OIDs in O.

To give a �rst example, in the following expression a method salary is
applied on an object with OID henry and gives as result (the OID) 250:

henry:salary!250:
Now we will introduce terms, atoms and rules. As usual, when one of

these does not contain a variable, it will be called ground. The basic con-
structs of our language are object-id-terms and version-id-terms. An object-

id-term either is a variable or an OID. To each object there may exist several
versions. To be able to reference the di�erent version we introduce version-
id-terms.1 A version-id-term is de�ned as follows : (1) any object-id-term is
also a version-id-term; (2) let V be a version-id-term, then �(V) with �2F
is a version-id-term. The set of all ground version-id-terms is denoted byO

V
;

its elements are called version-identities (VIDs). VIDs are used to denote
speci�c versions of the respective objects. Notice thatO � O

V
. In the sequel

we denote non-ground object-id-terms and version-id-terms by names start-
ing with an upper-case letter; ground terms are denoted by names starting
with a lower-case letter.

An atom in our language either is a usual arithmetic built-in predicate

(<, >, =, etc.) or a version-term or an update-term. We consider update-
and version-terms, because it is important for our approach to distinguish

1On the result-position of a method only object-id-terms will be allowed, not version-
id-terms. We choose this way because versions are only introduced for the purpose of the
update-process; a relationship is considered to be a more stable concept in comparison to
the concept of versions in our approach.

4

between (1) whether a certain update is applied on a version to create a new
version with di�erent properties, or (2) whether a version which has been
created by the application of a certain update has a certain property. For
the former we introduce update-terms, for the latter version-terms.

Let m be a name of a method, V a version-id-term, and A1; :::; Ak, R
object-id-terms. Consider '@' to be an indicator for method arguments; it is
omitted if there are no arguments. A version-term is any expression of the
form V:m@A1; :::; Ak!R; where k � 0.

A set of ground version-terms is called an object-base. An expression
m@A1; :::; Ak ! R is also called a method-application. The state of a ver-
sion w.r.t. a certain object-base is given by the set of all ground method-
applications, which can be derived from its version-terms in the respective
object-base.

Update-terms are the means to express changes of the states of the ver-
sions. Let m be a name of a method, V a version-id-term, and A1; :::; Ak, R,
R0 object-id-terms. An update-term now is any expression of one of the fol-
lowing: ins[V]:m@A1; :::; Ak!R, del[V]:m@A1; :::; Ak!R, ormod[V]:m@A1; :::; Ak!
(R;R0), where k � 0. Each of these updates expresses a transition from
the state of a version V to the state of a version �(V), where � 2 F . Syn-
tactically, updates are indicated by the braces `[', `]'. Note, that these braces
are replaced by `(', `)' when referring to the version being the result of the
state transition. In case of an insert, the state of version ins(V) contains a
new method-application not contained in the state of version V , in case of
a delete, the state of version V contains a method-application, which is no
longer contained in the state of version del(V), and, �nally, in case of a mod-
ify, both states of the versions mod(V) and V contain a method-application
w.r.t. the same method and the same arguments, however the results are
di�erent.

For example the version-term
mod(henry):salary!275

states that the method salary applied to the version mod(henry) of object
henry yields the result 275. Here mod(henry) is a VID; henry and 250 are
OIDs. We consider mod(henry) to be the version of henry after an update of
type modify has been applied to henry. On the other hand, the update-term

mod[henry]:salary! (250;275)
de�nes an update of type modify changing the result of salary applied to
henry from 250 to 275. The new value will hold in the state of mod(henry).

5

An update-rule is written as

H (= B1 ^ ::: ^Bk ; k � 0 ;

where H is an update-term called the head of the rule, and B1; : : : ; Bk are
positive or negated atoms forming the rule's body. H and the Bi's are also
called literals. If k = 0, then the rule is called an update-fact. Rules are
considered to be 8-quanti�ed; the domain of quanti�cation is the set O, i.e.
the set of all OIDs. Let R be an update-rule and let r be an update-rule which
is derived fromR by replacing variables by OIDs. We call r a ground instance
of R. We require that rules are safe (cf. [Ull88]). A set of update-rules
forms an update-program. The evaluation of an update-program is called
update-process. From now on when talking about \rules", \programs" or
\processes", we always mean \update-rules", \update-programs" or \update-
processes", respectively.

