
REFERENCES 97

[99] J. Xu. A Theory of Types and Type Inference in Logic Programming Languages. PhD thesis, SUNY

at Stony Brook, 1989.

[100] E. Yardeni, T. Fruehwirth, and E. Shapiro. Polymorphically typed logic programs. In Intl. Con-

ference on Logic Programming, Paris, France, June 1991.

[101] E. Yardeni and E. Shapiro. A type system for logic programs. In E. Shapiro, editor, Concurrent

Prolog, volume 2. MIT Press, 1987.

[102] C. Zaniolo. The database language GEM. In ACM SIGMOD Conference on Management of Data,

pages 423{434, 1983.

[103] C. Zaniolo, H. A��t-Kaci, D. Beech, S. Cammarata, L. Kerschberg, and D. Maier. Object-oriented

database and knowledge systems. Technical Report DB-038-85, MCC, 1985.



REFERENCES 96

[83] R. Ramakrishnan. Magic Templates: A spellbinding approach to logic programs. In IEEE Sympo-

sium on Logic Programming, pages 140{159, 1988.

[84] K.A. Ross. Relations with relation names as arguments: Algebra and calculus. In ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems, May 1992.

[85] M.A. Roth, H.F. Korth, and A. Silberschatz. Extended algebra and calculus for :1NF relational

databases. Technical Report 84-36, Univ. of Texas at Austin, 1985.

[86] J.W. Schmidt. Some high-level language constructs for data of type relation. ACM Transactions

on Database Systems, 2(3):247{261, September 1977.

[87] D.W. Shipman. The functional data model and the data language DAPLEX. ACM Transactions

on Database Systems, pages 140{173, 1981.

[88] M. Ste�k and D.G. Bobrow. Object-oriented programming: Themes and variations. The AI

Magazine, pages 40{62, January 1986.

[89] B. Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, MA, 1986.

[90] K. Thirunarayan and M. Kifer. A theory of nonmonotonic inheritance based on annotated logic.

Arti�cial Intelligence, 60(1):23{50, March 1993.

[91] D.S. Touretzky. The Mathematics of Inheritance. Morgan-Kaufmann, Los Altos, CA, 1986.

[92] D.S. Touretzky, J.F. Horty, and R.H. Thomason. A clash of intuitions: The current state of

nonmonotonic multiple inheritance systems. In Intl. Joint Conference on Arti�cial Intelligence,

pages 476{482, 1987.

[93] J.D. Ullman. Database theory: Past and future. In ACM SIGACT-SIGMOD-SIGART Symposium

on Principles of Database Systems, pages 1{10, 1987.

[94] J.F. Ullman. Principles of Database and Knowledge-Base Systems, Volume 1. Computer Science

Press, 1988.

[95] A. Van Gelder. The alternating �xpoint of logic programs with negation. In ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems, pages 1{10, 1989.

[96] A. Van Gelder, K.A. Ross, and J.S. Schlipf. The well-founded semantics for general logic programs.

In ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages 221{

230, 1988.

[97] P. Wegner. The object-oriented classi�cation paradigm. In B. Shriver and P. Wegner, editors,

Research Directions in Object-Oriented Programming, pages 479{560. MIT Press, 1987.

[98] J. Wu. A Theory of Types and Polymorphism in Logic Programming. PhD thesis, SUNY at Stony

Brook, 1992.



REFERENCES 95

[68] D. Maier, J. Stein, A. Otis, and A. Purdy. Development of an object-oriented DBMS. In Proceedings

of OOPSLA-86, pages 472{482, 1986.

[69] J. McCarthy. First order theories of individual concepts and propositions. In J.E. Hayes and

D. Michie, editors, Machine Inteligence, volume 9, pages 129{147. Edinburgh University Press,

1979.

[70] B. Meyer. Object-Oriented Software Construction. Prentice Hall, 1988.

[71] D. Miller. A logical analysis of modules in logic programming. Journal of Logic Programming,

6:79{108, 1989.

[72] M. Minsky. A framework for representing knowledge. In J. Haugeland, editor, Mind design, pages

95{128. MIT Press, Cambridge, MA, 1981.

[73] P. Mishra. Towards a theory of types in Prolog. In IEEE Symposium on Logic Programming, pages

289{298, 1984.

[74] J.C. Mitchell. Toward a typed foundation for method specialization and inheritance. In ACM

Symposium on Principles of Programming Languages, pages 109{124, 1990.

[75] K. Morris, J. Naughton, Y. Saraiya, J. Ullman, and A. Van Gelder. YAWN! (Yet another window

on NAIL!). IEEE Database Engineering, 6:211{226, 1987.

[76] A. Motro. BAROQUE: A browser for relational databases. ACM Trans. on O�ce Information

Systems, 4(2):164{181, 1986.

[77] S. Naqvi and S. Tsur. A Logical Language for Data and Knowledge Bases. Computer Science Press,

1989.

[78] E. Neuhold and M. Stonebraker. Future directions in DBMS research (The Laguna Beech report).

SIGMOD Record, 18(1), March 1989.

[79] G. Phipps, M.A. Derr, and K.A. Ross. Glue-Nail: A deductive database system. In ACM SIGMOD

Conference on Management of Data, pages 308{317, 1991.

[80] H. Przymusinska and M. Gelfond. Inheritance hierarchies and autoepistemic logic. In Intl. Sympo-

sium on Methodologies for Intelligent Systems, 1989.

[81] T.C. Przymusinski. On the declarative semantics of deductive databases and logic programs. In

J. Minker, editor, Foundations of Deductive Databases and Logic Programming, pages 193{216.

Morgan Kaufmann, Los Altos, CA, 1988.

[82] T.C. Przymusinski. Every logic program has a natural strati�cation and an iterated least �xed

point model. In ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,

pages 11{21, 1989.



REFERENCES 94

[52] M. Kifer and J. Wu. A logic for programming with complex objects. Journal of Computer and

System Sciences, 46, 1993. A special issue from PODS-89. To appear.

[53] W. Kim, J. Banerjee, H-T. Chou, J.F. Garza, and D. Woelk. Composite object support in an

object-oriented database system. In Proceedings of OOPSLA-87, 1987.

[54] P.G. Kolaitis and C.H. Papadimitriou. Why not negation by �xpoint. In ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems, pages 231{239, 1988.

[55] R. Krishnamurthy and S. Naqvi. Towards a real horn clause language. In Intl. Conference on Very

Large Data Bases, 1988.

[56] T. Krishnaprasad, M. Kifer, and D.S. Warren. On the circumscriptive semantics of inheritance

networks. In Intl. Symposium on Methodologies for Intelligent Systems, pages 448{457, 1989.

[57] T. Krishnaprasad, M. Kifer, and D.S. Warren. On the declarative semantics of inheritance networks.

In Intl. Joint Conference on Arti�cial Intelligence, pages 1099{1103, 1989.

[58] G. Kuper and M.Y. Vardi. A new approach to database logic. In ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems, 1984.

[59] G.M. Kuper. An extension of LPS to arbitrary sets. Technical report, IBM, Yorktown Heights,

1987.

[60] G.M. Kuper. Logic programming with sets. Journal of Computer and System Sciences, 41(1):44{64,

August 1990.

[61] E. Laenens, D. Sacca, and D. Vermeir. Extending logic programming. In ACM SIGMOD Conference

on Management of Data, pages 184{193, June 1990.

[62] E. Laenens and D. Vermeir. A �xpoint semantics for ordered logic. Journal Logic and Computation,

1(2):159{185, 1990.

[63] C. Lecluse and P. Richard. The O2 database programming language. In Intl. Conference on Very

Large Data Bases, August 1989.

[64] J.W. Lloyd. Foundations of Logic Programming (Second Edition). Springer Verlag, 1987.

[65] D. Maier. A logic for objects. In Workshop on Foundations of Deductive Databases and Logic

Programming, pages 6{26, Washington D.C., August 1986.

[66] D. Maier. Why database languages are a bad idea (position paper). In Proc. of the Workshop on

Database Programming Languages, Rosco�, France, September 1987.

[67] D. Maier. Why isn't there an object-oriented data model. Technical report, Oregon Graduate

Center, May 1989.



REFERENCES 93

[38] H. Ge�ner and T. Verma. Inheritance = chaining + defeat. In Intl. Symposium on Methodologies

for Intelligent Systems, pages 411{418, 1989.

[39] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Logic Pro-

gramming: Proceedings of the Fifth Conference and Symposium, pages 1070{1080, 1988.

[40] R.P. Hall. Computational approaches to analogical reasoning: A comparative study. Arti�cial

Intelligence, 30:39{120, 1989.

[41] P.J. Hayes. The logic for frames. In D. Metzing, editor, Frame Conception and Text Understanding,

pages 46{61. Walter de Gruyter and Co., 1979.

[42] P. Hill and R. Topor. A semantics for typed logic programs. In F. Pfenning, editor, Types in Logic

Programming, pages 1{62. The MIT Press, 1992.

[43] J.F. Horty, R.H. Thomason, and D.S. Touretzky. A skeptical theory of inheritance in nonmonotonic

semantic nets. In National Conference on Arti�cial Intelligence, pages 358{363, 1987.

[44] R. Hull and M. Yoshikawa. ILOG: Declarative creation and manipulation of object identi�ers. In

Intl. Conference on Very Large Data Bases, pages 455{468, Brisbane, Australia, 1990.

[45] F.N. Kesim and M. Sergot. On the evolution of objects in a logic programming framework. In Pro-

ceedings of the Intl. Conference on Fifth Generation Computer Systems, pages 1052{1060, Tokyo,

Japan, June 1992.

[46] S.N. Khosha�an and G.P. Copeland. Object identity. In Proceedings of OOPSLA-86, pages 406{416,

1986.

[47] M. Kifer, W. Kim, and Y. Sagiv. Querying object-oriented databases. In ACM SIGMOD Conference

on Management of Data, pages 393{402, June 1992.

[48] M. Kifer and G. Lausen. F-logic: A higher-order language for reasoning about objects, inheritance

and schema. In ACM SIGMOD Conference on Management of Data, pages 134{146, 1989.

[49] M. Kifer and G. Lausen. Behavioral inheritance in F-logic. in preparation, 1993.

[50] M. Kifer and J. Wu. A logic for object-oriented logic programming (Maier's O-logic revisited). In

ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages 379{393,

March 1989.

[51] M. Kifer and J. Wu. A �rst-order theory of types and polymorphism in logic programming. In

Intl. Symposium on Logic in Computer Science, pages 310{321, Amsterdam, The Netherlands,

July 1991. Expanded version: TR 90/23 under the same title, Department of Computer Science,

University at Stony Brook, July 1990.



REFERENCES 92

[22] G. Brewka. The logic of inheritance in frame systems. In Intl. Joint Conference on Arti�cial

Intelligence, pages 483{488, 1987.

[23] P. Buneman and R.E. Frankel. FQL - A functional query language. In ACM SIGMOD Conference

on Management of Data, pages 52{58, 1979.

[24] P. Buneman and A. Ohori. Using powerdomains to generalize relational databases. Theoretical

Computer Science, 1989.

[25] L. Cardelli. A semantics of multiple inheritance. Information and Computation, 76(2):138{164,

February 1988.

[26] M. Carey, D. DeWitt, and S. Vanderberg. A data model and query language for EXODUS. In

ACM SIGMOD Conference on Management of Data, 1988.

[27] C.L. Chang and R.C.T. Lee. Symbolic Logic and Mechanical Theorem Proving. Academic Press,

1973.

[28] W. Chen. A theory of modules based on second-order logic. In IEEE Symposium on Logic Pro-

gramming, pages 24{33, September 1987.

[29] W. Chen and M. Kifer. Sorts, types and polymorphism in higher-order logic programming. Tech-

nical Report 92-CSE-7, Department of Computer Science and Engineering, Southern Methodist

University, March 1992.

[30] W. Chen, M. Kifer, and D.S. Warren. HiLog: A foundation for higher-order logic programming.

Journal of Logic Programming, 15(3):187{230, February 1993.

[31] W. Chen and D.S. Warren. C-logic for complex objects. In ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems, pages 369{378, March 1989.

[32] W.F. Clocksin and C.S. Mellish. Programming in Prolog. Springer Verlag, 1981.

[33] W.R. Cook, W.L. Hill, and P.S. Canning. Inheritance is not subtyping. In ACM Symposium on

Principles of Programming Languages, pages 125{136, 1990.

[34] G. Dobbie and R. Topor. A model for inheritance and overriding in deductive object-oriented

systems. In Sixteenth Australian Computer Science Conference, January 1993.

[35] H.B. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.

[36] D.W. Etherington and R. Reiter. On inheritance hierarchies with exceptions. In National Confer-

ence on Arti�cial Intelligence, pages 104{108, Washington, D.C., 1983.

[37] R. Fikes and T. Kehler. The role of frame-based representation in reasoning. Communications of

ACM, 28(9):904{920, 1985.



REFERENCES 91

[8] R. Anderson and W.W. Bledsoe. A linear format resolution with merging and a new technique for

establishing completeness. Journal of ACM, 17(3):525{534, 1970.

[9] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and S. Zdonik. The object-oriented

database system manifesto. In Intl. Conference on Deductive and Object-Oriented Databases, pages

40{57, 1989.

[10] M. Balaban. The generalized concept formalism { A frames and logic based representation model.

In Proceedings of the Canadian Arti�cial Intelligence Conference, pages 215{219, 1986.

[11] M. Balaban and S. Strack. LOGSTER | A relational, object-oriented system for knowledge

representation. In Intl. Symposium on Methodologies for Intelligent Systems, pages 210{219, 1988.

[12] F. Bancilhon. Object-oriented database systems. In ACM SIGACT-SIGMOD-SIGART Symposium

on Principles of Database Systems, pages 152{162, 1988.

[13] F. Bancilhon and S.N. Khosha�an. A calculus of complex objects. Journal of Computer and System

Sciences, 38(2):326{340, April 1989.

[14] J. Banerjee, W. Kim, and K.C. Kim. Queries in object-oriented databases. In Proc. of the 4-th

Intl. Conf. on Data Engineering, Los Angeles, CA, February 1988.

[15] C. Beeri. Formal models for object-oriented databases. In Intl. Conference on Deductive and

Object-Oriented Databases, pages 370{395. Elsevier Science Publ., 1989.

[16] C. Beeri, S. Naqvi, O. Shmueli, and S. Tsur. Sets and negation in a logic database language (LDL).

Technical report, MCC, 1987.

[17] C. Beeri, R. Nasr, and S. Tsur. Embedding  -terms in a horn-clause logic language. In Third

International Conference on Data and Knowledge Bases: Improving Usability and Responsiveness,

pages 347{359. Morgan Kaufmann, 1988.

[18] C. Beeri and R. Ramakrishnan. On the power of magic. Journal of Logic Programming, 10:255{300,

April 1991.

[19] A.J. Bonner and M. Kifer. Transaction logic programming (or a logic of declarative and procedural

knowledge). Technical Report CSRI-270, University of Toronto, April 1992. Revised: April 1993.

Available in csri-technical-reports/270/report.ps by anonymous ftp to csri.toronto.edu.

[20] A.J. Bonner and M. Kifer. Transaction logic programming. In Intl. Conference on Logic Program-

ming, Budapest, Hungary, June 1993. To appear.

[21] S. Brass and U.W. Lipeck. Semantics of inheritance in logical object speci�cations. In Intl. Con-

ference on Deductive and Object-Oriented Databases, pages 411{430, December 1991.



REFERENCES 90

1. Uni�cation of sets:

This is not a problem speci�c to F-logic but, rather, is a fact of life. Every language that allows

the use of sets in any essential way has to put up with the exponential worst-case complexity of

set-uni�cation.

2. Permutation of methods inside molecules:

Since methods may be denoted by nonground id-terms, they can match each other in many di�erent

ways. For instance, in unifying P [X ! V ; Y ! W ] and P [X 0 ! V 0; Y 0 ! W 0], the method

denoted by X can match either X 0 or Y 0; similarly for Y . Thus, an extra complexity is expected

due to the higher-order syntax of F-logic.

The key factor in estimating the complexity of uni�cation in \practical" cases is the number of atoms

comprising each molecule in the bodies of the rules. For, if n1 is the number of atoms in T1 and n2 is

the same for T2, then the number of uni�ers of T1 into T2 is bounded by nn12 . Now, to resolve a pair of

rules : : :  : : : ; T1; : : : and T2  : : : , where T1 and T2 are data or signature molecules, we need

to unify T1 into T2 and, therefore, the above parameter, n1, which denotes the number of atoms in T1, is

most crucial. However, our experience with writing F-programs and all the examples in this paper show

that this number is usually very small (� 2) and so, we believe, combinatorial explosion is unlikely to

happen in practice.
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Input : Pair of molecules, T1 and T2.
Output : A complete set 
 of mgu's of T1 into T2.

1. If id(T1) and id(T2) are uni�able, then set � := UNIFY (< id(T1) >;< id(T2) >).
Otherwise, stop: T1 and T2 are not uni�able.

2. If T1 is of the form S[ ] (a degenerated molecule), then stop: � is the only mgu.

3. Set 
 := f g.
for each mapping � 2Maps(T1; T2) do:

Set �� := �.
for each atom ' in atoms(T1) do:

Let  
def
= �(').

if val(') = ; then Unify the tuples ��( ~S1) and ��( ~S2), where
~S1 = < method('); arg1('); :::; argn(') > and
~S2 = < method( ); arg1( ); :::; argn( ) >.

if ��( ~S1) and ��( ~S2) are uni�able then set �� := UNIFY (��( ~S1); ��( ~S2)) � ��.
else discard this �� and jump out of the inner loop to select another �.
�

else
Unify tuples ��( ~S1) and ��( ~S2), where

~S1 = < method('); arg1('); :::; argn('); val(')> and
~S2 = < method( ); arg1( ); :::; argn( ); val( )>.

If ��( ~S1) and ��( ~S2) are uni�able then set �� := UNIFY (��( ~S1); ��( ~S2)) � ��.
else discard this �� and jump out of the inner loop to select another �.
�

�

Set 
 := 
 [ f��g.
od

od

4. Return 
, a complete set of mgu's of T1 into T2.

Figure 10: Computing a Complete Set of MGU's

Lemma B.1 The algorithm in Figure 10 correctly �nds a complete set of mgu's of T1 into T2.

Proof: Clearly, all elements of 
 are mgu's of T1 into T2, so we will only show that 
 is complete.

Consider a uni�er � of T1 into T2. By de�nition, there is a mapping � 2Maps(T1; T2) from atoms(T1) to

atoms(T2), such that � maps every ' in atoms(T1) into an appropriate atom �(') in atoms(T2). Clearly,

substitution �� constructed in the inner for-loop in Step 3 of the above algorithm is a most general uni�er

that maps every ' 2 atoms(T1) to �(') 2 atoms(T2). So, � is an instance of ��.

Summarizing, we have shown that 1) each element of 
 is an mgu; and 2) if � is a uni�er of T1 into T2,

then � is an instance of an element �� 2 
. Hence, 
 is a complete set of mgu's of T1 into T2. 2

In the worst-case, the algorithm of Figure 10 may yield an exponential number of uni�ers, which may

happen due to the following two factors:
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Proposition A.6 Every locally strati�ed F-program has a unique perfect H-model.

Proof: (Sketch) The proof is similar to that in [81]. Another, indirect proof can be derived from

Theorem 17.1. Let �(Pa) be a translation of Pa into classical logic. To prove the result, it is necessary

to show that if �Pa is well-founded then so is ��(Pa), where the latter is the order on ground atoms that

is used in the usual de�nition of local strati�cation. Then, it must be shown that (in the notation of

Theorem 17.1) � maps �P
a-minimal models of P into ��(Pa)-minimal models of �(P

a). 2

B Appendix: A Uni�cation Algorithm for F-molecules

This appendix presents an algorithm for �nding a complete set of mgu's for a pair of molecules. We

remind (Section 10.1) that all complete sets of mgu's are equivalent to each other and therefore it su�ces

to �nd just one such set. Recall that a molecule can be represented as a conjunction of its constituent

atoms. For a pair of molecules, T1 and T2, an mgu of T1 into T2 is a most general substitution that

turns every constituent atom of T1 into a constituent atom of T2. Di�erent correspondences between the

constituent atoms of T1 and T2 may lead to di�erent mgu's. To �nd a complete set of mgu's, we must

take all such correspondences into account. Let ' be an atom of either of the following forms:

(i) P [Method@Q1; :::; Qk; R], where ; denotes any of the six

allowed types of arrows in method expressions;

(ii) P [Method@Q1; :::; Qk; f g], where ; denotes !! or �!! ; or

(iii) P [Method@Q1; :::; Qk; ( )], where ; denotes ) or )).

The following notation is used in the uni�cation algorithm in Figure 10:

id(') = P ,

method(') = Method,

argi(') = Qi; for i = 1:::k,

val(') =

(
R if ' is of the form (i) above
; if ' has the form (ii) or (iii) above

In addition, if T is a molecule then atoms(T ) will denote the set of atoms of T . If T1 and T2 are

molecules then Maps(T1; T2) denotes the collection of mappings f� : atoms(T1) 7�! atoms(T2)g that

preserves method arities and the type of the method expression (or, in other words, the type of the arrow

used in those expressions).

As noted in Section 10.1, the mgu of a pair of tuples of id-terms, hP1; :::; Pni and hQ1; :::; Qni, coincides

with the mgu of the terms f(P1; :::; Pn) and f(Q1; :::; Qn), where f is an arbitrary n-ary function symbol.

So, we can use any standard uni�cation procedure to unify tuples of id-terms. Given a pair of tuples of

id-terms ~S1 and ~S2, we use UNIFY ( ~S1; ~S2) to denote a procedure that returns the mgu of ~S1 and ~S2, if

one exists.
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Axioms of the IS-A hierarchy.

X :: Y  X :: Z ^ Z :: Y % Transitivity
X
:
=Y  X :: Y ^ Y :: X % Acyclicity

X : Y  X : Z ^ Z :: Y % Subclass inclusion

Axioms of typing. For every arity, n, and for �> standing for either ) or )) :

X [M@A1; :::; An�>T ]  X 0[M@A1; :::; An�>T ] ^X :: X 0

% Type inheritance
X [M@A1; :::Ai; :::; An�>T ]  X [M@A1; :::; A

0
i; :::; An�>T ] ^ Ai :: A0i

% Input restriction
X [M@A1; :::; An�>T ]  X [M@A1; :::; An�>T 0] ^ T 0 :: T

% Output relaxation

Axioms of scalarity. For every arity, n, and for ; standing for ! or �! :

(V
:
=V 0) X [M@A1; :::; An; V ] ^X [M@A1; :::; An; V 0]

De�nition A.3 (Program Augmentation) For any program, P, de�ne its augmentation, Pa, to be the

union of P with the relevant ground instances of the closure axioms.

A ground instance of an axiom is relevant if all atoms in its premises are relevant. An atom is relevant

if and only if it occurs in the head of a rule in P� or, recursively, in the head of a axiom-instance whose

relevance was established previously. 2

We can now rectify the earlier de�nitions by considering the order �Pa instead of �P, i.e., by using

augmentations of programs rather than programs themselves.

De�nition A.4 (Locally Strati�ed Programs) An F-program P is locally strati�ed if the relation \�Pa"

is well-founded . 2

De�nition A.5 (Perfect Models) H-models of P that are minimal with respect to�P
a are called perfect

models of P. 2

Returning to programs P1 and P2 in (29), we can now see that they are not locally strati�ed with

respect to De�nition A.4 (while they were locally strati�ed with respect to De�nition A.1). Indeed,

consider the following instance of the paramodulation axiom:

p(b) p(a) ^ (a
:
=b)

Here, both atoms in the premise are relevant. Therefore, we have a negative cycle from :p(b) through

p(a), and back to p(b) in DL(P
a
1); and from :p(b) through a

:
=b, and back to p(b) in DL(P

a
2).

Similarly, we can show that (31) has a negative cycle. Consider the following instance of the type

inheritance axiom:

b[attr) c] a[attr ) c] ^ b :: a

This rule belongs to the augmentation of P because both of its premises are relevant. Thus, DL(Pa
3) has

the following negative cycle: :b[attr) c], to p(a), to a[attr) c], and back to b[attr) c].
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The unique perfect model of P1 is M1 = fp(a); p(b); a
:
=bg, and M2 = fp(a); p(b)g is the unique perfect

model of P2. (These models are obtained from the de�nitions in [81] in a simple-minded way, i.e., by

considering equality as an ordinary predicate.) The trouble is that p(b) is not supported by any rule. In

fact, in both programs, p(b) was derived assuming :p(b) is true.

As the above example shows, equality is a problem not only in F-logic but also in classical logic

programming. However, in the classical case, this problem is side-stepped by disallowing equality to

occur in the rule heads. Unfortunately, this shortcut does not work for F-logic since equality may be

derived even if it is not mentioned explicitly. For instance, fa :: b; b :: ag j= (a
:
=b) and fa[attr !

b]; a[attr ! c]g j= (b
:
=c).

Another di�culty comes from the closure properties inherent in F-programs. For instance, the built-in

property of signature inheritance corresponds to the following deductive rule:

X [M @
�!
args) Y ] X :: Z ^Z[M @

�!
args) Y ] (30)

This rule creates an e�ect similar to recursive cycles through negation when signatures are negatively

dependent on other data. To illustrate the problem, consider the following program:

b :: a
p(a) :b[attr ) c]
a[attr ) c] p(a)

(31)

Together with (30), we obtain a negative cycle going from :b[attr ) c] to p(a) to a[attr ) c] to

b[attr) c].

Fortunately, there is a simple way out of these di�culties (which also works for classical logic programs

with equality). The idea is to account for the idiosyncrasies of the equality and of the built-in features of

F-logic by adding additional axioms to P in the form of logical rules. Each of these new axioms, called

closure axioms, corresponds to an inference rule of Section 10. The only inference rules that do not need

axioms are the rules of resolution, factorization, merging, and elimination.

Axioms of paramodulation. For every arity, n, every predicate symbol, p (including
:
=), and for

\;" standing for either of the six arrow types:

p(Y1; :::; Y
0
i ; :::; Yn)  p(Y1; :::; Yi; :::; Yn) ^ (Yi

:
=Y 0i )

X [M 0@A1; :::; An; V ]  X [M @A1; :::; An; V ] ^ (M
:
=M 0)

There are also rules similar to the last one for the paramodulation on X , V , and on each of the

Ai. Notice that paramodulation also accounts for the transitivity and the symmetry of the equality

predicate. Additionally, to account for the paramodulation into subterms, the following axiom is

needed:

(f(X1; :::; X
0
i; :::; Xn)

:
=f(X1; :::; Xi; :::; Xn)) (Xi

:
=X 0

i)

for every function symbol, f 2 F .
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\�P" and \�P" are not partial orders. However, they are partial orders when DL(P) has no cycles that

contain negative edges (the negative cycles).

De�nition A.1 (Locally Strati�ed Programs, preliminary) An F-program, P, is locally strati�ed if the re-

lation \�P" is well-founded , i.e., there is no in�nite decreasing chain of the form � � ��P�2�P�1. 2

This de�nition implies that for locally strati�ed programs \�P" is irreexive and asymmetric (for,

otherwise, there would be an in�nite chain � � ��P�1�P�2�P�1, for some �1 and �2 such that �1�P�2

and �2�P�1). Similarly, De�nition A.1 implies that the graph DL(P) does not have negative cycles when

P is locally strati�ed.

Next we introduce a preference quasi-order as follows: an H-structure M is preferable to L, denoted

M�PL, if whenever there is an atom ' such that ' 2 M � L and then there is an atom  such that

levelP( ) < levelP('),  2 L �M.

De�nition A.2 (Perfect Models, preliminary) Let P be a locally strati�ed F-program and �P be an

associated quasi-order on its H-models. H-models of P that are minimal with respect to �P are called

perfect models of P. 2

In general, �P is a quasi-order. However, as in [81], it can be shown that for any locally strati�ed

program, P, �P is a partial order on the H-models of P. Also, as in the classical theory, it can be shown

that every locally strati�ed program has a unique perfect model.

Let P be a locally strati�ed program. It is easy to verify that there is a function

levelP : HB(F) 7�! N

where N is the set of all natural numbers, such that for any pair, �;  2 HB(F), if ��P then

levelP(�) � levelP( ) and if ��P then levelP(�) < levelP( ).

Given a level-function, we can partition the rules in P� into P�1; P
�
2; ::: according to the level of the

head-literal in each rule. More precisely, each P�k consists of all those rules in P� whose head-literal is

assigned the level � k. In particular, P�k �P
�
k�1 consists of all rules with head-literals at level k.

As in the classical theory, it can be shown that the perfect model of P can be computed by �ring

logical rules in the strati�cation order determined by levelP, and that the result does not depend on

the choice of the level-function as long as it is synchronized with �P and �P.

Unfortunately, the above straightforward adaptation of the notion of perfect models is inadequate.

