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Preface 
 

In the book Knowledge Representation and Relation Nets [GVS99] we introduced a structural 
model called a Relation Net and, in Part 1 of [GVS99], a special relation net called a Concept 
– Relationship Knowledge Structure (CRKS). In this work we broaden the notion of a relation 
net to produce a new but associated structural model, a Hypernet. We show that the general 
theory of hypernets has applications in the acquisition/learning, representation, retrieval, 
accommodation and assimilation, management and communication/teaching of knowledge, 
and also in problem representation and solution and in modelling the various modes of 
reasoning. This report is a revised and extended version of [VSG01]. As illustration of the 
theory we refer, in Appendix 2, to [GVS99] for examples of how CRKS’s can be used to 
represent, assist in the design of, analyse and present study material. 
 
In the first chapter we present some essential background about Relation Nets and Concept – 
Relationship Knowledge Structures (CRKS’s) – see also [GVS99]. We then introduce the 
notion of a Hypernet. Chapter 2 deals with some of the characteristics of hypernets, following 
the general lines of development in [HNC65]. In chapter 3 we meet knowledge hypernets 
(KH’s) and their potential applications, and Chapter 4 introduces a NET, called EDUNET, for 
use in education. 
 
The formal theory is explained in terms of uncomplicated tables, informative diagrams, and 
construction schemes that can lead to formal algorithms, and hence to simple computer 
implementation in terms of a suite of standard programs that covers all applications. 
Appendix 1 lists the constructional schemes. 
 
The entire approach is through structural modelling – see also [HNC65], [LEN80] and section 
1.4 of [GVS99] – and one can trace a line of development of such modelling from concept 
maps through digraphs and relation nets to hypernets. This work is of interest for researchers 
in the field of knowledge representation and related applications.  
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1. Background: Relation Nets, Hypergraphs, and Hypernets 
 
 

By a NET we will mean a collection of stored items of various sorts such that  

(1) items can be linked using relational links,  

(2) items and/or links can be added to the NET, 

(3) items and/or links can be deleted from the NET, 

(4) items and links between them define a sub-NET, and  

(5) items, and possibly links between them, can be accessed from the NET by following links 
from the members of any given initial collection of items, possibly with links between 
some of those initial items, i.e. from an initial sub-NET of the NET. 

 
We make the following distinction, which will become clearer as the presentation progresses. 
At the lowest level the items are called data items. Items that consist of a structured/ordered 
collection of data items are called information items. Items that consist of a 
structured/ordered collection of information items are called knowledge items. 
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1.1 Relation Nets 
 

In [GVS99] we introduced the notion of a relation net and showed how a special kind of 
relation net, called a Concept-Relationship Knowledge Structure (CRKS), can be used to 
order study material in a natural manner that makes that study material more easily teachable 
and learnable. That work approached the ideal of a “science of teaching” first suggested by 
Hestenes as long ago as 1979 [Hes79]. We present, in this chapter, a summary of that work as 
a preliminary to the introduction of hypernets. In later sections we will show how a hypernet 
can be used as the basis of an uncomplicated model of a NET in education. We begin with a 
description of a relation net. Certain definitions and theorems from [GVS99] are modified in 
the process. 
 
Let A be any finite set, and let T be any finite set T = {T1, T2, …, Tm} of tuples of members of 
A where each tuple Tn of T has at least two distinct members of A as entries in it. The 
structure composed of A and T is written <A, T> and is called a relation net. Thus we will 
regard a relation net simply as a set A and a set of tuples over A.  
 
A diagram of a relation net consists of a point, or vertex, to represent each member of A, 
together with an arrow from the first entry in each tuple to the last entry of that tuple, and a 
label, on that arrow, which consists of the rest of the entries in that tuple in the order in which 
they occur in that tuple. Every tuple that starts with Ai ∈ A and ends with Aj ∈ A is 
represented by the appropriate label on the (one only) arrow from Ai to Aj - written <Ai,Aj>. 
Notice that a given member of A may occur any number of times in any of the tuples of T, 
and that the order of occurrence of members of A in every tuple of T is fixed. 
 
For each Ti = <A1, A2, …, An(i) - 1, An(i)> ∈ T of a relation net <A, T> we thus have, in the 
diagram of <A,T>, 
 
 
                                 i;<A2, ---, An(i)-1>     
  
 
 
                                                               …………….. 
 
 
 
If the relevant tuple is a pair <Am, An> then we have  
 
                                        i; ∅ 
 
 
where ∅ represents the empty set. An alternative label, in this case, is i; < >. 
 
A Concept-Name-Relationship-Net (CNR-net) is a relation net in which the 
points/vertices/items represent concept-names and the tuples arise from statements of 
relationship among those concept-names. 
 
In the case of a CNR-net each tuple Ti ∈ T arises from, and characterizes, a unique statement 
of relationship among the concept-names entered in that tuple. Thus, for example, if statement 
i is:  

A1 
An(i) 

A2 A3 An(i) - 1 

Am An 
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“If the set denoted by X and the set denoted by Y have precisely the same members, i.e. a is 
a member of X if, and only if, (iff) a is a member of Y, then we say that the symbols X and 
Y denote the same set, which we express by saying that X and Y are equal”, 
 
where the words in bold are those concept-names with which we are concerned in this 
statement, then we have the following: For Ti we have 
 

i: <set ,set, member, member, member, set, equal>, 
 

and, in the diagram, 
 
                               i; <set, member, member, member, set> 
 
 
 
 
 
 
Thus, in a CNR-net, the semantics consists of the list of natural language statements  
 

i: statement 
 

while the syntax consists of a listing of the n(i)-tuple of concept-names that arises from the 
statement of relationship for each i, in the form 
 

i: <A1, …, An (i)> 
 

where the Ak, k = 1, …, n(i), are not necessarily distinct members of A. Notice that non-
concept-name words and phrases in statements of relationship for a CNR-net are assumed to 
be familiar. Note further that with sufficient linguistic dexterity one can re-word any 
statement in such a way as to achieve any permutation of the n-tuple of concept-names that 
arose from the original statement, without changing the relationship expressed.  
 
How well is an Am ∈ A related to other members of A in a given relation net <A, T>? First 
we look at the “local” situation of Am. 
 
The in-degree of  Am ∈ A in a relation net <A, T>, written id(Am), is the total number of 
labels on all the arrows to Am.  The out-degree of Am, written od(Am), is the total number of 
labels on all the arrows from Am. The degree of Am, written d(Am), is given by d(Am) = 
id(Am) + od(Am). 
 
Constructional Scheme 1.1.1: To determine id(Am), od(Am) and d(Am) for Am ∈ A in a 
relation net <A, T>. 
 
(1) Count the number of tuples, in the tuples list/table T of <A, T>, that end with Am.  

This id(Am).  
(2) Count the number of tuples, in the tuples list/table of <A, T>, that begin with Am. This 

is od(Am).  
(3) d(Am) = id(Am) + od (Am). ♦ 
 
Comment:  Implementation is obvious. 
 

set equal 

member
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For Am ∈ A of a relation net <A, T>, we name the following sets for convenience. 
 
(1) The set of all tuples in the name of Am, denoted by R(Am), is the set of all those tuples 

in T that have Am in them, at least once, other than as a first or last entry in the tuple, 
and 

(2) the set of all tuples with Am, denoted by R[Am], is the set of all those tuples in T that 
have Am in them anywhere at least once. 

 
Constructional Scheme 1.1.2: To determine R(Am), R[Am], and hence |R(Am)| and |R(Am)|, 
for Am∈ A in a relation net <A, T>, where |X| denotes the number of members of set X. 
 
(1) List the tuples, in the tuples table T of <A, T>, that have at least one occurrence of Am 

in them in any but the first and last position in the tuple. This is the list of members of 
R(Am). Count those members to determine |R(Am)|.  

(2) List the tuples, in the tuples table T of <A, T>, that have at least one occurrence of Am 
in them in any position in the tuple. This is the list of members of R[Am]. Count those 
members to determine |R[Am]|. ♦ 

 
Comment:  Implementation is obvious. 
 
Next we introduce substructures of a relation net. Let <A, T> and <B, U> be relation nets. We 
say that <B, U> is a subnet of <A, T> if, and only if, B ⊆ A and U ⊆ T. Thus every tuple in 
<B, U> is also in <A, T>, and it is evident that all the entries in the tuples of U are members 
of B because <B, U> is a relation net. We write <B, U> ∠ <A, T>. 
 
Constructional Scheme 1.1.3: To check that <B,U> ∠ <A,T> for two given relation nets   
<A, T> and <B,U>. 
 
(1) Check that every member of B belongs to A. If this is true then  
(2) check that every tuple in U belongs to T. If this is also true, then <B,U> ∠ <A,T>.♦ 
 
Comment:  Implementation is obvious. 
 
With respect to “relational integratedness” of a point/vertex in a relation net, we have the 
following two worst cases. Am ∈A is called an isolate in a relation net <A, T> if, and only if, 
id(Am) = od(Am) = 0 but R(Am) ≠ ∅, i.e. |R(Am)| ≠ 0. Thus Am has no arrow to or from it, but 
it occurs in at least one tuple in <A, T>. Am is called a complete isolate in a relation net <A, 
T> if, and only if, id(Am) = od(Am) = |R(Am)| = 0, i.e. if, and only if, R[Am] = ∅ so |R(Am)| = 
0. Thus Am is not an entry anywhere in any tuple in T.  
 
Constructional Scheme 1.1.4: To find the isolates and the complete isolates in a relation net 
<A, T>. 
 
(1) From the tuples table T, find, by examining each Am ∈ A in turn, all those vertices that 

do not occur at the beginning of any tuple in T nor at the end of any tuple in T. These 
are the isolates of <A, T>, and some of them may be complete isolates.  

(2) From the tuples table T, find, by examining each isolate found in (1), all those Am ∈A 
that do not occur in any position in any tuple in T. These are the complete isolates of 
<A, T>, a subset of the set of isolates of <A, T>. ♦ 

 
Comment:  Implementation is obvious. 
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Notice that by saying that Am ∈ A is in Tj ∈ T in a relation net <A, T> we mean that Am 

belongs to the set of entries in Tj. For all Tj ∈ T in <A, T>, the set of entries of members of A 
in Tj is called the tuple set of Tj in <A,T>. 
 
A subnet <B, U> of a relation net <A, T> is called a spanning subnet of <A, T> if, and only 
if, B = A and U⊆ T.  
 
Constructional Scheme 1.1.5: To check that relation net <B, U> is a spanning subnet of a 
relation net <A, T>. 
 
(1) Check that every member of B is also a member of A, and that every member of A is 

also a member of B, i.e. that A = B.  
(2) Check that every tuple in U is also a tuple in T, i.e. that U ⊆ T. ♦ 
 
Comment: Implementation is obvious.  
 
To find A we need to read every entry in every tuple of T. We start with A = ∅ and add to A 
every entry that has not already been added. 
 