As a �rst example, demonstrating the power of our language, consider
the following rule :

mod[E]:sal! (S;S0) (=
E:isa!empl ^
E:sal!S ^ S0 = S � 1:1

To every employee a 10% salary-raise has to be performed. It is worthwhile
noticing that this intuitive version of the salary-update terminates, when
evaluated bottom-up. In the above example each employee gets his salary
raised exactly once (as intended), because the rule only applies to \initial"
(i.e. non-updated) employees. (Remember, that a variable can only be in-
stantiated by a OID, not VID.) Thus versions help to avoid non-terminating
update-loops.

In the following we will always consider a scenario in which a certain
update-program P is executed on a given object-base ob. Note, that in
this framework we do not consider derived objects, i.e. objects, for which a
method is de�ned by a rule, which is not an update-rule; our intention is to
study updates of base de�nitions only. However, these updates are de�ned
by rules. Further note, that we do not introduce classes, because we are
in the current paper not interested in the interaction between updates and
types, respectively, inheritance.

The language introduced so far can be considered as a variant of strat-
i�ed Datalog: methods correspond to predicates. Methods are mappings.
Whenever an object-base contains several method-applications for a certain
object (-version) v, all having the same method name m and the same argu-

6

ments a1; :::; ak, we consider the method m to be set-valued. Proceeding this
way we do not have to consider consistency questions w.r.t. functionality of
methods; moreover, we have a simple set-concept in our language without
any additional e�ort. (In fact, it corresponds to the set semantics introduced
in [CW89, KW89].) Further it is worth to note, that our usage of function
symbols does not enforce termination problems during bottom-up evaluation,
because we quantify over the set of all OIDs O, only. More precisely, for safe
rules only a �nite number of new versions can be derived during evaluation.
Thus we do not enter the computationally more di�cult world of Datalog
with function symbols [Ull88].

2.2 General Idea

We conceive an update-program as a mapping from an (old) object-base
into a (new) object-base; update-programs are evaluated bottom-up. Our
update-approach bases on the idea of object-versions at di�erent time-steps,
where the �rst version of an object (denoted by an OID) is the one found
in the current to-be-updated object-base. Updating an object is done by
carrying-out on it several groups of basic updates of the same type (insert,
delete or modify). Each group is implemented by one or several update-
rules. Realizing one such group \transforms" an object-version into the next
(further updated) version of the respective object. Conceptually this \trans-
formation" is understood as follows : consider version v with a certain state.
Further assume that a group of updates of some type � (2 fins, del, mod g)
are to be performed on v. Before performing the updates, a version �(v) is
created as a \copy" of v, i.e. all method-applications of v are taken to hold
(by default) for �(v). Now the updates of type � de�ned on version v are
performed by changing the default method-applications of �(v) accordingly.
After all updates have been performed, �(v) is the �-updated version of v.
The \last version" of an object's update-process represents the �nal updated
object. Moreover, during an evaluation of an update-program all versions
created during that evaluation can be used to derive the desired method
values.

Assume we want to update an object-base ob yielding a new object-base
ob0 using an update-program P . Let us focus on one object in ob, denoted
by its OID o. Assume that the update-rules in P de�ne (and perform) some
modify-updates on the not-yet-updated object o , followed by some delete-

7

updates based on the \modi�ed version of o ", concluding with some insert-
updates following the delete-updates. Consequently we here have 3 groups
of basic updates of the same type. At the time before evaluation of P has
started, the object is denoted by o. After the modify-updates, it is denoted
by mod(o); here from the OID o we have derived by the respective modify
a VID mod(o). Conceptually, mod(o) can be read as \the denotation of
the version of object o , after updates of type modify have been performed
on o ", which we consider tantamount to saying, that \the updated object-
version is referenced by mod(o) ". Thus VIDs have temporal characteristics.
Performing delete-updates on the version mod(o), results in a new version
denoted by the VID del(mod(o)), which again can be read as \the denotation
of the version of object o , after updates of type modify, followed by updates
of type delete, have been performed on o ". In analogy, performing the insert-
updates yields the version ins(del(mod(o))), which | if no further updates
follow | is taken over into the new object-base ob0 (where the object then
will be denoted by o again). The general case of k consecutive groups of basic
updates (of types �1; : : : ; �k resp.) performed on an object o , is illustrated
in �gure 1.

Review the salary-update example in Section 2.1. Talking in the jargon of
versions we have the following : for an employee-object e , e.g. with method-
applications isa!empl and sal!100 in the to-be-updated object-base, the

8

bottom-up evaluation of the salary-update rule yields a version mod(e) with
method-applications isa! empl and sal! 110 . The method-applications
of the mod(::)-versions form the updated object-base; i.e. once the update-
process is �nished we have e:isa!empl and e:sal!110 in the new object-
base.