One problem comes from the equality predicate, \
:
=". In [81], perfect models were introduced assuming

the so called freeness axioms for equality, which postulate that ground terms are equal if and only if they

are identical. Without these axioms, perfect models do not provide natural semantics even for simple

locally strati�ed programs. For instance, consider the following pair of F-programs:

P1 :
a
:
=b
p(a) :p(b)

P2 :
a
:
=b :p(b)
p(a)

(29)
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dimension: F-logic is capable of representing almost all aspects of what is known as the object-oriented

paradigm. We have provided a formal semantics for the logic and have shown that it naturally embodies

the notions of complex objects, inheritance, methods, and types. F-logic has a sound and complete

resolution-based proof procedure, which makes it also computationally attractive and renders it a suitable

basis for developing a theory of object-oriented logic programming.
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A Appendix: A Perfect-Model Semantics for F-logic

The general principle in adapting the various semantics for negation (such as [81, 39, 96, 95, 82, 4, 54])

to F-logic is to use method names whenever predicates are used in the standard setting. For instance,

for the perfect-model semantics [81], strati�cation must be ensured with respect to method names, and

so the program

X [wants!! Y ] :X [has!! Y ]

would be considered as strati�ed despite the recursion through negation within the same object, X . Note

that :x[has !! y] here means that y 62 x:has; it does not mean that the value of has on x is empty or

unde�ned. In contrast, consider the following one-rule program (adapted from [96]):

sillyGame[winningPos!! Pos1] :sillyGame[winningPos!! Pos2]
^Pos1[legalMoves!! Pos2]

It is not considered as locally strati�ed in F-logic since there is recursion through negation in the method

winningPos when both Pos1 and Pos2 are instantiated to the same constant, say badPos.

However, the process of adapting perfect models to F-logic is more involved. We present a solution in

two steps. First, we apply the above general principle directly and come up with a preliminary de�nition.

Then we point to the inadequacies of this de�nition and show how problems can be corrected.

Let L be an F-logic language with F being its set of function symbols. Consider a general F-program,

P. We de�ne a dependency graph, DL(P), as follows: Let P
� denote the set of all ground instances of

P in L. The nodes of DL(P) correspond to the ground atoms in the Herbrand base, HB(F). A positive

arc, '
�
 � , connects a pair of nodes, ' and  , if and only if there is a rule, �' � � � ^ � ^ � � �, in P�

such that ' and  are constituent atoms of �' and � , respectively. A negative arc, '
	
 � , is in DL(P)

if and only if P� has a rule �' � � � ^ : � ^ � � �.

We shall write ��P , where � and  are atoms in HB(F), if DL(P) has a directed path from � to

 . We write ��P if there is a negative such path (i.e., some arcs on the path are negative). In general,
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The semantic mapping � can be de�ned along similar lines. Once the mappings � and � are de�ned

in this way, verifying (28) becomes a simple, albeit lengthy, task. Examples of this kind of proofs can be

found in [98, 30]. 2

The reader who might be puzzled by the revelation that F-logic is, in a sense, equivalent to predicate

calculus, may �nd comfort in the following arguments. First, semantics-by-encoding, as in Theorem 17.1,

is inadequate as it is indirect and gives little help to the user when it comes to understanding the meaning

of a program. Since our declared goal was to provide a logical rendition for a class of languages that

are collectively classi�ed as object-oriented, taking the mapping � of Theorem 17.1 for the meaning of

F-logic would be a misnomer. Indeed, � is merely an algorithm that gives little insight into the nature

of object-oriented concepts the logic is designed to model, and the proof sketch of Theorem 17.1 should

make it clear that even for simple F-programs their �-image is not easily understandable. Another

argument|well articulated in the concluding section to [30]|can be summarized as follows: The syntax

of a programming language is of paramount importance, as it shapes the way programmers approach

and solve problems. Third, a direct semantics for a logic shows a way of de�ning a proof theory that is

tailored to that logic. Such a proof theory is likely to be a better basis for an implementation than the

general-purpose proof theory of the classical logic. Lastly, Theorem 17.1 relates only the monotonic part

of F-logic to classical logic. Mapping the non-monotonic components of F-logic into a non-monotonic

theory for predicate calculus does not lead to a boni�ed logic.

18 Conclusion

Unlike the relational approach that was based on theoretical grounds from the very beginning, the object-

oriented approach to databases was dominated by \grass-roots" activity where several implementations

existed (e.g., [53, 68]) without the accompanying theoretical progress. As a result, many researchers

had felt that the whole area of object-oriented databases is misguided, lacking direction and needing a

spokesman, like Codd, who could \coerce the researchers in this area into using common set of terms and

de�ning a common goal that they are hoping to achieve [78]."

Our contention is that the problem lies much deeper: when Codd made his inuential proposal, he

was relying on a large body of knowledge in Mathematical Logic concerning predicate calculus. He had an

insight to see a very practical twist to a rather theoretical body of knowledge about mathematical logic,

which has led him to develop a theory that revolutionized the entire database �eld. Until now, logical

foundations for object-oriented databases that are parallel to those underlying the relational theory were

lacking and this was a major factor for the uneasy feeling. In his pioneering work [65], Maier proposed a

framework for de�ning a model-theoretic semantics for a logic with an object-oriented syntax. However,

he encountered many di�culties with his approach and subsequently abandoned this promising direction.

As it turned out, the di�culties were not fatal, and the theory was repaired and signi�cantly extended

in [31, 50].

In this paper, we have proposed a novel logic that takes the works reported in [31, 50] to a new
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of canonic models.

Because of the independence of its various components, F-logic can be viewed as a tool-kit for designing

custom-tailored declarative languages. In fact, there is a more �ne-grained division inside the logic. For

instance, the semantics of scalar methods is independent from that of set-valued methods, and we can

consider each type of methods as a separate tool. Likewise, we could require the oid's of classes and

methods to be constants; method-name overloading can also be controlled in a number of ways (using

sorts, for example). This tool-kit-like structure of F-logic is extremely helpful, as it lets us address

di�erent aspects of the logic in separation from each other, both theoretically and implementationally.

The last issue we would like to discuss is the relationship between predicate calculus and F-logic. In

one direction, predicate calculus is a subset of F-logic and so the latter is more powerful than the former.

However, it turns out that, in a sense, the two logics are equivalent.

Theorem 17.1 There are mappings

� : fF-formulasg 7�! fwell-formed formulas of predicate calculusg
� : fF-structuresg 7�! fsemantic structures of predicate calculusg

such that

M j=F  if and only if �(M) j=PC �( ) (28)

for any F-structure M and any F-formula  ; here \j=F " and \j=PC" denote logical entailment in F-logic

and predicate calculus, respectively. 2

Proof: (Sketch) The proof is easy but tedious, so most of it is left as an exercise. The main idea is

to introduce new predicates that encode the meaning of the methods for every arity and for every type

of invocation.

Let scalarNonInheritablen be the predicate that is chosen to encode n-ary non-inheritable scalar

data expressions. Similarly, we can choose setNonInheritablen to encode non-inheritable set-valued

data expressions. Then we can split F-molecules into constituent atoms and represent each atom by an

appropriate tuple in one of the above predicates. In addition, we shall need predicates scalarTypen and

setTypen to encode scalar and set-valued signature expressions. For instance,

bob[jointWorks@phil!! X ]^ empl[budget) integer]

can be represented as

setNonInheritable1(jointWorks; bob; phil; X)^ scalarType0(budget; empl; int)

Class membership and subclassing can be represented by appropriate binary predicates. To complete the

encoding �, it remains to specify axioms that achieve the e�ect of the built-in features of F-structures.

For instance, it will be necessary to write down a transitivity axiom for subclassing, type inheritance

axioms, etc.
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Figure 9: The Internal Structure of F-logic

semantics and the proof theory presented earlier. The glue between these two sublogics is provided by

the well-typing semantic conditions of Section 12, in the non-monotonic part of the logic. Furthermore,

notice that, as far as the monotonic logic is concerned, inheritable and non-inheritable data expressions

are completely independent.

The third component is a technique for de�ning sorts in F-logic. This technique has been discussed

in Section 16.1. The fourth component consists of ideas borrowed from HiLog [30], which extend the

syntax of F-logic to allow variables and even complex terms to appear in the positions of predicate and

function symbols, as discussed in Section 16.2.

The non-monotonic part of F-logic is also composed of a collection of distinct ideas. One of them is

the canonic model semantics for F-programs with equality, as discussed in Section 11 and in Appendix A.

The next two determine the semantics of non-monotonic inheritance and typing, both based on the idea

of a canonic model. The notion of encapsulation also belongs here, since we view it simply as an elaborate

policy of type-correctness. Note that, although Appendix A de�nes perfect models as an example of a

canonic model semantics, our treatment of inheritance and typing is independent from this speci�c theory
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language-engineering issues further, as they are beyond the scope of this paper.

16.2 HiLog-Inspired Extensions

HiLog [30] is a higher-order extension of predicate calculus that allows variables to range over the names

of function and predicate symbols. Furthermore, these names themselves may have a rather complex

structure and, in particular, the usual �rst-order terms (with variables) may appear in predicate positions.

Many applications of HiLog are described in [30, 100, 84] and it is clear that extending F-logic in this

direction is a good idea. In Section 11.4.1, we have seen one example (graph restructuring) where a

combination of HiLog and F-logic may be useful.

We illustrate HiLog using the following example:

closure(Graph)(From; To) Graph(From; To)
closure(Graph)(From; To) Graph(From;Mid) ^ closure(Graph)(Mid; To)

This HiLog program computes the closure of any binary relation that is passed to a predicate constructor,

closure, as an argument. Here Graph is a variable that ranges over predicates and closure(Graph) is

a non-ground term that denotes a parameterized family of predicates. For any given binary predicate,

graph, the term closure(graph) is another binary predicate that is true of a pair hfrom; toi precisely

when graph has a directed path connecting from and to.

The ideas underlying HiLog are applicable to a wide range of logical languages, and the reader familiar

with HiLog will have no di�culty to integrate them into F-logic by providing a semantics to HiLog-style

terms. To this end, all that has to be done is to change the interpretation of id-terms from the one given

in this paper to that in [30].

17 The Anatomy of F-logic

It is instructive to take a retrospective look back at the structure of F-logic and clarify the various

relationships that exist between its di�erent components. A careful examination would then reveal

that most of the components of F-logic are independent from each other, both semantically and proof-

theoretically. A high-level view of the internals of F-logic is depicted in Figure 9. In the �gure, the

logic is presented as a bag of ideas that can be classi�ed into two main categories. The monotonic part

of F-logic was presented in Sections 4 through Section 10. The non-monotonic part is comprised of

a number of techniques, all based on the canonic model semantics. These techniques are described in

Sections 11, 12, 14, and in Appendix A. The non-monotonic part of F-logic is based on the monotonic

part, especially on its model theory. The proof theory presented in Section 10 is sound and complete

for the monotonic part, but the non-monotonic extensions cannot have a complete proof theory. This is

completely analogous to classical logic, where logic programs with strati�ed negation have no complete

proof theory.

The two main components of the monotonic department are the logics of data expressions and the

logic of signatures. These sublogics are independent from each other, as can be seen by inspecting the
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16.1 Sorted F-logic and its Uses

In some cases it may be necessary to distinguish between set-valued and scalar attributes at the syntactic

level. (Previously, we could distinguish them only at the meta-level, via the notion of type correctness).

In other cases, we may need to designate certain objects as \true" individual objects, namely, objects

that can never play the role of a class. For instance, objects that represent people, such as john, mary,

etc., may be in this category. Using sorts to separate things that should not be mingled in the same

domain is an old idea. The advantage of having sorts in addition to types is that well-formedness with

respect to sorts is easier to verify, usually much easier.

To illustrate how this idea can be applied to F-logic, suppose we wanted to keep a distinction between

classes and individuals and yet be able to manipulate both kinds of objects in a uniform way. To this end,

we could separate all variables and function symbols into three categories with di�erent name spaces. For

instance, to represent individuals, we could use id-terms whose outermost symbol's name begins with a

\!"; to represent classes, we may use id-terms beginning with a \]"-symbol; and id-terms that begin with

any other legal symbol (e.g., a letter, as it was so far) can be used to represent any object, an individual

or a class. These latter symbols allow accessing both kinds of objects uniformly, without duplicating

program clauses to deal with each sort separately.

Semantically, sorts are accommodated in a standard way. The domain, U , of an F-structure would

now consist of two disjoint parts: U ]|to interpret class-objects; and U !|for individual objects. Variables

beginning with a ]-symbol will then range over the subdomain of classes, while !-variables will be restricted

to the domain of individuals. All other variables will be allowed to range over the entire domain, U .

Since we wish to allow class-objects to be constructed out of both, class-objects and individual-objects,

a function symbol beginning with a \]" will have the type Un 7! U ], for a suitable n, while a function

symbol beginning with a \!"-sign will have the type Un 7! U !.

Alternatively, the same e�ect can be achieved by introducing a pair of new unary predicates, class(X)

and individual(X), where class and individual are true precisely of those ground id-terms whose out-

ermost symbol starts with a \]" and \!", respectively. In addition, rules and queries should be rel-

ativized as follows: For every individual id-term, !T , in the body of a rule, head body (or in a

query ?� query), add individual(!T ) as a conjunct, obtaining head body ^ individual(!T ) (resp.,

?� query ^ individual(!T )). Likewise, for every id-term that represents a class, ]S, add class(]S) as a

conjunct in the body of the rule or the query.

Next we could further restrict logical formulas, such as signatures and is-a assertions. For instance,

in T [Mthd@V1; :::; Vn ) W ], we may require T , V1, ..., Vn, W to represent classes, (i.e., all signatures

will actually look like ]T [Mthd@ ]V1; :::; ]Vn) ]W ]). Likewise, for is-a assertions of the form O : Cl and

Cl :: CL0 we may require that Cl and Cl0 will be classes.

The above ideas e�ectively lead to a 3-sorted logic on top of the basic F-logic. However, the utility

of sorts is not limited to distinguishing individuals or methods from other objects. In principle, we

may let users de�ne their own naming conventions. In each case, this will add a new sort of symbols

to the logic, to harbor the oid's of objects the user wishes to distinguish. We shall not discuss these
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equation

current(chip123)
:
=version(mary; version(john; version(john; chip123)))

and delete any other equation of this form that might have been previously asserted.

Navigation through the versions is quite easy. For instance, to access to the previous version of the

chip, one can use the following query:

?� (current(chip123)
:
=version(Whoever; PrevV ersion)) ^ PrevV ersion[: : :]^ : : :

Another way to organize versions in F-logic is to de�ne a method, version, that returns appropriate

versions, depending on the argument. To access a version of chip123, one could use

?� chip123[version@arg ! V ersion]^V ersion[: : :]

where arg is a suitable encoding of the desired version. Yet another way to do versioning is to parameterize

attributes with version id's, as suggested in [45].

15.5 Path Expressions

Many calculus-like object-oriented languages (e.g., [102, 14]) use syntactic constructs known as path

expressions . For instance, to select employees working in \CS" departments, one could use a path

expression X:worksFor:dname
:
=\CS" instead of X [worksFor! D[dname! \CS"] ].

The idea of path expressions was signi�cantly extended in [47] and has become a basis of an object-

oriented extension of SQL. In the syntax of [47], the expression (ix) of Figure 4 can be written thus:

X:worksFor:dname[\CS"]. Here, \CS" plays the role of a selector that selects sequences of objects

x; y; z such that x:worksFor = y, y:dname = z, and z = \CS".

Although path expressions are not explicitly part of F-logic syntax, they can be added as a syntactic

sugar to help reduce the number variables in F-programs (and also because this notation is more familiar

to database users). For instance, we could write:

?� X : empl^X:name[N ]^X:friends:name[\Bill"]^X:worksFor:dname[\CS"]

instead of the bulkier query:

?� X : empl[name! N ; friends!! F [name! \Bill"]; worksFor ! D[dname! \CS"] ]

Formal translation of path expressions (as de�ned in [47]) into F-logic is left to the reader as an easy

exercise.

16 Extensions to F-logic

In this section, we explore two enhancements of the logic: the introduction of sorts and extending F-logic

in the direction of HiLog [30].



15 OTHER ISSUES IN DATA MODELING 77

where, as in Section 6, p-tuple is a function symbol speci�cly chosen to represent \invented objects" of

class p. In other words, invention atoms of [44] are essentially value-based P-molecules of F-logic.26

The \�"-style don't-care symbols can be useful for modeling value-based objects, such as relations

with mnemonically meaningful attribute names. For instance, we could represent the SUPPLIER relation

via a class, suppl , declared as follows:

suppl[name) string; parts)) part; addr) string]

Then we could de�ne the contents of that relation as follows:

� : suppl[name! \XYZ Assoc:"; parts!! all-in-one ; addr! \Main St:; USA" ]
� : suppl[name! \Info Ltd:"; parts!! know-how ; addr! \P:O: Box OO" ]
.. .

Here, the symbol \�" is used as a short-hand notation intended to relieve programmers from the

tedium of specifying oid's explicitly (which are suppl -tuple(\XYZ Assoc:"; \Main St: USA") and

suppl -tuple(\Info Ltd:"; \P:O: Box OO") in the above).

It should be clear that the semantics of \�"-style objects is di�erent from the semantics of \ "-style

objects. For instance, \�"-style objects are entirely value-based , as their id's are uniquely determined by

their structure. Therefore, an \�"-style object can live its own, independent life. Its oid is replaced by

\�" simply because this oid is uniquely determined by the values of the scalar attributes of the object,

making the explicit mention of the id redundant. In comparison, \ "-objects are not value-based. The

identity of such an object depends mostly on the syntactic position occupied by this object inside another

molecule. What the two don't-care styles share, though, is that in both cases the explicit mention of the

object identity is redundant, as it is uniquely determined from the context or by the object structure.

15.4 Version Control

Although version control is not an intrinsically object-oriented feature, it has been often associated with

object-oriented databases because of the importance of versioning in several \classical" object-oriented

applications, such as computer aided design. Conceptually, version control has two distinct functionalities:

creation of new versions and navigation among the existing versions. As an example, we outline one of

the several possible schemes for realizing version control in F-logic.

Suppose Mary and John are working cooperatively on a computer chip, denoted chip123. Each time

Mary makes a modi�cation to a version, v, of the chip, she creates a new object, version(mary; v).

Similarly, John constructs versions of the form version(john; v). Thus, all versions of the chip have the

form version(pn; : : :version(p1; chip123) : : :), where each pi is either mary or john.

Both Mary and John access the current version of chip123 via the name current(chip123). To turn

a version, say version(mary; version(john; version(john; chip123))), into a current one, they assert an

26However, ILOG is not an entirely value-based language, since there is a way (albeit indirect) to create multiple copies
of distinct objects with the same contents.
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First, note that (i) above is already legal in data expressions. Also, (ii) is \almost" legal: it is a

generalization of the set-construct, where previously we allowed only sets of id-terms on the right-hand

side in data expressions.

The next question is the semantics of values introduced in this way. The answer depends on the

intended usage of values. If they are taken too literally, as terms assignable to logical variables, this

could jeopardize the proof theory of our logic. Indeed, by (i), variables are values and so they can unify

with other values. But then the term obj[attr! X ] should be uni�able with, say,

obj[attr!! fa; b; cg ]

where X uni�es with the set fa; b; cg. In other words, (i) entails that variables can range over sets,

thereby rendering the semantics second-order in the sense of [30].

Fortunately, the experience with object-oriented database systems, such as Orion [53] and O2 [63],

suggests that complex values are used in fairly restricted ways|primarily as weak entities of the Entity-

Relationship Approach. In other words, they are used as \second-rate objects," accessible only through

other objects.

This leads to the conclusion that values are used not for their own sake, but rather for convenience,

to let the user omit oid's when they are immaterial. To an extent, this is similar to Prolog's don't-care

variables represented by underscores. By analogy, we could permit the use of don't-care object id's. For

instance, we can re-cast the previous example as follows:

ei�elTower[name! \Ei�el Tower"; address! [city ! paris; street ! champDeMars] ]

It remains to decide on a suitable semantics of the don't-care symbol, \ ". Let

T [ScalM @S1; :::; Sn! [: : :] ]

be a term with a don't-care symbol. It's meaning can be given through the following encoding:

T [ScalM @S1; :::; Sn! valn(T; ScalM; S1; :::; Sn)[: : :] ]

where valn is an (n+ 2)-ary new function symbol, speci�cally chosen for this kind of encoding. It is not

accidental that we have given no interpretation to don't-care symbols inside the set-construct, as in

T [SetM @R1; :::; Rm!! f:::; [: : :]; :::g ]

The meaning and the utility of \ " in this context is unclear to us. However, below, we introduce a

don't-care symbol, \�", with a di�erent semantics, and this kind of oid may well occur inside sets.

The need for don't-care oid's was also emphasized in ILOG [44], where a special \�"-notation was

introduced for this purpose. An invention atom, p(�; t1; :::; tn), of ILOG is semantically close to an

F-molecule of the form

p-tuple(t1; : : : ; tn) : p[arg1! t1; : : : ; argn ! tn]
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However, when the user poses a query, such as

?� john[children!! X ] (27)

andX gets no bindings, it is unclear whether this is because John has no children or because this attribute

has a null value. To verify this, the user will have to ask one more query: ?� john[children!! fg].

Clearly, asking two queries to �nd out one simple thing is a questionable practice, and it is highly

desirable that a single query, (27), will su�ce. One easy way to �x the problem is to introduce a special

constant, ;, into every F-logic language, along with the following axiom schemata:

X [M @A1; :::; An!! ; ]
X [M @A1; :::; An �!!; ]

where n = 0; 1; 2; :::. Technically speaking, these axioms ensure that methods never return empty sets.

However, conceptually , empty sets can be represented via sets that contain ; alone.

15.3 Complex Values

Several recent works [15, 3, 63] have suggested that pure object-based languages may be burdensome when

identity of certain objects is immaterial to the programmer. We, too, have made this point in Section 6,

advocating the use of predicates on a par with objects. However, it may sometimes be convenient to

go beyond simple predicates and allow object-like structures that have no associated object id. Such

structures are called complex values [15, 3, 63]. For instance, adapting an example from [63] we could

write:

ei�elTower[name! \Ei�el Tower"; address! [city ! paris; street ! champDeMars] ]

Here [city ! paris; street ! champDeMars] is a \complex value" representing an address. In O2 [63],

such constructs have no identity and are distinct from objects. The rationale is that the user does not

have to shoulder the responsibility for assigning id's to objects that are not going to be accessed through

these id's.

In the spirit of [3, 63], we can try to adapt the concept of complex values to F-logic as follows:

(i) Any id-term is a value;

(ii) fV al1; : : : ; V alng, is a value, provided that each V ali is a value;

(iii) [ : : : ; Attr ; V al; : : : ] is a value, where

Attr is an id-term, V al is a value, and ; is one of the four arrows

that may occur in data expressions.

To account for complex values, the de�nition of data expressions in Section 4 should be changed to allow

complex values (rather than just oid's) to appear on the right-hand side of data expressions.
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Now, let sup1, ..., supn denote all the classes where obj belongs and to which the method mthd applies.

Then obj will inherit the methods mthd(sup1), ..., mthd(supn). This time, however, there is no conict

between these methods, due to parameterization. So, obj can invoke the method mthd as de�ned in any

of its superclasses, e.g.,

?� obj[mthd(sup7)@a; b! Z]

This is analogous to the use of scope resolution operators in object-oriented languages.

15 Other Issues in Data Modeling

While F-logic has a wide range of object-oriented concepts represented directly in its semantics, several

other ideas have been left out. These include complex values, path expressions, and others. In this

section, we propose ways to model these missing concepts using the rich arsenal of the built-in features

available in F-logic.

15.1 Existing and Non-existent Objects

It is easy to verify that P j= t[ ] holds for any id-term, t, and any program, P. In this sense, in F-logic,

any object exists as long as it can be named. On the other hand, in databases and other object-oriented

systems, it is a common practice to distinguish between existing objects and those that do not exist. To

come into existence, even an empty object must �rst be created, which seems to be in stark contrast to

F-logic where empty objects, such as t[ ] above, exist all the time.

Fortunately, the concept of \existence" can be easily expressed as a property of an object, using a

special attribute, say, exists. For instance, if t[exists ! true] is in the canonical model of P then the

object is said to exist. Otherwise, it does not.

Then, a special preprocessor can modify every clause in P in such a way that every object molecule

that contains a data expression will be augmented with another data expression, exists ! true. Queries

should be modi�ed accordingly. For instance, the query ?� X will be changed into ?� X [exists! true],

and so only the id's of the existing objects will be retrieved.

15.2 Empty Sets vs. Unde�ned Values

The semantics of set-valued methods distinguishes between the cases when the value of a method is an

empty set and when the method is unde�ned. Although in some cases the user may not care about this

distinction, this di�erence is important in many other cases. For instance, asserting john[children!! fg]

means that john has no children (provided that there are no other statements of the form john[children!

! xyz]). In contrast, when john[children!! fg] does not hold, this means that it is unknown whether

john has children, as method unde�nedness is essentially a form of null values familiar from classical

database theory.
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override the default. However, notice that overriding has taken place only for some speci�c arguments,

while the default de�nition is still being used for other arguments (e.g., when Crs = vlsi).

This property of F-logic inheritance is called pointwise inheritance. As we have seen, pointwise

overriding provides a great deal of exibility by allowing to modify methods over speci�c subsets of

arguments. This should be contrasted with most other languages where methods have to be overwritten

in their entirety or not overwritten at all.

Total Method Overriding

In addition to pointwise overriding, it is easy to override methods in their entirety, as in most object-

oriented languages. Consider the following example:

bob : instructor
instructor[gradingMethod �!defaultGrading]
X [defaultGrading@Stud; Crs! G] X : instructor ^ de�nition-4

bob[gradingMethod! bobGrading]
bob[bobGrading! G] de�nition-5

X [grade@Stud; Crs! G] X : instructor[gradingMethod!M ; M @Stud; Crs! G]:

(26)

In this example, the value of gradingMethod is the name of a method to be used for grade computation.

This method is de�ned (in the third clause) for each instructor -object. The fourth clause speci�es the

name of the grading method that bob prefers to use. This method is de�ned on the object bob using the

�fth clause.

The last clause, then, de�nes grade using the methodM obtained from the gradingMethod attribute.

Normally, this value would be inherited from the class instructor and will be defaultGrading. However,

the value of the gradingMethod attribute is overwritten on object bob. Therefore, when X is bound to

bob, M will be bound to bobGrading and so grade will behave exactly like bobGrading. In contrast, if

mary is also an instructor, but she did not override the attribute gradingMethod, the value for M in

the last clause will be inherited from instructor and will thus be defaultGrading. Therefore, when X is

bound to mary, the method grade will behave exactly like defaultGrading.

User-Controlled Inheritance

The semantics of inheritance described in this section is non-deterministic, i.e., in case of an inheritance

conict, the system will �re one of the active triggers non-deterministically. In some cases, however, the

user may want to have more control over trigger-�ring. This approach is common in many programming

languages, such as Ei�el [70] or C++ [89], where the programmer has to resolve inheritance conicts

explicitly.

User-de�ned inheritance can be expressed in F-logic as follows. To resolve a conict, say, in a binary

method, mthd, we can �rst parameterize mthd by de�ning a family of methods, mthd(Class):

Class[mthd(Class)@X; Y �!Z]  Class[mthd@X; Y �!Z]:
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L M1 M2 M3

object

p attr1 �!! c attr1 �!! c attr1 �!! c attr1 �!! c
t attr1 �!! d attr1 �!! d attr1 �!! d attr1 �!! d

a | attr1 !! c attr1 !! d attr1 !! c
a | attr2 !! e attr2 !! e

a | | | attr1 !! d

is-a a : p a : t; t :: p a : t; t :: p a : t; t :: p

Among the above models, only M1 is �-canonical; it is obtained from L by �ring the previously de�ned

triggers � and �.

The subtle point here is that if a : t and t :: p were true in the initial model, L, the existence of

t[attr1 �!! d] on the path a : t :: p would have blocked the inheritance of attr1 �!! c from p to a. However,

blocking an inheritance path after the inheritance step is performed does not undo inheritance acts

performed earlier.

14.3 Modeling Other Overriding Strategies

In this section, we illustrate various ways in which F-logic inheritance can model overriding strategies

used in other languages.

Pointwise Overriding

Suppose that the class instructor provides a default de�nition for the method grade used to compute

students' grades in di�erent courses:

instructor[grade@Stud; vlsi �!G]  de�nition-1
instructor[grade@Stud; db �!G]  de�nition-2
.. .

Any instructor, say bob (assuming bob : instructor holds), can access this method by asking queries:

?� bob[grade@mary; vlsi! G]

Suppose instructor[grade@mary; vlsi �!90] holds in class instructor . Then grade@mary; vlsi �!90

will be inherited by bob, deriving the atom bob[grade@mary; vlsi ! 90]. Similar inheritance will take

place for db and other courses.