A spanning subnet <A, U> ∠ <A, T> with U a selected subnet of T can be useful in 
examining the structural properties of <A, T>. Another useful subnet of a relation net <A, T> 
is described as follows: 
 
Let relation net <B, U> be a subnet of a relation net <A, T>, i.e. B ⊆ A and U ⊆ T. <B, U> is 
the maximum subnet induced by B in <A, T> provided that tuple  Ti ∈ T belongs to U if, and 
only if, every entry in Ti is a member of B. Thus <B, U> is made up of all the members of B 
together with precisely all the tuples that have all their entries in B, i.e. precisely all the tuples 
in T that have as their tuple set a subset of B.  To emphasize the role of B we write <B, U> as 
<B, (T↑B)>, or simply <B, T↑B>, in this case, where T↑B is read “T restricted to members of 
B only”. 
 
Constructional Scheme 1.1.6:   To find the maximum subnet <B,T↑B> of a relation net <A, 
T>, where B ⊆ A. 
 
Read every tuple in T, and mark each tuple for which every entry is an entry of a member of 
B. These are the tuples of <B, T↑B>, and of course the vertex set is B. ♦ 
 
Comment: Implementation is obvious. 
 
For all Ar ∈ A, the set of all vertices/points As such that there is an arrow from Ar to As in a 
relation net <A, T> is said to be adjacent from Ar in <A, T>. This set is regarded as trivially 
containing Ar itself.  
 
Constructional Scheme 1.1.7: To find all the An ∈ A that are adjacent from/to Am ∈ A in a 
relation net <A, T>. 
 

(1) Find and mark all the tuples of T that begin with an entry of Am
. 

(2) Mark all the members of A that occur at the end, i.e. as the last entry, of at least one of 
those tuples marked in (1). The marked members of A, together with Am, are the 
vertices that are adjacent from Am in <A, T>.  
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(3) Adjacency to Am is similar. ♦ 
 
Comment: Implementation is obvious. 
 
It is now time to turn our attention to “non-local relational integratedness” in a relation net. 
This hinges on the existence of “paths” in a relation net <A, T>, as paths chain tuples together 
to display more complex relationships than do the individual tuples. 
 
By a walk in a relation net <A, T> we mean an alternating sequence of points/vertices and 
arrows, A1, <A1, A2>, A2, <A2, A3>, A3, …, Aq, <Aq, Aq+1>, Aq+1 written A1 → Aq+1, where 
for k = 1 , …, q each arrow is associated with one only label from the set of labels on the 
arrow <Ak, Ak+1> from Ak to Ak+1 in <A, T>. Neither the Ak nor the <Ak, Ak+1> need be 
unique. The length of a walk is the number of arrow entries in it, in this case q. If all but 
possibly A1 and Aq+1 are distinct vertices, and all the arrows are distinct (and therefore each 
associated with a distinct member of its set of labels), then A1 → Aq+1 is called a path in  <A, 
T>. If A1 = Aq+1 for a path A1 → Aq+1 then we call A1 → Aq+1 a circuit. Thus a circuit is a 
closed path. If at least one arrow in a walk is traversed in the reverse direction of that arrow 
then we call it a semi-walk. We also refer to semi-paths.  
 
By a walk-family f(Ar → As) in a relation net <A, T> we mean a non-empty collection of 
walks from Ar to As, in <A, T>, the members of which all use the same points/vertices and the 
same arrows in the same order but are distinct by virtue of the arrow labels used on the arrows 
in those walks.  
 
Let Ar, Aj and As be members of A in a relation net <A, T>, and let Ar → As be a given walk 
in <A, T>. Then Aj is said to be vertex between Ar and As on Ar → As if, and only if, Aj is a 
vertex on Ar → As, or Aj belongs to at least one label on Ar → As, or both. Aj is said to be 
reachable from Ar in <A, T> if, and only if, there is at least one path Ar → Aj in <A, T>. A 
walk Ar → As in a relation net <A, T> is said to go via the members of the set of precisely all 
those labels that each occur on at least one arrow of Ar → As.  
 
Next we describe context sensitivity in a relation net. If a set B ⊆ A of a relation net <A, T> is 
deleted from <A, T> then every member of B is deleted from <A, T> and every tuple in 
which at least one member of B is an entry must also be deleted from <A, T>. As a result, 
certain arrows not incident with any vertex in B may disappear because all their labels 
disappear. This constitutes what we call context sensitivity in relation nets.  
 
The meet <A, T> of two relation nets <B, F> and <C, G> is <A, T> = <B ∩ C, F ∩ G>.  <A, 
T> is a unique relation net. We write <A, T> as <B, F> ∩ <C, G>. The join <A,T> of two 
relation nets <B, F> and <C, G> is <A, T> = <B ∪ C, F ∪ G>. <A, T> is a unique relation 
net, and we write <A, T> as <B, F> ∪ <C, G>. Thus the meet consists of the common 
vertices and all those common tuples with entries from the common vertices only, and the join 
has all the vertices and tuples of the constituent relation nets. 
 
Constructional Scheme 1.1.8: Find all the vertices that are vertex between Ar and As on a 
given path Ar → As in a relation net <A, T>.  
 
Mark all those vertices that appear at least once as an entry in at least one of the tuples used 
on Ar → As. The set of vertices marked is the set we seek. ♦ 
 
Comment: Start with a set B = ∅. Read each tuple used on the path and add to B every entry 
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that has not already been added.  
 
Constructional Scheme 1.1.9: Find all the vertices that are reachable from a given Ar ∈ A in 
a relation net <A, T>. 
 
(1) Start to build the set V ⊆ A of all the vertices of A that are reachable from Ar ∈ A in  

<A, T> by setting V0 = { Ar }.  
(2) Find and mark every tuple in T that starts with Ar. Call this set of tuples T1. Add to V0 

the end vertex of each member of T1, getting V1 with V0 ⊆ V1.  
(3) Find and mark every tuple in (T - T1) that starts with a vertex in (V1- V0). Let this set 

of tuples be T2. Add to V1 the end vertex of each member of T2, getting V2 with V0 ⊆ 
V1 ⊆ V2.  

(4) Continue in this manner, getting to the stage at which we have defined Tn and Vn with 
V0 ⊆ V1 ⊆ … ⊆ Vn and n ≥ 1. Now find and mark every tuple in (T - Tn) that starts 
with a vertex in (Vn - Vn-1). Let this set of tuples be Tn+1. Add to Vn the end vertex of 
each member of Tn+1, getting Vn+1 with Vn ⊆ Vn+1.  

(5) Repeat 4, increasing n by 1 at each step, until Tn = ∅ for some n. Then V = Vn. ♦ 
 
Comment: Implementation is obvious as we read appropriate tuples and mark their last 
entries.  
 
Notice that each vertex in (Vn - Vn+1), n ≥ 1, can be reached from Ar by at least one path of 
length n in <A, T>. 
 
Constructional Scheme 1.1.10: Find the join of two relation nets <B, F> and <C, G>. 
 
(1) Find the vertex set B ∪ C.  
(2) Find the tuples set F ∪ G.  
 
The result is <B, F> ∪ <C, G> = <B ∪ C, F ∪ G>. ♦ 
 
Comment:  Implementation is obvious, as finding the union of two sets is standard.  
 
Constructional Scheme 1.1.11: Find the meet of two relation nets <B, F> and <C, G>. 
 
(1) Find the vertex set B ∩ C.  
(2) Find the tuples set F ∩ G.  
 
The result is <B, F> ∩ <C, G> = <B ∩ C, F ∩ G>. ♦ 
 
Comment: Implementation is obvious, as finding the intersection of two sets is standard. 
 
If tuple T ∈ F ∩ G then the tuple set of T is a subset of (B ∩ C), but the converse is not 
always true because T may belong to only one of F or G. 
 
We now describe one of the central features of relation nets. Consider a relation net <A, T> 
and a collection of subnets, of <A,T>, <B0, R0> ∠ <B1, R1> ∠…∠ <Bk, Rk> ∠…∠ <Bn, Rn>. 
Thus, for each k = 0, 1, 2,…, n - 1 we have <Bk, Rk> ∠ <Bk+1, Rk+1>, i.e. Bk ⊆ Bk+1 and    Rk 
⊆ Rk+1. Such a collection of subnets of <A, T> is called a fast access cascade from B0 in <A, 
T> if, and only if, we have 
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a) B0 ⊆ A and R0 = ∅.  
b) A tuple in T belongs to R1 if, and only if, the first entry of that tuple is that of a 

member of B0. 
c) B1 is B0 together with the union of the tuple sets of all the tuples in R1, and, in general, 

for k = 2, 3 … , 
d) a tuple in T belongs to Rk if, and only if, the first entry of that tuple is of a member of  

Bk-1 or that tuple belongs to Rk-1 (so Rk-1 ⊆ Rk). 
e) Bk is Bk-1 together with the union of the tuple sets of all the tuples in Rk (so Bk-1 ⊆ Bk).  
 
Such a cascade is called a limited access cascade from B0 in <A, T> if, and only if, at each 
step k = 1,2,… , a tuple in T belongs to Rk if, and only if, every entry in that tuple but possibly 
the last entry is of a member of Bk-1 or that tuple belongs to Rk-1. (That last entry may or may 
not be of a member of Bk-1.)  
 
A cascade will stop when <Bk, Rk> = <Bk-1, Rk-1> or when <Bk, Rk> = <A, T>. A cascade can 
be “run” interactively step-by-step, in which case the user can stop the cascade after 
completion of any step before automatic termination. 
 
Constructional Scheme 1.1.12: To “run” a fast access cascade from a given B0 ⊆ A in a 
relation net <A, T>. 
 
(1) Set R0 = ∅.  
(2) Let R1 ⊆ T be such that a tuple belongs to R1 if, and only if, the first entry of that tuple 

is of a member of B0. R0 ⊆ R1.  
(3) B1 consists of B0 together with every Am ∈ A that occurs at least once in at least one 

member of R1, i.e. B0 together with the union of the tuple sets of all the tuples that 
belong to R1. B0 ⊆ B1.  

(4) R2 ⊆ T is chosen in such a way that a tuple belongs to R2 if, and only if, the first entry 
of that tuple is of a member of B1 or the tuple belongs to R1. R0 ⊆ R1 ⊆ R2.  

(5) B2 consists of B1 together with every Am ∈ A that occurs at least once in at least one 
member of R2, i.e. of B1 together with the union of the tuple sets of all the tuples that 
belong to R2. B0 ⊆ B1 ⊆ B2.  

(6) Assume that we continue in this manner, and have specified <Bk, Rk>, k > 1. Rk+1 ⊆ T 
is chosen in such a way that a tuple belongs to Rk+1 if, and only if, the first entry in that 
tuple is of a member of Bk or the tuple belongs to Rk. R0⊆ R1 ⊆ … ⊆ Rk ⊆ Rk+1.  

(7) Bk+1 consists of Bk together with every Am ∈ A that occurs at least once in at least one 
member of Rk+1, i.e. of Bk together with the union of the tuple sets of all the tuples that 
belong to Rk+1. B0 ⊆ B1 ⊆ … ⊆ Bk ⊆ Bk+1.  