2.3 Illustrative Examples

Assume an enterprise-object-base holding information about employees and
let a �rst intended update be as follows: \Each employee gets a 10% salary-
raise and those in a managerial position an extra $200. Afterwards all those
employees are �red, who make more than any of their superiors, and �nally
those of the remaining ones, who make more than $4500, are grouped into
a class called hpe (high-paid-employees)." The following update-program

9

realizes the update:

mod[E]:sal! (S;S0) (= (rule1)
E:isa!empl=pos!mgr=sal!S ^
S0 = (S � 1:1) + 200

mod[E]:sal! (S;S0) (= (rule2)
E:isa!empl=sal!S ^
:E:pos!mgr ^ S0 = (S � 1:1)

del[mod(E)]:� (= (rule3)
mod(E):isa!empl=boss!B=sal!SE ^
mod(B):isa!empl=sal!SB ^ SE > SB

ins[mod(E)]:isa!hpe (= (rule4)
mod(E):isa!empl=sal!S ^
S > 4500 ^ :del[mod(E)]:isa!empl
Note that a construct v:m1 ! r1=m2 ! r2= : : : is used as an obvious

short notation for a conjunction of the respective method-applications w.r.t.
version v; similarly, we write del[: : :]:� to express the deletion of all method-
applications of the respective version. With these explanations on hand let us
explain the e�ect of the four update-rules, assuming a bottom-up evaluation.
The �rst rule takes an employee in a managerial position (isa!empl=pos!
mgr), who had not yet been updated (E) and initiates a modify of his salary
method (mod[E]:sal! (S ; S0)). The second rule modi�es the salary of
all employees who are no managers. Assume in our to-be-updated object-
base a manager phil who makes $4000 and has no superior, and an employee
bob who makes $4200 and phil being one of his superiors. Surely we expect
that the update (as a whole) leaves phil in the class hpe with a salary of
$4600 and bob �red (i.e. no more an employee). This is indeed the case
(cf. �gure 2). The �rst rule initiates a modify-update on phil resulting in a
version mod(phil), which | compared to the version phil | has the salary
method result modi�ed to $4600. An analogous reasoning applies to bob
together with the second rule. The third rule only deals with employees after
amodify had been carried out on them (mod(::)), i.e. in our example only the
object-versions mod(phil) and mod(bob) are considered. This rule performs
a delete-update on mod(bob) yielding the object-version del(mod(bob)) with
the method-applications deleted as speci�ed in the rule-head. Note that the
third rule does not apply to phil, because in our example-object-base he

10

has no superior. The last rule shows that in our approach update-terms
are allowed to appear in rule-bodies. This rule �res, if a modi�ed employee
(mod(E)) with salary greater $4500 exists and no delete-update, deleting
his isa-result empl, had been performed on the mod(E)-version 2. The rule
applies to E = phil (but not to E = bob), initiating an insert-update of
mod(phil), yielding the object-version ins(mod(phil)), for which isa!empl
and isa!hpe hold.

The next example shows that our approach can also be used to perform
some sort of \hypothetical reasoning", as the usage of versions-identities
allows to revise \hypothetical" updates. In the example below we intend to
determine if after a hypothetical salary-raise (non-linear) to all employees,
the employee peter would be the richest employee of the enterprise:

mod[E]:sal! (S;S0) (= (rule1)
E:sal!S=factor!F ^ S0 = S � F

mod[mod(E)]:(S0
;S) (= (rule2)

mod(E):sal!S0 ^ E:sal!S

ins[mod(mod(peter))]:richest!no (=
mod(E):sal!SE ^ (rule3)
mod(peter):sal!SP ^ SE > SP

ins[ins(mod(mod(peter)))]:richest!yes (=
:ins(mod(mod(peter))):richest!no (rule4)

Here the �rst two rules realize the hypothetical salary-raise by performing
and revising it right away. For each employee e the mod(mod(e))-version is
identical to the e-version and the mod(e)-version contains the raised salary.
The third and fourth rule determine { by using the version after the �rst
modify { whether peter would be the richest employee of the enterprise.3

The �nal example shows that also recursive rules can be used for updates.
By the two rules the ancestors of some given persons are computed. Note,

2Note that using the negated version term :del(mod(E)):isa! empl instead of the
negated update-term :del[mod(E)]:isa!empl would not at all have had the same e�ect,
because the former would be satis�ed for an employee e, if, either there does not exist
a version del(mod(e)), or there exists such a version, however isa! empl does not hold;
while the latter asks for the version mod(e) not being subject to a delete-update, which
removes isa!empl. Therefore, only the use of the negated update-term in the rule-body
performs the intended update.