Suppose now that instructors are allowed to modify the default grade computation algorithm by

de�ning their own. Thus, for instance, bob may de�ne his own policy in the database course:

bob[grade@Stud; db! G]  de�nition-3

This would provide an explicit de�nition of grade in the object bob when this method is invoked with

arguments stud and db, where stud represents an arbitrary student. Thus, this explicit de�nition will
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L M1 M2 M3

object

q attr �!! a attr �!! a attr �!! a attr �!! a
p | attr !! a | attr !! a

r | attr !! b attr !! a attr !! a
r | | | attr !! b

is-a p : q; r : q p : q; r : q p : q; r : q p : q; r : q

Both M1 and M3 are �-canonical models. Observe how the rule application that produced M1 from

I�P(L) had deactivated the trigger, �. On the other hand, �ring � did not prevent the rule from �ring.

The existence of two �-canonic models for the above program may appear discomforting, because a

case can be made that trigger � should have been �red before trigger �. Indeed, �ring the former obviates

the need to �re the latter and, in that sense, M1 is a \smaller" model than M3. This can be seen even

more clearly if we replace \!!" and \ �!! " in (25) with \!" and \ �! ", respectively. In this case, the

model M3 (with double-headed arrows turned into the single-headed ones) would contain the atom a
:
=b

and thus also r[attr ! b]. This turns M1 into a strict subset of M3, further fueling our suspicion about

the wisdom of keeping M3 as a canonic model.

The problem with premature �ring of triggers (as in the case of � above) can be solved by ordering

active triggers in certain ways. This issue will be discussed separately, in [49].

The following example illustrates the phenomenon of inheritance in dynamically changing IS-A hier-

archies. Let the program, P, be:

a : p p[attr1 �!! c]
a : t a[attr1 !! c] t[attr1 �!! d; attr2 �!! e]
t :: p a[attr1 !! c]

Let L be the minimum model of P. Then � = hattr1; �!! ; a : pi is the only active trigger in L. Firing

� causes a : t and t :: p to be derived. This, in turn, activates the trigger � = hattr2; �!! ; a : ti, and

a[attr2 !! e] is derived by inheritance. Note that there is no inheritance of attr1 �!! d from t to a, since

attr1 is already de�ned on a.

The most interesting aspect of this example is that the very act of inheritance alters the IS-A hierarchy

on which it depends. Moreover, the derivation of a : t and t :: p propels the fact t[attr1 �!! d] with an

inheritable property right in the middle of the path through which a had inherited attr1 �!! c from p.

This issue was already discussed in connection with Example (24) earlier, where we had argued that the

above inheritance step should not be undone, despite the changes in the IS-A hierarchy.

To see how this dynamic situation is taken care of by our semantics, consider the following table that

presents the relevant parts of several models of interest:
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We thus see that both, M2 and M3, are obtained from M1, albeit by �ring di�erent triggers. These

triggers are associated with the same attribute, policy , and the same recipient object, nixon, but with

di�erent contributing superclasses, quaker and republican. For this reason, inheritance steps obtained

by �ring each trigger separately cannot be combined, because �ring of one trigger deactivates the other,

and vice versa. The existence of a pair of triggers with these properties is a formal explanation for the

phenomenon of multiple inheritance.

The following result is a direct consequence of the de�nitions:

Lemma 14.4 Let P be a Horn F-program and let I be an H-structure for P. Let, further, � be an active

trigger in I. Then TI �P(I) = (TP " !)(I
�
P(I)), where TP " ! denotes the countably-in�nite iteration of

TP. 2

This lemma leads to a result, below, that sheds light on the computational properties of �-canonical models

of Horn programs. First, we need to de�ne iterations of the operator TIP. Since TI
�
P is monotone with

respect to H-structures that have � as an active trigger, iterations can be de�ned in a standard way,

where we only have to take care of the non-deterministic selection of triggers.

{ If � = 0, then (TI�P " �)(I) = I, for any trigger � .

{ If � is a non-limit ordinal, (TIP " �)(I) = TI�P[(TIP " (��1))(I)], for any trigger � that is active

in (TIP " (�� 1))(I). That is, the result of the transition from (TIP " (�� 1))(I) to (TIP " �)(I)

is non-deterministic, as it depends on the trigger selected.

{ If � is a limit ordinal, (TIP " �)(I) =
S
�<�(TIP " �)(I).

Proposition 14.5 Let P be a Horn F-program and L be its minimum model. Then P has at least one

�-canonical model, which can be obtained by iterating TIP using an appropriate sequence of triggers and

taking L as the initial H-structure. Conversely, (TIP " !)(L) is an �-canonical model of P, where ! is

the �rst in�nite ordinal. 2

The next F-program, P, illustrates one of the many ways in which inheritance can interact with

deduction:
p : q q[attr �!! a]
r : q r[attr !! b] p[attr !! a]:

(25)

There are two triggers, � = hattr; �!! ; p : qi, and � = hattr; �!! ; r : qi. Observe that applying � will

activate the last clause. Let L be the minimum model of P, and let M1;M2 be the two models that

emerge after �ring one of the triggers in L, i.e., TI�P(L) = M1 and TI�P(L) = M2. It is easy to verify,

that applying the �rst trigger, � , deactivates �, but �ring � does not deactivate � . Therefore, there is no

trigger to �re in M1 and no further inheritance is possible. However, � can still be �red in M2, leading

to another model, M3 = TI �P(M2). The following table shows the relevant parts of these models:
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Note that TI �P is monotonic with respect to H-structures that have � as a trigger, since I�P is also

monotonic on such structures.

We are now ready to de�ne the notion of canonical models that take inheritance into account.

De�nition 14.3 (Canonical Models with Inheritance) Let P be a Horn F-program. A model M of P is

inheritance-canonical (or �-canonical) if and only if M is a minimal element with respect to �inh in the

set fN j N �inh Lg of H-models, where L is the unique minimum model of P (which exists, since P is

Horn, by assumption). 2

We shall now illustrate the notions of one-step inheritance and of �-canonical model on a number of

examples. The following two examples are derived from the Nixon's Diamond example.

Consider the following program, P:

nixon : republican republican[policy �!hawk]

This states that nixon belongs to the class republican and that, generally, republicans are hawks. P has

the following models of interest that are summarized below:

M1 M2

object

republican policy �! hawk policy �!hawk

nixon | policy ! hawk

is-a nixon : republican nixon : republican

Here M1 is a minimal model of P, but it is not �-canonical. To see this, note that M2 = I�P(M1), where

� = hpolicy; �! ; nixon : republicani, and that, in fact, M2 is derived from M1 by one inheritance step.

It is easy to verify that, furthermore, M2 is an �-canonical H-model of the program. If, however, P

contained a clause nixon[policy ! pacifist], then no inheritance could have taken place, because the

more speci�c value, pacifist, overrides the inheritance of the value hawk from the class republican.

The next example illustrates multiple inheritance. Let the program P be:

nixon : republican republican[policy �!hawk]
nixon : quaker quaker[policy �! pacifist]

The following H-models are of interest here:

M1 M2 M3

object

republican policy �! hawk policy �! hawk policy �! hawk

quaker policy �! pacifist policy �! pacifist policy �! pacifist
nixon | policy ! hawk policy! pacifist

is-a nixon : republican nixon : republican nixon : republican
nixon : quaker nixon : quaker nixon : quaker

These models are related as follows: I�P(M1) = M2 and I
�
P(M1) = M3, where � = hpolicy; �! ; nixon :

republicani and � = hpolicy;!; nixon : quakeri. Furthermore, it is easy to check that M2 and M3 are

both �-canonical models of P, while the model M1 is minimal but not �-canonical.
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The intention of �ring a trigger of the form � = hm; �!! ; obj : cl; a1; :::; ani, is to inherit to the

recipient object, obj, the result of the application of m on the source-class. To capture this idea, we

introduce an operator of �ring an active trigger, � , on an H-structure, I. This operator is denoted I�P
and is de�ned as follows:25

I�P(I) = I [ fobj[m@a1; :::; an!! v] j v 2 I(cl[m@a1; :::; an]; �!! )g;

Note that since obj is a member of cl, the inheritable properties of cl are passed down to obj as non-

inheritable properties. On the other hand, if obj were a subclass of cl, i.e., if the trigger had the form

� = hm; �!! ; obj :: cl; a1; :::; ani, then the properties of cl would have been passed down to obj as

inheritable properties:

I�P(I) = I [ fobj[m@a1; :::; an �!! v] j v 2 I(cl[m@a1; :::; an]; �!! )g;

For scalar invocations, this operator is de�ned similarly, by replacing !! with ! and �!! with �! .

Note that I�P is a monotonic operator on the H-structures that have � as an active trigger. Once a

trigger is �red, program rules that were previously inactive may become applicable and more facts can

be deduced. For instance, consider the following program P:

a : b
b[attr �!! c]
a[attr!! d] a[attr !! c]

The minimal model here consists of a : b and b[attr !! c]. Firing the trigger hattr; �!! ; a : bi introduces

a new fact, a[attr !! c], and the resulting H-structure is no longer a model, as it violates the last clause.

Therefore, to obtain a model that accommodates the inherited fact, we have to apply the last rule, which

derives a[attr !! d]. Note that derivations that are performed after trigger-�ring may a�ect both the

recipient object of the trigger (as shown above) and the source-class (as was shown earlier, in (23)).

The above ideas can be captured via the notion of one-step inheritance, de�ned below. In this paper

we limit our attention to the case of Horn F-programs. An extension of this semantics to include programs

with negation is reported in [49].

De�nition 14.2 (One Step Inheritance Transformation) Let P be a Horn F-program, I and J be H-

models of P, and � be a trigger in I. We say that J is obtained from I via � by one step of inheritance,

written TI�P(I) = J, if and only if J is the unique minimal model among those models of P that contain

I�P(I).

When the actual trigger, � , is immaterial, we shall write J�inh
1 I, and �inh will denote the reexive

and transitive closure of �inh
1 . Informally, J�inh I means that when inheritance is taken into account,

J is preferable to I because it has more inherited facts. 2

25Since I(cl[m@a1; :::; an];!!) may contain ;, v may denote this element. In this case, obj[m@a1; :::; an !! v] should be
understood as obj[m@a1; :::; an !! fg].
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�!! ) as follows:

I(p[m@a1; :::; an];!) = fv j p[m@a1; :::; an! v] 2 I; v 2 U(F)g
I(p[m@a1; :::; an]; �! ) = fv j p[m@a1; :::; an �! v] 2 I; v 2 U(F)g
I(p[m@a1; :::; an];!!) = fv j p[m@a1; :::; an!! v] 2 I; v 2 U(F)g

[ f ; j if p[m@a1; :::; an!! fg] 2 I g
I(p[m@a1; :::; an]; �!! ) = fv j p[m@a1; :::; an �!! v] 2 I; v 2 U(F)g

[ f ; j if p[m@a1; :::; an �!!fg] 2 Ig

Observe that I(p[m@a1; :::; an];!!) is either empty, when m is unde�ned on p as a set-valued method (in-

voked with the arguments a1; :::; an); or it is a heterogeneous set that contains ; (the empty set) as an ele-

ment and, possibly, some elements from U(F). Similarly, when I(p[m@a1; :::; an];!) is empty, m is unde-

�ned on p, when it is interpreted as a scalar method. Otherwise, ifm is de�ned, then I(p[m@a1; :::; an];!)

is a homogeneous set of elements taken from the Herbrand universe, U(F). Note that this set may contain

more than one element (even though the invocation is scalar) because of the e�ects of the equality oper-

ator: if t 2 I(p[m@a1; :::; an];!) and (t
:
=s) 2 I, then also s 2 I(p[m@a1; :::; an];!). Similar observations

apply to I(p[m@a1; :::; an]; �! ) and I(p[m@a1; :::; an]; �!! ).

De�nition 14.1 (Inheritance Triggers) Let I be an H-structure. Consider a tuple � = hm; �! ;

obj]cl; a1; :::; ani, where obj; cl;m; a1; :::; an 2 U(F) are ground id-terms, and ] denotes the type of the

is-a relation (\:" or \::") that exists between obj and cl. We shall say that � is an active inheritance

trigger in I (or, just a trigger, for brevity) if and only if the following conditions hold:

� obj]cl 2 I,24 and there is no intervening class, mid 2 U(F), such that mid 6= cl

and obj]mid;mid :: cl 2 I;

� The method m is de�ned in I as an inheritable property of cl with arguments

a1; :::; an; i.e., I(cl[m@a1; :::; an]; �! ) 6= ;; and

� m is unde�ned in I on obj with arguments a1; :::; an. More precisely, if \]" is \:" (i.e., if obj is

a member of cl) then it must be the case that I(obj[m@a1; :::; an];!) = ;. Otherwise, if \]" is a

subclass relationship, \::", then I(obj[m@a1; :::; an]; �! ) = ;.

Triggers are de�ned for set-valued invocations of methods similarly, by replacing ! with !! and �!

with �!! . 2

It is clear from the de�nition that an inheritance trigger is like a loaded gun waiting to �re. Firing a

trigger leads to a derivation by inheritance of new facts that cannot be derived using classical deduction.

After �ring, the trigger is \deactivated" and, in fact, is no longer a trigger in the resulting H-structure.

Given a trigger of the above form, we will say that obj is a recipient object of the impending inheritance

step and cl is the source class . Note that obj here may represent an individual object as well as a subclass.

24That is, either obj : cl or obj :: cl is in I, depending on the speci�c relationship denoted by \]".
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Our choice is to not undo inheritance in such a case and, at the same time, to not inherit the newly

derived fact, b[attr �!! d]. The reason for the former is primarily computational, as this leads to much less

backtracking. The reason for the latter is aesthetic, as it leads to a more uniform de�nition. Another way

of looking at this is as follows: once the initial inheritance has taken place, the attribute attr is already

de�ned on a and so by the time b[attr �!! d] is derived the inheritance of attr �!! d by a is overwritten.

To illustrate the problems that (iii) may cause, consider the following program:

a : p p[attr �! c]
a : t a[attr ! c] t[attr �!d]
t :: p a[attr ! c]

(24)

In this example, if a inherits attr ! c from p the two deductive rules in the program are activated and

then both, a : t and t :: p, are derived. In other words, t is propelled into the middle of the inheritance

path from p to a. What is unusual here is the fact that the attribute attr is already de�ned on t and

has a value, d, which is di�erent from c. This means that, had t existed on the inheritance path right

from the start, the inheritance of attr �! c from p to a would have been written over, and a would have

inherited attr �! d instead. However, in (24), t was not on the inheritance path initially and so the above

argument does not apply. Nevertheless, one can argue that the subsequent derivation of a : t and t :: p

undermines the basis for the above inheritance step. Thus, the question is, should such an inheritance

step be undone?

Again, our choice is to not undo such steps. One important reason is, as before, the e�ciency of the

computation. The other|no less important|reason is that this leads to a very simple semantics whose

implications are easy to follow.

In a nutshell, the idea is to decompose each inheritance step into a pair of sub-steps: 1) a \pure"

inheritance step, which may introduce new facts but whose output H-structure may no longer be a model

of the original program; and 2) a derivation step that turns the result of the previous step into a model.

These operations are repeated until inheritance can be done no more.

In this connection, we should mention the recent work [34], which also proposes a semantics for inher-

itance in a language derived from F-logic. In particular, this work addresses the issue of the interaction

between inheritance and deduction. However, it does not account for set-valued methods and for dynam-

ically changing IS-A hierarchies, which are two of the three di�cult issues listed above. This approach

is also fundamentally di�erent from ours in the way semantics is de�ned. What [34] calls a \canonic

model" of a program is actually not a model of that program in the usual sense. Instead, rules that are

found to be written over do not have to be satis�ed. This aspect of the semantics in [34] is analogous to

the work on ordered logic [61, 62], discussed earlier. In contrast, our semantics is more traditional and,

in particular, our \canonic models" are also models in the usual sense.

14.2.2 A Fixpoint Semantics for Non-monotonic Inheritance

Let I be an H-structure and p;m; a1; :::; an be ground id-terms. We de�ne the result of application of a

method, m, on the object p with arguments a1; : : : ; an and for a given invocation type (!, !!, �! , or
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each canonical model as a viable \possible world" and so any one of these models can be chosen non-

deterministically; the other interpretation is that only the facts that belong to the intersection of all such

models can be trusted. Since our primary concern is programming, we adopt the former view. In other

words, when inheritance conict occurs due to multiple inheritance, any one of the canonic models can

be selected non-deterministically and then used to answer queries.

In a di�erent setting, non-monotonic inheritance was also discussed in [61, 62, 21]. According to

these approaches, a logical object (or a class) is a set of rules that represent \knowledge" embodied by

the object (resp., class). These rules can be inherited by objects that are placed lower in the hierarchy.

Inheritance can be overwritten based on various criteria (e.g., the existence of overriding rules, as in

[61, 62], or because of higher-priority rules, as in [21]).

Apart from the very di�erent setup in which behavioral inheritance takes place in these works, there

is another fundamental di�erence with our approach (and, for that matter, with [36, 91] and related

works). Namely, in [61, 62, 21], what is inherited is a set of program clauses , while in F-logic it is ground

data expressions that are passed down the IS-A hierarchy. The latter approach seems to be more exible.

As shown in Section 14.3, F-logic can easily account for inheritance of clauses and for some other forms

of inheritance (see Section 14.3), whose representation in the framework of [61, 62, 21] is not obvious to

us.

14.2.1 Informal Introduction to the Approach

To integrate inheritance into an object-oriented logic programming system such as F-logic, the following

issues must be addressed:

(i) The interaction between inheritance and ordinary logical deduction;

(ii) Inheritance of sets; and

(iii) The dynamic nature of the IS-A hierarchy.

These issues appear to be closely related and, in fact, it is (ii) and (iii) that makes (i) a hard problem.

The di�culty is that after inheritance is done, a program clause may become \active," causing other

facts to be derived. This new inheritance may a�ect the recipient object and, even more curiously, the

source-class of inheritance. To illustrate, consider the following program:

a : b
b[attr �!! c]
b[attr �!! d] a[attr !! c]

(23)

If a inherits attr �!! c from b, the atom a[attr !! c] is derived and the last clause is activated. This

causes the derivation of b[attr �!! d]. The question now is, should the inheritance be \undone" in such

a case (because|it can be reasoned|the object a should have inherited attr �!!fc; dg in its entirety or

nothing at all)? It seems that di�erent decisions are possible here, and in some cases the choice may be

the matter of taste.
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monly known as Nixon's Diamond:

nixon : quaker quaker[policy �! pacifist]
nixon : republican republican[policy�! hawk]

(21)

As a member of two classes, quaker and republican, nixon can inherit either policy �! pacifist or

policy �! hawk. However, if one of these properties, say policy �! pacifist, is inherited by nixon (and

becomes a non-inheritable property, policy! pacifist), then the other property can no longer be inher-

ited because, in the new state, the attribute policy is de�ned on the object nixon, and this de�nition

overrides any further inheritance. Thus, in this case, inheritance leads to an indeterminate result: the

derivation of nixon[policy! pacifist] or nixon[policy! pacifist], depending on which inheritance step

is chosen �rst.

Overriding and multiple inheritance may each cause non-monotonic behavior. A relation of logical

entailment, j�, is called non-monotonic if for some P,  , and �, it is possible that P j� � and P ^

 6j��. Classical logic, on the other hand, is monotone, since P j= � implies P ^  j= �. Semantics for

non-monotonic logics are usually much more involved, and the corresponding proof theories are rarely

complete.

To see why overriding may cause non-monotonic behavior, consider the example in (20), and let j� be

the logical entailment relation that does \the right thing" for in this situation. Let P denote the program

in (20). Previously, we have argued that the following is the intended inference:

P j� clyde[color! white] (22)

Now, suppose we add  = clyde[color! black] to our set of assertions. Because of the overriding, the

property color! white is no longer inferred by clyde and, thus, P ^  6j� clyde[color! white].

Multiple inheritance causes non-monotonic behavior for similar reasons. Consider a part of the

Nixon's Diamond (21), where it is not yet known that Nixon is a Quaker. In that case, nixon would

inherit policy �! hawk from the only class, republican, where it belongs. However, in a full-blown Nixon's

Diamond, one where nixon : quaker is known to hold, nixon[policy ! hawk] is no longer a certainty,

but rather just one of two possibilities.

Nonmonotonic inheritance has been a subject of intensive research (see, e.g., [36, 91, 92, 43, 22, 90,

57, 38, 56, 80]). The main di�erence between our approach and the above works is that we are developing

an inheritance theory for a general-purpose object-oriented language. By contrast, most of the aforesaid

papers tend to study inheritance from a very general, philosophical standpoint. This di�erence in the

orientation clearly shows in the languages they use. First, these languages are mostly propositional

and, importantly, do not distinguish between properties (i.e., attributes, in our terminology) and classes.

Second, these languages are not part of a more general logic programming system, and so they do not

raise the di�cult issue of the interaction between inheritance and the ordinary logical deduction.

The semantics for inheritance that will be developed in this section is of the credulous breed [43],

which means that in the presence of an inheritance conict we are willing to accept multiple canonical

models. This phenomenon can be interpreted in two di�erent ways. One way to look at this is to view
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Here clyde is a member of the class royalElephant and so it inherits color �!white from that class

(which turns into a non-inheritable data expression, color! white). In principle, it could have inherited

color �! grey from the class elephant. However, a more speci�c class of clyde, royalElephant, has an

overriding inheritable property, color �!white. Likewise, royalElephant does not inherit color �! grey

from elephant because of the aforesaid overriding property. On the other hand, royalElephant in-

herits group �!mammal as an inheritable property, and clyde inherits it as a non-inheritable prop-

erty, group! mammal.

Note that (20) uses inheritable expressions to indicate that inheritance must take place. We remind

from Section 3 that inheritable expressions are used in the following way: when such an expression is

inherited by a class-member, say clyde, it becomes a non-inheritable expression within that member,

even if the member also plays the role of a class in some other context. In contrast, when an inheritable

expression, e.g. group �!mammal, is inherited by a class, e.g. royalElephant, via a subclass relationship

it remains an inheritable expression in that subclass, and so it can be passed down to subclasses and

members of that class (cf. the inheritance by royalElephant and by clyde).

To illustrate the rationale behind the dichotomy of inheritable/non-inheritable expressions, we shall

expand the example in Section 3, where bob was represented as a member of the faculty.

Suppose that, for one reason or another, the information about bob's high school years and his years at

Yale needs to be scrutinized. One way to represent this information is to create objects bobInHighschool

and bobAtYale and make them completely unrelated to the already existing object bob. The disadvantage

of this approach is that then we will have to duplicate bob's date of birth, gender, etc. A better way is

to turn the new objects into members of class bob as follows:

bob : faculty
bobInHighschool : bob[graduation! 1968]
bobAtYale : bob[graduation! 1972]
faculty[highestDegree �!phd]
bob[birthdate �!1950; gender�! \male"; address! \NewY ork"]

Here bob is a member of class faculty , while bobInHighschool and bobAtYale are members of bob. Addi-

tionally, the second and the third clauses state that bob graduated from high school in 1968 and from

Yale in 1972. Now, being a member of faculty , bob inherits highestDegree �! phd, yielding a new fact,

bob[highestDegree! phd]. Notice that the property highestDegree �! phd inherited from faculty turns

into a non-inheritable property of bob, since inheritable properties are passed down to class members as

non-inheritable properties. Because of that, highestDegree ! phd can no longer be propagated to the

members of class bob. And, indeed, it makes little sense to attribute a scholarly degree to Bob when he

was in high school or a student at Yale. Likewise, the property address! \NewY ork" of bob should not

be inheritable because, in all likelihood, Bob had a di�erent address while in high school, and certainly

a di�erent address while at Yale. On the other hand, birthdate and gender are speci�ed as inheritable

properties, because these characteristics are not likely to change with time.

The phenomenon of multiple inheritance can be illustrated with the following example that is com-
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Other useful encapsulation policies can be represented along similar lines. We should mention that

the above de�nition of type correctness has the same drawback as the notion presented in Section 12:

being purely semantic, it is weaker than desired. For instance, suppose that, no faculty has a recorded

birthdate in the database. Then adding the clause (19) to faculty would still yield a well-typed program,

until a faculty with a proper birth date is inserted. Following this update, the program would become

ill-typed, and in this way the use of the person-private method birthdate is precluded inside the module

faculty. It should be clear, however, that this weakness comes from our notion of type correctness|it

is not inherent in our treatment of encapsulation.

14 Inheritance

The concept of inheritance is fundamental in AI and in object-oriented programming, and a number of

researchers had worked on combining this idea with programming languages. There are two main aspects

of inheritance: structural inheritance and behavioral inheritance. Structural inheritance is a mechanism

for propagating method declarations from superclasses to their subclasses. On the other hand, behavioral

inheritance propagates what methods actually do rather than how they are declared.

14.1 Structural Inheritance

Structural inheritance is a subject of many works in functional and logic languages. Cardelli [25] considers

inheritance in the framework of functional programming. He described a type inference procedure that

is sound with respect to the denotational semantics of his system. Sound type inference systems for

functional languages were also discussed in [74, 33] and in several other papers.

LOGIN and LIFE [6, 7] incorporate structural inheritance into logic programming via a uni�cation

algorithm for  -terms|complex structures that are related to signatures in F-logic but are di�erent,

both semantically and syntactically.

In contrast to the above works, F-logic is a full-edged logic in which structural inheritance is built into

the semantics, and the proof procedure is sound and complete with respect to this semantics. Structural

inheritance was discussed in Section 7.3.

14.2 Behavioral Inheritance

The main di�culty in dealing with behavioral inheritance is the fact that it is non-monotonic, which is

mostly due to the property called overriding and also because of the phenomenon of multiple inheritance.

Overriding means that any explicit de�nition of a method takes precedence over any de�nition inher-

ited from a superclass. For instance, consider the following F-program:

royalElephant :: elephant elephant[color �! \grey"; group �!mammal]
clyde : royalElephant royalElephant[color�! \white"]

(20)
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(i) both signatures are annotated with the same keyword;23 and

(ii) if the annotation is private or export-to, then the rules �1 and �2 belong to one module.

A module structure is coherent if it is coherent with respect to all canonic H-models of P. 2

Given a program, P, an H-model, I, and a module, 0, of P, the restriction I on 0, denoted I(0), is the

smallest H-structure that contains the following atoms:

� every data-atom, is-a atom, or a P-atom in I that occurs in an active rule in P�
0
; and

� every signature atom in I that is:

{ a publicly annotated signature occurring in the head of an active rule in P�; or

{ a privately annotated signature that occurs in the head of an active rule in P�
0
; or

{ a signature explicitly exported into 0 from another module, 00, and such that it occurs in the

head of an active rule in P�
00
.

In other words, I(0) takes all data atoms that are relevant to the module and all signature atoms that are

either derivable within that module or are exported by other modules. For instance, the restriction on

administrative of a canonic model of a program that includes the three modules (16) { (18) will contain

all data atoms that appear in the active instances of the last four clauses in (18), all the signatures in that

module, all signatures from module faculty, and all signatures in person, except for birthdate! date.

We can now de�ne the notion of type-correctness under meta-annotations as follows:

De�nition 13.3 (Type-Correctness with Meta-Annotations) Let P be an F-program with a coherent

module structure. Then P is said to be type-correct (or well-typed) if it is well-typed in the usual sense

(with respect to De�nition 12.5) and if every module of P is also well-typed.

A module, 0, is well-typed if L(0) is a typed H-model of P0 for every canonic model, L, of P. 2

To illustrate this de�nition, consider, again, the module structure (16) { (18). This program is

well-typed because all signatures used in these modules are properly exported. Suppose now that we add

F [birthmonth !M ]  F : faculty [birthdate! d(D;M; Y )] (19)

to module faculty. The resulting program will not be type-correct, because the module faculty will no

longer be well-typed.

To see why, let L be a canonic model of this program. The restriction L(faculty) does not contain

the signature faculty[birthdate) date], since the latter does not appear in the head of any active rule

local to faculty, and it is not exported into this module. On the other hand, if there is even a single

faculty, say fred , for whom birthdate is recorded, then fred[birthdate! � � � ] will be in L(faculty). Since

this data atom is not covered by any signature in L(faculty), the latter is not a typed H-structure.

23export-to(a) and export-to(b) are considered to be the same keyword for this purpose.
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(ii) An annotation (private, public, or export-to(module) ) attached to each signature expres-

sion that occurs in the head of a rule in P. 2

Note that since modules do not necessarily consist of disjoint sets of clauses, one module may be a

sub-module of another module. Note further that, as illustrated above, some modules may represent

authorization domains for various classes of users. Clauses and queries introduced by these users are

assumed to enter the appropriate modules automatically. Also, De�nition 13.1 does not assume that

there is a correspondence between modules and classes; however, if desired, modules can be made to �t

exactly one class, for any class in a given �nite set. Finally, it is important to keep in mind that module

structures do not a�ect the canonic model semantics of the program|only the notion of type correctness

is a�ected, as explained below.