(8) Repeat (6) and (7), increasing k by 1 at each step, until <Bk+1, Rk+1> = <Bk, Rk> for 
some k or the option to stop for some k is chosen. ♦ 

 
Comment: Implementation is obvious as we read, and mark, vertices and tuples from the 
tuples table T of <A, T>. 
 
Constructional Scheme 1.1.13: To “run” a limited access cascade from a given B0 ⊆ A in a 
relation net <A, T>. 
 
(1) Set R0 = ∅.  
(2) Let R1 ⊆ T be such that a tuple belongs to R1 if, and only if, every entry in that tuple, 
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but possibly the last entry, is of a member of B0. R0 ⊆ R1.  
(3) B1 consists of B0 together with every Am ∈ A that occurs at least once in at least one 

member of R1, i.e. of B0 together with the union of the tuple sets of all the tuples that 
belong to R1. B0 ⊆ B1.  

(4) R2 ⊆ T is chosen in such a way that a tuple belongs to R2 if, and only if, every entry in 
that tuple, but possibly the last entry, is of a member of B1 or the tuple belongs to R1.  
R0 ⊆ R1 ⊆ R2.  

(5) B2 consists of B1 together with every Am ∈ A that occurs at least once in at least one 
member of R2, i.e. of B1 together with the union of all the tuple sets of all the tuples 
that belong to R2. B0 ≤ B1 ≤ B2.  

(6) Assume that we continue in this manner, and have specified <Bk, Rk>, k ≥ 1.  Rk+1 ⊆ T 
is chosen in such a way that a tuple belongs to Rk+1 if, and only if, every entry in that 
tuple, but possibly the last entry, is of a member of Bk or the tuple belongs to Rk. R0 ⊆ 
R1 ⊆ … ⊆ Rk ⊆ Rk+1.  

(7) Bk+1 consists of Bk together with every Am ∈ A that occurs at least once in at least one 
member of Rk+1, i.e. of Bk together with the union of the tuple sets of all the tuples that 
belong to Rk+1. B0 ⊆ B1 ⊆ … ⊆ Bk ⊆ Bk+1.  

(8) Repeat (6) and (7), increasing k by 1 at each step, until <Bk+1, Rk+1> = <Bk, Rk> for 
some k or the option to stop for some k is chosen. ♦ 

 
Comment: As for CS 1.1.12, but here we choose the vertices and tuples marked in a different 
way.  
 
The nested sequence {<Bk, Rk> | k ≥ 0} of subnets of a relation net <A, T> is called a fast 
access cascade from B0 in <A, T> iff 
 
(1)    B0 ⊆ A and R0 = ∅, and 
(2)    R1 ⊆ T is chosen in such a way that Ti = <A1, A2, …, Aℓ, …, An(i)> ∈ T belongs to R1 iff 

A1 ∈ B0, and 
(3)   B1 = B0 ∪ (the union of the tuple sets of all the members of R1), and in general for k = 

2,3,…, 
(4)   Rk ⊆ T is chosen in such a way that Ti = <A1, A2, …, Aℓ, …, An(i)> ∈ T belongs to Rk iff 

A1 ∈ Bk-1, or Ti ∈Rk-1, so Rk-1 ⊆ Rk, and 
(5)   Bk = Bk-1 ∪ (the union of the tuple sets of all the members of Rk), so Bk-1 ⊆ Bk.  
 
Such a cascade is said to be a limited access cascade from B0 in <A, T> iff at each step k = 
1,2,… we choose Ti = <A1, A2, …, Aℓ, …, An(i)> ∈ T in such a way that Ti ∈ Rk iff {Am ∈ A | 
m = 1,2,…,n(i)-1} ⊆ Bk-1, or Ti ∈ Rk-1, and where An(i) ∈ A may or may not belong to Bk-1. 

 
Note: When “running” or “generating” a cascade we mark each label as it is used so that no 
label is ever repeatedly “found”. 
 
Consider a relation net <A, T>, and any Ak ∈ A. A subnet that has as its only tuples precisely 
all those tuples of T that have Ak as at least one entry in them, i.e. the tuples of R[Ak], 
together with the union of the tuple sets of all those tuples, is called the context-net of Ak in 
<A, T>. It is written <A, T> [Ak], and it is of course a relation net: In fact it is the minimum 
subnet of <A, T> that is induced by R[Ak],i.e. induced by the union of the tuple sets of all the 
tuples of R[Ak], in <A, T>. <A,T>[Ak] contains all the information about Ak within the 
context of <A, T>, and to delete Ak from <A, T> means to delete <A, T>[Ak] from <A, T>.  
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Constructional Scheme 1.1.14: Find the context-net <A, T>[Ak] in a relation net <A, T>. 
 
(1) Find the set R[Ak] ⊆ T of all tuples in which Ak occurs as at least one entry. This is 

the tuple set of <A, T>[Ak].  
(2) Take the union of the tuple sets of all the members of R[Ak]. This is the vertex set of 

<A, T>[Ak]. ♦ 
 
Comment: Implementation of both instructions of CS 1.1.14 is obvious - see CS 1.1.2 for 
part 1. 
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1.2 Concept-Relationship Knowledge Structures (CRKS’s) 
 

 
We deal in this work mainly with two constrained structures. The first is a special kind of 
CNR-net, which is itself a special kind of relation net. The second is a special kind of 
hypernet that is to function as a model of a NET for Education, which we will meet in chapter 
4. The first must, as we will see, be dealt with before moving on to the second. They have 
several similarities. The CNR-net structure is fairly extensively covered, along with some of 
its applications in teaching and learning, in Part I of [GVS99], so we present only a summary 
of that work, with certain revisions. 
 
A CNR-net <A, T> is called a formal schema if, and only if,  
 
(1) each concept-name vertex is related to at least one other concept-name vertex in <A, 

T>, and 
(2) <A, T> has no circuits, and 
(3) there is at least one concept-name vertex that has in-degree zero and out-degree non-

zero, each such vertex being called a primary of <A, T>, and 
(4) there is at least one concept-name vertex that has in-degree non-zero and out-degree 

zero, each such vertex being called a goal of <A, T>. 
 
Constructional Scheme 1.2.1: To find the primaries of a potential formal schema <A, T>. 
 
Let Ak ∈ A. Ak is a primary of <A, T> if, and only if, Ak is the first entry of at least one Ti ∈ 
T and is not the last entry of any Tj ∈ T. Choose any Ak ∈ A and check it for primary status in 
<A, T>. Do this for each Ak ∈ A. <A, T> must have at least one primary. ♦ 
 
Comment: Implementation is obvious, checking the first and last entry of each tuple for each 
Ak ∈ A and rejecting each inappropriate, i.e. non-primary, entry, while marking each primary 
found by reading the first and last entry of every tuple without prior rejection. 
 
Constructional Scheme 1.2.2: To find the goals of a potential formal schema <A, T>.  
 
Let Ak ∈ A. Ak is a goal of <A, T> if, and only if, Ak is the last entry of at least one Ti ∈ T 
and is not the first entry of any Tj ∈ T. Choose any Ak ∈ A and check it for goal status in  <A, 
T>. Do this for each Ak ∈ A. <A, T> must have at least one goal.♦ 
 
Comment: As for CS 1.2.1 with appropriate modification. 
 
Constructional Scheme 1.2.3:  To check that each Ak ∈ A in a potential formal schema  <A, 
T> is related to at least one Aj ∈ A, Aj ≠ Ak, in <A, T>.  
 
(1) Check that each Ti ∈ T has at least two entries of at least two distinct members of A. 
(2) Choose any Ak ∈ A and check that Ak appears in at least one Ti ∈ T in which there is 

at least one entry of some Aj ≠ Ak. Do this for each Ak ∈ A. ♦ 
 
Comment: Implementation is obvious, by reading the tuples table.  
 
Constructional Scheme 1.2.4: To determine whether or not there are circuits of any length in 
a relation net <A, T>.  
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(1) Consider the diagram of <A, T>. Delete from it every arrow label, leaving a vertex 

labelled directed graph <A, P> where P is a set of ordered pairs of members of A, the 
arrows of the digraph. Ak ∈ A lies on at least one circuit in <A, T> if, and only if, it 
lies on at least one circuit in <A, P>, because pair <Ak, Aj> belongs to P if, and only 
if, there is an arrow from Ak to Aj in <A, P> and hence also in <A, T>. 

(2) In <A, P> a fast access cascade and a limited access cascade from B0 ⊆ A will be 
identical: Both just follow reachability in <A, P> from Ak ∈ A to Γ(Ak) to Γ(Γ (Ak)) 
to Γ(Γ (Γ(Ak))) and so on step-by-step, for each Ak ∈ B0 ⊆ A, where Γ is the 
adjacency function of <A, P>. To find if Ak ∈ A lies on at least one circuit in <A, P>, 
and thus also in <A, T>, we choose B0 = {Ak} ⊆ A. R0 = ∅. Run a cascade from B0 in 
<A, P> as follows. Choose for R1 ⊆ P all the pairs <Ak, Aj>, Aj ≠ Ak, that start with 
Ak. Run the cascade step-by-step. 

(3) If Ak ∈ (B1 - B0) then Ak lies on at least one circuit, in <A, P> and hence in <A, T>, of 
length 1. If not proceed to step 2 and so on. If Ak ∈ (B2 - B1) then Ak lies on at least 
one circuit, in <A, P> and hence in <A, T>, of length 2. 

(4) In general if Ak ∈ (Bn - Bn-1) then Ak lies on at least one circuit, in <A, P> and hence 
in <A, T>, of length n, n ≥ 1. 

(5) If the cascade stops, as it must, without finding Ak in any (Bk - Bk-1) for some k ≥ 1, 
then Ak does not lie on any circuit in <A, P>, and thus in <A, T>.  

(6) Repeat for each Ak ∈ A to check that no Ak ∈ A lies on any circuit in <A, P>, and 
hence in <A, T>. ♦ 

 
Comment: To convert <A,T> to the directed graph <A, P> we read each tuple in T and 
convert it to an ordered pair <Ai, Aj> for each tuple Tk ∈ T, where Ai is the first entry of Tk 
and Aj is the last entry of Tk. Note that we assume that Ai ≠ Aj in each case, i.e. that <A, T>, 
and hence also <A, P>, has no loops. For the rest, we run a cascade from B0 = {Am} for each 
Am ∈ A in turn, to see if Am lies on a circuit. If any An ∈ A does lie on a circuit, stop. <A, T> 
is not a formal schema. See CS 1.2.12 or CS 1.2.13: It is clear, from either of those, how to 
“run” a cascade in <A, P>, in which all tuples are just ordered pairs.  
 
The intention is that the primary concept-names are assumed to be “familiar” and that the goal 
concept-names are those that can be “generated” by relating them to primary concept-names 
via “intermediate” or secondary concept-names that are related to primaries and among each 
other. 
 