3An appropriate strati�cation technique will be presented in section 4.

11

that in this example methods anc and parents are considered to be set-
valued. The example is as follows:

ins[X]:anc!P (=
X:isa!person=parents!P

ins[X]:anc!P (=
ins(X):isa!person=anc!A ^
A:isa!person=parents!P

2.4 Discussion and Comparison

The concept of object-versions integrates in a nice and easy-to-understand
way procedurality into our rule update-language. If, in our �rst example,
bob would only gain $4100, then without imposing control by the struc-
ture of the VIDs, �ring employees before raising salaries could have led to
a di�erent unintended updated object-base. In fact, there is a large con-
sensus that \procedurality" or some kind of \control" is required for up-
dates [Abi88] (update= logic + control). Not surprisingly, the introduction of
control leads to an increase of computational power. In rule-based update-
languages based on top-down reasoning, di�erent control mechanisms are
encountered : [Tom88, Dec90, KM90, MW87] use the implicit control strate-
gies o�ered by di�erent variants of resolution. The update language pro-
posed by [NT89] provides in addition explicit control by allowing sequential-,
conditional- and iterative- operators in rule-bodies.

A comprehensive study of various extensions of Datalog with �xpoint
semantics can be found in [AV91]; deterministic and nondeterministic exten-
sions are studied w.r.t. their expressive power and complexity. Connections
to procedural languages are given which also exhibit many interesting forms
of programmed control. A di�erent way to control evaluation is pointed out
in RDL1 [dMS88]: here explicit (user de�ned) control is achieved by adding
so called Production Compilation Networks to the rule-programs, which allow
similar control patterns as Petri-Nets.

In Logres [CCCR+90] update-rules are grouped in modules, which have
either in
ationary or strati�ed semantics, and can be used to de�ne updates
of base and derived methods. By specifying orders on the execution of the
modules, the user has a
exible, however \manual" means for control. An
interesting approach for control is chosen in LOCO [LVVS90]: here updates
are controlled by the inheritance mechanism of the language. However up-

12

dates cannot be de�ned by rules; instead again in a \manual" way new rules
have to be introduced into the isa-hierarchy to achieve the desired e�ects.

Our approach will provide di�erent types of control : in addition to a rule-
ordering entailed by strati�ed negation, an implicit control resulting from a
\strati�cation by object-versions". We \move from version to version" by
explicitly naming them: VIDs allow to refer to objects at di�erent stages
of their update-process. This version aspect gives our approach a greater
functionality compared to having the whole update-process performed at
the same \time -step", or breaking the process into �xed modules as it is
done in Logres. There seems to be an interesting relationship to the internal
event calculus in [Oli89]. Here di�erent versions can be distinguished by
certain time-points. However no notion of object is considered and our VIDs
also contain information about the history of the updates. Finally, we allow
update-terms in rule-heads as well as rule-bodies. In the rule-head an update-
term explicitly initiates an update (as in all bottom-up approaches), while
in the rule-body it requests that a certain update of a certain object-version
has (or has not) already been performed.

Versioning in object-oriented databases is a well-established concept (the
textbook [Kim91] contains many references to relevant work.) High sophis-
ticated techniques have been proposed to organize the versions of a certain
object. We are more restrictive in this aspect and will require, that the ver-
sions of an object must re
ect a linear order, while usually a hierarchy is
allowed. The motivation for this restriction is that we must choose for each
object a version out of a possible set of versions to built the new object-
base; requiring a linear order makes this simple. There exists an interesting
relationship between our update approach and schema evolution. The way
we consider inserts and deletions would require changes of corresponding
class-de�nitions in a strongly typed environment, because methods become
unde�ned, respectively de�ned w.r.t. some objects according to the type of
the update. The techniques proposed in [SZ87] seem to be a good starting
point for an integration of our method into a more general environment.

3 An Immediate Consequence Operator

Let P be a given program, and I be an object-base. As we are interested in
the bottom-up evaluation of P we now introduce an operator TP , which maps
object-bases into object-bases. TP is an adaptation of the usual immediate

13

consequence operator in deductive databases. Intuitively, TP (I) derives a
new object-base I 0, such that each element in I 0 is derived by an application
of a rule in P w.r.t. I. The de�nition of TP needs some further prerequisites.