The above de�nition of module structures is very general and calls for further specialization. One

thing that immediately comes to mind is that certain module structures may have internal contradictions.

For instance, if a method is declared as public in one module and as private in another, a problem may

arise if these declarations clash. We consider a module structure with this property as incoherent.

Another situation where a module structure may be viewed as incoherent is when the same method

expression is declared as private in two separate modules. If this were allowed, any module could import

any signature by declaring it private. This policy, however, cannot control what is being exported and

whereto, and thus it prevents enforcing any sensible access authorization policy. There are also purely

software-engineering arguments against this policy, which has led many object-oriented systems to adopt-

ing the idea of controlled export rather than import. A consequence of this policy is that duplication of

private declarations in di�erent modules is not allowed. Similarly, we shall assume that a signature can

be exported from only one module|the module where it is declared. These ideas are formally captured

via conditions (i) and (ii) of De�nition 13.2, below.

To formulate the notion of coherence, we need a few simple de�nitions. Let L be an F-logic language,

P be a program with a module structure, and let 0 be a module of P. Let P0 denote the set of clauses

in P that belong to 0. The notation P� (or P�
0
) will be used to denote the set of annotated ground

instances of P (resp., P0). We shall assume that rule-instantiation preserves annotations of signature

expressions occurring in the heads of the rules in P, and that instances of the signatures that have

di�erent annotations are not merged.21

Let I be an H-structure of P. (Note: I has no annotations, but P and P� have). A ground rule in

P� is active in I if all its premises are true in I. If I is a model, then the heads of all active rules are also

true in I.

De�nition 13.2 (Coherent Module Structures) A module structure for P is coherent with respect to a

canonic H-model, L, if for every data-atom in L that is covered22 by a pair of signatures that occur in

the heads of some active rules, �1; �2 2 P
� (where �1 � �2 is possible), the following holds:

21For instance, instantiating X and Y to b in a[private : X ! c; public : Y ! c] yields a[private : b ! c;
public : b ! c], where the two identical instances of b ! c are kept separately due to the di�erence in annotations.

22Covering is de�ned in De�nitions 12.1 and 12.2.
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The above represents a fragment of the de�nition of the module faculty. The methods account and

balance are not visible by any module except faculty and a module where administrative workers process

project accounts. In this particular case, the reason for shielding account and balance is that of protection

rather than encapsulation|we assume that the expenditures in project accounts are not in the public

domain. However, the total amount of funds initially set aside for the project is made available through

the public method funding.

module administrative f
budget [ public : salaries) int; equipment) int; supplies) int; total ) int ]
account [ private : project) project;

public : budget) budget; expended) int; encumbered) int;
committed) int; balance) int ]

B [ total ! X + Y + Z ]  B : budget [ salaries! X ; equipment! Y ; supplies! Z ]
A [ committed! X + Y ]  A : account [ expended! X ; encumbered! Y ]
A [ balance! X � Y ]  A : account [ budget! Z[total ! X ]; committed! Y ]
?� fred[balance@bluff ! X ]

g

(18)

Unlike module person, the last two modules, administrative and faculty, are not built around any

speci�c class. Apart from being depositories for method de�nitions, these modules serve as authorization

domains for the members of the faculty and for workers who administer project accounts. Note that

faculty exports two methods to module administrative, which makes their invocation in that module

legal (cf. the last query in administrative). Also, although most of the information about an account

is made public in module administrative, the identifying information of the account is not, which is

achieved by making the attribute project in class account (project associated with account) private.

In the above example, the construct module f � � � g and the keywords private, public, and

export-to are not part of the logic but, rather, are meta-annotations. Their purpose is to a�ect the

notion of type correctness presented in Section 12, which itself is a meta-logical concept. The following

section gives a formal account of type-correctness for programs with a module structure.

13.2 Modules and Type Correctness

The above example contains all major elements of our treatment of encapsulation. The key idea is to use

a stronger notion of type-correctness to preclude illegal uses of methods with limited scope. This requires

imposition of a module structure on each F-program, which is speci�ed via meta-logical annotations.

The new notion of type correctness builds on the notion introduced in Section 12 and reduces to the old

notion when the entire F-program is considered as one big module.

De�nition 13.1 (Module Structures) Let P be an F-program. A module structure of P consists of the

following:

(i) A decomposition of the set of clauses in P into a collection of named (not necessarily disjoint)

subsets, called modules ;
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First, all program clauses must be grouped into modules . Then each module is checked for type-

correctness separately. The notion of type-correctness referred to here is more elaborate than the one in

Section 12. The main di�erence is that the set of signatures used in determining type-correctness of any

given module now consists not only of signatures determined by the clauses that belong to that module

but also of signatures that are exported to this module by other modules.20

It should be noted that in most object-oriented systems, encapsulation policies center around the

concept of a class, not module. However, in a language where classes can be virtual, i.e., de�ned via

logical clauses, encapsulating each class seems to be infeasible. Nevertheless, modules can be made to �t

exactly one class and, thus, they provide a way to encapsulate any �xed number of classes (which is all

what current systems are capable of doing, anyway).

Traditionally, object-oriented systems were employing the idea of encapsulation for hiding implemen-

tation details, and our approach is not di�erent in this respect. However, a combination of modules with

type-correctness can serve another useful purpose: authorization-based control over access to objects.

This can be achieved along the following lines. First, each user is assigned to a module. Then, each

clause or a query that a user adds to the system is automatically made part of that user's module. This

simple schema can control unauthorized access, because any user query would constitute a type error

(and would be rejected) if it were to invoke a method that is not exported into that user's module.

13.1 An Example

To illustrate the above ideas, consider a program consisting of the following three modules:

module person f
person [ private : birthdate) date;

public : age) int; name) string; � � � ]

P [ age! Y 0 � Y ]  P : person[ birthdate! d(D;M; Y ) ]^ today() = d(D0;M 0; Y 0)
% Assume that dates (the members of class date) have the form
% d(Day;Month; Y ear). The function today() returns today's date.

g

(16)

In this module, the attribute birthdate is declared as private in order to encapsulate the implementation

of the method age from future changes to the structure of the class person. For instance, we may replace

birthdate by yearOfBirth, or we may change the type of birthdate without impacting methods de�ned

outside the module person.

module faculty f
faculty [ public : funding@project) int; projects)) project; � � � ]
project [ export-to(administrative):

account) account; balance@project) int; � � � ]

F [funding@P ! X ]  F : faculty [projects!!
P [account! A[budget! B[total ! X ] ] ] ]

F [ balance@P ! X ]  F : faculty [ projects! P [account! A[balance! X ] ] ]
g

(17)

20Public signatures are considered to be exported to every module.
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with restricted classes of F-programs, e.g., [42]). On the other hand, while De�nition 12.5 accommodates

a vast class of programs, it is weaker than we would like it to be. Essentially, our notion of type-correctness

amounts to saying that well-typed programs are not allowed to derive facts that are inconsistent with

signatures speci�ed for these programs. Clearly, this is a minimum that must be required of a correct

logic program. However, another source of type errors comes from rules that have signature-incompatible

body-literals. Unfortunately, this latter kind of errors is not captured by De�nition 12.5. A detailed

discussion of these issues and some solutions can be found in [98, 29].

The semantics of type-correctness presented here is of the type-checking variety, which means that

it requires the programmer to supply a complete type speci�cation for each program. However, in logic

programming, supplying complete type speci�cations is often viewed as a bother. Adapting the ideas

from ML to Prolog, Mishra [73] proposed to use type-inference for determining predicate types and then

use the inferred types for trouble-shooting logic programs.

Semantics of type inference is di�erent from the semantics of type checking. Briey, given a program,

P, its inferred type is the \strongest" type declaration under which P is well-typed. If pure type-checking

is viewed by some as too taxing, pure type-inference appears to be at another extreme and so it is used

mostly as an advisory tool. We feel|as suggested by other researchers in the past [101, 99]|that type-

inference combined with type checking is a suitable compromise. A way to de�ne logical semantics for

this approach was proposed in [51, 98].

13 Encapsulation

Encapsulation is a major concept in the suite of notions comprising the object-oriented paradigm. In

a nutshell, encapsulation is a software-engineering technique that requires special designations for each

method in a class. Methods designated as public can be used to de�ne other methods in other classes.

In contrast, methods designated as private can be used only in the class where they are declared. Other

methods may be exported to some speci�c classes, but not to all classes.

While the idea of encapsulation is simple, its logical rendition is not. In [71], Miller proposes a way to

represent modules in logic programming via the intuitionistic embedded implication. Chen [28] de�nes

modules as second-order objects, where data encapsulation inside modules is represented using existential

quanti�ers. In their present form, these methods are not su�ciently general to be applied to F-logic.

It would be interesting to see, though, if these approaches can be extended to make them suitable for

method encapsulation in an object-oriented logic.

In contrast to [71, 28], we view various encapsulation mechanisms simply as elaborate type-correctness

policies. This approach is quite general and is capable of modeling a wide variety of encapsulation

mechanisms. Its other advantage is that it does not require extension to the logic. Instead, encapsulation

is treated as a type-correctness discipline and, thus, it is a meta-logical notion in our approach.19

The general outline of our encapsulation-as-type-correctness approach can be formulated as follows.

19An interesting feature of [71, 28] is that they achieve encapsulation by purely logical means.
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This model satis�es the well-typing conditions of De�nition 12.3 and, therefore, is a typed F-structure.

Hence, P is well-typed.

Suppose now that P contains the term mary[boss ! john] instead of mary[boss ! bob]. Then P

would have had a type error because the atom mary[boss! john] clashes with the typing empl[boss)

faculty]. Indeed, john is not known to be a faculty and hence :john : faculty holds in every canonic

model of P. Likewise, the clause mary[salary ! 10000] would have caused a type error. This happens

because no signature was speci�ed for the 0-ary version of the method salary (only the unary version

of salary has a signature in P), and so :faculty[salary ) ( )] and :empl[salary ) ( )] must hold in

the minimal model of P. But this, together with mary[salary ! 10000], defeats the �rst well-typing

condition of De�nition 12.3.

For another example, consider:

ibm : company
john[worksFor! ibm]
X : employee X [worksFor! I ]
X [worksFor) company] X : employee

(15)

This F-program is well-typed because its minimal model is also a typed H-model. In contrast, if the last

rule in (15) were

X [name) string] X : employee

the program would not be well-typed because the attribute worksFor would have had no declared

signature and, hence, :c[worksFor ) ( )] would hold in that model, for every class c. This, together with

john[worksFor! ibm], defeats the �rst well-typing requirement to typed H-structures (De�nition 12.1).

Therefore, even though the modi�ed program has a minimal model, it is not a typed model and so the

program is ill-typed.

Discussion

De�nition 12.5 provides semantic grounds for developing static type-checking algorithms. It also supplies

a yardstick for verifying correctness of various such algorithms, and thus provides a uniform framework

for comparison. Static type checking is a topic for further research; for classical logic programs, a similarly

de�ned notion of type-correctness was studied in [98]. A detailed comparison of our approach with other

works on type systems for logic programming can be found in [51, 98].

To better see the role of type correctness in the overall schema of things, observe that this notion

is not part of F-logic but, rather, belongs to its meta-theory. As such, neither the semantics, nor the

proof theory depends on the particular way well-typing is de�ned. Even the sublogic of signatures

is independent of De�nition 12.5. Therefore, other de�nitions of type-correctness can also be used in

conjunction with F-logic.

The need for a new notion of type-correctness for F-logic arose because existing theories are not

general enough to adequately type many kinds of F-programs (although some could be adapted for use
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that there should be a signature de�ned for some class that contains faculty as a member and that covers

the invocation faculty[avgSalary! 50000].18

De�nition 12.2 (Typed H-structures|Inheritable Data Expressions) Let I be an H-structure. If � is

an inheritable data atom of the form c[m@a1; :::; ak�; v] 2 I and � is a signature atom of the form

d[m@b1; :::; bk�> � � � ], where �; and �> stand, respectively, for �! and ) or for �!! and)), we shall

say that � covers � if ai : bi; c :: d 2 I.

An H-structure, I, is said to be typed with respect to inheritable data expressions if the following

conditions hold:

� Every inheritable data atom in I is covered by some signature in I; and

� If an inheritable data atom, c[m@a1; :::; ak�; v] 2 I, is covered by a signature of the form

d[m@b1; :::; bn�>w] 2 I, where v; w 2 U(F) and �; and �> are as before, then v : w 2 I.
2

De�nition 12.3 (Typed H-Structures|All Data Expressions) The four conditions in De�nitions 12.1

and 12.2 are called the well-typing conditions. An H-structure, I, is typed if all well-typing conditions

are satis�ed, i.e., if I is typed with respect to inheritable and non-inheritable data expressions. 2

We are now ready to de�ne the notion of well-typed F-programs:

De�nition 12.4 (Typed Canonic Models) A typed canonic model of P is a (usual) canonic model for P

that, in addition, is a typed H-structure. 2

De�nition 12.5 (Well-typed Programs) An F-program P is well-typed (or type-correct) if every canonic

H-model of P is a typed canonic H-model. Otherwise, P is said to be ill-typed . 2

This de�nition appears to capture the intuition about type errors quite adequately: If P has a non-

typed canonic model, the problem can clearly be traced to typing. For example, consider the following

F-program, P:

bob : faculty 1989 : year empl[boss) faculty; salary@ year) integer]
mary : faculty 10000 : int mary[boss! bob]
faculty :: empl

The minimal H-model of P consists of the following molecules (and their derivatives):

faculty :: empl bob : faculty 1989 : year

bob : empl mary : faculty 10000 : int

mary : empl mary[boss! bob]

empl[boss) (faculty; empl); salary@ year ) integer]

faculty[boss) (faculty; empl); salary@ year) integer]

18Such a class, called employmentGroup was introduced towards the end of Section 3.
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attributes that are de�ned for the particular relation at hand, and any attempt to use an attribute that

is not de�ned for this relation will normally result in an error.

To illustrate, we reproduce an example from Section 11.3:

empl[salary@ year) integer]
person[birthdate) year]

Here we would like to make it illegal for an empl -object to call methods other than birthdate and salary.

Similarly, for persons that are not employees, we would like to prohibit the use of the attribute salary

altogether, since it is not covered by an appropriate signature in class person. In other words, we would

like to say that (in the above example) the signature of person-objects consists precisely of one method,

birthdate, and that the signature of empl -objects has precisely two methods, salary and birthdate. Both

methods are scalar; birthdate expects no arguments, while salary needs one|a year -object.

Unfortunately, by itself these declarations do not ensure that the corresponding typing constraint

hold in a canonic H-model, because connection is missing between signatures and data expressions. This

missing link is now provided in the form of the well-typing conditions:

De�nition 12.1 (Typed H-structures|Non-inheritable Data Expressions) Let I be an H-structure. If �

is a non-inheritable data atom of the form o[m@a1; :::; ak; v] 2 I and � is a signature atom of the form

c[m@b1; :::; bk�> � � � ], we shall say that � covers � if, for each i = 1; :::; k, we have o : c; ai : bi 2 I. Here

; and �> stand, respectively, for ! and ) or for !! and )).

We shall say that I is a typed H-structure with respect to non-inheritable data expressions if the

following conditions hold:

� Every non-inheritable data atom in I is covered by a signature atom in I; and

� If a data atom, o[m@a1; :::; ak; v] 2 I, is covered by a signature of the form c[m@b1; :::; bn�>w] 2

I, where ; and �> are as before and v; w 2 U(F), then v : w 2 I.
2

Note that the �rst condition imposes restrictions on the domain of the de�nition of methods, and on

when a method can be invoked as a scalar or a set-valued method. In plain terms, it says that every

non-inheritable expression in Imust be covered by a signature. The second condition says that every non-

inheritable expression must satisfy all constraints imposed by the signatures that cover that expression.

When it comes to typing, inheritable expressions are not completely analogous to non-inheritable

expressions, despite their semantic and proof-theoretic similarities. The reason for this is that inheritable

expressions are used di�erently. Indeed, consider the expression highestDegree �! phd of class faculty

in Section 3. This expression is supposed to be inherited by the members of class faculty and thus it is

also a property of these members. Therefore, it must obey all typing constraints imposed on faculty .

It is instructive to compare the above expression to avgSalary ! 50000, which is a non-inheritable

property of faculty . Since this expression does not apply to the members of the class, it does not have to

comply with the signatures given for the class faculty . Instead, De�nition 12.1 applies here, which means
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This part of the job is quite standard and can be found in many guides to Prolog. Once the expression

is parsed, it has to be evaluated. Surprisingly, evaluators for joins, Cartesian products, and the like are

rather cumbersome and take anywhere from one to two pages of Prolog code. The main di�culty here

is the fact that arities of the expressions to be joined are unknown at compile time, which calls for the

use of various nonlogical features such as \=..", \arg", and \functor". We shall see that a page-plus-long

Prolog program for the relational join evaluator can be written in just three rules in F-logic.

Relations are represented as in Section 6, that is, each relation, p, is a class of tuple-objects. Given a

pair of relations, p and q, and a join condition, cond, the program creates a new relation, join(p; q; cond).

Join-conditions are represented as lists of pairs of the form cond(A;B; cond(: : :)). For instance, cond(A1;

B1; cond(A2; B2; nil)) encodes an equi-join condition A1 = B1 ^A2 = B2. The �rst deductive rule, below,

says that if i and j are oid's of tuples in relations p and q, respectively, then new(i; j) is the oid of a tuple

in a nil-join of p and q (i.e., in a Cartesian product of p and q). The second rule recursively computes

the oid's of all tuple-objects in the equi-join. These tuple-objects are not fully de�ned, however, as we

have not yet speci�ed the values of their attributes. The third rule, therefore is needed to extract these

values from the source-tuples i and j:

new(I; J) : join(P;Q; nil) I : P ^ J : Q

new(I; J) : join(P;Q; cond(L;M;Rest)) I : P [L!X ]^J : Q[M!X ]
^new(I; J) : join(P;Q;Rest)

new(I; J)[L!X; rename(M)!Y ] I : P [L!X ]^J : Q[M! Y ]

(14)

Note that in the last rule, the attributes coming from the second relation in the join are renamed in

order to avoid name clashes. When relations do not have common attributes or when we are interested

in natural joins rather than equi-joins, this renaming would not be needed and so the symbol rename in

the last rule could be dropped. Additionally, for natural joins, the join-condition itself can be simpli�ed

to be a list of attributes instead of pairs of attributes.

Now, if dept has attributes dname and mngr, while the relation empl has attributes dname and

ename, the query ?� X : join(dept; empl; cond(dname; dname; nil))[Y ! Z] will return a join of the

two relations on the attribute dname.

Actually, the above program does a more general job since it joins classes rather than just relations.

It also demonstrates a di�erence that syntax can make: In Prolog, a purely logical speci�cation of a join

entails a rather sophisticated encoding of relations, which|in the end|results in a code that can hardly

be called \declarative."

12 Well Typed Programs and Type Errors

In a strongly typed language, a method can be invoked only if this invocation is covered by one of the

signatures speci�ed for this method.17 For instance, in the relational model, one can use only those

17By an invocation we mean a tuple of the form hobj;
�!
argsi, where obj is the host-object of the invocation and

�!
args is a

list of arguments of the invocation.
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of a general situation where joint projects, common hobbies, and other commonalities may be involved.

We can abstract this concept and de�ne a \generic" method for joint things:

X [joint(M)@nil!! Z]  X [M !! Z]
X [joint(M)@cons(Obj; Rest)!! Z]  Obj[M !! Z]^X [joint(M)@Rest!! Z]

The �rst rule here describes things that X has in common with an empty list of objects, nil. The second

rule, then, says that X has object Z in common with each member of the list cons(Obj; Rest) if Obj has

Z and Z is a common object that X shares with the rest of the list.

Our second example describes similarities among classes, speci�ed via the like-relationship (cf. [41,

11]). For instance, one can say, \The concept of a Whale is like the concept of a Fish via habitat" or,

\A Pig-Like-Person is like a Pig via nose and legs."

Like-similarity can be expressed by means of a ternary predicate, like. For instance, in like(pig-like;

pig; cons(legs; cons(nose; nil)) ), the third argument would list the attributes that relate the �rst two

arguments. We could then de�ne:

C1[Attr ! P ] C2[Attr ! P ]^ like(C1; C2; PropList)^member(Attr; PropList)

where member is a membership predicate that can be de�ned by a standard Prolog program.

The above technique works well for specifying similarity via attributes , i.e., via 0-ary methods. To

represent similarity via methods of arbitrary arities we would need one liken predicate, for each arity

n � 0, and one rule of the form

C1[M @X1; :::; Xn! P ] C2[M @X1; :::; Xn! P ] ^ liken(C1; C2;MethdList)
^ member(M;MethdList)

11.4.4 List Manipulation

The following is an F-logic counterpart of a canonic textbook example:

nil[append@L! L] L : list(T )
cons(X;L)[append@M ! cons(X;N)]  L : list(T )[append@M ! N ]^X : T

(13)

Here L, M , and N are list-objects, while append is a method that applies to list-objects; when invoked

with a list-object, b, as an argument on a list-object, a, as a host append returns a concatenation of a

and b. A parametric family of list-classes, list(T ), and their signatures were de�ned earlier, in (10) of

Section 11.2 and in (11) of Section 11.3, respectively.

11.4.5 A Relational Algebra Interpreter

Writing an intelligible Prolog interpreter for relational algebra is rather challenging. First, one should

parse the relational expression given as input. For example, an expression ((P � V )[W ) 1cond (Q�R)

would be converted into a term of the form

join( union(prod(P; V ); W ); minus(Q;R); cond )
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Typically, database queries are speci�ed with respect to a �xed, known scheme. Experience shows,

however, that this assumption is unrealistic and ad hoc schema exploration may often be necessary. This

means that the user has to apply intuitive or exploratory search through the structure of the scheme and

the database at the same time and even in the same query (cf. [76]). Many user interfaces to commercial

databases support browsing to di�erent extent. The purpose of the following examples is to demonstrate

that F-logic provides a unifying framework for data and schema exploration. Once again, we refer to the

example in Section 3.

For each object in class faculty, the following pair of rules collects all attributes that have a value in

class person:

interestingAttributes(X) [attributes!! L]  X : faculty[L! Z : person]
interestingAttributes(X) [attributes!! L]  X : faculty[L!! Z : person]

(12)

For every faculty-object, o, these rules de�ne a new object, interestingAttributes(o), with a set-valued

attribute attributes. The intuitive reading of (12) is: If L is an attribute that is de�ned on an object,

X , and has a person-value, Z, then L must belong to the result that attributes has on the object

interestingAttributes(X).

Thus, in the example in Section 3, we would obtain: interestingAttributes(bob) = fbossg and

interestingAttributes(mary) = ffriendsg. Deleting the restriction person in (12) would add those

attributes that have any value on X , not just a person-object. In that case, interestingAttributes(bob)

will also contain name, age, and worksFor , while interestingAttributes(mary) will include name, high-

estDegree, and worksFor.

Another interesting example is when we need to retrieve all objects that reference some other object

directly or indirectly (via subobjects). The method �nd , below, returns the set of all such objects that

reference Stu� :

browser[find@Stu� !! X ] X [Y ! Stu� ]
browser[find@Stu� !! X ] X [Y !! Stu� ]
browser[find@Stu� !! X ] X [Y ! Z]^ browser[find@Stu� !! Z]
browser[find@Stu� !! X ] X [Y !! Z]^ browser[find@Stu� !! Z]

For the example in Section 3, the query ?� browser[find@\CS" !! X ] would return the set

fcs1; cs2; bob;mary g.

11.4.3 Representation of Analogies

Reasoning by analogy is an active �eld of research (e.g., see a survey in [40]). Apart from the semantic

and heuristic issues, �nding suitable languages in which to specify analogies is also a challenge. This

subsection shows how certain kinds of analogies can be speci�ed in F-logic.

In Section 3, we de�ned a method that, when applied on a host object of type person with a person-

argument, returns the set of all joint works of the two persons involved. This method is just one instance
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the other hand, students may be entitled to see their own grades. To implement this policy, each student

can be given access to the object that represents the achievements of that student. We can then de�ne

the method grade on student-objects as follows:

Stud[grade@Crs! G] Crs : course[grade@Stud! G]

In this way, a student, say Mary, can access her grades by posing queries such as ?� mary[grade@vlsi!

G], but she cannot access grades by querying a course-object, e.g., ?� vlsi[grade@mary! G].

The power-set operator. Another interesting problem is to express the power-set operation, an

operator that takes an arbitrary set and constructs its power-set. First, we de�ne the class of sets; it

consists of objects with oid's of the form add(a; add(: : :)). The intended meaning of a set-object denoted

by add(a; add(b; add(c; nil))) is the set fa; b; cg. The class of sets is de�ned as follows:

nil : set
add(X;S) : set  S : set

add(X; add(Y;S))
:
=add(Y; add(X;S))

add(X; add(X;S))
:
=add(X;S)

The �rst equation asserts that the order of adding elements to sets is immaterial; the last equation says

that insertion of elements into sets is an idempotent operation.

Next, we de�ne the attribute, self , that for every set-object returns the set of all members of this set:

nil[self !! fg]
add(X;L)[self !! X ] L : set
add(X;L)[self !! Y ] L : set[self !! Y ]

Finally, the powerset method is de�ned as follows:

S [ powerset!! nil ]  S : set
S [ powerset !! add(Z; L) ]  S : set[self !! Z; powerset!! L]

^ L : set ^ :L[self !! Z]

The �rst clause says that the empty set is a member of any power-set. The second rule says that a set

obtained from a subset, L, of S by adding an element Z 2 S � L, is a subset of S and thus is also a

member of the power-set of S.

11.4.2 Querying Database Schema

The higher-order syntax of F-logic makes it possible to query and manipulate certain meta-information

about the database, such as its schema.

Schema querying is the subject of this section. This issue was also discussed in [55] and recently in

[30]. However, the treatment in [55] is not as general and integrated as in F-logic, while [30] is a relational

rather than an object-oriented language.
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However, this gain in e�ciency has a price. For instance, in LDL, comparing sets for equality is easy

because LDL treats each set as an entity and, in particular, the equality operator is applicable to sets.

In contrast, F-logic does not have a built-in equality operator for sets. Nevertheless, comparing sets is

possible by de�ning set-equality and set-containment predicates via logical rules.

To see how, suppose we want to verify that the result returned by one set-valued attribute stands

in a certain relation (e.g., equals, subset, etc.) to the value of another attribute of some other object.

De�ning these relationships in F-logic is akin to comparing relations in classical logic programming:

notsubset(Obj; Attr; Obj0; Attr0)  Obj[Attr!! X ]^:Obj0[Attr0 !! X ]
subset(Obj; Attr; Obj0; Attr0)  :notsubset(Obj; Attr; Obj0; Attr0)

unequal((Obj; Attr; Obj0; Attr0)  notsubset(Obj; Attr; Obj0; Attr0)
unequal((Obj; Attr; Obj0; Attr0)  notsubset(Obj0; Attr0; Obj; Attr)

equal(Obj; Attr; Obj0; Attr0)  :unequal((Obj; Attr; Obj0; Attr0)

It should be noted, however, that although expressing set-equality in F-logic is more cumbersome than in

LDL, implementing the equality operator of LDL involves the use of negation as failure, too. Therefore,

comparing sets in F-logic and LDL has the same complexity.

Data restructuring. The next example is an adaptation from [3]. The issue here is the representation

of data functions of COL [2] and grouping of LDL [16].

Consider a relation, graph(X; Y ), whose tuples represent edges of a graph. The task is to re-structure

this graph by representing it as a set of nodes, such that each node points to a set of its descendants.

The corresponding F-program is very simple:

rebuiltGraph[nodes!! Node[descendants!! D]] graph(Node;D)

where rebuiltGraph is a new object. This rule also shows one more way to do nesting. This time, though,

we are nesting a relation, graph, rather than a class.

The reader familiar with HiLog [30] may note that this rule can be made more general if we extend

the syntax of F-logic to include variables that range over predicate names:

rebuilt(Rel)[nodes!! Node[descendants!! D]] Rel(Node;D)^Rel : relation

where Rel is a variable and relation is an appropriately de�ned class of binary relations. This rule will

restructure any binary relation that is passed as a parameter. For instance,

?� rebuilt(yourFavouriteRel)[nodes!! Node[descendants!! D]]

will return a rebuilt version of yourFavouriteGraph.

For another example, suppose that we have a method, grade, declared as follows:

course[grade@student ) integer]

A method like this would be appropriate for the use by an administrator. However, students are likely

to be denied access to this method in class course because this will expose grades of other students. On
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11.4.1 Set Manipulation

The ability to manipulate sets with ease is an important litmus test for an object-oriented data language.

This subsection illustrates set-manipulation by expressing a number of popular set-manipulation opera-

tors, such as nesting and unnesting, set-comparison, and powerset operator. Other examples, such as set

intersection and union operators can be found in [52].