A formal schema <A, T> is said to be complete if it has no isolates. (It can of course then not 
have any complete isolates.) <A, T> is said to be connected if, and only if, (i.e. precisely if) 
there is at least one semi-path between every pair of concept-name vertices in <A, T>.  
 
Constructional Scheme 1.2.5: To check that a given formal schema <A, T> is complete. 
 
Consider any Ak ∈ A. Read the first and last entries in each tuple Ti ∈ T. We must find that 
Ak is either a first entry or a last entry, but of course not both, in at least one tuple. Check 
every Aj ∈ A in turn. Every Aj ∈ A must occur as a first, or a last, entry in at least one tuple Ti 
∈ T. ♦ 
 
Comment: Implementation is obvious. 
 
Theorem 1.2.1: If a formal schema <A, T> is connected then it is complete, but the converse 
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is not generally true. ♦ 
 
Proof: See page 47 of [GVS99]. ♦ 
 
By the context schema <A, T> [Ar] of Ar ∈ A in a formal schema <A, T> we mean the 
minimum subnet of <A, T> that is induced by R[Ar], i.e. that subnet that has precisely the 
tuples of R[Ar] and precisely every concept-name that belongs to the tuple set of at least one 
of the tuples in R[Ar], i.e. the union of the tuple sets of the tuples that belong to R[Ar].  
 
In a formal schema <A, T>, “concept-name Ar” refers to the vertex Ar ∈ A only, while 
“concept Ar” refers to <A, T> [Ar]. <A, T> [Ar] tells us all there is to know about Ar within 
the context of <A, T>. Deletion of Ar from <A, T> entails the deletion of the whole context 
schema <A, T> [Ar] from <A, T>. 
 
Constructional Scheme 1.2.6: To find the context schema of a given vertex Ak ∈ A in a 
formal schema <A, T>.  
 
Comment: See CS 1.1.14. 
 
We now move on to explicating what we mean by “generating” concept-names from the 
primaries of a complete formal schema <A, T>. This hinges on what we call derivability in a 
complete formal schema. If we are going to follow paths in complete formal schemas then we 
must be sure that in doing so we meet concept-names along the path and in the labels on the 
path in “an orderly fashion”. By this we mean that we must follow the Ausubel approach 
([ANH78], [Aus63], [Aus 80]) in which every newly met concept-name in such a path, 
whether on the path or in a label on the path, is related to previously met concept-names. This 
leads to the notion of a derivation path in a complete formal schema. 
 
Here is an informal description of what we mean by a derivation path, followed by some 
informal comments. 
 
(1) Every primary is trivially derivable by means of a derivation path of length zero. 
(2) Every derivation path must start with a primary. 
(3) Every arrow of a derivation path starts at a derived vertex. 
(4) Every member of every tuple used to label an arrow on a derivation path, barring the 

first and last entries of the tuple, must be primary, or a vertex immediately derived 
from a set of vertices met previously on the path, by which we mean that there is, 
somewhere in the relevant formal schema, an arrow that starts with one of those 
previously met vertices and uses only previously met vertices in its tuple label and 
ends with the vertex with which we are concerned, or a hypothesis, which is a “new” 
(on or in the path) vertex that can be derived somewhere in the formal schema. 

(5) The derivation path that derives a hypothesis may have hypotheses on or in it. Each of 
those must be derived somewhere in the formal schema. This recursive process must 
stop because the formal schema is finite and has at least one primary. 

 
First we take every primary in every complete formal schema <A, T> to be a “known” 
concept-name with respect to <A, T>. Thus we assume that all primaries in <A, T> have 
partially established meanings from prior complete formal schemas or are primitive concept-
names, i.e. are established solely by examples. (Partial establishment in prior complete formal 
schemas is assumed for all unmarked words and phrases in the statements from which the 
tuples of T arise.) Adding statements, and hence tuples, that involve a particular concept-
name Ar ∈ A to <A, T> enriches the meaning of concept Ar in the resulting formal schema, a 
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point to which we return later. 
 
It can be shown that in any complete formal schema <A, T> every concept-name Ar ∈ A is 
either primary, or a goal, or there is at least one primary p ∈ A and at least one goal g ∈ A 
such that Ar lies on at least one path p → g in <A, T>. Further, in every complete formal 
schema <A, T> there is at least one path from each primary of <A, T> to some goal of    <A, 
T>, at least one path to each goal of <A, T> from some primary of <A, T>, and at least one 
path to each non-primary vertex of <A, T> from at least one of the primaries of <A, T> 
[Wol82]. Formally, each primary of <A, T> is (trivially) derived in <A, T> by a path of 
length zero. Our aim is to make every path in <A, T> a derivation path so that every vertex of 
<A, T> is a derived vertex. If <A, T> is a complete formal schema then the required paths are 
there, but can we force all paths to be derivation paths? 
 
A tuple of a complete formal schema <A, T> is called a derivation tuple if, and only if, every 
entry in it, but possibly the last one, is either a primary of <A, T> or is the last entry of at least 
one other derivation tuple in <A, T>. The last entry of a derivation tuple in <A,T> can be any 
non-primary of <A, T>, and it may have been previously derived by means of some other 
derivation tuple. We can describe a Concept-Relationship-Knowledge Structure (CRKS) as a 
complete formal schema <A, T> in which every tuple Ti ∈ T is a derivation tuple. We can see 
that in a CRKS there must be at least one derivation tuple in which every entry but the last 
one is an occurrence of a primary of <A, T>. Such a tuple is indeed a derivation tuple, and the 
last entry in the first such tuple that we construct is the first non-primary derived concept-
name (vertex) of <A, T>. At this stage of the construction of a complete formal schema <A, 
T>, which is to be a CRKS, we have all the primaries of <A, T> and at least one non-primary 
derived vertex with which to continue the construction. We can now define derivation tuples, 
choosing appropriate statements and permutations that involve the concept-names that 
comprise A. Every entry but the last one in every tuple defined for <A, T> is either primary in 
<A, T> or an already derived concept-name of <A, T>, and the final entry of each such tuple 
becomes another, not necessarily “new”, derived concept-name. Since <A, T> must be 
complete, every non-primary vertex of <A, T> must end up as a derived concept-name, so we 
construct a complete formal schema in which every vertex is a derived vertex. Any path that 
starts at a primary, and in which every tuple used in a label on the path is a derivation tuple, is 
called a derivation path, and every vertex that lies at the end of a derivation path (including 
the trivial length zero paths to the primaries) in <A, T> is called a derived vertex of <A, T>.  
 
It is relatively easy to prove the following. In any complete formal schema <A, T>:  
• A path p → t, p any primary and t any non-primary of <A, T>, is a derivation path in  

<A, T> if, and only if, every vertex on p → t and every entry in every label on p → t is 
a derived vertex in <A, T>. 

• Every path p → t, p any primary and t any non-primary of <A, T>, is a derivation path 
in <A, T> if, and only if, every vertex in <A, T> is a derived vertex in <A, T>. 

• Every path p → t, p any primary and t any non-primary of <A, T>, is a derivation path 
in <A, T> if, and only if, every tuple of <A, T> is a derivation tuple. 

• A formal schema <A, T> is complete and every vertex of <A, T> is derived if, and 
only if, every non-primary vertex of <A, T> is a last entry in at least one derivation 
tuple in <A, T> and every non-goal vertex of <A, T> is a first entry in at least one 
derivation tuple in <A, T>, and every tuple in <A, T> is a derivation tuple. ♦ 

 
Proof of the fourth theorem above is presented on pages 148 and 149 of [GVS99]. With this 
background we can make a precise statement of what we mean by a CRKS.  
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A complete formal schema <A, T> is a CRKS if, and only if, every vertex Ak ∈ A is a 
derived vertex in <A, T>. What is the significance of derivation in a complete formal schema? 
Derivation means that every concept-name in a CRKS is associated with primaries or other 
concept-names that have been previously met in that CRKS. Every non-primary concept-
name in a CRKS is eventually related to the (partially) “known”/“familiar” primaries of that 
CRKS. This relationship is based on paths, so we had better know something about the paths 
in a complete formal schema! 
 
Constructional Scheme 1.2.7: To construct a path tree, for a formal schema <A, T>, that 
displays and distinguishes every path from each primary in <A, T>. We refer to the vertices 
and arrows of <A, T> and to the nodes and branches of the path tree.  
 
(1) Introduce an unlabelled dummy node to serve as the root of the path tree. 
(2) Introduce one only node for each primary of <A, T>, and connect each such node to 

the root with an unlabelled branch. Label each non-root node with the appropriate 
primary concept-name from <A, T>. 

(3) From each node for a vertex Ak ∈ A the tree now develops as follows. Find every 
tuple in T that starts with Ak. Suppose that such a tuple is <Ak = c1, c2, …, cj, …, cn-1, 
cn>. We now plot a new node for cn for each tuple that starts with Ak and ends with cn 
∈ A, and insert a branch from each node for Ak to every node for cn. Each branch is 
then labelled with the tuple that generates it, and each node for cn is labelled with the 
concept-name cn. 

(4) Repeat (3) for every Ak ∈ A and for every relevant tuple in T. 
(5) The resulting tree exhibits, along each path from the root, every path from a primary 

to a goal in <A, T>, and distinguishes these paths. Each primary of <A, T> is 
represented by one only node, and each goal of <A, T> by at least one node. This 
constructional scheme works because every tuple in T is displayed on a separate 
labelled branch. ♦ 

 
Comment: Construction of the path tree for <A, T> can clearly be computer assisted in 
finding the appropriate tuples of part (3) from T. From there we can construct the path tree 
from those tuples.  
 
Furthermore, we have the following for paths in a formal schema. 
 
Constructional Scheme 1.2.8: To find all the paths of length ≥ 1 from Am ∈ A to An ∈ A in a 
formal schema <A, T>.  
 
(1) Run a fast access cascade backwards (reversing all arrows) from B0 = {An} in <A, T>. 

Let the resulting subnet be <A', T'> with A' ⊆ A and T' ⊆ T. If Am is not a member of 
A' then there are no Am → An paths in <A, T>. 

(2) If Am ∈ A' then proceed as follows in <A', T'>. Revert all the arrows of <A', T'> to 
their original direction. Find all the tuples in T' that start with Am. Let these tuples be 
T1, T2, …, Tj, and let their last entries be v1, v2, …, vj-1, vj respectively. Each time vk = 
An we have found an Am → An path of length 1. Mark each such tuple as an Am → An 
path of length 1 in <A, T>.  

(3) Find all the unmarked tuples in T' that start with any vertex vk ≠ An among the tuples 
found in step 2. We now plot a tree as follows. Plot a node for Am and one only node 
for each of the vk found in step 2. Join Am to each vk with a branch labelled Tk. Now 
insert a branch from each vk ≠ An to a node for the last entry wf of any tuple in T' that 
starts with this vk and ends with wf. If any of these wf is An then we find all the Am → 
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An paths of length 2 in <A', T >, and hence in <A, T>. Mark all the tuples used in this 
step to find  Am→An paths of length 2. We have now marked all Am → An paths of 
lengths 1 and 2 in <A', T'>, and hence in <A, T>. Proceed to step 4 with all the 
unmarked tuples in T' and all the wf that are not Am. 