First we de�ne truth of ground version- and update-terms w.r.t. an object-
base I. Version-terms do not perform any updates, they simply refer to a
certain object-version asking for a certain property. Update-terms behave
di�erently, depending whether they occur in the head or the body of a rule.
W.r.t. delete and modify, an update-term in a rule-head only then is true, if
its e�ect has not already occurred before. For example, a delete of informa-
tion is only then allowed, if the to be deleted information indeed exist. In a
rule-body, an update-term only then is true, if the stated version-transition
really has occurred. For example, for a delete it is required, that the re-
spective information did hold w.r.t. the state of the version, on which the
delete has been performed, but does not hold w.r.t. the state of the version
of the update-term. Similar holds for a modify-operation. Still, for delete-
operations the situation is a bit more subtle, as we will explain next. In the
sequel, by m we mean a method denoted bym applied to a sequence of k � 0
arguments, i.e. m@a1; :::; ak.

Consider an update-term �[v]:m! r. Insert, respectively modify, are
di�erent to delete, because in the former cases we can be sure, that there
will exist a version ins(v), respectively mod(v) in I 0. For a delete this is
not necessarily the case, because by a delete we shrink the state of a version,
such that by deleting the last method-application, also the information about
existence of the version has been deleted. To avoid such loss of information
we assume, that for each object o in the given object base ob there is de�ned
a method exists as follows: o:exists ! o. In addition we require, that for
all programs P , this \system-method" exists does not occur in the head of
any rule, i.e., it cannot be updated. Proceeding this way we will achieve the
desired e�ect, that we cannot loose all information about a version del(v) of
an object o; at least a note about its existence expressed by del(v):exists!o
will survive. Finally, let v be any VID w.r.t. an object o. Then v� is the
largest subterm of v, such that v�:exists!o 2 I.

1. Version-Term
A ground version-term v:m!r is true w.r.t. I i� v:m!r 2 I.

2. Update-Term in a Rule-Head

14

� A ground update-term ins[v]:m! r, which occurs in a rule-head, is
always true w.r.t. I.

� A ground update-term del[v]:m! r, which occurs in a rule-head, is
true w.r.t. I i� v�:m!r 2 I.

� A ground update-term mod[v]:m! (r; r0), which occurs in a rule-
head, is true w.r.t. I i� v�:m!r 2 I.

3. Update-Term in a Rule-Body

� A ground update-term ins[v]:m! r, which occurs in a rule-body, is
true w.r.t. I i� ins(v):m!r 2 I.

� A ground update-term del[v]:m! r, which occurs in a rule-body, is
true w.r.t. I i� v�:m!r 2 I and del(v):exists!o 2 I and

del(v):m!r 62 I,
where o is the object of which del(v) is a version.

� A ground update-term mod[v]:m! (r ; r0) , where r 6= r0, which
occurs in a rule-body, is true w.r.t. I i� v�:m ! r 2 I and
mod(v):m!r 62 I and mod(v):m!r0 2 I.

� A ground update-term mod[v]:m! (r;r0) , where r = r0, which oc-
curs in a rule-body, is true w.r.t. I i� v�:m!r 2 I and mod(v):m!
r 2 I.

Negation in rule-bodies is treated as follows. A negated ground version-
term :v:m! r is true w.r.t. I, if v:m! r is not true w.r.t. I. Negation of
update-terms in rule-bodies is de�ned analogously.

After having introduced all the prerequisites, the immediate consequence
operator TP (I) now can be de�ned by the following 3-step procedure:

Step 1

Compute the set:

T 1
P
(I) = fh j there exists a ground instance of

a rule in P such that its head h
and every literal in its body
is true w:r:t: I g

In this step we derive the set of updates, which have to be performed
on I.

15

Step 2

Let �[v]:m ! r 2 T 1
P
(I), respectively, �[v]:m ! (r ; r0) 2 T 1

P
(I).