Nesting and unnesting. Among the many set-related operations, the ability to restructure objects

by nesting and unnesting are among the most important ones. Specifying these operations in F-logic is

quite easy. Consider a class of objects with the following structure:

c[attr1 ) r1; attr2 ) r2]

One way to nest this class, say, on attr2, is by de�ning a new class, nest(c; attr2), with the signature

nest(c; attr2)[attr1 ) r1; attr2 )) r2]

This class is populated according to the following rule:

nested(Y ) : nest(c; attr2)[attr1 ! Y ; attr2 !! Z]  X : c [attr1 ! Y ; attr2 ! Z]

It is easy to see from either the semantics or the proof theory that this rule has the following meaning: to

nest c on attr2, populate the class nest(c; attr2) with the objects of the form nested(y), such that their

attribute attr2 groups all z's that occur with y in some object x in c.

Similarly, consider a class with the following signature:

c[attr1 ) r1; attr2 )) r2]

To unnest this class on the attribute attr2, we de�ne a new class, unnest(c; attr2), with the following

signature:

unnest(c; attr2)[attr1 ) r1; attr2 ) r2]

Identities of objects in this class depend on both the source-objects (from class c) and on the values

returned by attr2:

unnested(X;Z) : unnest(c; attr2)[attr1 ! Y ; attr2 ! Z]  X : c [attr1! Y ; attr2 !! Z]

This rule says that to unnest c on attr2, we must de�ne new objects of the form unnested(x; z), for each

c-object, x, and for each value z of attr2 on x. In the unnested objects, both attributes, attr1 and attr2,

are scalar and are de�ned so as to atten the structure of the original objects in class c.

Set comparison. Grouping is not only easy to express in F-logic, but it is also computationally more

e�cient than in some other languages, such as LDL [77], COL [2], or LPS [59]. The reason for this is

that, in these languages, grouping is a second-order operation that requires strati�cation. We refer the

reader to [52] for a more complete discussion.
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11.3 Examples of Type Declarations

Typing is a popular concept in programming languages; in its primitive form it is used in traditional

database systems under the disguise of schema declaration. In programming, typing can be very useful

both as a debugging aid and as a means of maintaining data integrity. It allows the user to de�ne

correct usage of objects and then let the system detect ill-typed data and queries. The purpose of type

declarations is to impose type-constraints on arguments of methods as well as on the results returned by

the methods. For instance, in
empl[salary@ year) integer]
person[birthdate) year]

the �rst molecule states that salary is a function that for any empl-object would return an object in the

class int , if invoked with an argument of class year. The second clause says that birthdate is an attribute

that returns a year for any person-object. Section 12 discusses how typing constraints are imposed in

F-logic. In the present section we shall only give some examples of type de�nitions, leaving the semantic

considerations till later.

In the previous subsection, we have seen an examples of a parametric family of classes, such as list(T ).

A signature for this family can be given as follows:

list(T )[first) T ; rest) list(T ); length) int; append@ list(T )) list(T )] (11)

These signatures are parametric; they declare the attributes �rst , rest , length, and the method append as

polymorphic functions that can take arguments of di�erent type. As with any clause in a logic program,

variables in (11) are universally quanti�ed.

For instance, the signature for append says that if it is invoked on a list(int)-object with an argument

list(int) then the result must be an object of class list(int). However, if the argument is, say, list(real)

then the output must be an object of class list(real), since int :: real. This is because this invocations of

append must conform to the signature list(real)[append@ list(real)) list(real)], which is an instance of

(11). Note that the output of this invocation does not have to be in class list(int), because the signature-

instance list(int)[append@ list(int) ) list(int)] does not cover the invocation in question (here append

is invoked on a list of reals, not integers).

11.4 Examples of Object Bases

This section illustrates the expressive power of F-logic on a number of interesting and non-trivial examples,

which include manipulation of set and database schema, analogical reasoning, list processing, and others.

In many cases, we shall omit signatures because they are simple and do not illustrate new ideas (except

for the list processing methods whose typing has already been discussed). Also, since inheritance of

properties will be discussed separately, all data expressions used in the examples, below, are of non-

inheritable variety.
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In many applications, the IS-A hierarchy may depend on other data, which commonly happens in

view de�nitions, such as derived classes. For instance,

Car : dieselCars(Y ear) Car : car[engineType! \diesel"; makeY ear ! Y ear]

de�nes a family of derived classes, parameterized by Y ear. Each class, e.g., dieselCars(1990), would be

inhabited by objects that represent diesel cars made in 1990.

Furthermore, sometimes it is desirable to be able to create derived classes whose population is deter-

mined by the objects' structure rather than by their properties, as it was in the previous example. For

instance, the rule

X :merchandise X [price) ( )]

de�nes a derived class, merchandise, that consists of all objects to which the attribute price applies.

Note that an object would fall into the class merchandise if it has the attribute price, even if the price

for that merchandise has not been set yet.

Our last example concerns the set-theoretic and the lattice-theoretic operators on the class hierarchy.

F-logic does not require classes to form a lattice, i.e., a pair of classes, c and c0, does not have to have the

lowest superclass or the greatest subclass. It is not even required that c and c0 will have an intersection

(or a union) class, i.e., a class whose extension (set of members) is in an intersection (resp., union) of the

extensions of c and c0. However, we can de�ne class constructors to accomplish these tasks. For instance,

the following rules de�ne and(X; Y ) and or(X; Y ) to be intersection and union classes of its arguments,

X and Y :
I : or(X; Y )  I : X
I : or(X; Y )  I : Y

I : and(X; Y )  I : X ^ I : Y

Note that, in the canonical model, and(X; Y ) is not a subclass of X and Y , and neither is or(X; Y ) their

superclass. The above rules relate only extensions of the classes involved, not the classes themselves. If

we also wanted to relate the classes, we would write:

lsup(X; Y ) :: C  X :: C ^ Y :: C
X :: lsup(X; Y )
Y :: lsup(X; Y )

C :: gsub(X; Y )  C :: X ^ C :: Y
gsub(X; Y ) ::X
gsub(X; Y ) :: Y

Here lsup is a constructor that de�nes the lowest superclass of X and Y , and gsub de�nes greatest

subclasses. Note that, for instance, gsub(X; Y ) is not an intersection of the extensions of the classes

X and Y : the extension of gsub(X; Y ) is a subset of the extensions of X and Y , but the latter may

have common members that are not members of gsub(X; Y ). In other words, gsub and lsup construct

lower and upper bounds in the class hierarchy, but not in the hierarchy of class extensions. However,

by combining the above rules for and and gsub (and for or and lsup) it is easy to de�ne constructors of

lower and upper bounds in both hierarchies.
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Informally, an object-base de�nition speci�es what each method is supposed to do. Object de�nitions

may be explicit, i.e., given as facts, or implicit, i.e., speci�ed via deductive rules. Class-hierarchy decla-

rations, as their name suggests, organize objects and classes into IS-A hierarchies. Signature declarations

specify the types of the arguments for each method and the type of the output they produce.

11.2 Examples of IS-A Hierarchies

Given an F-program and its canonic H-model, the IS-A hierarchy de�ned by the program is the set of all

is-a atoms satis�ed by the canonic model.

One simple example of a class-hierarchy declaration is given in Figures 2 and 3 of Section 3. In this

hierarchy, john is a student and an employee at the same time; phil is an employee but not a student.

The latter is not stated explicitly and cannot be derived using the normal logical implication, \j=", of

Section 5. However, :phil : student holds in the minimal model of the program of Section 3. Since the

semantics is determined by this model, :phil : student is considered as a valid statement about the class

hierarchy.

The idea of class hierarchies is an important ingredient in the phenomenon known as inclusion poly-

morphism. For instance, stating that students and employees are persons implies that all properties (i.e.,

methods) applicable to persons must automaticly be applicable to employees and students. In Figure 4

of Section 3, such properties are name (a scalar 0-ary method that returns objects of class string),

friends (a set-valued attribute that returns objects of class person), and so on. In F-logic, inclusion

polymorphism is built into the semantics. It is manifested by a property discussed in Section 7.3, called

structural inheritance.

In F-logic, classes are objects and so they are represented by ground id-terms. This opens a way

to represent parametric families of classes using non-ground id-terms, which gives the exibility needed

to support parametric polymorphism. For example, the following pair of clauses de�nes a parametric

polymorphic type list(T ):

nil : list(T )
cons(X; Y ) : list(T ) X : T ^ Y : list(T )
list(T ) :: list(S) T :: S

(10)

Here list(T ) denotes a parametric family of classes of the form

f list(t) j where t is a ground id-term g

For instance, if int denotes the class of integers then list(int) is the class of lists of integers containing

the elements nil, cons(0; nil), cons(0; cons(1; nil)), and so on. The last clause above states that if T is

a subclass of S then list(T ) is a subclass of list(S). Note that this does not follow from the rest of the

de�nition in (10) and has to be stated explicitly (if this property of lists is wanted, of course).

The above family of list-classes will be used later to de�ne parameterized types for list-manipulation

methods.
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Then :(bob
:
=dad(john)) must hold in all canonic models of the program. However, since bob

:
=dad(john)

is a logical consequence of (9), this program has no equality-restricted canonic model.

Queries

A query is a statement of the form ?� Q, where Q is a molecule.16 The set of answers to ?� Q with

respect to an F-program, P, is the smallest set of molecules that

� contains all instances q of Q that are found in the canonic model of P; and

� is closed under \j=".

The �rst condition is obvious and does not need further comments. The second condition is needed

for rather technical reasons: Suppose the database contains john[children !! fbob; sallyg] and the

query is ?� john[children !! X ]. Then there are two instances of the query implied by this

database: john[children !! bob] and john[children !! sally]. However, without j=-closedness,

john[children !! fbob; sallyg] would not be considered an answer to the query, even though it is a

logical consequence of the �rst two answers. On the other hand, john[children !! fbob; sallyg] would

be viewed as an answer to a logically equivalent query, ?� john[children!! fX; Y g].

Closure with respect to \j=" eliminates this anomaly. It also makes it easier to talk about query

equivalence and containment without getting bogged down in minor syntactic di�erences that may occur

in essentially similar queries.

The Structure of F-logic Programs

F-programs specify what each method is supposed to do, de�ne method signatures, and organize objects

along class hierarchies. Thus, every program can be split into three disjoint components, according to

the type of information they specify:

� The IS-A hierarchy declaration. This part of the F-program consists of the rules whose head-literal

is an is-a assertion.

� The signature declaration. This part contains rules whose head literal is an object-molecule that

is built out of signature expressions only.

� The object-base de�nition. This part consists of rules whose head literals do not contain signatures

or is-a expressions, i.e., rules whose heads are either predicates or object-molecules built exclusively

out of data expressions.

Note that the above classi�cation considers rule-heads only. It is legal, therefore, for rules in one compo-

nent to have body-literals de�ned in other components. In fact, as we shall see, certain applications may

need such exibility.

16This does not limit generality, as every query can be reduced to this form by adding appropriate rules.
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Canonic Models and Equality

Equality has always been a thorny issue in logic programming because it does not easily succumb to

e�cient treatment. As a result, most logic programming systems|and all commercial ones|have so

called \freeness axioms" built into them.15 In practice, this boils down to the restriction that prohibits

equality predicates from appearing in the heads of program clauses.

Clearly, programming in F-logic cannot avoid such problems. Furthermore, equality has a much

more prominent role in object-oriented programming than in classical logic programming. In F-logic, for

instance, equations can be generated implicitly, without putting equality in the rule-heads. For example,

consider the following simple F-program:

john[father ! bob] john[father ! dad(john)] (9)

Because father is a scalar attribute, this program entails bob
:
=dad(john). Likewise, car :: automobile

and automobile :: car together entail car
:
=automobile because the class hierarchy must be acyclic.

Apart from the usual, computational problems associated with the equality, implicit generation of

equations may be problematic from the practical point of view. Indeed, multiply-de�ned scalar methods,

such as father above, or cycles in the class-hierarchy may be unintentional, a result of programmer's

mistake. Therefore, it may be desirable to regard certain programs, such as (9) above, as inconsistent,

unless dad(john)
:
=bob is also de�ned explicitly. Of course, since the above program obviously has many

models, \inconsistency" here should be taken to mean the absence of canonic models. Furthermore, the

notion of canonic models needs special adjustment for equality, because many programs that generate

implicit equality may well have canonic models in the usual sense. For instance, (9) certainly has a

minimal H-model, which consists of the two given atoms, the equation bob
:
=dad(john), and tautologies.

The canonic models that take special care of the equality will henceforth be called equality-restricted

canonical models, which is de�ned next.

The �rst step is to split each program, P, into two (not necessarily disjoint) components, P
:
= and

Prest. The equality de�nition, P
:
=, is the part that determines the equality theory of P. The second

component, Prest, describes the rest.

For simplicity, we give a de�nition that relies on the assumption that the equality de�nition, P
:
=, has

only one canonic H-model. However, it does not assume any speci�c theory of canonic models. Let L
:
=

be the (usual) canonical H-model of P
:
= and let EQ be the set of all non-trivial equations in L

:
=. (An

equation, s
:
=t, is non-trivial if and only if s and t are not identical.)

De�nition 11.1 (Equality-restricted Canonical Models) Let M be a canonical H-model of P (we do not

assume that M is unique). We say that M is an equality-restricted canonical model of P if the set of

nontrivial equations in M coincides with EQ. 2

Coming back to our example, suppose that bob
:
=dad(john) is not in the equality-de�ning part of (9).

15In logic programming, freeness axioms are also known under the name of Clark's Equality Theory.
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11.1 Logic Programs and their Semantics

Perhaps the most popular classes of logic programs is the class of Horn programs. A Horn F-program

consists of Horn rules, which are clauses of the form

head body (8)

where head is an F-molecule and body is a conjunction of F-molecules. Since (8) is a clause, this implies

that all its variables are implicitly universally quanti�ed.

Just as in classical theory of logic programs, it is easy to show that Horn programs have the model-

intersection property. Thus, the intersection of all H-models of a Horn program, P, is also an H-model

of P. This model is also the least H-model of P with respect to set-inclusion (recall that H-structures

are sets of molecules).

By analogy with classical theory of Horn logic programs (see, e.g., [64]), we can de�ne an F-logic

counterpart of the well-known TP operator that, given a Horn F-program P, maps H-structures of P

to other H-structures of P. Given an H-structure, I, TP(I) is de�ned as the smallest H-structure that

contains the following set:13

fhead j head l1 ^ � � � ^ ln is a ground instance of a rule in P and l1; :::; ln 2 I g

Following a standard recipe, it is easy to prove that the least �xpoint of TP coincides with the least

H-model of P and that a ground F-molecule, ', is in the least H-model of P if and only if P j= '.

Although Horn programs can be used for a large number of applications, their expressive power is

limited. For more expressiveness, it is necessary to relax the restrictions on the form of the rules and

(referring to (8) above) allow negated F-molecules in body. Such programs will be called generalized (or

normal) F-programs.

For generalized programs, the elegant connection between �xpoints, minimal models, and logical

entailment holds no more. In fact, such programs may have several minimal models and the \right"

choice is not always obvious. However, it is generally accepted that the semantics of a generalized logic

program is given by the set of its canonic models, which is a subset of the set of all models of the program.

Alas, in many cases there is no agreement as to which models deserve to be called canonic. Nevertheless,

for a vast class of programs, called locally strati�ed programs, such an agreement had been reached, and

it was shown in [81] that every such program has a unique canonic H-model.14 For a locally strati�ed

program, its unique canonic model goes under the name perfect model.

In Appendix A, we propose a perfect-model semantics for locally strati�ed F-programs, which is an

adaptation from [81]. For our current needs, however, we shall assume that some canonic H-model exists

for each F-program under consideration; details of these models will be immaterial for the discussions

that follow. Moreover, since most of our examples are based on Horn programs, the canonic models of

these programs coincide with their unique minimal models.

13By itself, this set may not be an H-structure because of the closure properties that an H-structure must satisfy (see
Section 8).

14We consider only de�nite rules, i.e., rules that do not have disjunctions in the head.
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denote the derivation sequence that refutes T2 = S0 [ fLg (which exists by the inductive assumption).

Since S0 � S and S ` L, it follows that if we apply dedseq1 to S and then follow this up with steps from

dedseq2, we shall refute S. 2

Proposition 10.6 There exists a uni�cation algorithm that, given a pair of molecules T1 and T2, yields

a complete set of mgu's of T1 into T2.

Proof: The algorithm is given in Appendix B, and its correctness is proved in Lemma B.1. 2

Lemma 10.7 (Lifting Lemma) Suppose C1; C2 are clauses and C
0
1; C

0
2 are their instances, respectively.

If D0 is derived from C01 and C
0
2 (or from C01 alone) using one of the derivation rules, then there exists a

clause, D, such that

� D is derivable from the factors of C1 and C2 (resp., from C1 alone) via a single derivation step;

� This derivation step uses the same inference rule as the one that derived D0; and

� D0 is an instance of D.

Proof: Consider each derivation rule separately. The proof in each case is similar to that in predicate

calculus since the notion of substitution is the same in both logics. Simple (but tedious) details are left

as an exercise. 2

Theorem 10.8 (Completeness of F-logic Inference System) If a set S of clauses is unsatis�able,

then there is a refutation of S.

Proof: The proof is standard. Consider S�, the set of all ground instances of S. By the ground

case (Theorem 10.5), there is a refutation of S�. With the help of Lifting Lemma, this refutation can be

then lifted to a refutation of S. 2

11 Data Modeling in F-logic

In this section, we de�ne the notions of a logic program, a database, and a query, and then illustrate

the use of F-logic on a number of simple, yet non-trivial examples. We shall use the terms \deductive

database" (or simply a database) and \logic program" interchangeably. As a �rst cut, we could say that a

logic program in F-logic (abbr., an F-program) is an arbitrary set of F-formulae. However, as in classical

logic programming, this de�nition is way too general and both pragmatic and semantic considerations

call for various restrictions on the form of the allowed formulas.
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(i) P is an is-a assertion or a predicate:

If P is an is-a assertion, item (2) in the construction of M in Section 8 can be used to show

that M j= P if and only if P 2 D(S). If P is a predicate, item (9) can be used to show the

same.

(ii) P is an object molecule composed of atoms �1; :::; �n:

Then M j= P if and only if M j= �i, i = 1; :::; n. By items (5), (6), (7), or (8) of Section 8

(depending on whether the method expression in �i is scalar or set-valued and whether it is

a data or a signature expression), it follows that M j= �i if and only if �i 2D(S). Therefore,

by the de�nition of D(S), there are molecules Q1; :::; Qn deducible from S, such that �i is a

submolecule of Qi, for i = 1; :::; n. Let Q be the canonical merge of Q1; :::; Qn. Then P is a

submolecule of Q (since every constituent atom of P is also a constituent atom of Q) and Q

is deducible from S (since Q1; :::; Qn are deducible from S and Q is obtained from Q1; :::; Qn

by the merging rule). Hence, P is in D(S), which proves (7).

By the de�nition of D(S), if P 2 S is a positive literal then P 2 D(S). Hence, by (7),M j= P . For every

negative literal :P in S, P is not a submolecule of any molecule deducible from S, by the assumption

made at the beginning of the proof. So, P is not in D(S). Again, by (7),M 6j= P and thereforeM j= :P .

Thus, M satis�es every literal of S, that is, it is a model for S. 2

Theorem 10.5 (Completeness of ground deduction) If a set of ground clauses, S, is unsatis�able

then there exists a refutation of S.

Proof: By Herbrand's Theorem, we may assume that S is �nite. Suppose S is unsatis�able. We

will show that there is a refutation of S using a technique due to Anderson and Bledsoe [8]. The proof

is carried out by induction on the parameter excess(S), the number of \excess literals" in S:

excess(S)
def
= ( the number of occurrences of literals in S)� (the number of clauses in S):

Basis : excess(S) = 0. In this case, the number of clauses in S equals the number of occurrences of

literals in S. Hence either 2 2 S and we are done, or every clause in S is a literal. In the latter case, by

Lemma 10.4, S ` :P and S ` Q for some molecules P , Q such that P v Q. Applying the resolution rule

to :P and Q, we obtain the empty clause.

Induction Step: excess(S) = n > 0. In this case, there must be a clause C in S that contains

more than one literal. Let us separate this clause from the other clauses and write S = fCg [ S0, where

C = L_C0 (C0 6= 2 since we have assumed that C contains more than one literal). By the distributivity

law, fL _ C0g [ S0 is unsatis�able if and only if so are T1 = fC0g [ S0 and T2 = fLg [ S0. Since

excess(T1) < n and excess(T2) < n, the induction hypothesis ensures that there are refutations of T1

and T2 separately. Therefore, T1 ` 2, where 2 is the empty clause. Let dedseq1 denote the deduction

sequence that derives 2 from T1. Applying the deductive steps in dedseq1 to S, we can derive either L or

2. If 2 is so produced, then we are done. Otherwise, if L is produced, it means that S ` L. Let dedseq2
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10.8 A Sample Proof

Consider the following set of clauses:

i. a :: b iv. r[attr ! a]

ii. p(a) v. r[attr ! f(S)]_ :p(X)_ :O[M @X ) S]

iii. c[m@b) (v; w)] vi. :p(f(Z))

We can refute the above set using the following sequence of derivation steps, where � denotes the uni�er

used in the corresponding step:

vii. r[attr! f(S)]_ :O[M @ a) S] by resolving (ii) and (v) ; � = fXnag

viii. c[m@a) (v; w)] by input-type restriction from (i) and (iii)

ix. r[attr! f(v)] by resolving (viii) with (vii) ; � = fOnc; Snv;Mnmg

x. a
:
=f(v) by the rule of scalarity, using (iv) and (ix)

xi. p(f(v)) by paramodulation, using (ii) and (x)

xii. 2 by resolving (vi) with (xi) ; � = fZnvg

All steps in this derivation are self-explanatory. We would like to point out, though, that � in Step (ix)

is an asymmetric uni�er that uni�es the atom O[M @ a) S] into the molecule (iii).

10.9 Completeness of the Proof Theory

We follow the standard strategy for proving completeness, adapted from classical logic. First, Herbrand's

Theorem is used to establish completeness for the ground case. Then, an analogue of Lifting Lemma

shows that ground refutations can be \lifted" to the nonground case.

Lemma 10.4 Let S be a set of ground F-literals. If S is unsatis�able then there are molecules P and Q

such that P v Q, :P 2 S and S ` Q. (When P;Q are P-molecules or is-a assertions, P v Q should be

taken to mean that P is identical to Q.)

Proof: Suppose to the contrary, that there are no molecules P and Q, such that P v Q, :P 2 S,

and S ` Q. We will show that then S must be satis�able. Consider a set of molecules,

D(S)
def
= fP j P is a submolecule of some molecule Q such that S ` Q g:

Section 8 shows that every H-structure, H, has a corresponding F-structure IH such that H j= S if and

only if IH j= S. Applying the same construction to D(S) we obtain an F-structure, M. Since D(S) is

closed under deduction, it is easy to verify that M is, indeed, an F-structure. We claim that for every

molecule P :

M j= P if and only if P 2 D(S) (7)

The \if"-direction follows from soundness of the derivation rules. For the \only if"-direction, consider

the following two cases:
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Scalarity: P [Mthd@Q1; :::; Qk! R] _ C1; P
0[Mthd0@Q01; :::; Q

0
k ! R0] _ C2

� = mgu( hP;Mthd;Q1; :::; Qki; hP
0;Mthd0; Q01; :::; Q

0
ki )

�(R
:
=R0 _ C1 _ C2)

Similarly for inheritable scalar expressions, where ! is replaced with �!

Merging:
P [:::]_ C; P 0[:::]_ C0; � = mgu(P; P 0); L00 = merge(�(P [:::]); �(P 0[:::]))

L00 _ �(C _ C0)

Elimination:
:P [ ] _ C

C

Figure 8: Summary of the Miscellaneous Inference Rules

10.6 Remarks

With such multitude of inference rules, a natural concern is whether there might be an e�cient evaluation

procedure for F-logic queries. The answer to this question is positive: F-logic queries can be evaluated,

say, bottom-up and the optimization strategies developed for deductive databases (e.g., Magic Sets and

Templates [18, 83]) are applicable here as well.

Another important point is that one does not need to use some of the inference rules at run time.

For instance, in proof-theoretic terms, the purpose of static type checking is to obviate the need in using

the typing rules at run time. Likewise, a compile-time acyclicity-checking algorithm could be used to

get rid of the IS-A acyclicity rule at run time. A practical system is also likely to limit the use of the

rule of scalarity. For instance, this rule may be used to generate run-time warnings regarding possible

inconsistencies detected in scalar methods, but not to do inference.

10.7 Soundness of the Proof Theory

Given a set S of clauses, a deduction of a clause C from S is a �nite sequence of clauses D1; :::; Dn such

that Dn = C and, for 1 � k � n, Dk is either

� a member of S, or

� is derived from some Di (and, possibly, some additional clause Dj), where i; j < k, using one of the

core, is-a, type, or miscellaneous inference rules.

A deduction ending with the empty clause, 2, is called a refutation of S. If C is deducible from S, we

shall write S ` C.

Theorem 10.3 (Soundness of F-logic Deduction) If S ` C then S j= C.

Proof: Directly follows from the closure properties given in Section 7 and from the form of the

inference rules. 2
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A similar rule exists for inheritable scalar expressions. The only di�erence is that! is replaced with �!

in W and W 0.

Another miscellaneous rule is called merging ; it seeks to combine information contained in di�erent

object molecules. Let L1 and L2 be a pair of such molecules with the same object id. An object-molecule

L is called a merge of L1 and L2, if the set of constituent atoms of L is precisely the union of the sets of

constituent atoms of L1 and L2. A pair of molecules can be merged in several di�erent ways when they

have common set-valued methods. For example, the terms

T [ScalM ! d; SetM !! e; SetM @X !! b] (3)

T [ScalM ! g; SetM @ Y !! h; SetM @X !! c] (4)

have more than one merge:

T [ScalM ! d; ScalM ! g; SetM !! e; SetM @ Y !! h; SetM @X !! b; SetM @X !! c] (5)

and

T [ScalM ! d; ScalM ! g; SetM !! e; SetM @Y !! h; SetM @X !! fb; cg] (6)

However, we distinguish certain kind of merges that do have the uniqueness property. We call them

canonical merges.

An invocation of a method consists of the method's name, its arguments, and the arrow specifying

the type of invocation (scalar or set-valued). For instance, in the above example, ScalM !, SetM !!,

SetM @X !!, and SetM @ Y !! are all distinct invocations. A canonical merge of L1 and L2, denoted

merge(L1; L2), is a merge that does not contain repeated identical invocations of set-valued methods. In

the above, (6) is a canonical merge of (3) and (4). Clearly, merge(L1; L2) is unique up to a permutation

of atoms and id-terms in the ranges of set-valued methods.

Merging: Consider a pair of standardized apart clauses, W = L _ C and W 0 = L0 _ C0, where

both L and L0 are object molecules. Let � be an mgu unifying the oid parts of L and L0. Let L00 denote

the canonical merge of �(L) and �(L0). The merging rule, then, sanctions the following derivation:

from W and W 0 derive L00 _ �(C _ C0)

Finally, since for every id-term P , the molecule P [ ] is a tautology, we need the following elimination rule:

Elimination: If C is a clause and P an id-term then:

from :P [ ] _ C derive C

Notice that if C is an empty clause then the elimination rule would derive an empty clause as well.



10 PROOF THEORY 36

Type inheritance:
P [Mthd@Q1; :::; Qk) T ] _ C; (S0 :: P 0)_ C0; � = mgu(P; P 0)

�(S 0[Mthd@Q1; :::; Qk) T ]_ C _ C0)

Similarly for set-valued methods

Input restriction:
P [Mthd@Q1; :::; Qi; :::; Qk) T ] _ C; (Q00i :: Q

0
i) _ C

0; � = mgu(Qi; Q
0
i)

�(P [Mthd@Q1; :::; Q
00
i ; :::; Qk) T ] _ C _ C0)

Similarly for set-valued methods

Output relaxation:
P [Mthd@Q1; :::; Qk) R] _ C; (R0 :: R00) _ C0; � = mgu(R;R0)

�(P [Mthd@Q1; :::; Qk) R00] _ C _ C0)

Similarly for set-valued methods

Figure 7: Summary of the Type-Inference Rules

Input-type restriction: LetW = P [Mthd@Q1; :::; Qi; :::; Qk) T ]_C andW 0 = (Q00i :: Q
0
i)_C

0

be standardized apart. Suppose also that Qi and Q
0
i have an mgu �. The input restriction rule states:

from W and W 0 derive �(P [Mthd@Q1; :::; Q
00
i ; :::; Qk) T ] _ C _ C0)

Here Q00i replaces Qi. A similar rule exists for set-valued methods.