(4) Repeat step 3 for the next level of the tree, marking all the unmarked tuples of T' that 
are used in each stage of the generation of Am → An paths of lengths 3, 4, …, if any, 
until all the useable tuples in T' have been marked , i.e. until we have exhausted T', or 
until we can mark no more tuples in T' by this procedure. The tree will distinguish and 
display all Am → An paths in <A,T>. ♦ 

 
Comment: To run a fast access cascade backwards we follow CS 1.2.12, but read each tuple 
from last entry to first entry, i.e. we start by reversing the order of each tuple in T. For step (2) 
of CS 1.2.8 we restore the order of each tuple, and it is clear that a computer that stores T can 
find the relevant tuples for step (2). To continue to part (3), the computer can easily find the 
relevant unmarked tuples, from which we can plot the required tree as we cycle through steps 
(3) and (4) of CS 1.2.8.  
 
A very strong property of a formal schema is connectedness; a property that may be desirable 
in some applications. Recall that if a formal schema is connected then it is complete.  
 
Constructional Scheme 1.2.9: Test to see if a formal schema <A, T> is connected. 
 
(1) Choose any Am ∈ A of <A, T>, and mark Am. There must be at least one semi-path 

between Am and each An ≠ Am in <A, T> for <A, T> to be connected. 
(2) Suppress all arrow heads in <A, T>, i.e. ignore direction in <A, T>. Further, delete all 

arrow labels in <A, T>. We then have a graph <A, G>, where G is the set of unordered 
pairs of members of A that arise from the suppression of arrow heads and the deletion 
of arrow labels from (the diagram of) <A, T>. 

(3) Choose any An ≠ Am in A. Run a cascade from B0 = {Am} in <A, G>. If, at some step 
in the cascade, we find An then we mark An. If we do not find An at some step in the 
cascade then <A, T> is not connected. 

(4) Repeat (3) for each unmarked vertex of A. If every vertex of A turns out to be marked 
then <A, T> is connected: Otherwise <A, T> is not connected. ♦ 

 
Comment: To construct <A, G> we read every tuple in T and extract from it the first and last 
entry. Suppose these are Ai and Aj for a particular tuple: Then we introduce the unordered pair 
{Ai, Aj}, and these pairs are the edges of the graph <A, G>. We need not produce a diagram 
of <A, G>. We then run a cascade - see CS 1.1.12 and CS 1.1.13, which are identical in <A, 
G> - in part (3). The computer can store the edges of <A, G> and run the cascade in each case 
as we cycle through steps (3) and (4) of CS 1.2.9. 
 
Next we describe derivability formally. 
 
A betweenness sequence for a path-family f(A1→ An) in a formal schema <A, T> is found as 
follows. First, for all members of each λ(<Ai, Ai+1>), i = 1,2,…,n-1, for each vertex adjacency 
(arrow) in f(A1→ An) we list Ai, Ťi1, Ťi2, …, Ťir, …, Ťim(i), Ai+1 where Ťir, r = 1,2,…,m(i), is 
the tuple set of Tir ∈ T for each Tir ∈ λ (<Ai, Ai+1>). Thus we have a sequence of vertices over 
A that starts with Ai and ends with Ai+1. Concatenating these sequences for each vertex 
adjacency of f(A1→ An), in their order of appearance in f(A1→ An), i.e. in the order of the 
vertex adjacencies in f(A1→ An), we produce a betweenness sequence for f(A1→ An). A 
betweenness sequence for a given path-family is not unique. 
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Definition 1.2.1 (Derivability):  
(i) Given any formal schema <A, T> and a set X ⊆ A we say that Ar ∈ A is immediately 

derived from hypotheses X iff there is at least one tuple Ti ∈ T by which there is a 
vertex adjacency x, Ti, Ar with x ∈ X and with every member of (Ťi-{Ar}) a member 
of X, where Ťi is the tuple set of Ti ∈ T.  

(ii) Given any formal schema <A, T> and a set X ⊆ A we say that Ar ∈ A is derivable in 
terms of hypotheses X in <A, T> iff there is a path Aj → Ar, Aj ∈ A, in <A, T> such 
that there exists at least one betweenness sequence S for Aj → Ar with the property 
that for every Ai ∈ S we have  
a) Ai is a primary of <A, T> or 
b) Ai ∈ X or 
c) Ai is immediately derived from a subset of the set of all predecessors of Ai in 

S.  
(ιιι) We say that Ar ∈ A is derivable from P ⊆ A in a formal schema <A, T>, or simply 

derivable in <A, T>, where P is the set of all primaries of <A, T>, iff Ar is derivable in 
terms of some X ⊆ A with either X = ∅ or such that every x ∈ X is derivable (from 
P).  

(iv) If Ar ∈ A is derivable in a formal schema <A, T> by virtue of a path Aj → Ar, where 
Aj is derivable in <A, T>, then Aj → Ar is called a derivation path for Ar in <A, T>, 
and each such path to Ar is called a derivation path for Ar in <A, T>, and Ar is said to 
be a derived vertex of <A, T>.♦ 

 
We have, for the recursive notion of derivability in a complete formal schema, the usual 
corresponding principle of induction.  
 
Lemma 1.2.1: Let <A, T> be any CNR-net that is circuit free and has no isolates. Then  <A, 
T> has at least one primary and at least one goal. ♦ 
 
Proof: Suppose that <A, T> has no primaries. Then every Ar ∈ A has at least one arrow 
incident to it. But then Ar lies on at least one closed walk, and hence on at least one circuit in 
<A, T>, which is impossible. Thus <A, T> has at least one primary. A similar argument 
shows that <A, T> has at least one goal. ♦ 
 
Lemma 1.2.2: (The induction principle for CRKS’s.) Let <A,T> be any CNR – net. If <A,T> 
has at least one primary and has no isolates, and if for an arbitrary non-goal As that is 
derivable in <A, T> we have that every <As, At> in <A, T> is such that At is derivable by 
virtue of at least one derivation path that terminates with <As, At>, then every Ar ∈ A is 
derivable in <A, T>, i.e. <A, T> is a CRKS. ♦ 
 
Proof:  Suppose that As is a primary of <A, T>. Then, by the induction hypothesis, every At 
that is adjacent from As in <A, T> is derivable in <A, T>.  Next let As be any vertex that is 
adjacent from a primary of <A, T>. As is derivable, so every At that is adjacent from this As in 
<A,T> is derivable in <A,T>, again by the induction hypothesis. Continuing these steps we 
must eventually reach every goal of <A, T> and show that every vertex Ar ∈ A is derivable in 
<A, T>. Further, it is easy to see that every path in <A, T> must be a derivation path . <A, T> 
is a CRKS. ♦ 
 
It is easy to see that if the induction hypothesis holds then <A, T> can be generated from its 
primaries by a limited access cascade. 
 
In section 4.1 of [GVS99] we proved theorems about formal schemas, which we include here.  
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Theorem 1.2.2: If a ∈ A in a formal schema <A, T> is derivable in <A, T> by virtue of a 
derivation path p → a, where p is immediately derived from a set of hypotheses X = ∅, the 
empty set, then p is a primary of <A, T>. ♦  
 
Proof: p is immediately derived from X = ∅. The only vertices that can be immediately 
derived from ∅, trivially by a derivation path of length zero, are the primaries and isolates of 
<A, T>. Since od(p) ≠ 0, p must be a primary of <A, T>.♦ 
 
Theorem 1.2.3: A complete formal schema <A, T> can be generated by a limited access 
cascade from its set of primaries if, and only if, (i.e. precisely if) every Ar ∈ A is derivable in 
<A, T>. ♦ 
 
Proof: If <A,T> is generated by a limited access cascade from its primaries then, in each step, 
new vertices in A are generated in terms of primaries and preiously generated vertices of 
<A,T>. It follows at once that each new vertex generated is derivable (and of course each 
primary is derivable). Conversely, if <A,T> is complete formal schema in which every vertex 
is derivable then <A,T> can be generated from its primaries by a limited access cascade as 
follows: Let B0  ⊆ A be the set of primaries of <A,T>, and set R0 = ∅. For each k = 1, 2, … 
we let Ti ∈ Rk, Ti ∈ T, iff Ti = <A1,… , Aℓ ,… , An(i) > with {Am | m = 1, 2, …, n(i) − 1} ⊆ 
Bk−1, where A n(i) may or may not belong to Bk−1. Suppose that we have reached step n in the 
limited access cascade, and consider step n + 1. Assume that we are confronted with an arrow 
<x, y> with an Aj ∈ A in its label with Aj ∉ Bn . Certainly x ∈ Bn. Aj is known to be derivable, 
so let the cascade, in steps k with k ≥ n, follow a derivation path to Aj. 
 
It must be able to do this from the definition of a derivation path, and since <A, T> is finite 
and circuit free there can be no infinite regression. Suppose then that the cascade reaches all 
such Aj in the label of <x, y> in step m ≥ n. Then we can follow <x, y> in step m + 1 of the 
cascade. The cascade will stop precisely when it has generated all of <A, T>. ♦ 
 
Theorem 1.2.4: If vertex As ∈ A is derivable in a complete formal schema <A, T> by virtue 
of a derivation path Ar → As, with Ar primary in <A, T>, and a betweenness sequence S for 
Ar → As, then every s ∈ S is derivable in <A, T>. ♦ 
 
Proof: Let S be s0 = As, s1, …, sm, sm+1, …, sn = Ar. s0 = As is a primary so it is immediately 
derived from hypotheses X = ∅ by a derivation path of length zero, so it is derivable in terms 
of hypotheses X =∅, so it is derivable. s1 is a primary so it is derivable, or it is a member of a 
set of hypotheses X for the derivation of Ar and hence, since X ≠ ∅, s1 is derivable because Ar 
is, or s1 is immediately derived from hypotheses X, X being a subset of all its predecessors in 
S, i.e. it is immediately derived from {s0}. Then it follows that, somewhere in <A, T>, there is 
a vertex adjacency s0, Ti, s1 with Ti = <s0, s1> so that Ťi - {s1} = {s0} ⊆ X. But since every 
member of X, i.e. s0, is derivable, s1 is derivable in this case too. Next assume that si is 
derivable for every i = 0,1,…,m, and consider sm+1. Now either sm+1 is a primary, and hence 
derivable, or it is a member of a set of hypotheses X for the derivation of Ar, and, since     X ≠ 
∅, sm+1 is derivable because Ar is derivable, or sm+1 is immediately derived from hypotheses 
X where X is a subset of all the predecessors of sm+1 in S, so sm+1 is derivable in <A, T> 
because, by the induction hypothesis, every member of this X is derivable in <A, T>. The 
theorem follows by the principle of induction. ♦ 
 
Theorem 1.2.5: Let <A, T> be a complete formal schema. Every vertex of <A, T> is 
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derivable in <A, T> if, and only if, every path As → Ar, As some primary, in <A, T>, is a 
derivation path. ♦ 
 
Proof: Given on page 57 of [GVS99]. 
 