Any such VID �(v) is called relevant; it is called active, if in addition I
already contains a method-application of �(v), i.e., �(v):exists! o 2 I
for some object o. Compute then the set:

T 2
P
(I) = f�(v):m!r j �(v) is active

and �(v):m!r 2 I g [

f�(v):m!r j �(v) is relevant;however
not active and v�:m!r 2 I g

Now we have prepared, by copying from I, for each object, on which an
update has to be performed, a state of a version on which the update
can take place. Note, in case of an active VID, we can simply copy
the state from I, while in case the VID is relevant, but not active, we
create a new version by taking the method-applications of the previous
version as default.4

Step 3

It remains to do the required updates. To this end, �nally compute the
result of applying TP on I:

TP (I) =

fins(v):m!r j ins[v]:m!r 2 T 1
P
(I) or

ins(v):m!r 2 T 2
P
(I)g [

fdel(v):m!r j del(v):m!r 2 T 2
P
(I) and

del[v]:m!r 62 T 1
P
(I)g [

fmod(v):m!r j mod(v):m!r 2 T 2
P
(I) and

mod[v]:m! (r;r0) 62 T 1
P
(I)g [

fmod(v):m!r0 jmod[v]:m! (r;r0) 2 T 1
P
(I)g

4At this point it may be interesting to re
ect on the well-known frame-problem. All
knowledge true for an old version has also to be true for the new one, if it has not explicitly
stated otherwise by the update. By copying old states only for the objects being updated
(and not the whole object-base), we keep the unavoidable overhead low.

16

4 Bottom-Up Evaluation

Bottom-up evaluation is complicated by several reasons. First, we have non-
monotonicity because of negation in rule-bodies; second, another source of
nonmonotonicity are delete- and modify-operations. Insert-operations do not
impose problems here, because inserts correspond to the usual derivation of
new (positive) facts. Finally, during application of the immediate conse-
quence operator, a copy of a state of a version to get a basis for the state
of a new version may occur. Once such a copy has occured, the state being
copied should not be changed further, because these changes will not be im-
plemented in the new version's state. A solution to these problems can be
achieved by a strati�cation of the rules in P . The aim of such a strati�cation
is to partition the rules into so called strata ; bottom-up evaluation then is
done stratum by stratum. The results of the lower strata are the input to
the respective next higher stratum. In case that for a given program P there
exists a strati�cation, after having processed all strata, a �xpoint of P is
reached. This follows in analogy to results for strati�ed Datalog [Ull88].

For technical simplicity of the derivation of the required strati�cation,
we replace in the given program P each construct �[V] by �(V), � 2 F .
First, we guarantee that once a state is copied, this state is not changed any
further. This gives our �rst condition for strati�cation:

(a) Let r be a rule with a version-id-term �(V) in its head. Let r0 be a rule,
which has a version-id-term V 0 in its head, such that V 0 uni�es with a
subterm of V . Then r0 is in a lower stratum than r.

Consider the �rst example stated in Section 2.3. The following strati�cation
ful�lls condition (a):

f rule1; rule2 g; f rule3; rule4 g:

The condition for strati�cation with respect to negation can be adapted
from [Ull88]. However, in our framework the role of predicate names in
Datalog now has to be taken by version-id-terms. The resulting conditions
for strati�cation can be stated as follows:

(b) If there exists a rule r with a version-id-term V of a not negated atom
in the body, then each rule, which has a version-id-term in its head
unifying with a subterm of V is in a stratum which is at most as high
as the stratum of r.

17

(c) If there exists a rule r with a version-id-term V of a negated atom in the
body, then each rule, which has a version-id-term in its head unifying
with a subterm of V , is in a lower stratum than r.

To continue our example, the following strati�cation ful�lls conditions (a) -
(c):

f rule1; rule2 g; f rule3 g; f rule4 g:

The remaining task now is to consider nonmonotonicity due to delete- and
modify-operations. A further strati�cation is necessary because of the follow-
ing reasons. Assume during bottom-up evaluation we have to delete method-
applications of a version v. (The case of modify is analogous.) Then, �rst a
new version, say del(v), is created, whose method-applications are the same
as for v. On this version the delete operations will take place. This follows
from our de�nition of the TP -operator. Now assume, that the delete opera-
tions do not all take place during one application of TP . Thus, there is the
possibility, that a method-application of del(v) will be used to infer some
operations w.r.t. other objects, and this method-application will be deleted
afterwards, as well. To avoid such counterintuitive behaviour we require,
that rules which perform a delete or a modify are assigned to a lower stra-
tum than those rules, which refer to versions on which the corresponding
delete- or modify-actions take place:

(d) If there exists a rule r with a version-id-term del(V), respectivelymod(V),
of an atom in its body, then each rule, whose head contains a version-
id-term del(V 0), respectively mod(V 0), such that V and V 0 unify, is in
a lower stratum than r.