Output-type relaxation: Consider clausesW = P [Mthd@Q1; :::; Qk) R]_C andW 0 = (R0 ::

R00) _ C0 with no common variables, and suppose R and R0 have an mgu �. The output relaxation rule,

then, states:

from W and W 0 derive �(P [Mthd@Q1; :::; Qk) R00] _ C _ C0)

Similar rules apply to set-valued methods.

We also note that in the �rst two inference rules above, T is either an id-term or ( ).

10.5 Miscellaneous Inference Rules

The property that scalar methods return at most one value is enforced by the following rule:

Scalarity: Consider a pair of clauses that share no common variables:

W = P [Mthd@Q1; :::; Qk! R] _ C and W 0 = P 0[Mthd0@Q01; :::; Q
0
k! R0] _ C0.

Suppose there is an mgu � that uni�es the tuple of id-terms hP;Mthd;Q1; :::; Qki with the tuple

hP 0;Mthd0; Q01; :::; Q
0
ki. The rule of scalarity then says:

from W and W 0 derive �( (R
:
=R0) _ C _ C0)
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IS-A Reexivity: X::X

IS-A acyclicity:
(P :: Q) _ C; (Q0 :: P 0)_ C0; � = mgu(hP;Qi; hP 0; Q0i)

�( (P
:
=Q) _ C _ C0 )

IS-A transitivity:
(P :: Q) _ C; (Q0 :: R0) _ C0; � = mgu(Q;Q0)

�((P :: R0) _ C _ C0)

Subclass inclusion:
(P : Q) _ C; (Q0 :: R0) _ C0; � = mgu(Q;Q0)

�((P : R0) _ C _ C0)

Figure 6: Summary of the IS-A Inference Rules

follows:

from W and W 0 derive �((P
:
=Q)_ C _ C0)

Note that IS-A reexivity and IS-A acyclicity imply reexivity of equality. Indeed, since X :: X is an

axiom, by IS-A acyclicity, one can derive X
:
=X from X :: X and X :: X .

IS-A transitivity: Let W = (P :: Q)_ C and W 0 = (Q0 :: R0) _ C0 be standardized apart and

let � be an mgu of Q and Q0. The transitivity rule, then, is:

from W and W 0 derive �((P :: R0)_ C _ C0)

Subclass inclusion: Let W = (P : Q)_C and W 0 = (Q0 :: R0)_C0 be standardized apart and

let � be an mgu of Q and Q0. Then the subclass inclusion rule says:

from W and W 0 derive �((P : R0) _ C _ C0)

10.4 Type Inference Rules

Signature expressions have the properties of type inheritance, input-type restriction, and output-type

relaxation that are captured by the following inference rules:

Type inheritance: Let W = P [Mthd@Q1; :::; Qk) T ]_C and W 0 = (S0 :: P 0)_C0 be a pair

of clauses with no common variables, and suppose P and P 0 have an mgu, �. The type inheritance rule

states the following:

from W and W 0 derive �(S0[Mthd@Q1; :::; Qk) T ] _ C _ C0)

In other words, S0 inherits the signature of P 0. A similar rule exists for set-valued methods. If

W = P [Mthd@Q1; :::; Qk)) T ]_ C and W 0 is as before, then:

from W and W 0 derive �(S0[Mthd@Q1; :::; Qk)) T ]_ C _ C0)
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Resolution:
:L _ C; L0 _ C 0; � = mguv(L; L0)

�(C _ C0)

Factoring:
L _ L0 _ C; � = mguv(L; L

0) :L _ :L0 _ C; � = mguv(L; L
0)

�(L _ C) �(:L0 _ C)

Paramodulation:
L[T ]_ C; (T 0

:
=T 00) _ C0; � = mgu(T; T 0)

�(L[TnT 00] _ C _ C0)

Figure 5: Summary of the Core Inference Rules

Let L be uni�able into L0 with the mgu �. The factoring rule is, then, as follows:

from W derive �(L _ C)

In case of negative literals, if W = :L _ :L0 _ C and L is uni�able into L0 with the mgu �, then the

factoring rule is:

from W derive �(:L0 _ C)

Clauses inferred by one of the two factoring rules are called factors of W . Note that in both inference

rules L must be uni�able into L0. However, in the �rst case, it is the literal L that survives, while in the

second rule it is L0.

To account for the equality relation, we need a paramodulation rule. We use the following standard

convention: When there is a need to focus on a speci�c occurrence of an id-term, T , in an expression, E

(which can be a literal or an id-term), we may write E[T ]. If one single occurrence of T is replaced by

S, the result will be denoted by E[TnS].

Paramodulation: Consider a pair of clauses, W = L[T ] _ C and W 0 = (T 0
:
=T 00) _ C0, with no

common variables. If T and T 0 are id-terms uni�able with an mgu, �, then the paramodulation says:

from W and W 0 derive �(L[TnT 00]_ C _ C0)

10.3 IS-A Inference Rules

The following axiom and the rules capture the semantics of the subclass relationship and its interaction

with class membership.

IS-A Reexivity: The following is the IS-A reexivity axiom:

(8X) X :: X:

IS-A acyclicity: Let W = (P :: Q) _ C and W 0 = (Q0 :: P 0) _ C0 be clauses with no variables

in common. Suppose that � is an mgu of tuples hP;Qi and hP 0; Q0i of id-terms. The acyclicity rule is as
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In predicate calculus, the notion of a uni�er works for an arbitrary number of terms to be uni�ed.

Extension of our de�nitions to accommodate an arbitrary number of id-terms, P-molecules, or is-a as-

sertions is obvious. For object molecules, we say that a substitution � is a uni�er of L1, ..., Ln into L if

and only if �(Li) v L, for i = 1; :::; n. Generalization of the notion of mgu is straightforward and is left

as an exercise.

For notational convenience, we also de�ne mgu's for tuples of id-terms. Tuples hP1; :::; Pni and hQ1; :::;

Qni are uni�able if and only if there is a substitution � such that �(Pi) = �(Qi), i = 1; :::; n. This uni�er

is most general (written mgu(hP1; :::; Pni; hQ1; :::; Qni) ), if and only if for every other uni�er, �, of these

tuples, � =  � � for some substitution . It is easy to see that any mgu of hP1; :::; Pni and hQ1; :::; Qni

coincides with the mgu of f(P1; :::; Pn) and f(Q1; :::; Qn), where f is an arbitrary n-ary function symbol,

and, therefore, is unique.

In the sequel, mguv(L1; L2) will be used to denote some most general uni�er of one molecule, L1, into

another, L2. As shown earlier, for object molecules mguv(L1; L2) may exist while mguv(L2; L1) may not.

On the other hand, uni�cation of id-terms, is-a assertions, and P-molecules is a symmetric operation.

Nevertheless, we can still talk about uni�cation of one such expression into another|a convention that

can often simplify the language. Also, for the sake of simpler notation, all our inference rules will be

based on F-atoms, not F-molecules.

Finally, we remark that, as in predicate calculus, prior to any application of an inference rule, the

clauses involved in the application must be standardized apart . This means that variables must be

consistently renamed so that the resulting clauses will share none. However, clauses used by an inference

rule may be instances of the same clause; they can even be identical, if no variables are involved.

10.2 Core Inference Rules

For simplicity, but without loss of generality, only binary resolution is considered. In the inherence rules,

below, the symbols L and L0 will be used to denote F-literals (positive or negative), C and C0 will denote

clauses, and P , Q, R, S, T , etc., will denote id-terms.

Resolution: Let W = :L_C and W 0 = L0_C0 be a pair of clauses that are standardized apart.

Let � be an mgu of L into L0. The resolution rule is, then, as follows:

from W and W 0 derive �(C _ C0)

Notice that when L and L0 are object molecules, resolution is asymmetric since � = mguv(L; L0) may

be di�erent from mguv(L0; L), and the latter mgu may not even exist. As in the classical case, binary

resolution must be complemented with the so-called factoring rule that seeks to reduce the number of

disjuncts in a clause.

Factoring: The factoring rule has two forms, depending on the polarity of literals to be factored.

For positive literals, consider a clause of the form W = L_L0 _C, where L and L0 are positive literals.
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Uni�ers

Uni�cation of id-terms, is-a assertions, and P-molecules is no di�erent than in classical logic. Let T1 and

T2 be a pair of id-terms, is-a molecules, or P-molecules. A substitution � is a uni�er of T1 and T2, if and

only if �(T1) = �(T2). This uni�er is most general , written mgu(T1; T2), if for every uni�er � of T1 and

T2, there exists a substitution , such that � =  � �.

For object molecules, rather than requiring that they must become identical after applying a uni�er,

we ask merely that one molecule will be mapped into a submolecule of the other.

De�nition 10.1 (Asymmetric Uni�cation of Object Molecules) Let L1 = S[: : :] and L2 = S[: : :] be a

pair of object molecules with the same object id, S. We say that L1 is a submolecule of L2, denoted

L1 v L2, if and only if every constituent atom of L1 (de�ned in Section 7) is also a constituent atom

of L2. A substitution � is a uni�er of L1 into L2 (note the asymmetry!) if and only if �(L1) v �(L2).

2

For instance, L = S[M @X ! V ] is uni�able into L0 = S[N @Y ! W ;Z @ Y �!T ] with the uni�er

fMnN;XnY; VnWg, but not the other way around (because the atom S[Z @Y �!T ] cannot be turned

into a constituent atom of L). However, a slightly di�erent molecule, S[N @Y ! W ;Z @ Y ! T ], is

uni�able into L with the uni�er fNnM;Y nX;WnV; ZnM;TnV g.

Complete Sets of Most General Uni�ers

De�ning most general uni�ers for object molecules requires more work. Consider the terms L1 = a[set!!

fXg] and L2 = a[set !! fb; cg]. Intuitively, there are two uni�ers of L1 into L2 that can be called \most

general:" Xnb and Xnc. Clearly, none of these uni�ers is more general than the other and, therefore,

the de�nition of mgu that works for P-molecules and for is-a assertions does not work here. A common

approach in such situations is to consider complete sets of most general uni�ers.

De�nition 10.2 (Most General Uni�ers) Let L1 and L2 be a pair of molecules and let �, � be a pair

of uni�ers of L1 into L2. We say that � is more general than �, denoted �� �, if and only if there is a

substitution  such that � =  � �. A uni�er � of L1 into L2 is most general (abbr., mgu) if for every

uni�er �, � � � implies �� �.

A set � of most general uni�ers of L1 into L2 is complete if for every uni�er � of L1 into L2 there is

� 2 � such that �� �. 2

Just as there is a unique-up-to-the-equivalence mgu in the classical case, it easily follows from the de�ni-

tions that the complete set of uni�ers of L1 into L2 is also unique up to the equivalence.12 An algorithm

that computes a complete set of mgu's appears in Appendix B.

12A set of uni�ers, 
1, is equivalent to 
2 if for every �1 2 
1 there is �2 2 
2 such that �2 � �1; and vice versa, for
every �2 2 
2 there is �1 2 
1 such that �1 � �2.
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10 Proof Theory

This section describes a sound and complete proof theory for the logical entailment relation \j=" of

Section 5. The theory consists of twelve inference rules and one axiom. The rules of resolution, factoring,

and paramodulation form the core of the deductive system. However, unlike in predicate calculus, these

three rules are not enough. For a deductive system to be complete, additional rules for capturing the

properties of types and IS-A hierarchies are needed. The large number of inference rules in F-logic

compared to predicate calculus stems from the rich semantics of object-oriented systems; this is likely to

be the case with any logical system that attempts to adequately capture this paradigm. As will be seen

shortly, many rules are quite similar to each other, except that one may deal with data expressions and

the other with signatures or with P-molecules. It is possible to reduce the number of rules by about half

through increasing the power of the resolution rule. This is analogous to classical logic, where factoring

is often combined with resolution. However, we prefer to keep inference rules simple and increase their

number instead, so that it would be easier to see the rationale behind each rule.

10.1 Substitutions and Uni�ers

In F-logic, much of the theory of uni�ers carries over from the classical case. However, this notion needs

some adjustments due to the presence of sets and also because of the more exible syntax of F-molecules

(compared to classical logic).

Substitutions

Let L be a language with a set of variables V . A substitution is a mapping � : V 7�! fid-terms of Lg

such that it is an identity everywhere outside some �nite set dom(�) � V , the domain of �.

As in classical logic, substitutions extend to mappings f id-terms g 7�! f id-terms g as follows:

�(f(t1; :::; tn)) = f(�(t1); :::; �(tn))

A substitution, �, can be further extended to a mapping from molecules to molecules by distributing

� through the components of the molecules and applying it to each id-term. For instance, �(Q : P )

is de�ned as �(Q) : �(P ), �(Q :: P ) as �(Q) :: �(P ), and �(Q[Mthd@R; S ! T ] ) is the same as

�(Q)[�(Mthd)@�(R); �(S)! �(T )]. Similarly, substitutions extend to F-formulae by distributing them

through logical connectives and quanti�ers.

A substitution is ground if �(X) 2 U(F) for each X 2 dom(�), that is, if �(X) has no variables.

Given a substitution � and a formula ', �(') is called an instance of '. It is a ground instance if it

contains no variables. A formula is ground if it has no variables.
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(i) For every ground F-molecule T , either T 2 T or :T 2 T.

(ii) A ground clause, L1 _ � � � _ Ln, is in T if and only if Li 2 T, for some 1 � i � n.

Proof: Part (i): If T is �nitely satis�able, then either T [ fTg or T [ f:Tg is �nitely satis�able.

Therefore, T must contain either T or :T , since it is maximal. Part (ii) is proved similarly to (i).

2

Lemma 9.4 Let T be a maximal �nitely satis�able set of ground clauses. Let H be the set of all ground

molecules in T. Then H is an H-structure.

Proof: It is easy to see that H is j=-closed, since T is also j=-closed (or else T is not maximal).

2

Theorem 9.5 (cf. Herbrand's Theorem)

A set of clauses, S, is unsatis�able if and only if so is some �nite subset of ground instances of the clauses

in S.

Proof: For the \if" part, assume that some �nite subset of ground clauses of S is unsatis�able.

Then S is also unsatis�able. The \only-if" part is proved by contradiction. Assume that some set of

ground instances of the clauses in S is �nitely satis�able. We will show that then S is satis�able.

Let S0 be such �nitely satis�able set of ground instances. By Lemma 9.2, it can be extended to a

maximal �nitely satis�able set T. Let H be the set of all ground molecules in T, which is an H-structure,

by Lemma 9.4. We claim that H j= C if and only if C 2 T, for every ground clause, C. Consider the

following cases:

(a) C is a ground molecule. By de�nition, H j= C if and only if C 2 T;

(b) C is a negative literal :P . Then H j= :P if and only if P 62 H. Since H contains all the ground

molecules in T, P 62 H if and only if P 62 T. Finally, by (i) of Lemma 9.3, P 62 T if and only if

:P 2 T;

(c) C is a disjunction of ground literals L1 _ � � � _ Ln. Then

H j= L1 _ � � � _ Ln

if and only if H j= Li for some i, by de�nition;

if and only if Li 2 T, by cases (a) and (b) above;

if and only if L1 _ � � � _ Ln 2 T, by (ii) of Lemma 9.3.

We have, thus, shown that H satis�es every clause of T. Since S0 � T, H is an H-model of S. By

Proposition 8.2, S is satis�able. 2

Herbrand's Theorem is a basis for the resolution-based proof theory in classical logic [27]. The next

section presents a sound and complete resolution-based proof procedure, extending the result of [50].

This, in turn, provides a �rm basis for a theory of object-oriented databases and programming.
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Skolemization and Clausal Form

It is easy to verify that the usual De Morgan's laws hold for F-formulas. Therefore, every F-logic formula

has a prenex normal form.

Once a formula is converted into an equivalent prenex normal form, it is Skolemized. Skolemiza-

tion in F-logic is, again, similar to the classical case, since id-terms are identical to terms in predicate

calculus and because quanti�cation is de�ned similarly in both cases. For instance, a Skolem normal

form for the molecule (8X9Y )g(X; Y )[Y ! f(X; Y ); a !! fX; Y g] would be (8X)g(X;h(X))[h(X)!

f(X; h(X)); a!! fX; h(X)g], where h is a new unary function symbol.

Theorem 9.1 (cf. Skolem's Theorem) Let ' be an F-formula and '0 be its Skolemization. Then '

is unsatis�able if and only if so is '0.

The proof of this theorem is almost identical to the standard proof for predicate calculus, and is

omitted. From now on, we assume that all formulas are Skolemized. De Morgan's Laws further assure

that every formula has a conjunctive and a disjunctive normal form. We can therefore transform every

Skolemized formula into a logically equivalent set of clauses, where clause is a disjunction of literals.

Herbrand's Theorem

In classical logic, a set of clauses, S, is unsatis�able if and only if so is some �nite set of ground instances

of clauses in S; this property is commonly referred to as Herbrand's theorem. In F-logic, Herbrand's

theorem plays the same fundamental role. We establish this theorem by considering maximal �nitely

satis�able sets, similarly to the proof of the compactness theorem in [35]. A set S of ground clauses is

�nitely satis�able, if every �nite subset of S is satis�able. A �nitely satis�able set S is maximal , if no

other set of ground clauses containing S is �nitely satis�able. Some useful properties of �nitely satis�able

sets are stated below.

Lemma 9.2 Given a �nitely satis�able set of ground clauses, S, there exists a maximal �nitely satis�able

set, T, such that S � T.

Proof: Let � be a collection of all �nitely satis�able sets of ground clauses (in a �xed language L)

that contain S. The set � is partially ordered by set-inclusion. Since S 2 �, � is non-empty. Furthermore,

for every �-growing chain � � �, the least upper bound of the chain, [�, is also in �. Indeed:

� [� contains S; and

� [� is �nitely satis�able (for, if not, one of the elements of � must not be �nitely satis�able).

By Zorn's Lemma, there is a maximal element, T, in �. 2

Lemma 9.3 Let T be a maximal �nitely satis�able set of ground clauses.
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2. The ordering, �U , and the class membership relation, 2U , are derived from the is-a assertions in H:

For all [t]; [s] 2 U , we assert [s]�U [t] if and only if s :: t 2 H; and [s]2U [t] if and only if s : t 2 H.

3. IF (c) = [c], for every 0-ary function symbol c 2 F .

4. IF (f)([t1]; :::; [tk]) = [f(t1; :::; tk)], for every k-ary (k � 1) function symbol f 2 F .

5. I (k)! ([scalM ])([obj]; [t1]; :::; [tk]) =

(
[s] if obj[scalM @ t1; :::; tk ! s] 2 H
unde�ned otherwise.

6. I (k)!! ([setM ])([obj]; [t1]; :::; [tk]) =(
f[s] j where obj[setM @ t1; :::; tk !! s] 2 Hg if obj[setM @ t1; :::; tk !! fg] 2 H
unde�ned otherwise.

The mappings I �! and I �!! are de�ned similarly to (5) and (6), except that inheritable data
expressions must be used instead of the non-inheritable ones.

7. I (k)) ([scalM ])([obj]; [t1]; :::; [tk]) =(
f[s] j where obj[scalM @ t1; :::; tk ) s] 2 Hg if obj[scalM @ t1; :::; tk ) ( )] 2H
unde�ned otherwise.

8. I (k))) ([setM ])([obj]; [t1]; :::; [tk]) =(
f[s] j where obj[setM @ t1; :::; tk )) s] 2 Hg if obj[setM @ t1; :::; tk )) ( )] 2 H
unde�ned otherwise.

9. I}(p) = fh[t1]; :::; [tk]i j p(t1; :::; tk) 2 Hg.

We remark that in (6) there is a di�erence between the set I (k)!! ([setM ])([obj]; [t1]; :::; [tk]) being unde�ned

and being empty. It is unde�ned if H contains no atoms of the form obj[setM @ t1; :::; tk !! : : :], not even

obj[setM @ t1; :::; tk !! fg]. In contrast, I (k)!! ([setM ])([obj]; [t1]; :::; [tk]) is empty when H does contain

obj[setM @ t1; :::; tk!! fg], but has no atoms of the form obj[setM @ t1; :::; tk !! fsg], for any s 2 U(F).

Similar remarks apply to I (k))) in (7) and to I (k))) in (8).

It is easy to see that IH = hU;�U;2U ; IF ; I}; I!; I!!; I �! ; I �!! ; I); I))i is well-de�ned and, indeed, is

an F-structure. The above correspondence immediately leads to the following result:

Proposition 8.2 Let S be a set of clauses. Then S is unsatis�able if and only if S has no H-model.

Proof: It is easy to verify that for every H-structure H, the entailment H j= S takes place if and

only if IH j= S, where IH is the F-structure that corresponds to H, as de�ned earlier. 2

9 Skolemization, Clausal Form, and Herbrand's Theorem

As in classical logic, the �rst step in developing a resolution-based proof theory is to convert all formulas

into the prenex normal form and then to Skolemize them. Skolemized formulas are then transformed

into an equivalent clausal form.
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Since H-structures are j=-closed, it is easy to see that they have closure properties similar to those in

Section 7. These closure properties are obtained from the properties in Section 7 by replacing each I j= �

there with � 2H, where � is a molecule, I is an F-structure, and H is an arbitrary Herbrand structure.

For instance, the transitivity property for \
:
=":

If I j= (p
:
=q) and I j= (q

:
=r), then I j= (p

:
=r)

now becomes:

If (p
:
=q) 2H and (q

:
=r) 2 H, then (p

:
=r) 2 H

We can now de�ne truth and logical entailment in H-structures:

De�nition 8.1 (Satisfaction of Formulas by H-structures) Let H be an H-structure. Then:

� A ground molecule, t, is true in H (denoted H j= t) if and only if t 2 H;

� A ground negative literal, :t, is true in H (i.e., H j= :t) if and only if t 62 H;

� A ground clause, L1 _ � � � _ Ln, is true in H if and only if at least one literal, Li, is true in H;

� A clause, C, is true in H if and only if all ground instances of C are true in H.

If every clause in S is true in H, we say that H is a Herbrand model (an H-model) of S. 2

Correspondence between H-structures and F-structures

The above observations indicate that, as in classical logic, there should be a simple way to construct

F-structures out of H-structures, and vice versa. There is one technical problem, though: Herbrand

universe|the domain of all H-structures|cannot always serve as a domain of an F-structure. Indeed,

in F-structures, di�erent domain elements represent di�erent objects. However, this is not the case with

Herbrand universes. For instance, if john
:
=father(mary) belongs to an H-structure, then the terms john

and father(mary) represent the same object, yet they are di�erent elements of the Herbrand universe.

The same phenomenon is encountered in classical logic with equality, and the cure for this problem

is well-known. Indeed, from Section 7 and the remarks above, it follows that equality is a congruence

relation on the Herbrand universe. So, we can construct a domain of an F-structure by factoring U(F)

with this relation.

The correspondence between H-structures and F-structures can now be stated as follows: Given

an F-structure for a set of clauses S, the corresponding H-structure is the set of ground F-molecules

that are true in the F-structure. Conversely, for an H-structure, H, the corresponding F-structure,

IH = hU;�U ;2U ; IF ; I}; I!; I!!; I �! ; I �!! ; I); I))i, is de�ned as follows:11

1. The domain U is U(F)=
:
=, the quotient of U(F) induced by the equalities in H. We denote the

equivalence class of t by [t].

11Observe the similarity with the corresponding construction in classical logic with equality.
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Trivial object-molecules:

� For every id-term, t, we have I j= t[ ]

Constituent atoms:

� For every molecule, u, I j= u if and only if I j= v holds for every constituent atom v of u

The constituent atoms mentioned in the last property are essentially molecules broken into indivisible

pieces; they are formally de�ned as follows:

� Every P-molecule or an is-a assertion is its own constituent atom;

� For an object-molecule, G = P [ method expressions ], the constituent atoms are:

{ For every signature expression Mthd@Q1; :::; Qk�> (R1; : : : ; Rn) in G, where �> is either )

or )), the corresponding constituent atoms are:

P [Mthd@Q1; :::; Qk�> ( )]; and
P [Mthd@Q1; :::; Qk�>Ri ]; i = 1; :::; n

{ For every scalar data expression Mthd@Q1; :::; Qk ; S in G, where ; is either ! or �! ,

the corresponding constituent atom is:

P [Mthd@Q1; :::; Qk; S]

{ For every set-valued data expression, Mthd@Q1; :::; Qk ; fT1; : : : ; Tmg in G, where ; is

either !! or �!! , the constituent atoms are:

P [Mthd@Q1; :::; Qk; f g] and
P [Mthd@Q1; :::; Qk; fTjg]; j = 1; :::; m

The property of scalarity follows from the simple fact that scalar invocations of methods are interpreted

via single-valued functions. The other properties are straightforward from De�nition 5.1.

8 Herbrand Structures

Given an F-logic language, L, with F as its sets of function symbols, the Herbrand universe of L is

U(F), the set of all ground id-terms. The Herbrand base of L, HB(F), is the set of all ground molecules

(including P-molecules and equality).

Let H be a subset of HB(F); it is a Herbrand structure (abbr., H-structure) of L if and only if it is

closed under the logical implication, \j=", introduced in Section 5. The requirement of j=-closure is needed

since ground molecules may imply other molecules in a non-trivial way. For instance, fa :: b; b :: cg j= a :: c

and fa :: b; d[m) a]g j= d[m) b]. This is reminiscent of the situation in predicate calculus with equality,

where sets of ground atomic formulas may imply other atomic formulas (e.g., fa
:
=b; p(a)g j= p(b)).
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inherited from di�erent superclasses \adds up." For instance, suppose a class, cl, has several signature

expressions for the same method, mthd. These signatures may be speci�ed directly or inherited by cl.

Then, \adding up" means that|as a function invoked on a member of class cl|the method mthd

belongs to the intersection of all functional types determined by all signatures (whether directly speci�ed

or inherited) that m has in cl.

To illustrate, consider the following example:

empl :: person person[name) string]
assistant :: student student[drinks)) beer; drives) bargain]
assistant :: empl empl[salary) int; drives) car]

assistant[drives) oldThing]

The signature accumulated by assistant from all sources will then be as follows:

assistant[name ) string; drinks)) beer; drives) (bargain; car; oldThing); salary ) integer]

In other words, an assistant inherits the type of name from the class person, the type of salary from

employee, and his drinking habits come from the class student . The structure of the attribute drives

is determined by three factors: (i) the explicitly given signature, drives ) oldThing; and (ii) the

signatures inherited from the classes student and empl . The resulting signature states that assistants

drive old cars bought at bargain prices.

The next two properties of signature expressions, input-type restriction and output-type relaxation, say

that when methods are viewed as functions, they have the usual properties as far as typing is concerned.

For instance, the property input-type restriction says that if a method, mthd, returns values of type s

when it is passed arguments of certain types, then mthd will still return values of type s when invoked

with arguments of more restricted types. Similarly, the property of output-type relaxation states that

if mthd returns a value of some type, r, then this value has also the type s, for any supertype s of r.

Output relaxation may seem like an obvious and redundant property. However, strictly speaking, it does

not logically follow from other properties.

7.4 Miscellaneous Properties

The �rst property in this category simply states that scalar methods are supposed to return at most one

value for any given set of arguments. The second statement says that object molecules that assert no

properties are trivially true in all F-structures. The last property is the raison d'être for the name \a

molecular formula." According to this property, a molecule that is true in I may spin o� a bunch of

other, simpler, formula that are also true in I. Moreover, these formulas cannot be decomposed further

and, in a sense, they can be viewed as subformulas of the original molecule.

Scalarity:

� If I j= p[ScalM @ q1; :::; qk ! r1] and I j= p[ScalM @ q1; :::; qk ! r2], then I j= (r1
:
=r2)

� If I j= p[ScalM @ q1; :::; qk �! r1] and I j= p[ScalM @ q1; :::; qk �! r2], then I j= (r1
:
=r2)
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7.2 Properties of the IS-A Relationship

The following statements say that \::" speci�es a partial order on U(F).

IS-A reexivity:

� I j= p :: p

IS-A transitivity:

� If I j= p :: q and I j= q :: r then I j= p :: r

IS-A acyclicity:

� If I j= p :: q and I j= q :: p then I j= (p
:
=q)

Subclass inclusion:

� If I j= p : q and I j= q :: r then I j= p : r

The �rst three properties are direct consequences of the fact that the relation �U on the domain of I is

a partial order; the last property follows from the interplay between �U and 2U .

7.3 Properties of Signature Expressions

In the following rules, the symbol �> denotes either ) or )). Also, in the �rst two rules, the symbol s

stands for an element of U(F) or for \ ( )" | the empty conjunction of types.