Theorem 1.2.6: Let <A, T> be a complete formal schema. <A, T> can be generated by a 
limited access cascade from its set of primaries if, and only if, every path from a primary Ar ∈ 
A is a derivation path in <A, T>. ♦ 
 
Proof: Follows from theorems 1.2.4 and 1.2.5. 
 
Lemma 1.2.3: Let <A, T> be a complete formal schema, and let As ∈ A be an arbitrary 
primary of <A, T> and Ar ∈ A a vertex with id(Ar) ≠ 0 such that there is a path As → Ar in 
<A, T>. Then As → Ar is a derivation path iff every At ∈ A that is vertex between As and Ar 
in As → Ar is derivable in <A, T>.♦ 
 
Proof: Bearing theorem 1.2.5 in mind, we need only show that if every At is derivable in 
<A,T> then As → Ar is a derivation path. Suppose that this is not so, i.e. As → Ar is not a 
derivation path. Then there is at least one At that is vertex between As and Ar and that is not 
derivable in <A, T>. The theorem follows from this contradiction. ♦ 
 
Definition 1.2.2: A complete formal schema <A, T> is called a Concept-Relationship 
Knowledge Structure, or simply a CRKS, iff every vertex of <A, T> is derivable in <A, T>.♦ 
 
Corollary 1.2.1: A complete formal schema <A, T> is a CRKS iff <A, T> can be generated 
by a limited access cascade from its primaries. ♦ 
 
Proof: Follows at once from theorem 1.2.6 and the definition of a CRKS. ♦ 
 
In summary we have: Let <A, T> be a complete formal schema. Then every Ar ∈ A is 
derivable in <A,T> 
• if, and only if, every path from a primary in <A,T> is a derivation path 
• if, and only if, precisely the whole of <A,T> can be generated by a limited access 

cascade from its primaries. 
 
Finally now, a complete formal schema <A, T> is called a Concept-Relationship Knowledge 
Structure, or simply a CRKS, if, and only if, every vertex of <A, T> is derivable in <A, T>. It 
then follows that a complete formal schema is a CRKS if, and only if, it can be generated 
from its primaries by a limited access cascade.  
We thus have available an automated test to see if a given complete formal schema is a 
CRKS: A complete formal schema is a CRKS if and only if it can be inductively generated 
from its primaries by a limited access cascade. 
 
Constructional Scheme 1.2.10: To test a complete formal schema <A, T> for CRKS form.  
 
Let B0 be the set of all primaries of <A, T>, and let R1 be the set of all tuples of T for which 
every entry, but possibly the last entry, is in B0. Run a limited access cascade from B0 in   <A, 
T>. <A, T> is a CRKS if, and only if, precisely the whole of A and precisely the whole of T 
are generated. ♦ 
 
Comment: See CS 1.1.13. 
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The properties of a CRKS are expressed, informally, on pages 58 and 59 of [GVS99], and 
also, in more detail, but still informally, on pages 145 to 149 of [GVS99]. In a CRKS the data 
items are concept-names, the information items are the tuples, and every (sub-)CRKS is a 
knowledge item. For examples of CRKS’s see the references in Appendix 2. 
 
We distinguish between presentation modes, such as blackboard and chalk, audio and video 
tapes or discs, computer presentation with guides, laboratory demonstrations and experiments 
etc, and presentation strategies, i.e. specific “traverses” of a selection of study material. Not 
even the most innovative presentation modes can overcome the problem of badly structured 
study material. We need a pattern in the study material, and hence patterned presentation 
strategies, to promote understanding of the material rather than rote learning. We achieve this 
by displaying an inherent “derivation pattern” in all study material. The (structural) models 
we use are special NET’s.  
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1.3 Towards Hypernets 
 

Early work on the system that was to become known as a relation net - see [VR76], [Wol82], 
[Wei83], [Gel93], [SVR93] - introduced a relation net representation of a specific curriculum 
that consisted of a number of interrelated “small course units”, known in that case as modules 
(see [Wei83] for example).  
 
To begin to introduce hypernets, we present a description of a curriculum system in abstract 
form. Imagine, for example, a “small course unit” curriculum that leads to degrees and 
diplomas. By a course unit we mean any complete and interrelated section of study material. 
By a prerequisite unit for a given course unit U we mean a course unit C, or a condition C, 
that must be completed (i.e. credit must be obtained) or fulfilled before course unit U can be 
entered. By a parallel unit for a course unit U we will mean a course unit P that must be 
completed before, or simultaneously with, course unit U as a requirement for obtaining credit 
for U.  
 
We visualize such a curriculum system in the form of a labelled graph as follows: Plot a 
vertex for each course unit in the curriculum, and label each vertex with the unique (code) 
name of the relevant course unit. Each course unit U has at least one non-empty list of 
prerequisites, and at least one list of parallels that may be empty. These prerequisite and 
parallel units constitute a condition set for U, and U may have more than one condition set, 
depending on the particular degree or diploma in which U is registered. In each condition set 
we mark all of the parallel units, for example with an underline. We number each occurrence 
of a condition set uniquely, and notice that distinct condition sets need not be disjoint. From 
each prerequisite in each condition set for U we draw an arc to U, and we label that arc with 
that condition set and its number. We do this for all the condition sets for U, and repeat this 
for all the course units in the curriculum. Such a labelled graph can be read hierarchically 
from prerequisites to dependants, or vice versa, i.e. from bottom-to-top or from top-to-bottom. 
As we will see, such a graph can be an example of a hypernet. 
 
Such a curriculum system for a host of “small” course units has pro’s and con’s. Its major 
advantages are to allow more flexibility of topic choice and degree/diploma structure, easier 
changes of “direction” of study, and an ability to support multi-disciplinary studies. The 
major disadvantage is the complexity of planning, registration and administration. 
 
We will see that, in combination with [GVS99], hypernet representation will enable 
registration, administration, planning, alteration, and analysis of the whole structure or parts 
thereof by means of formal theory and strong but relatively simple computer support. In the 
relation net approach to curriculum systems of this nature, an order was forced on the 
members of the condition sets, which was a handicap in that representation. We will see that 
the hypernet model is more “natural” in this case. 
 
A similar situation arises in [GVS99] when we introduce the notion of an action diagram in 
the course of a discussion of problem formulation and solution by top-down algorithm (see 
section 8.5 of [GVS99]). Here we leave out the directed arrows in the action diagram and the 
arbitrary ordering of nodes on the arrow labels in the resulting relation net, producing instead 
a hypernet associated with the action diagram. Consider, for instance, the diagram on p.139 of 
[GVS99]; using arcs in place of arrows, we get the following version of that action diagram: 
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Figure 1.3.1. An example of a partial action diagram 
 
 
Part of the resulting hypernet is: 
 
 
 
         
                                      1; [{Find..., 4}] 
               
 
         
 
                             2; [{1,2,3,4}]         3; [{1,2,3,4}]                        4; [{1,2,3,4}] 
              
                                                                   
 
                       
               
                         
      

Figure 1.3.2 A partial hypernet for figure 1.3.1 
 
 
In this case there is one “condition set” in each label, and the set of vertices {1,2,3,4} 
generates three edges, numbered 2, 3, and 4. 
 
There is a connection between our curriculum example and this one. Reading top-to-bottom 
we see that “Find ... ” is a prerequisite of 4, with no parallels, and 4 is a prerequisite of 1, for 
example, with parallels 2 and 3. Reading bottom-to-top, we must be a bit careful. In this case, 
1 is a prerequisite of 4 with 2 and 3 as other prerequisites of 4, and with no parallels, and 4 is 
a prerequisite of “Find ... ” with no other prerequisites and no parallels. It is the intended 
interpretation that in each individual case will determine whether we read such hypernets 
from top-to-bottom or from bottom-to-top. For the hypernets that arise from action diagrams, 

Find ....

4

 1  2  3

Find ...

4

2
1 3 
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top-to-bottom is interpreted as the specification of the top-down algorithm for the solution of 
the problem(s) and bottom-to-top as the actual solution procedure for the relevant problem(s).  
On page 141 of [GVS99] we meet a more general action diagram situation. The hypernet that 
arises from the section of an action diagram is shown in figure 1.3.3. 
 
 
 
 

 

                   E11       E12        E13     E14                                               E41              E21        E22     E23 

 

 

 

                                                       

      E31   

 
 

 

 

 

Figure 1.3.3. A hypernet from the partial action diagram on page 141 of [GVS99] 

 

The first index characterises the set of vertices; the second the edge with that set. Here 
E1={1,3,4,5,6}, E2={2,7,8,9}, E3={1,7}, and E4={5,2}. 
 
Reading top-to-bottom, we have for example: 
• In E11, 1 is a prerequisite of 3 with 4, 5 and 6 as parallels. 
• In E22, 2 is a prerequisite of 8 with 7 and 9 as parallels. 
• In E31, 1 is a prerequisite of 7 with no parallels. 
 
Reading bottom-to-top, these labels mean: 
• In E11, 3 is a prerequisite of 1, as are 4, 5 and 6. 
• In E22, 8 is a prerequisite of 2, as are 7 and 9. 
• In E31, 7 is a prerequisite of 1 with no parallels, and in E21, 7 is a prerequisite of 2 as are 8 

and 9.  
 
Such hypernets can, as we will see, easily and formally be compared for common, i.e. 
structurally analogous, substructures using hypernet isomorphism. This is a potentially 
extremely useful technique in the development of general problem formulation and solution 
skills. We note in passing that the same kind of hypernet can be used to display and analyse 
the relationships between the subroutines that combine to form a program. We will also see 
that there are some measures of the complexity of certain hypernets that can play a very 
significant role in the analysis of such hypernets. 

1 2

9 4 5 6
7 8 

3 
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1.4 Relation Nets and Hypernets 
 
 
Consider a finite set A = {A1, A2, ... , An }and a family of relations R = {Ri | i ∈ I, I a finite 
index set}over A where all Ri have an arity of at least 2, i.e. card(Ri) ≥ 2, written | Ri | ≥ 2. We 
denote such a system by <A, R, I>. By a relation net representation of <A, R, I> we mean a 
pair <A, T> where T is the set of all tuples from all of the Ri . 
 
Note that some of the Ri may be identical sets. Each tuple in T is given a unique code name, 
generally of the form “ i; x” where i indicates the Ri of origin of that tuple and x is usually the 
number of the tuple in T. We will use only the unique tuple number x if we do not need to 
take account of the particular Ri from which the relevant tuple arises. In that case we will 
regard T as a single finite family of tuples T = {Tx}. 
 
By a diagram of a relation net <A, T> we mean a representation drawn as follows. Plot 
precisely one vertex for each member of A and label each such vertex with the “name” of the 
appropriate member of A. Next, for each Tk ∈ T with Tk = <a0, ..., aj>, where j is the arity of 
the relation Ri from which Tk arises, we draw an arrow from the a0 vertex to the aj vertex. Now 
label each such arrow <a, b> with a label set λ(<a, b>) where λ(<a, b>) is defined by λ(<a, 
b>) = {Tk ∈ T | Tk = <a, ..., b>}. There is no arrow from a ∈ A to b ∈ A iff λ(<a, b>) = ∅. 
 