In our example, no further partitioning of the rules is implied by condition
(d).

Let P be a program and ob a respective object base. If P has a strati�-
cation such that (a) - (d) is ful�lled, then the bottom-up evaluation is real-
ized by iterating the operator TP stratum by stratum, starting from a given
object-base ob, in an analogous way as it is described in detail in [Ull88].
The result of this computation process is denoted by result(P). Note, as we
are only considering safe rules, the iteration is guaranteed to terminate with
respect to each stratum.

18

5 Building the New Object Base

Let P be a program, and ob the object base on which P is performed. As-
sume P is strati�ed and we have computed result(P). Even though during
the computation a strati�cation has been observed, it is still possible, that
result(P) contains versions, which make it impossible to derive the new up-
dated object base ob0. This is the case, if there exist two versions of the same
object o, with VIDs v; v0, for which we cannot decide, which of the both is
the one whose method-applications are to be copied into ob0. For example,
such a situation could occur, if P contains the rules:

mod[o]:m! (a;b) (= : : : a rulebody : : :
del[o]:m!a (= : : : another rulebody : : :

and both rules �re during the evaluation of P . In general, it is undecidable
to predict whether such a situation may occur during evaluation. To exclude
such programs, for the purposes of the current paper, we believe that a run-
time check during the computation of result(P) is appropriate, because its
realization seems to be not expensive.

We call result(P) version-linear, if for any two VIDs v; v0 of the same
object o it holds, that either v is a subterm of v0, or vice versa. For an object
o, that version of o is called the �nal version of o, whose VID contains all
VIDs of the other versions of o as a subterm. Version-linearity can be easily
checked during evaluation: At any point of time, keep the VID of the most
recent version of each object and check whether the VID of any new version
of the same object contains the previous VID as subterm.

Finally, if result(P) is version-linear, the updated object base ob0 is de-
rived from result(P) by copying into ob0 for each object o 2 ob the method-
applications of its �nal version. Note, that it may be the case that for an
object all method-applications are deleted in its �nal version, i.e. the only
method de�ned for this version is the method exists. In this case no infor-
mation about such an object will be present in ob0.

6 Conclusion

The primary intention of the current paper is to present a technique for
de�ning updates using rules based on object-versions. To keep the frame-

19

work simple, we restricted our language more than necessary. More expres-
sive power can be gained by allowing to quantify over VIDs in addition to
OIDs. However, such an extension must be done carefully not to destroy
the termination properties of the evaluation process. Our investigations can
be continued in several directions. First, it seems to be worth to try to de-
velop strati�cation or related criteria which allow to accept a broader class
of programs for evaluation. Also, alternatives to version-linearity may be
interesting. Second, we did not consider derived objects. We do not see any
principal problems to generalize our approach in this direction. Finally, our
version-based approach has temporal characteristics. The investigation of
the relationship to temporal logics seems to be an interesting �eld for further
research.

7 Acknowledgement

We would like to thank the referees for their helpful comments and for point-
ing out many relationships to other work.

References

[Abi88] Serge Abiteboul. Updates, a new frontier. In Second Intl. Conf.

on Data Base Theory, Bruges, LNCS 326, pages 1{18. Springer{
Verlag, 1988.

[Abi90] Serge Abiteboul. Towards a deductive object-oriented database
language. In Data and Knowledge Engineering, Vol.5, No.2,
pages 263{287, 1990.

[AK89] Serge Abiteboul and Paris Kanellakis. Object identity as a query
language primitive. In Proc. of the ACM SIGMOD Conf. on

Management of Data, pages 159 { 173, 1989.

[AT91] Paolo Atzeni and Riccardo Torlone. Updating deductive
databases with functional dependencies. In Proc. of the Intl.

Conf. on Deductive and Object-Oriented Databases, Munich,
1991.

20

[AV91] Serge Abiteboul and Victor Vianu. Datalog extensions for
database queries and updates. Journal of Computer and System
Sciences, Vol.43, pages 62{124, 1991.

[Ban86] Fran�cois Bancilhon. A logic-programming/object-oriented cock-
tail. ACM SIGMOD Record, Vol.15, No.3, 1986.

[BFKM86] Lee Brownstone, Robert Farell, Elaine Kant, and Nancy Martin.
Programming Expert Systems in OPS5. Addison Wesley, 1986.