Type inheritance:

� If I j= p [mthd@q1; :::; qk�>s] and I j= r :: p then I j= r [mthd@ q1; :::; qk�>s]

Input-type restriction:

� If I j= p [mthd@ q1; :::; qi; :::; qk�>s] and I j= q0i :: qi then I j= p [mthd@ q1; :::; q0i; :::; qk�>s]

Output-type relaxation:

� If I j= p [mthd@q1; :::; qk�>r] and I j= r :: s then I j= p [mthd@q1; :::; qk�>s]

The �rst two properties directly follow from the anti-monotonicity constraint on the mappings

I)(�(mthd)) and I))(�(mthd)) in Section 5, where � is a variable assignment. The last property follows

from the upward-closedness of I)(�(mthd))(�(p); �(q1); :::; �(qk)) and I))(�(mthd))(�(p); �(q1); :::; �(qk)).

Structural Inheritance and Typing

The above properties of signatures are quite interesting and merit further comments. The �rst of these

properties, type inheritance (or structural inheritance), expresses the fact that structure propagates

down from classes to subclasses. This inheritance is monotonic in the sense that any additional structure

speci�ed for a subclass is added to the structure inherited from a superclass. Moreover, any structure
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� I}(
:
=)

def
= fha; aija 2 Ug.

This obviously implies that if T and S are id-terms, then I j=� (T
:
=S) if and only if �(T ) = �(S).

To fully integrate P-molecules into F-logic, we now let F-formulae to be built using any kind of

molecules introduced so far. Truth of formulas in F-structures and the notion of a model is de�ned in an

obvious way.

Direct introduction of predicates serves another useful purpose: classical predicate calculus can be

now viewed as a subset of F-logic. This has a very practical implication: classical logic programming,

too, can be thought of as a special case of programming in F-logic. With some additional e�ort, most

of classical logic programming theory can be adapted to F-logic, which will make it upward-compatible

with the existing systems. Section 11 and Appendix A make the �rst step in this direction.

In this paper, we do not deal with signatures of P-molecules, as they are de�ned and studied in

[51, 98].

7 Properties of F-structures

To get a better grip on the notions developed in the previous sections, we present a number of simple, yet

important properties of F-structures. We express these properties as assertions about logical entailment,

\j=", assertions that are true in every F-structure, I. For simplicity, each assertion deals with ground

formulas only and is an immediate consequence of the de�nitions; easy proofs are left as an exercise. As

we shall see, many of the properties presented herein will form a basis for the inference system of F-logic

developed in Section 10.

7.1 Properties of the Equality

The statements, below, express the usual properties of equality. Together, they express the fact that \
:
="

is a congruence relation on U(F).

Reexivity:

� For all p 2 U(F), I j= (p
:
=p)

Symmetry:

� If I j= (p
:
=q) then I j= (q

:
=p)

Transitivity:

� If I j= (p
:
=q) and I j= (q

:
=r) then I j= (p

:
=r)

Substitution:

� If I j= (s
:
=t) ^ L, and L0 is obtained by replacing an occurrence of s in L with t, then

I j= L0
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with objects leads to a more natural representation. For instance, a program may mostly manipulate

objects, but occasionally it may need to verify that certain objects are related via some symmetric re-

lationship (e.g., equality or adjacency). Although such relationships can always be encoded as objects,

often this is not the most natural representation. Also, representing certain basic relationships, such

as equality, as objects would be extremely awkward. In this section, we �rst show how predicates can

be encoded as molecules, and then we incorporate predicate formulas into F-logic, both syntacticly and

semantically.

Predicates can be simulated in several di�erent ways. The approach described here is an adapta-

tion from [50, 52]. To encode an n-ary predicate symbol, p, we introduce a new class for which we

conveniently use the same symbol, p. Let p-tuple be a new n-ary function symbol. We then assert

(8X1 : : :8Xn )(p-tuple(X1; :::; Xn) : p) and represent classical atoms of the form p(T1; :::; Tn) as molecules

of the form:

p-tuple(T1; :::; Tn)[arg1 ! T1; :::; argn! Tn] (2)

It is easily seen that the oid template, p-tuple(T1; :::; Tn), is value-based in the sense of [93], that is, it is

fully dependent on the values of their attributes. The term p-tuple(T1; :::; Tn) can be viewed as an oid

of the object to be used to represent a p-relationship among T1; : : : ; Tn, if such a relationship exists;

Statement (2) above asserts that there is an actual p-relationship among T1; : : : ; Tn.

Although predicates can be represented by objects, as just described, to eliminate the need in going

through the mental exercise of converting predicates into molecules, we incorporate them into our syntax

and semantics directly.

The expanded language now has a set } of predicate symbols . If p 2 } is an n-ary predicate symbol

and T1, ..., Tn are id-terms, then p(T1; :::; Tn) is a predicate molecule (abbr., P-molecule)

To avoid confusion between id-terms and P-molecules, we assume that predicates and function sym-

bols belong to two disjoint sets of symbols, as in classical logic. In a practical logic programming

language, however, this restriction may not be necessary, for, as in Prolog, it may be advantageous to

overload symbols so that they could be used as predicates and as function symbols at the same time (see

Section 16.2).

A (generalized) molecular formula is now either a molecule in the old sense, or a P-molecule (including

the case of the equality predicate, e.g., T
:
=S). A literal is either a molecular formula or a negated

molecular formula.

Predicate symbols are interpreted as relations on U using the function I} such that:

� I}(p) � U
n, for any n-ary predicate symbol p 2 }.

Given an F-structure I = hU;�U ;2U ; IF ; I}; I!; I!!; I �! ; I �!! ; I); I))i and a variable assignment �, we

write I j=� p(T1; :::; Tn) if and only if

� h�(T1); :::; �(Tn)i 2 I}(p).

We also �x a diagonal interpretation for the equality predicate:
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but c[m@c1; :::; ck ) ( )] is actually false, then the well-typing conditions of Section 12 mandate

that I!(�(m))(�(o); �(a1); :::; �(ak)) must be unde�ned. This is analogous to a null value of the

kind \value inapplicable," meaning that the value of the invocation of m on o with arguments a1,

..., an does not and cannot exist.

� The deceptive simplicity of items (iv) and (v) is a direct result of upward-closedness of the co-domain

of I)(�(ScalM)) and I))(�(SetM)).

Without upward-closedness, (iv) would have looked thus: I (n)) (�(ScalM))(�(O); �(Q1); :::; �(Qn))

must be de�ned and, for every i, there is an element, u, in this set such that u�U�(Ri). A similar

change would have been needed for (v).

A more serious consequence of dumping the upward-closedness condition would be that the elegant

anti-monotonicity constraint on I)(�(ScalM)) and I))(�(SetM)) will have to be replaced with

a rather awkward condition needed to coerce signatures into behaving as functional types (see

Section 7.3).

� Notice how the above de�nition determines the meaning of molecules of the form a[M @X ! b]

and c[M )) d]. The subtlety here is in how method-functions are associated with M|a variable

that ranges over methods.

If � is a variable assignment, then �(M) is an element in U , not in U(F). Therefore, associating

method-functions with ground id-terms is useless for interpreting the above molecules. This explains

why earlier we insisted that I!, I)), etc., must be functions of the form U 7�! � � � and not of the

form U(F) 7�! � � � .

Models and Logical Entailment

The meaning of the formulae ' _  , ' ^  , and :' is de�ned in the standard way: I j=� ' _  (or

I j=� ' ^  , or I j=� :') if and only if I j=� ' or I j=�  (resp., I j=� ' and I j=�  , resp., I 6j=� '). The

meaning of quanti�ers is also standard: I j=�  , where  = (8X)' (or  = (9X)'), if and only if I j=�  

for every (resp., some) � that agrees with � everywhere, except possibly on X .

For a closed formula,  , we can omit the mention of � and simply write I j=  , since the meaning of

a closed formula is independent of the choice of variable assignments.

An F-structure, I, is a model of a closed formula,  , if and only if I j=  . If S is a set of formulae and

' is a formula, we write S j= ' (read: ' is logically implied or entailed by S) if and only if ' is true in

every model of S.

6 Predicates and their Semantics

It is often convenient to have usual �rst-order predicates on a par with objects (cf. [31, 50, 3]). This hap-

pens when an application is more naturally described in a value-based setting, or when mixing predicates
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(i) �(Q)�U �(P ), if G = Q :: P ; or

�(Q)2U �(P ), if G = Q : P .

� When G is an object molecule of the form O[ method expressions ] then for every method expression

E in G, the following conditions must hold:

(ii) If E is a non-inheritable scalar data expression of the form ScalM @Q1; :::; Qk! T , the element

I (k)! ( �(ScalM) )(�(O); �(Q1); :::; �(Qk)) must be de�ned and equal �(T ).

Similar conditions must hold if E is an inheritable scalar data expressions, except that I (k)!

should be replaced with I (k)�! .

(iii) If E is a non-inheritable set-valued data expression, of the form SetM @R1; :::; Rl !!

fS1; :::; Smg, the set I (l)!! ( �(SetM) )(�(O); �(R1); :::; �(Rl)) must be de�ned and contain the

set f�(S1); :::; �(Sm)g.

Similar conditions must hold if E is an inheritable set-valued data expression, except that I (k)!!

should be replaced with I (k)�!! .

(iv) If E is a scalar signature expression, ScalM @Q1; :::; Qn ) (R1; :::; Ru), then the set

I (n)) (�(ScalM)) ( �(O); �(Q1); :::; �(Qn) ) must be de�ned and contain f�(R1); :::; �(Ru)g.

(v) If E is a set-valued signature expression of the form SetM @V1; :::; Vs)) (W1; :::;Wv), the set

I (s))) (�(SetM)) ( �(O); �(V1); :::; �(Vs) ) must be de�ned and contain f�(W1); :::; �(Wv)g. 2

Here (i) says that the object �(Q) must be a subclass or a member of the class �(P ). Conditions (ii) and

(iii) say that|in case of a data expression|the interpreting function must be de�ned on appropriate

arguments and yield results compatible with those speci�ed by the expression. Conditions (iv) and (v)

say that, for a signature expression, the type of a method (ScalM or SetM) speci�ed by the expression

must comply with the type assigned to this method by I.

The following observations about De�nition 5.1 are useful for better understanding the rationale

behind certain aspects of the de�nition of F-structures:

� It follows from (iv) and (v) above that a signature of the form c[m@c1; :::; ck ) ( ) ] (with

nothing inside the parentheses) is not a tautology. Indeed, there are F-structures in which

I (k)) (�(m))(�(c); �(c1); :::; �(ck)) is unde�ned. Similarly for )).

Such an \empty" signature intuitively says that the respective scalar method is applicable to objects

in class c with arguments drawn from classes c1, ..., ck, but it does not specify the actual type of

the result. Contrapositively, m cannot be applied in the above context without the signature

c[m@c1; :::; ck) ( )] being true. In Section 12, we shall see that this enables us to enforce types by

withholding signatures for certain method invocations.

� The case when c[m@c1; :::; ck) ( )] is true in an F-structure, I, but I!(�(m))(�(o); �(a1); :::; �(ak))

is unde�ned, where �(o)2U�(c) and �(a1)2U�(a1), ..., �(ak)2U�(ak), is analogous to a null value of

the kind \missing value" known from the database theory [94]. When the above value is de�ned
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v = I (k)! (m)(o;
�!
args) is de�ned, it must belong to every class in I (k)) (m)(cl;

�!
types), i.e., v2Uw for each

w 2 I (k))
(m)(cl;

�!
types). In particular, a set of types is interpreted essentially as an extended \and" of its

members. This is the reason for the notation \ (� � �)" in the signatures (cf. Figure 4).

Similarly, the meaning of I (k))) (m) is de�ned to be the type of the set-valued function I (k)!! (m). In this

case, since I (k)!!
(m)(o;

�!
args) is a set of objects, every object in v 2 I (k)!!

(m)(o;
�!
args) must belong to every

class, w, in I (k))) (m)(cl;
�!
types), i.e., the relationship v2Uw must hold.

The rationale behind the anti-monotonicity and the upward-closedness conditions on I (k)) (m) and

I (k))) (m) now follows from the intended meaning of these functions. For instance, if the object

I (k)! (m)(o;
�!
args) is of type cl (i.e., I (k)! (m)(o;

�!
args)2Ucl) then, clearly, I (k)! (m)(o;

�!
args) must be a member

of every superclass of cl (i.e., I (k)! (m)(o;
�!
args)2Ucl

0, for every cl0 such that cl�Ucl
0); thus I (k)) (m)(cl;

�!
types)

must be upward-closed. Similarly, if I (k)! (m) can be invoked on every member of class cl with proper

arguments of type
�!
types, then m must also be invocable on every member, o, of any subclass cl0 of

cl with arguments
�!
args such that

�!
args 2U

�!
types 0, where hcl0;

�!
types 0i�Uhcl;

�!
typesi. Furthermore, the

result of this application, v = I (k)! (m)(ho;
�!
argsi), must still be typed by I (k)) (m)(cl;

�!
types). Now, since

the type of v is given by I (k)) (m)(cl0;
�!
types 0), it follows that I (k)) (m)(cl0;

�!
types 0) � I (k)) (m)(cl;

�!
types), viz.,

anti-monotonicity.

The above relationship between I), I)) and I!, I!! is not part of the de�nition of F-structures. Instead,

it is captured at the meta-level, by the de�nition of type-correctness in Section 12. The relationship

between I), I)) and I �! , I �!! , is also captured by the notion of type-correctness. However, it is slightly

di�erent from the relationship between I), I)) and I!, I!! described above; it is fully explained in

Section 12.

5.2 Satisfaction of F-formulas by F-structures

A variable assignment , �, is a mapping from the set of variables, V , to the domain U . Variable assignments

extend to id-terms in the usual way: �(d) = IF (d) if d 2 F has arity 0 and, recursively, �(f(:::; T; :::)) =

IF (f)(:::; �(T ); :::).

Molecular Satisfaction

Let I be an F-structure and � a variable assignment. Intuitively, a molecule T [� � �] is true under I with

respect to a variable assignment �, denoted I j=� T [� � �], if and only if the object �(T ) in I has properties

that the formula T [� � �] says it has. As a special case, molecules of the form T [ ], which specify no

properties, come out as tautologies. An is-a molecule, P :: Q or P : Q, is true if the objects involved,

�(P ) and �(Q), are related via �U or 2U to each other.

De�nition 5.1 (Satisfaction of F-Molecules) Let I be an F-structure and G be an F-molecule. We write

I j=� G if and only if all of the following holds:

� When G is an is-a assertion then:
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Attachment of Types to Methods | The Mappings I) and I))

Since methods are interpreted as functions, the meaning of a signature expressions must be a functional

type, for its role is to specify the type of a method. To specify a functional type, one must describe the

types of the arguments to which the function can be applied and the types of the results returned by the

function. Furthermore, the description should account for polymorphic types (cf. (1) earlier).

Model-theoretically, functional types are described via mappings, I) and I)) , that cast tuples of

objects to sets of objects, where objects are considered in their role as classes. These mappings must

satisfy the usual properties of polymorphic functional types, as spelled out below. As in the case of I!

and related functions, these mappings are attached to the elements of U rather than U(F).

We start with a very succinct de�nition of I) and I)) and then follow with a discussion of the

properties of these mappings.9

� I) : U 7�!
Q1

i=0 PartialAntiMonotone�U (U
i+1;P"(U))

� I)) : U 7�!
Q1

i=0 PartialAntiMonotone�U (U
i+1;P"(U))

Here P"(U) is a set of all upward-closed subsets of U . A set V � U is upward closed if v 2 V

and v�Uv
0 (where v0 2 U) imply v0 2 V . When V is viewed as a set of classes, upward closed-

ness simply means that, along with each class v 2 V , this set also contains all the superclasses of v.

PartialAntiMonotone�U (U
i+1;P"(U)) denotes the set of partial anti-monotonic functions from U i+1 to

P"(U). For a partial function � : Uk 7�! P"(U), anti-monotonicity means that if ~u;~v 2 Uk, ~v�U~u, and

�(~u) is de�ned, then �(~v) is also de�ned and �(~v) � �(~u).10

Discussion: The Relationship between I! and I)

The de�nition of F-structures is now complete. In the rest of this subsection, we discuss the properties of

I) and I)) and show that they coincide with the standard properties of functional types (see, e.g., [25]),

albeit expressed in a di�erent, model-theoretic notation. As with I!, we use I
(k)
) (m) to refer to the k-th

component of the tuple I)(m). We use similar notation, I (k)
))

(m), for set-valued methods.

The intended meaning of I (k)) (m) is the type of the (k + 1)-ary function I (k)! (m). In other

words, the domain of de�nition of I (k)) (m) should be viewed as a set of (k + 1)-tuples of classes,

hhost-cl ; arg-type1 ; :::; arg-typek i, that type tuples of arguments, ho; arg1; :::; argki, on which I (k)
!

(m)

can be invoked (i.e., argument-tuples such that ho; arg1; :::; argki2Uhhost -cl ; arg-type1 ; :::; arg-typek i

holds). For every tuple of classes, hcl;
�!
typesi 2 Uk+1, if I (k)) (m)(cl;

�!
types) is de�ned, it represents the

type of I (k)! (m)(o;
�!
args) for any tuple of arguments such that ho;

�!
argsi2Uhcl;

�!
typesi. This means that if

9Signatures constitute a fairly advanced level of F-logic; its basic features|is-a hierarchy and data expressions|do
not depend on the speci�cs of the above type system. For this reason, on the �rst reading it may be possible to skip
signature-related aspects of F-logic, including the remaining part of this subsection.

10Actually, these functions are monotone with respect to Smyth's ordering [24]. For upward-closed sets, S �smyth S0 if
and only if S � S0.
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whether the method is invoked as a scalar or a set-valued function. Therefore, to assign meaning to

methods, an F-structure has to attach an appropriate function to each method.

As explained in Section 3, F-logic allows any id-term to be used as a method name. Hence, we

need to associate a function to each id-term. However, to provide for higher-order jobs, such as schema

manipulation, one has to allow variables to range over methods. It turns out that to give meaning to

molecules with method-variables, it is necessary to associate these functions with each element of U , not

U(F).8 Furthermore, since methods can have di�erent arities, we need to associate a function for each

possible arity.

Formally, in their role as methods, objects are interpreted via an assignment of appropriate functions

to each element of U , using the maps I!, I �! , I!!, and I �!! . More precisely, for every object, its

incarnation as a scalar method is obtained via the mapping

� I!; I �! : U 7�!
Q1

k=0 Partial(U
k+1; U)

Each of these mappings associates a tuple of partial functions Uk+1!U with every element of U ; there

is exactly one such function in the tuple, for every method-arity k � 0. In other words, the same method

can be invoked with di�erent arities.

In addition to di�erent arities, every method can be invoked as a scalar or as a set-valued function

(cf. empl[jointWorks@ bill!! X ] and student[jointWorks@ bill! X ] in Section 3). Semantically this

is achieved by interpreting the set-valued incarnations of methods separately, via the mappings:

� I!!; I �!! : U 7�!
Q1

k=0 Partial(U
k+1;P(U))

For every method-arity k, each of these mappings associates a partial function Uk+1!P(U) with each

element of U . Note that each element of U has four di�erent sets of interpretations: two provided by I!

and I �! and two provided by I!! and I �!! .

The di�erence between the \!"-versions and the \ �! "-versions in the above mappings is that \!"-

versions are used to interpret inheritable data properties, while \ �! "-versions are for non-inheritable

data properties.

As seen from the above de�nitions, I!(m) (and I!!(m), I �! (m), I �!! (m)), where m 2 U , is an in�nite

tuple of functions parameterized by the arity k � 0. To refer to the k-th component of such a tuple,

we use the notation I (k)! (m) (resp., I (k)!! (m), I �! (m) or I �!! (m)). Thus, a method, m, that occurs in a

scalar non-inheritable data expression with k proper arguments is interpreted by I (k)! (m); if m occurs in a

set-valued non-inheritable data expression with k arguments, it is interpreted by I (k)!! (m), and so on. Note

that I (k)! (m) and the other three mappings are (k+1)-ary functions. The �rst argument here is the host

object of the invocation of the method m; the other k arguments correspond to the proper arguments of

the invocation. In the parlance of object-oriented systems, an expression, such as I (k)! (m)(obj; a1; :::; ak),

is interpreted as a request to object obj to invoke a scalar method, m, on the arguments a1; :::; ak.

8This is a subtle technical point whose necessity will become apparent after the notion of satisfaction in F-structures is
introduced.
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5 Semantics

Given a pair of sets U and V , we shall use Total(U; V ) to denote the set of all total functions U 7�! V ;

similarly, Partial(U; V ) stands for the set of all partial functions U 7�! V . The power-set of U will be

denoted by P(U). Further, given a collection of sets fSigi2N parameterized by natural numbers,
Q1

i=1 Si

will denote the Cartesian product of the Si's, that is, the set of all in�nite tuples hs1; : : : ; sn; : : :i.

5.1 F-structures

In F-logic, semantic structures are called F-structures . Given a language of F-logic, L, an F-structure

is a tuple I = hU;�U ;2U ; IF ; I!; I!!; I �! ; I �!! ; I); I))i. Here U is the domain of I, �U is a partial order

on U , and 2U is a binary relation. As usual, we write a�Ub whenever a�Ub or a = b. We extend �U

and 2U to tuples over U in a natural way: for ~u;~v 2 Un and S � Un, we write ~u�U~v or ~u2U~v if the

corresponding relationships hold between ~u and ~v component-wise.

The ordering �U on U is a semantic counterpart of the subclass relationship, i.e., a�Ub is interpreted

as a statement that a is a subclass of b. The binary relation 2U will be used to model class membership,

i.e., a2Ub should be taken to mean that a is a member of class b. The two binary relationships, �U and

2U , are related as follows: If a2Ub and b�Uc then a2Uc. This is just another way of saying that the

extension of a subclass (i.e., its set of members) is a subset of the extension of a superclass.

We do not impose any other restrictions on the class membership relation to accommodate the widest

range of applications. In particular, 2U does not have to be acyclic and even s2Us is a possibility (i.e.,

a class may be a member of itself when viewed as an object).7 The reader should not be misled into

thinking that v in u2Uv is a subset of U that contains u. The actual meaning of such a statement is that

v is an element of U that denotes a subset of U , and u is a member of this subset.

By analogy with classical logic, we can view U as a set of all actual objects in a possible world , I.

Ground id-terms (the elements of U(F)) play the role of logical object id's. They are interpreted by the

objects in U via the mapping IF : F 7�! [1i=0Total(U
i; U). This mapping interprets each k-ary object

constructor, f 2 F , by a function Uk 7�! U . For k = 0, IF (f) can be identi�ed with an element of U .

Thus, function symbols are interpreted the same way as in predicate calculus.

The remaining six symbols in I denote mappings for interpreting each of the six types of method

expressions in F-logic. These mappings are described next.

Attachment of Functions to Methods | The Mappings I!, I!!, I �! , and I �!!

As in classical logic, the mapping IF above is used to associate an element of U with each id-term.

However, id-terms can also be used to denote methods. A method is a function that takes a host object

and a list of proper arguments and maps them into another object or a set of objects, depending on

7Such exibility is sometimes required in AI applications, where s would be interpreted as a \typical" element of class s.
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It follows from the syntax that every logical id can denote an entity or a method, depending on the

syntactic position of this id within the formula. In an occurrence as a method, this id can denote either a

scalar function or a set-valued function. The type of the invocation (scalar or set-valued) is determined

by the context, viz., by the type of the associated arrow.

Is-a assertions are always atomic|they cannot be decomposed further into simpler formulas. Other

molecular formulas, however, are not always atomic. As will be seen shortly, a molecule such asX [attr1!

a; attr2 ! Y ] is equivalent to a conjunction of its atoms, X [attr1 ! a] ^ X [attr2 ! Y ]. It is for this

property that we call such formulas \molecular" instead of \atomic." Atomic formulas will be de�ned

later, in Section 7.

Complex Formulas

F-formulae are built up from simpler F-formulae by means of logical connectives and quanti�ers:

� Molecular formulae are F-formulas;

� ' _  , ' ^  , :' are F-formulae, if so are ' and  ;

� 8X ', 9Y  are formulae, if so are ',  and X , Y are variables.

In addition, we de�ne a literal to be either a molecular formula or a negation of a molecular formula.

In Section 3 and elsewhere in this paper, we shall often use the implication connective, \ ". In

F-logic, this connective is de�ned as in classical logic: '  is just another way of saying '_: . There

is a tradition to refer to logical statements written in the implicative form as rules . This terminology

was already used in the example of Section 3, and we shall continue this practice.

It is sometimes convenient to combine di�erent kinds of molecules (as in (vii), (viii) and (ix) of

Figure 4) and write, say,

Q : P [ScalM @X ! (Y : S); SetM @ Y;W )) (Z : R; T )]

as a short-hand for

Q : P ^ Q[ScalM @X ! Y ] ^ Y : S ^ Q[SetM @Y;W )) (Z; T )] ^ Z : R:

Furthermore, even though the symbols on the right-hand side of the arrows denote id-terms by de�nition,

it is often convenient (and, in fact, customary) to combine molecules as in (i) and (ii) of Figure 4. For

instance,

P [ScalM @X ! Q[SetM @Y !! fT; Sg]]

can be de�ned as a short-hand for

P [ScalM @X ! Q] ^Q[SetM @Y !! fT; Sg]
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In data expressions, the terms T and Si are id-terms that represent output of the respective methods,

ScalarMethod and SetMethod when they are invoked on the host-object O with the arguments Q1, ...,

Qk and R1, ..., Rl, respectively. The arguments are id-terms.

In signature expressions, Ai and Bj are id-terms that represent types of the results returned by the

respective methods when invoked on an object of class C with arguments of types V1, ..., Vn and W1,

..., Ws, respectively; these arguments are also id-terms. The notation (� � �) in signature expressions is

intended to say that the output of the method must belong to all the classes listed to the right of \)"

or \))".

The order of data and signature expressions in a molecule is immaterial. For convenience, the same

method and even the same data/signature expression may have multiple occurrences in the same molecule.

Likewise, the same id-term may occur multiple times inside the braces in a data, or signature expression.

Furthermore, whenever a method does not expect arguments, \@ " will be omitted. For instance, we will

write P [Mthd ! V al] instead of P [Mthd@ ! V al], and similarly for !!, ), and )). Likewise, when

only one element appears inside f g, we may write P [: : : !! S] instead of P [: : :!! fSg]; we shall also

write Q[: : :) T ] and Q[: : :)) T ] instead of Q[: : :) (T )], and Q[: : :)) (T )].

Discussion

Informally, an object molecule in (ii) above asserts that the object denoted by O has properties speci�ed

by the method expressions. Data expressions are used to de�ne properties of objects in terms of what

their methods are supposed to do. Inheritable data expressions may be inherited by subclasses and

individual members of the object (when it plays the role of a class); by contrast, properties speci�ed

as non-inheritable cannot be inherited. A signature expression in (ii) speci�es type constraints on the

methods applicable to the objects in class O. Typing is given both for method arguments and for their

results. For instance, the scalar signature expression in (ii) says that ScalarMethod is a scalar method

and that when it is invoked on a host-object of class O with proper arguments coming from classes V1, ...,

Vn, then the result must simultaneously belong to classes A1, ..., Ar. Similarly, the typing for SetMethod

in (ii) says that it is a set-valued method; when it is invoked on a host object of class O with proper

arguments of classes W1, ..., Ws, then each element in the resulting set must simultaneously belong to

the classes B1, ..., Bt.

Notice that a molecule, such as a[attr ! b; attr !! fc; dg; attr�! e], is syntactically well-formed

despite the fact that attr is used to specify a non-inheritable scalar property of the object a due to one

part of the molecule, a non-inheritable set-valued property due to another, and also an inheritable scalar

property due to the third part. This apparent contradiction is easily resolved at the semantic level: The

attribute attr has value b on object a when invoked as a non-inheritable scalar method (with the arrow

\!"); it returns the set fc; dg when called as a non-inheritable set-valued method (with \!!"); and it

returns the value e when called as an inheritable scalar method (with the arrow \ �! "). If a happens

to be a class-object, the properties attr ! b and attr !! fc; dg are not inheritable by the members and

subclasses of a. However, attr �! e is inheritable, as it is speci�ed as such.
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In this paper, we adopt a convention inspired by Prolog syntax, whereby a symbol that begins with

a lower-case letter denotes a ground id-term and a symbol that begins with a capital letter denotes an

id-term that may be non-ground.

De�nition 4.1 (Molecular Formulas) A molecule in F-logic is one of the following statements:

(i) An is-a assertion of the form C :: D or of the form O : C, where C, D, and O are id-terms.

(ii) An object molecule of the form O [ semicolon-separated list of method expressions ].

A method expression can be either a non-inheritable data expression, an inheritable data

expression, or a signature expression.

� Non-inheritable data expressions take one of the following two forms:

{ A non-inheritable scalar expression (k � 0):

ScalarMethod@Q1; :::; Qk! T

{ A non-inheritable set-valued expression (l;m � 0):

SetMethod@R1; :::; Rl!! fS1; :::; Smg

� Inheritable scalar and set-valued data expressions are like non-inheritable expressions

except that \!" is replaced with \ �!" and \!!" is replaced with �!! .