Inspiration often arises from seeing a familiar situation from a new point of view. The notion 
of a hypernet was inspired by that of a hypergraph [Ber73] and a desire to ignore at least part 
of the ordering implied by the arrows and paths of a relation net, without moving too far from 
either hypergraphs or relation nets. 
 
By a hypernet <A, E> we mean a finite set A and a finite set E of subsets of A. The members 
of A are called vertices of <A, E> and the members of E are called edges of <A, E>. Two 
edges Ei and Ej of <A,. E> are distinct if i ≠ j, even if Ei and Ej are the same subsets of A. 
 
More formally, by a hypernet <A, E> we mean a structure in which A= {A1, A2, ... , An } is a 
finite set and E = { Ei | i ∈ I} is a family of non-empty subsets of A. |A |is called the order of 
<A, E> and I the index set of <A, E>. Each Ai ∈ A is called a vertex of <A, E>, and each Ei ∈ 
E is called an edge of <A, E>. Two edges Ei and Ej of <A, E> are distinct iff i ≠ j, even 
though Ei and Ej may be the same set. 
 
Two vertices Ai, Aj ∈ A of a hypernet <A, E> are said to be potentially vertex adjacent by 
edge Ei iff {Ai, Aj } is a subset of Ei. Two edges Ei, Ej ∈ E are said to be potentially edge 
adjacent iff Ei ∩ Ej ≠ ∅, and for every Ak ∈ A with Ak ∈  Ei ∩ Ej we say that Ei is potentially 
edge adjacent with Ej by Ak. 
 
Now consider three distinct edges Ei, Ej, Ek ∈ E with Ei ∩ Ej ≠ ∅ and Ek ∩ Ej ≠ ∅. Then we 
say that each Ar ∈ Ei ∩ Ej is potentially vertex adjacent with each As ∈ Ek ∩ Ej by Ej. We 
write (Ar, Ej, As) for every pair {Ar, As} of vertices with Ar ∈ Ei ∩ Ej and As ∈ Ek ∩ Ej if Ar 
and As are vertex adjacent by Ej in <A, E>. If Ei = {Ar} for some Ar ∈ A and some Ei ∈ E 
then we call Ei a singleton edge. A singleton edge at Ar ∈ A is also called a loop edge at Ar.  
 
We see that if Ei, Ej ∈ E and Ei is a singleton edge Ei = {Ar}, and if Ar ∈ Ej , then Ei and Ej are 
potentially edge adjacent by Ar.  
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Note: A hypernet need not have in it all the potential vertex adjacencies, nor need it have all 
the potential edge adjacencies; in each case it may have all, or some, or none of the potential 
adjacencies. 
 
Given a hypernet <A, E>, [if the edges Ei ∈ E are all non-empty distinct subsets of A and] if 
∪i Ei = A, and if two edges Ek, Eℓ are adjacent iff Ek ∩ Eℓ  ≠ ∅, then <A, E> is a [simple] 
hypergraph. 
 
We will ignore the standard diagrammatic representation of hypergraphs [Ber73] and draw 
hypergraph diagrams as we do hypernet diagrams. The class of hypergraphs could be 
regarded as a subclass of the class of hypernets. 
 
Given any hypernet <A, E>, we produce a diagram of <A, E> as follows. Plot precisely one 
vertex for each member of A and label each vertex with the relevant “name” from A. Next, 
for every vertex adjacency of Ai ∈ A and Aj ∈ A in <A, E>, draw an arc between Ai and Aj, 

and label that arc with all the members of λ({Ai, Aj}) = { Ek ∈ E | (Ai, Ek, Aj )}, where λ: A x 
A → ℘(E) is called the labelling function of <A, E> and λ({Ai, Aj}) is defined for every pair 
of members {Ai, Aj}, and λ({Ai, Aj}) = ∅ iff there is no arc between Ai and Aj in <A, E>, i.e. 
if Ai and Aj are not adjacent vertices in <A, E>. Singleton edges are not usually represented 
by any arc.  
 
 
The descriptions given above are illustrated in figure 1.4.1:  
 
                                                      E3, E8                                                 E2 
                                      
        
 
                           E1                                               E5                                          E6 
   
                       
                    
                                     E4                                                             E7 
   
 
 
 
 
 

Figure 1.4.1. An example of a hypernet <A, E> 
 
 
where A = {1, 2, 3, 4, 5, 6}, E = { E1, E2, E3, E4, E5, E6, E7, E8} with E1 = {1, 2, 3}, E2 = {2}, 
E3 = {1, 2}, E4 = {3, 4}, E5 = {2, 3, 4}, E6 = {5}, E7 = {4, 5, 6}and E8 = {1, 2, 3}. Notice how 
we have chosen to deal with E7, between 4 and 5, and with E8, between 1 and 2, in this 
particular hypernet. 
 
Vertex adjacency: vertices 1 and 2 by edge E3 and by edge E8 for example. 
Edge adjacency: edge E3 = {1, 2 }and edge E5 = { 2, 3, 4} by vertex 2 for example. 
Singleton (loop) edge: edge E2 = {2} and edge E6 = { 5 }for example. 
Notice that a singleton edge {Ak }, Ak ∈ A, can only have label {Ak}. Singleton edges can be 
thought of as representing predicates. Thus, for example, {Ak} could represent “Ak is red”. 

1 2

43 5 

6 
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By the degree d(Ai) of a vertex Ai ∈ A in a hypernet <A, E> we mean the sum of all the 
| λ({Ai, Aj}) | over all Aj ∈ A for which λ({Ai, Aj}) ≠ ∅. (Notice that we may have Ai = Aj , 
but singleton edges are not usually included.) 
 
By an isolate of a hypernet <A, E> we mean an Ai ∈ A for which Ai is not adjacent with any 
Aj ∈ A but Ai does belong to at least one vertex adjacency (Ar, Ej, As) in <A, E> with Ar, As ∈ 
A, Ej ∈ E, and Ai ∈ ( Ej -{ Ar, As }). By a complete isolate of <A, E> we mean an Ai ∈ A 
which belongs to no edge in <A, E>. 
 
 By a walk in a hypernet <A, E> we mean an alternating sequence of vertices and arcs, A1, 
{A1, A2}, A2, {A2, A3}, A3, ... , Aq, {Aq, Aq+1}, Aq+1, written A1 ⎯ Aq+1, where for each k = 1, 
..., q, Ak and Ak+1 are vertex adjacent by arc {Ak, Ak+1} in <A, E> and every arc {Ak, Ak+1} is 
associated with only one edge Ek ∈ λ({Ak, Ak+1}) ⊆ E. (Note that neither the {Ak, Ak+1} nor 
the Ek need to be unique.) The length of a walk is the number of edge entries in the sequence, 
in this case q. If all but possibly A1 and Aq+1 are distinct vertices and all the    {Ak, Ak+1} are 
distinct arcs and thus associated with distinct edges Ek, k = 1, 2, …, q, then  A1 ⎯ Aq+1 is 
called a path in <A, E>. If A1 = Aq+1 for a path A1 ⎯ Aq+1 in <A, E>, then we call A1 ⎯ Aq+1 
a circuit. Thus, a circuit is a closed path. 
 
 Note that if we have, for example,  
 
                                              {E1, E2}                              
                                ●                                                  ●                   
                               Ai                                                 Aj 
 
then Ai, E1, Aj, E2, Ai is not a circuit because, while E1 and E2 are distinct, the arc between Ai 
and Aj is used twice so this sequence is a closed walk, not a closed path. 
 
We go back to our example in figure 1.4.1 and illustrate the definitions above: 

• degree: d(1) = 3 and d(2) = 4 for example. 
• isolate: vertex 6 is an isolate, but, by virtue of E7 = { 4, 5, 6 }, 6 is not a complete 

isolate. Notice that a vertex with only a singleton edge incident with it is taken to be 
an isolate, even though the degree of such a vertex is 1. 

• walk: 1, E3, 2, E2, 2, E5, 4, E7, 5, E7, 4 is an example for a walk of length 5. 
• path: 1, E8, 2, E5,, 4. 
• circuit: 1, E3, 2, E5, 4, E4, 3, E1, 1. 

 
Notice also that every edge Ei ∈ E labels one and only one vertex adjacency in <A, E>. The 
same set may label several vertex adjacencies, but each occurrence of that set is a distinct 
member of the family E. Further, any given vertex adjacency may be labelled with a number 
of distinct edges.  
 
The kind of structure met here is a hypernet. We should note that, disregarding singleton 
edges, the diagram (fig 1.4.1) is that of a hypernet with circuits, but that reading such a 
hypernet from top-to-bottom imposes a “downward” direction on all the arcs and that with 
this imposed direction the circuits disappear in the sense that they become digraph semi-
circuits. A similar situation arises if we read that hypernet from bottom-to-top, and we will 
see that this potential to rid this kind of hypernet of circuits by means of reading imposed 
direction can be a very significant technique in the interpretation of such structures. 
 



Modelling Knowledge Systems using Relation Nets and Hypernets   
 

27

To illustrate some of the definitions that we have met, we consider the following example. (It 
deals with part of a module system in the Faculty of Science at the University of South 
Africa). The code of each module consists of a subject code of three letters followed by a 
level code of three digits of which the first indicates the level of study towards a degree in the 
faculty and the next two a module code. The modules concerned are as follows: 
Computer science: COS111, COS121, COS211, COS212, COS221, COS201, COS311, 
COS321, COS322, COS331, COS351, COS301. 
Information Systems: INF101, INF201, INF303. 
Mathematics: MAT101, MAT102. 
 
What we have here is the sub-hypernet retrieved from the hypernet for the whole module 
system by selecting every condition set that involves COS211. This sub-hypernet is the 
“context-hypernet” of COS211 in the whole module system: It represents all the inter-module 
relational information about COS211 in that whole system. The set of module codes 
generates, one for one, the set of vertices of our hypernet, and the condition sets generate its 
edges. The parallels in each condition set are marked with an underline.  
 
The condition sets are as follows. 
1.    {COS111, COS121, INF101, COS211} 
2.    {COS111, COS121, INF101, COS211, COS221, COS212} 
3.    {COS111, COS121, INF101, COS211, COS221} 
4.    {COS111, COS121, INF101, COS211, COS221, COS201} 
5.    {COS211, COS221, COS311} 
6.    {COS211, COS221, COS311, COS321} 
7.    {COS211, COS212, COS221, COS322} 
8.    {COS211, COS221, MAT101, MAT102, COS331} 
9.    {COS211, COS221, COS311, COS351} 
10.  {COS201, COS211, COS221, COS311, COS321, COS301} 
11.  {INF201, COS211, INF303} 
 
The condition sets are those stipulated, in the system, for obtaining credit for the final module 
in each membership list. We can choose any prerequisite from a list as the other end vertex 
for that list. Bearing in mind potential edge adjacencies it is of course possible, then, to plot 
each condition as a number of edges, but to avoid unnecessary repetition of condition sets we 
use each condition set only once, and as a heuristic it is advisable to “start” each edge at a 
module of lower level than that of the module for which the condition is stipulated, thus 
making the interpretation of the diagram simpler.  
 