[CCCR+90] F. Cacace, S. Ceri, S. Crespi-Reghizzi, L. Tanca, and R. Zicari.
Integrating object-oriented data modeling with a rule-based pro-
gramming paradigm. In ACM SIGMOD Conf. on Management

of Data, pages 225{236, 1990.

[CW89] W. Chen and D. S. Warren. C-logic for complex objects. In
Proc. of the ACM SIGACT-SIGMOD-SIGART Symposium on

Principles of database Systems, pages 369 { 378, 1989.

[Dec90] Hendrik Decker. Drawing updates from derivations. In Proc. of

the Intl. Conf. on Database Theory, Paris, LNCS 470, 1990.

[dMS88] Christophe de Maindreville and Eric Simon. A production rule
based approach to deductive databases. In Proc. of the Intl.

Conf. on Data Engineering, Los Angeles, 1988.

[DOO89] First Intl. Conf. on Deductive and Object-Oriented Databases,

Kyoto, 1989.

[DOO91] Second Intl. Conf. on Deductive and Object-Oriented Databases,

Munich, 1991.

[HJ91] Richard Hull and Dean Jacobs. Language constructs for pro-
gramming active databases. In Proc. of the Intl. Conf. on Very

Large Data Bases, 1991.

[Kim91] Won Kim. Introduction to Object-Oriented Databases. MIT
Press, 1991.

21

[KL89] Michael Kifer and Georg Lausen. F-logic: A higher-order lan-
guage for reasoning about objects, inheritance and scheme. In
Proc. of the ACM SIGMOD Conf. on Management of Data,
pages 134 { 146, 1989.

[KLW90] Michael Kifer, Georg Lausen, and James Wu. Logical founda-
tions of object oriented and frame-based languages. Technical
report, Univ. Mannheim, 1990.

[KM90] A. Kakas and P. Mancarelle. Database updates through ab-
duction. In Proc. of the Int. Conf. on Very Large DataBases,

Brisbane, 1990.

[KW89] Michael Kifer and James Wu. A logic for object-oriented
logic programming (maier's o-logic revisited). In Proc. of the

ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

database Systems, pages 379 { 393, 1989.

[LSV90] E. Laenens, D. Sacca, and D. Vermeir. Extending logic pro-
gramming. In ACM SIGMOD Conf. on Management of Data,
pages 184{193, 1990.

[LVVS90] E. Laenens, B. Verdonk, D. Vermeir, and D. Sacca. The loco
language: Towards an integration of logic and object oriented
programming. Technical report, University of Antwerpen, Re-
port 90-09, 1990.

[MW87] Sanjay Manchanda and David Scott Warren. A logic-based lan-
guage for databse updates. In Jack Minker, editor, Foundations
of Deductive Databases and Logic Programming, pages 363{394.
Morgan Kau�man, Los Altos, 1987.

[NT89] Shamin Naqvi and Shalom Tsur. A logical Language for data and

Knowledge Bases. Computer Science Press, New York, 1989.

[Oli89] Antoni Olive. On the design and implementation of information
systems from deductive conceptual models. In Proc. of the Intl.

Conf. on Very Large Data Bases, pages 3{11, 1989.

22

[PDR91] Geo�rey Phipps, Marcia A. Derr, and Kenneth A. Ross. Glue-
Nail : A deductive database system. In Proc. of the ACM SIG-

MOD Conf. on Management of Data, 1991.

[SJGP90] M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos. On
rules, procedures, caching and views in data base systems. In
Proc. of the ACM SIGMOD Symp. on the Management of Data,
pages 281{290, 1990.

[SZ87] Andrea H. Skarra and Stanely B. Zdonik. Type evolution in an
object-oriented database. In Bruce Shriver and Peter Wegner,
editors, Research Directions in Object-Oriented Programming.
MIT Press, 1987.

[Tom88] Anthony Tomasic. View update translation via deduction and
annotation. In Proc. of the Intl. Conf. on Data Base Theory,

Bruges, LNCS 326, pages 338{352, 1988.

[Ull88] Je�rey D. Ullman. Principles of Database and Knowledge-Base

Systems, Volume I. Computer Science Press, New York, 1988.

[WF92] Jennifer Widom and Sheldon J. Finkelstein. Set-oriented pro-
duction rules in relational database systems. In Proc. of the

ACM SIGMOD Symp. on the Management of Data, pages 259{
264, 1992.

[ZH90] Y. Zhou and M. Hsu. A theory for rule triggering systems.
In Proc. of the Intl. Conf. on Extending Database Technology,
pages 407{421, 1990.

23