� Signature expressions also take two forms:

{ A scalar signature expression (n; r � 0):

ScalarMethod@V1; :::; Vn) (A1; : : : ; Ar)

{ A set-valued signature expression (s; t � 0):

SetMethod@W1; :::;Ws)) (B1; : : : ; Bt) 2

The �rst is-a assertion in (i), C :: D, states that C is a nonstrict subclass of D (i.e., inclusive of the case

when C and D denote the same class).6 The second assertion, O : C, states that O is a member of class

C.

In (ii), O is an id-term that denotes an object. ScalarMethod and SetMethod are also id-terms.

However, the syntactic position of ScalarMethod indicates that it is invoked on O as a scalar method,

while the syntactic position of SetMethod indicates a set-valued invocation. (If ScalarMethod and

SetMethod have variables, each of these terms denotes a family of methods rather than a single method.)

Double-headed arrows, !!, �!! , and )), indicate that SetMethod denotes a set-valued function. The

single-headed arrows,!, �! , and ), indicate that the corresponding method is scalar.

6Assertions, such as person :: person, will later turn out to be tautologies, i.e., any class is a subclass of itself.
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Despite the higher-order syntax, the underlying semantics of F-logic formally remains �rst-order,5

which explains why it is possible to circumvent di�culties normally associated with higher-order theories.

These important issues are beyond the scope of this paper; a more complete discussion appears in [30].

4 Syntax

The alphabet of an F-logic language, L, consists of:

� a set of object constructors F ;

� an in�nite set of variables V ;

� auxiliary symbols, such as, (, ), [, ], !, !!, �! , �!! , ), )), etc; and

� usual logical connectives and quanti�ers, _, ^, :,  , 8, 9.

Object constructors (elements of F) play the role of function symbols of F-logic. Each function symbol

has an arity|a nonnegative integer that determines how many arguments this symbol can take. Symbols

of arity 0 play the role of constant symbols; symbols of arity � 1 are used to construct larger terms out

of simpler ones. An id -term is a usual �rst-order term composed of function symbols and variables, as

in predicate calculus. The set of all ground (i.e., variable-free) id-terms is denoted by U(F). This set is

also commonly known as Herbrand Universe.

Conceptually, ground id-terms play the role of logical object id's|a logical abstraction of the im-

plementational concept of physical object identity [46, 3]. Since this paper emphasizes logic, the term

\object id" (abbr., oid) will be used for logical id's only.

Objects represented by \complex" id-terms, such as addr(13; mainstreet; anywhere), usually arise

when a complex object (or a class) is constructed out of simpler components, e.g., 13, mainstreet, and

anywhere, in this example.

It follows from the de�nition that every F-logic language is uniquely determined by its set of object

constructors, F . In this paper, F and U(F) will henceforth denote the set of function symbols and

ground terms, respectively, where the language, L, will be known from the context.

Molecular Formulas

A language of F-logic consists of a set of formulae constructed out of the alphabet symbols. As in most

other logics, formulas are built out of simpler formulas by using the usual connectives :, _, and ^, and

quanti�ers 9 and 8. The simplest kind of formulas are called molecular F-formulas (abbr., F-molecules

or just molecules).

5Following [30], �rst-orderness here means that variables do not range over complex domains, such as domains of sets or
functions, but they can range over the intensions of those higher-order structures.
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say that plus is a method that returns an integer when invoked on an integer -object with an integer -

argument. However, when plus is invoked on an object in class real with an argument that also comes from

that class, the method returns an object in class real. In general, just as in (1), specifying polymorphic

types requires more than one signature. Several interesting examples of polymorphic types (including

parameterized types) will be given in Section 11.3.

A form of polymorphism when a method can be invoked with varying number of arguments is called

arity-polymorphism. For instance, student[avgGrade ) grade] and student[avgGrade@ year ) grade]

may both be legal invocations (say, the �rst implicitly assuming the current year).

Arity-polymorphism is very popular in logic programming languages, such as Prolog. However, unlike

Prolog, arity polymorphism in F-logic is controlled via signatures, just as any other kind of polymorphism.

This means that to be able to invoke a method with any given number of arguments, an appropriate

signature must be speci�ed. For instance, in the above, if no other signature is given, avgGrade cannot

be invoked with more than one argument. Another way to control arity-polymorphism is by turning

F-logic into a sorted language. This extension is described in Section 16.

One more kind of polymorphism arises when a method name is declared to be both set-valued and

scalar. For instance, suppose the following types are de�ned:

student[grade@ course)) integer] student[grade@ course) integer]

In the �rst case, grade is a set-valued method of one argument that for any student and any given course

returns the set of this student's scores in the course (say, the scores for all projects and examinations).

In the second case, only the overall grade for the course is returned. For instance, if sally is a student,

the query

?� sally[grade@db!! X ]

will return the set of Sally's scores in the database course, while the query

?� sally[grade@db! X ]

will return the �nal grade. This kind of polymorphism is controlled as before, via signatures; it can also

be controlled via sorts, similarly to arity-polymorphism.

Observe that F-logic manipulates several higher-order concepts. In Figure 4, the attribute friends is

a set-valued function, i.e., it returns sets of objects. Similarly, the user can think of the class-objects in

the IS-A hierarchy of Figure 2 as sets ordered by the subset relation.

Furthermore, attributes and methods are also viewed as objects. This, for instance, implies that their

names can be returned as query answers. In this way, schema information is turned into data so that

it can be manipulated in the same language. This is useful for tasks that require schema exploration in

databases (Section 11.4.2), inheritance with overriding (Section 14.3), and for many other applications

(Sections 11.4.3 and 11.4.5).
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Other Features

Before bidding farewell to this example, we would like to highlight some other features of F-logic. Suppose

that in Statement (i) we replace mngr! bob with mngr! phil. Then we would have had a type error .

Indeed, on the one hand, the deductive rule (vii) implies bob[boss ! phil]; on the other hand, from

Figure 2, phil is neither a faculty nor a manager. This contradicts the typing of the attribute boss in

(iii).3 As will be seen in Section 12, the notions of well-typing and type error have precise model-theoretic

meaning in F-logic.

Another aspect of the type system of F-logic is that signature declarations are enforced. For instance,

the following methods are declared in Figure 4 for the members of class faculty:

� name, friends, and children|the methods inherited from person;

� worksFor and jointWorks|methods inherited from empl; and

� boss, age, highestDegree, and papers|the methods directly speci�ed for the class faculty.

Enforcing signature declarations means that these are the only methods applicable to the members of

class faculty ; any other method is illegal in the scope of that class. Moreover, it is a type error to invoke

the method jointWorks with an argument that is not a member of class empl . Similarly, it would be

a type error to invoke the methods in the last group on objects that represent employees who are not

faculty, or to invoke worksFor or jointWorks on objects that are not members of class empl .

In our example, invocations of all methods, except avgSalary , are sanctioned by signatures declared for

appropriate classes. The method avgSalary , on the other hand, is not covered by any signature, which is

a violation of the well-typing conditions (to be discussed in Section 12). To correct the problem, the class

faculty (in its role as an object) has to be made into a member of another class, say employmentGroup

(whose members are various categories of employees, such as empl , faculty , and manager). To give

avgSalary a proper type, we could then declare employmentGroup[avgSalary) integer].

Observe a di�erence in the treatment of the non-inheritable method avgSalary (and of all other non-

inheritable methods in the example) and of the inheritable method highestDegree. The former must be

covered by a signature declared for a class where faculty is a member , while the latter should be covered

by a signature declared for a class where faculty is a subclass .4 This is because the non-inheritable

method avgSalary is a property of the object faculty itself, while the inheritable method highestDegree

is e�ectively a property of the objects that are members of the class faculty .

Yet another important aspect of F-logic type system is polymorphism. This means that methods can

be invoked on di�erent classes with arguments of di�erent types. For instance, the following signatures

integer[plus@integer) integer] real[plus@real) real] (1)

3Note that phil is an employee and thus bob[boss ! phil] complies with the typing of boss for the class empl , as speci�ed
in (v). However, bob is also a member of class faculty, and (iii) imposes a stricter type on the attribute boss in that class,
requiring phil to be a member of both faculty and manager.

4This class can be faculty itself, since the subclass relationship in F-logic is non-strict.
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friends !! fbobg. However, in friends !! fbob; sallyg of Statement (ii) and in assistants !!

fjohn; sallyg in (i), braces must be kept to indicate sets. (In fact, say, cs1[assistants !! fjohn; sallyg]

is equivalent to a conjunction of cs1[assistants !! john] and cs1[assistants !! sally], but the use of

braces leads to a shorter notation).

Statement (vii) is a deductive rule that de�nes a new attribute, boss, for objects of class empl. It

says that an employee's boss is the manager of the department the employee works in. Here we follow the

standard convention in logic programming that requires names of logical variables to begin with a capital

letter. Statement (viii) de�nes a method jointWorks whose signature is given in (v). For any object in

class person, jointWorks is a function that takes an object of type person and returns a set of objects

of type report; each object in this set represents a paper co-authored by the two people. Informally,

this rule should be read as follows: If a report-object, Z, simultaneously belongs to the sets X:papers

and Y:papers,2 where X and Y are faculty-objects, then Z must also belong to the set returned by the

method jointWorks when invoked on the host-object X with the argument Y .

It is important to realize here that the variable Z ranges over the members of the set X:papers \

Y:papers|it is not instantiated to the set itself. Note also that we do not need the restriction Z : report

in the rule body because, for each faculty, the attribute papers speci�es a set of article-objects (by

Statement (iii)), and article is a subclass of report (see Figure 2). However, if we were interested in

JACM papers only, then the restriction Z : jacm would have been necessary in the body of (viii).

Two uses of the method jointWorks are shown in (x) and (xi). Query (x) asks about the co-authors

of mary's paper, jacm90, while (xi) requests all joint papers that mary co-authors with phil. Query (ix)

inquires about all middle-aged employees working for \CS " departments. In particular, for every such

employee, the attributes boss , age, and worksFor are requested. The expected answer to (ix) is:

(xii) bob[boss! bob; age! 40; worksFor ! cs1].

The object mary does not qualify as an answer to query (ix) because of the unknown age.

In this connection, we would like to mention the fact that attributes and methods are partial functions.

They may be de�ned on some objects in a class and unde�ned on another. F-logic distinguishes two

reasons for unde�nedness: 1) the attribute (or method) may be inapplicable to the object; or 2) it may

be applicable but its value is unknown. Case 1) arises due to typing, as discussed later. Case 2), on the

other hand, is essentially a form of a null value, which is familiar from database theory.

In the above example and in the rest of this paper, the term \type" of an object is used interchangeably

to refer to classes of that object and to its declared signatures. The correct meaning should be clear

from the context. The dual use of this term is appropriate since, generally, the term \type" refers to

arbitrary collections of abstract values. Classes and signatures both specify such collections. The former

denotes collections of class members, which are semantically related objects; the latter denotes collections

of objects that are structurally related. Since semantic similarity usually implies structural similarity,

the two uses of the term \type" are closely related.

2Here the notation X:papers denotes the set of oid's returned by the attribute papers on the object X. Similarly for
Y:papers.
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in cl[attr ) (a; b; c)] signi�es a conjunction of types: the value of attr on any object in class cl must

simultaneously belong to each of the classes a, b, and c. When the set of types to the right of a double-

shafted arrow, \)" or \))", is a singleton set, e.g., c[attr ) (empl)], we shall omit the surrounding

parentheses and write, e.g., c[attr ) empl].

Di�erent kinds of information about objects can be mixed in one statement. For instance, in State-

ment (iii), the expression highestDegree) degree speci�es the type of the attribute highestDegree; the

expression highestDegree �! phd speci�es an inheritable property of faculty ; and avgSalary! 50000 is

a non-inheritable property of faculty .

Asserting an inheritable property for a class-object has the e�ect that every member-object of that

class inherits this property, unless it is overwritten. For instance, the assertion bob[highestDegree !

phd] is derivable from (iii) by inheritance. Note that when a property is inherited by a member of

the class, it becomes non-inheritable; this explains why inheritance derives bob[highestDegree ! phd]

rather than bob[highestDegree �!phd]. An inheritable property may also be inherited by a subclass.

However, in this case, the inherited property remains inheritable in this subclass and, as such, it can be

passed further down in the hierarchy of objects. For example, if lecturer were a subclass of faculty then

lecturer[highestDegree �!phd] would be derivable by inheritance, unless lecturer has another inheritable

property (e.g., highestDegree �!ms) that overrides this inheritance. Inheritance will be discussed in

detail in Section 14.

In contrast to highestDegree �! phd, the property avgSalary ! 50000 in (iii) is not inheritable by

the members and subclasses of faculty . And, indeed, it makes no sense to inherit average salary, as it is

an aggregate property of all members of the class and has no meaning for individual members. Inheriting

avgSalary ! 50000 to a subclass is also meaningless, because subclass members, e.g., all lecturers, are

likely to have a di�erent average salary than all members of the larger class faculty.

Statements (iv) to (vi) specify typing constraints for classes person, empl, and dept. More precisely,

it can be said that these statements de�ne signatures of methods attached to these classes. Two things

are worth noting in Statement (iv). First, the expression jointWorks@ person )) report describes a

method, jointWorks, that expects one proper argument of type person and returns a set of elements of

type report. In object-oriented terms, this means that whenever a person-object, obj, receives a message,

jointWorks, with an argument of class person, then the reply-message returned by obj will consist of a

set of objects, each being a member of class report. Note that there is no essential di�erence between

methods and attributes: the latter are simply methods without arguments. Strictly speaking, in Figure 4

we should have written name@ ) string and age@ ! 40 instead of name ) string and age ! 40,

but the latter short-hand notation is more convenient when no arguments are expected.

The second thing to note in (iv) is the expression children ) child(person), which speci�es a type

constraint for the attribute children. Here, child is a unary function symbol and person is a constant

denoting a class. The term child(person), then, is a logical id of another class. Thus, in F-logic, function

symbols are used as constructors of object and class id's.

We shall often omit braces surrounding singleton sets and write, say, friends !! bob instead of
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Database Facts:

(i) bob[name! \Bob"; age! 40;
worksFor ! cs1[dname! \CS"; mngr! bob; assistants !! fjohn; sallyg] ]

(ii) mary[name! \Mary"; highestDegree! ms;
friends!! fbob; sallyg; worksFor ! cs2[dname! \CS" ] ]

General Class Information:

(iii) faculty[boss) (faculty;manager); % Typing: boss|scalar attribute; returns objects
age) midaged; highestDegree) degree; % belonging to both faculty & manager
papers)) article; highestDegree �! phd; % highestDegree �! phd: inheritable property
avgSalary! 50000 ] % avgSalary! 50K: non-inheritable property

(iv) person[name) string; friends)) person; % Typing: friends|a set-valued attribute
children)) child(person)] % Typing: each child is in class child(person)

(v) empl[worksFor) dept; boss) empl; % Typing: employees work for departments
jointWorks@ empl)) report ] % Typing: jointWorks|a one-argument method

(vi) dept[assistants )) (student; empl); mngr) empl ] % Typing: assistants are students and employees

Deductive Rules:

(vii) E[boss!M ] E : empl^D : dept^E[worksFor! D[mngr!M : empl ] ]

(viii) X [jointWorks@Y !! Z ] Y : faculty ^X : faculty
^ Y [papers!! Z ]^X [papers!! Z ]

Queries:

(ix) ?� X : empl^X [boss! Y ; age! Z :midaged; worksFor ! D[dname! \CS" ] ]

(x) ?� mary[jointWorks@Y !! jacm90 ]

(xi) ?� mary[jointWorks@ phil!! Z ]

Figure 4: A Sample Database

In the object-oriented systems, a method is a function of the form Objects � Objectsn �! Objects

or Objects� Objectsn �! P(Objects), where P is a power-set operator. Given an object, its methods

are \encapsulated" inside that object and constitute its interface to the rest of the system. The �rst

argument of a method is the object the method is being invoked on|the host object of the invocation.

The other arguments are called proper arguments of the invocation.

The reader may have already noticed that double-headed arrows,!! and)), are used in conjunction

with set-valued attributes while !, ) signify scalar attributes. Also, double-shafted arrows,) and )),

specify types, while arrows ! and !! describe values of attributes. A double-shafted arrow speci�es

that an attribute (or method) is de�ned; if it is not given, the single-shafted arrow may not be used.

Given cl[attr ) � � � ], one cannot use obj[attr !! � � � ], where obj is in class cl, to give a value to attr

(unless attr )) � � � ] is speci�ed for some other class where obj also belongs). Also, note that (a; b; c)
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empl :: person yuppie :: young
student :: person 20 : young
faculty :: empl 30 : yappie
child(person) :: person 40 : midaged
john : student \CS" : string
john : empl \Bob" : string
cs1 : dept alice : child(john)
. ..

. . .
. . .

. . .

Figure 3: F-logic Representation of the IS-A Hierarchy of Figure 2

when viewed as an object, a class can be a member of another class. For instance, in Figure 2, the classes

string and integer are members of the class datatype.

In the actual syntax of F-logic, we use \:" to represent class membership and \::" to denote the

subclass relationship. Thus, for instance, the hierarchy of Figure 2 is recorded as shown in Figure 3.

Here a statement such as empl :: person says that empl is a subclass of person; john : empl says that

john is an instance (i.e., a member) of the class empl, and so on. Notice that john, empl , and person

are simply terms that denote objects.

The Object Base

Figure 4 presents a database fragment describing employees, students, and others. The �rst statement

there says that the object bob is a faculty whose name is \Bob". Here bob is a logical id of an object that

supposedly represents a person. In contrast, \Bob" is a member of class string; it represents the value

of one of bob's attributes, called name.

Note that F-logic does not support the dichotomy between \complex objects" and \complex val-

ues." We believe that complications introduced by this dichotomy do not justify the bene�ts (but see

Section 15.3). Thus, \Bob" is viewed as an oid that represents the string \Bob".

Statement (i) also says that bob works in the department denoted via the oid cs1, the department's

name is represented by the oid \CS ", and its manager is described by the object with oid bob. Note that

bob has cyclic references to itself. Statement (ii) represents similar information about mary. Unlike the

attributes name, highestDegree, and age, which return a single value, the attribute friends is set-valued .

Syntactically, this is indicated by the double-headed arrow \!!" and the braces \f g".

Statements (iii) to (vi) provide general information about classes and their signatures . A signature of

a class speci�es names of attributes and methods that are applicable to this class, the type of arguments

each method takes, and the type of the result it returns. Statement (iii), for instance, says that for every

object in class faculty , the attributes age and highestDegree must be of types midaged and degree,

respectively, and that the attribute boss returns results that simultaneously belong to classes faculty

and manager.
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Figure 2: Part of an IS-A Hierarchy

3 F-logic by Example

The development of F-logic is guided by the desire to capture in a logically clean way a number of

knowledge representation scenarios. Several of the most salient features of F-logic are described in this

section by way of an example.

The IS-A Hierarchy

Figure 2 shows part of a hierarchy of classes and individual objects, where solid arcs represent the subclass

relationship and dotted arcs represent class membership. This hierarchy asserts that faculty and manager

are subclasses of empl ; student and empl are subclasses of person; \Mary" and \CS " are members of the

class string; and mary is a faculty, while sally is a member of the class student. Note that classes are

rei�ed , i.e., they belong to the same domain as individual objects. This endows F-logic with a great deal

of uniformity, making it possible to manipulate classes and objects in the same language. In particular,
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Figure 1: A Classi�cation of Database Programming Languages

We also note that practical considerations sometimes call for a mixture of di�erent paradigms co-

existing under the same roof. For instance, Prolog [32] has control primitives that give it a procedural

avor. Logical object-oriented languages [50, 31, 48, 3] allow grouping of data around properties (i.e.,

relationally) as well as around objects. IQL [3] relies on a small number of procedural features; Pascal-R

[86] o�ers declarative access to data, although the overall structure of the language is procedural.

In general, we believe that the future belongs to multi-paradigm languages, and so the aforemen-

tioned \impurity" is not necessarily a drawback. An important research issue is, however, to �nd ways

of clean integration of di�erent kinds of languages. It will be clear from this paper that inside the de-

ductive domain, relational and object-oriented languages go hand-in-hand. Interfaces between relational

and object-oriented (whether declarative or procedural) languages are also known. However, we are

unaware of any clean solution to the integration of procedural object-oriented languages with relational

languages; likewise, there is no generally agreed upon framework for absorbing functional languages into

the deductive paradigm.
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try to put them in a perspective.

It has become customary to de�ne the notion of object-orientation via a long list of properties such

systems must have. Some works (e.g., [9]) further divide these properties into those that are \mandatory"

and those that are \optional." These classi�cations, however, do not explain the di�erence between

relational and object-oriented paradigms; nor do they o�er justi�cation for the selection of features that

they view as important.

We believe that whether a language has an object-oriented avor or a relational avor is primarily

determined by the way it represents data. In our view, the central feature of the relational data model

is that data is conceptually grouped by properties. For instance, information regarding a given person

may be scattered among di�erent relations, such as employee, manager , and project , each describing

di�erent properties attributed to persons. On the other hand, pieces of data that describe distinct

persons via the same property are grouped together in one relation (e.g., project[empId; projName]).

In contrast, object-oriented representation seeks to group data around objects (again, at the conceptual

level). According to this philosophy in language design, the user can access|directly or by inheritance|

all public information about any object, once a \handle" to that object is obtained. This handle is usually

referred to as physical object identity|an implementational notion that has a conceptual, language-level

counterpart, which we call logical object identity . Logical oid's were introduced in [50] and subsequently

utilized in [31, 15] and other works.

The concept of object identity was widely debated in databases. An early attempt to bring this

notion into the fold of a logical theory was reported by Maier [65]. Commenting on this work, Ullman

[93] concluded that the very concept of object identity is incompatible with logic. We feel that both,

Maier's di�culties and Ullman's scepticism, result from a confusion that arose due to lumping physical

and logical object identities together into a single concept.

Having decided to group data around objects, it is only natural to try and tap into the potential of

such representation by making use of class hierarchies, inheritance, typing, and so on. The di�erence

between \optional" and \mandatory" properties put forward in [9] now becomes a subjective matter of

what one perceives to be the most important features of this mode of data representation.

Languages can be classi�ed also along another dimension|their programming paradigm. Here we can

point at the following three major groups of languages: procedural, functional, and deductive. Figure 1

shows how various languages may �t into this framework. Our contention is that the misconception

about incompatibility of deductive and object-oriented languages comes from overlooking the fact that

the two classi�cation axes of Figure 1 are really orthogonal . What is commonly referred to as \deductive

databases," is simply a class of languages characterized by the at, relational data model and the deduc-

tive programming paradigm. In contrast, most of the systems that are perceived as \object-oriented" are

procedural. Only recently, a number of upward-compatible object-oriented logics have been introduced

[31, 50, 48], which made it clearer how the perceived incompatibility gap could be bridged. The revised

version of F-logic presented here continues this line of research, closing gaps and rectifying aws of our

earlier attempts [50, 48].



2 A PERSPECTIVE ON OBJECT-ORIENTED VS. DECLARATIVE PROGRAMMING 2

retain the spirit of object-oriented programming. In contrast, we propose a logic in which object-oriented

concepts are represented directly, both syntactically and semantically.

This work builds on our previous papers [50, 48], which in turn borrowed several important ideas

from Maier's O-logic [65] (that, in its turn, was inspired by A��t-Kaci's work on  -terms [6, 5]). In [50],

we described a logic that adequately covered the structural aspect of complex objects but was short of

capturing methods, types, and inheritance. The earlier version of F-logic reported in [48] was a step

towards a higher-order syntax. In particular, it supported schema exploration and reasoning about

structural inheritance. At the same time, this version of F-logic had several drawbacks as far as its

modeling capabilities were concerned.

One of the problems was that all objects were required to form a lattice, which turned out to be

impractical for a logic-based language. Another problem was that semantics of attributes was more ap-

propriate for modeling object types rather than their states. All these problems are recti�ed in the present

paper and, in addition, the logic is extended to accommodate types and non-monotonic inheritance.

One aspect of knowledge based systems that is not dealt with here is the issue of updates to database

states. Our experience shows that the problem of updates is orthogonal to structural aspects of object-

oriented systems, and this paper deals with this latter issue only. There has been extensive work on

formalizing updates within logic. The reader is referred to [19, 20] for a comprehensive discussion of the

problem, for an overview of the related work in the �eld, and for solutions to many of the previously

outstanding problems.

This paper is organized as follows. Section 2 discusses the di�erences and the similarities between

the object-oriented paradigm and the relational paradigm. Section 3 is an informal introduction to some

of the main features of the logic. In Sections 4, 5, and 6, we describe the syntax and the semantics of

F-logic. Section 7 discusses various semantic properties of the logic. Sections 8, 9, and 10 develop a

proof theory for F-logic. Section 11 demonstrates the modeling power of F-logic via a number of non-

trivial examples. Section 12 discusses typing. In Section 13 we deal with encapsulation and put forth

a novel proposal to view encapsulation as a type-correctness policy. Section 14 presents a semantics for

inheritance. An array of issues in data modeling, such as complex values, versions control, and path

expressions, is covered in Section 15. Possible extensions to F-logic are discussed in Section 16. In

Section 17 we provide a retrospective view of the internal structure of F-logic and relate it to classical

predicate calculus. Section 18 concludes the paper.

2 A Perspective on Object-Oriented vs. Declarative Programming

A number of researchers had argued that object-oriented languages are fundamentally di�erent and even

incompatible with other paradigms, especially with logic programming [93, 67]. The ensuing debate was

a reection of the lack of early success in formalizing many aspects of object-oriented programming.

Another reason was that there was no framework in which to classify various approaches, so that their

di�erences and common points could be seen in a perspective. In this section we address these issues and
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1 Introduction

The past decade was marked by a considerable interest in the object-oriented approach, both within the

database community and among researchers in programming languages. Although the very term \the

object-oriented approach" is de�ned fairly loosely, a number of concepts, such as complex objects, object

identity, methods, encapsulation, typing and inheritance, have been identi�ed as the most salient features

of that approach [12, 88, 103, 97, 9].

One of the important driving forces behind the interest in object-oriented languages in databases is

the promise they show in overcoming the, so called, impedance mismatch [66, 103] between programming

languages for writing applications and languages for data retrieval. Concurrently, a di�erent, deductive

approach has gained enormous popularity. Since logic can be used as a computational formalism and

as a data speci�cation language, proponents of the deductive approach have argued that this approach,

too, overcomes the aforesaid mismatch problem. However, in their present form, both approaches have

shortcomings. One of the main problems with the object-oriented approach is the lack of logical semantics,

which traditionally was important for database programming languages. On the other hand, deductive

databases normally use a at data model and do not support data abstraction. It therefore can be

expected that combining the two paradigms will pay o� in a big way.

A great number of attempts to combine the two approaches has been reported in the literature (see,

e.g., [1, 2, 3, 13, 16, 17, 31, 50, 60, 58, 65, 85, 10]) but, in our opinion, none was entirely successfully. These

approaches would seriously restrict object structure and queries; or they may sacri�ce declarativeness

by adding extra-logical concepts; or they would not address certain important aspects of object-oriented

systems, such as typing or inheritance.

In this paper we propose a formalism, called Frame Logic (abbr., F-logic), that achieves all of the

goals listed above and, in addition, is suitable for de�ning and manipulating database schema and types.

F-logic is a full-edged logic; it has a model-theoretic semantics and a sound and complete proof theory.

In a sense, F-logic stands in the same relationship to the object-oriented paradigm as classical predicate

calculus stands to relational programming.

Besides object-oriented databases, another important application for F-logic is in the area of frame-

based languages in AI [37, 72], since these languages are also built around the concepts of complex

objects, inheritance, and deduction. It is from this connection that the name \Frame Logic" was derived.

However, most of our terminology comes from the object-oriented parlance, not from AI. Thus, we will

be talking about objects and attributes instead of frames, slots, and the like.

To reason about inheritance and for tasks requiring exploration of the knowledge base schema, a

logic-based language would be greatly aided by higher-order features. However, higher-order logics must

be approached with great care to ensure the desired computational properties. In the past, a number

of researchers suggested that many useful higher-order concepts of knowledge representation languages

can be encoded in predicate calculus [41, 69]. From a programmer's point of view, however, encoding

does not adequately capture many higher-order constructs, as it gives no direct semantics and does not
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Abstract

We propose a novel logic, called Frame Logic (abbr., F-logic), that accounts in a clean, declarative
fashion for most of the structural aspects of object-oriented and frame-based languages. These features
include object identity, complex objects, inheritance, polymorphic types, methods, encapsulation, and
others. In a sense, F-logic stands in the same relationship to the object-oriented paradigm as classical
predicate calculus stands to relational programming. The syntax of F-logic is higher-order, which,
among other things, allows the user to explore data and schema using the same declarative language.
F-logic has a model-theoretic semantics and a sound and complete resolution-based proof procedure.
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based on F-logic.
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