A diagram for these modules and these condition sets, a hypernet diagram, is given in figure 
1.4.2. Note that there are four isolates, but none of them is a complete isolate. 
 
Reading from left to right (bottom-to-top) we can determine how credit may be obtained for 
an end vertex of each edge and of each path. Reading from right to left (top-to-bottom) we get 
the same information in a different form. It will become clear later, when we deal with 
“cascades”, that this difference of form is not trivial. 
 
 
 
 
 
 
 



Modelling Knowledge Systems using Relation Nets and Hypernets   
 

28

 
 
 
 
 
 
 
                                                                                          5 

                                                                                             6 

                                                                                           7 

                                                                                      8 

 

                            1                                                         9 

 

                                     2 

                                        3 

 

                                         4 

                                                                                       10 
 

                                                                                  11 

 

 

 
 
 

Figure 1.4.2. A diagram for part of a module system 
 
 
By adding an entrance level module on the left we can easily arrange that this structure be a 
Knowledge Hypernet - see later - when read from left to right. 
 
Consider now a Prerequisite Chain for Computer Science Major Courses as published by the 
University of Waterloo (4 March 2003 – http://www.cs.uwaterloo.ca/undergrad/courses/ 
charts/majorPrereq.shtml) and as given in figure 1.4.3. 
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Figure 1.4.3 Prerequisite Chain for Computer Science Major Courses  (University of Waterloo) 
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We want to present the hypernet representation of the information in figure 1.4.3. In doing so 
we will ignore the periods during which courses are offered, and the fact that CS 342 and CS 
354 are being phased out or replaced. An OR box will be replaced by alternative paths. The 
“CS” part of the vertex labels is left out, as in figure 1.4.3. 
 
The course codes are as follows: 

• 131, 132, 133, 134. 
• 240, 241, 245, 246, 251. 
• 341, 342, 343, 350, 354, 360, 365, 370, 372. 
• 442, 444, 445, 446, 447, 448, 450, 452, 454. 
• 456, 457, 462, 466, 467, 472, 473, 476, 
• 480, 482, 483, 486, 487, 488, 492. 
• Math 138. 
• Math 235, Math 235 and A standing, Math 237, Math 239. 
• Pmath 334. 
• Stat 231.          
• Biol 365.   
• We add a dummy vertex. 

 
The condition sets are as follows, where parallel courses are underlined.  
 
1.    {131, 132} 
2.    {133, 134} 
3.    {132, 134} 
4.    {Math 235, 134, Math 237, 371} 
5.    {134, 251} 
6.    {132, 251} 
7.    {134, 241} 
8.    {134, 245} 
9.    {Math 138, 241, Math 235, 370} 
10.  {241, 246} 
11.  {241, Math 239, 240} 
12.  {240, 246, 342} 
13.  {240, 246, 492} 
14.  {Math 239, 240, 246, 360} 
15.  {Math 239, 240, 246, 365} 
16.  {245, 240, 246, 350} 
17.  {245, 251, 450} 
18.  {Math 239, 240, 246, 360, 341} 
19.  {Math 239, 240, 246, 365, 341} 
20.  {PMath 334, 246, 487} 
21.  {Stat 231, 246, 457} 
22.  {371, 372} 
23.  {370, 372} 
24.  {370, 476} 
25.  {370, 350, 488} 
26.  {370, 342, 488} 
27.  {342, 354} 
28.  {342, 445} 
29.  {350, 445} 
30.  {343, 350} 

31.  {354, 341, Stat 231, 486} 
32.  {354, 442} 
33.  {254, 452} 
34.  {354, 444} 
35.  {354, 454} 
36.  {354, 448} 
37.  {354, 456} 
38.  {354, 480} 
39.  {350, 341, Stat 231, 486} 
40.  {350, 442} 
41.  {350, 452} 
42.  {350, 444} 
43.  {350, 454} 
44.  {350, 448} 
45.  {350, 456} 
46.  {350, 480} 
47.  {360, 462} 
48.  {365, 462} 
49.  {341, 466} 
50.  {372, 472} 
51.  {372, 473} 
52.  {445, 446} 
53.  {446, Stat 231, 447} 
54.  {Math 235, A standing, 467} 
55.  {341, Biol 365, Stat 231, 482} 
56.  {341, Biol 365, Stat 231, 483} 
57.  {245, 251, 450} 
58.  {341, Stat 231, 486}
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The conditions involving the dummy vertex, which represents the background courses 
required to enter this curriculum, are as follows. 
{dummy, 131}, {dummy, 133}, {dummy, Math 235}, {dummy, Math 237},  
{dummy, Math 138}, {dummy, 239}, {dummy, Stat 231}, {dummy, PMath 334},  
{dummy, Math 235 and A standing}, {dummy, Biol 365}. 
 
We see at once that the resulting hypernet is quite trival. Since the structure is a hypernet, we 
can apply hypernet search techniques and vulnerability analysis to it. In the latter case the 
results will be non-trivial. It is obvious at once, for example, that 350 is a key course. In a 
larger and more complex curriculum system vulnerability analysis may yield some 
embarrassing surprises. The more complex the curriculum the more apt it is to present and 
analyse it in hypernet form, essentially because a hypernet is a fairly simple but very rich 
mathematical structure with many relevant characteristics, and is a genuine and “pure” 
structural model. 
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As example of the sub-hypernet for an edge consider the following: 
                           
8.                                              8; {134, 245} 

 

 

 

9.                                 9; {241, Math 138, Math 235, 370}                       

 

 

 

 

30.                                              30; {354, 341, Stat 231, 486} 
 

 

 

 

18, 19. 

  

                            {dummy, Math 239} 

 

                                                   18; {Math 239, 240, 246, 360, 341} 

        

                                                      19; {Math 239, 240, 246, 365, 341} 

 

 

  

 
 
The edge labels are given in full here, but one could apply the obvious simplification of 
dropping the end vertices from the edge labels without losing information. Thus we would 
have, for example, 30; {341, Stat 231}. Any of the prerequisite entries in an edge can of 
course be chosen for an end vertex of that edge in a diagram of the hypernet. 
 
Finally, notice that a host of conditions that involve parallels would make figure 1.4.3 rather 
more difficult to read, but would make little difference to the complexity of the equivalent 
hypernet and analysis of it. With appropriate choices of prerequisite as end vertex for each 
edge, and perhaps addition of some extra edges that repeat some of the information already 
there, we can arrange that this is a special kind of hypernet, called a Knowledge Hypernet - 
see later. 
 

134 245 

dummy

486 354 

Math 138 Math 235

341 Stat 231

Math 239 341 

240 246 360 365 

241 370 
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Next we look at the connection between hypernets and the relation nets introduced and 
explored in [GVS99]. 
 
By a tuple-specific relation net interpretation, or simply an interpretation, of a hypernet  <A, 
E> we mean a one-to-one correspondence I: A → A that maps <A, E> to a relation net <A, 
T> as follows. For every vertex adjacency (Ar, Ei, As) in <A, E> with Ei = {A1, A2, ... , Aℓ , 
...., An(i)} ⊆ A, Ar ∈ Ei, As ∈ Ei, (Ar, Ei, As) is mapped to precisely one tuple Ti ∈ T with Ti = 
<B1, B2, ... , Bk , ...., Bm(i) > and with either B1 = Ar and Bm(i) = As or B1 = As  and Bm(i) = Ar 
and for every Bk, k = 2, ...m(i) - 1, Bk = I (Aℓ) for some one Aℓ ∈ Ei, ℓ = 1, 2, ..., n(i), and 
every member of Ei is used at least once as an entry in Ti so Ei is the tuple set, i.e. the set of 
entries, of Ti, | Ti | = m(i) ≥ | Ei | = n(i), and this holds for each vertex adjacency by each Ej ∈ 
E and for each Tj ∈ T. We write Tj = I [Ej], and <A, T> = I [<A, E>], and | Ti | is equal to the 
number of distinct vertex adjacencies in <A, E>. 
 
Each hypernet <A, E> has a countably infinite set of distinct interpretations, and this set is 
called a realization of <A, E>. 
 
Next we describe the move from relation nets to hypernets. 
 
Consider any given relation net <A, T>. By an edge-specific hypernet abstraction, or simply 
an abstraction, of <A, T> we mean a one-to-one correspondence M: A → A that maps <A, 
T> to a hypernet <A, E> and is defined as follows:  
For every tuple Ti = <A1, A2, ... , Aℓ , ...., An(i) > ∈ T in <A, T> the mapping M produces a set 
Ei = {M(A1), ... , M(Aℓ), ...., M(An(i) )} ∈ E with | Ei | ≤ | Ti |, Ei being the tuple set of Ti, and a 
vertex adjacency (M(A1), Ei, M(An(i) ) ) in <A, E> for every Ti ∈ T. This results in the 
hypernet <A, E> and we write Ei = M [Ti] and <A, E> = M [<A, T>].  
 
Each relation net <A, T> has a unique abstraction M [<A, T>] but a countably infinite set of 
distinct relation nets can all have the same abstraction. Obviously,  
 
Theorem 1.4.1: Every abstraction M of a relation net <A, T> with M [<A, T>] = <A, E> is 
the inverse of some interpretation I of <A, E> with I [<A, E>] = <A, T>, and the converse is 
also true. ♦ 
 
In dealing with relation nets in [GVS99] we faced the problem (in Part I) that each tuple came 
from a statement of relationship among concept-names, and could thus be permuted by re-
wording that statement without changing the relationship among those concept-names 
involved in that statement. The following definition opens up, for example, all the possible 
permutations of tuples in a CRKS - see [GVS99] and later - for examination and choice of 
“appropriate” ones. 
 
By the completion of a hypernet <A, E> we mean that unique hypernet that is constructed 
from <A, E> by adding to <A, E> every potential edge adjacency, and every potential vertex 
adjacency, of <A, E> that is not in <A, E>, i.e. we “fill in” all the sets Ei ∩ Ej, and all the 
vertex adjacencies.  
 
For each Ar ∈ A for which we have (Ei, Ar, Ej) for some Ei and Ej, i.e. Ar ∈ (Ei ∩ Ej), i ≠ j, in 
the completion of M [<A, T>], the tuples Ti and Tj with M [Ti] = Ei and M [Tj] = Ej can be 
permuted so that they are adjacent at Ar in a new CRKS that models the same relationships as 
does T. 
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Given the completion of an abstraction M [<A, T>], we can interpret sub-hypernets of that 
completion to produce goal oriented application relation nets, such as CRKS’s, from <A, T>. 
This leads to the following descriptions. 
 
By a sub-hypernet of a hypernet <A, E> we mean a hypernet <B, U> with B ⊆ A, U ⊆ E. 
Further, every vertex adjacency of <B, U> by Ej is a vertex adjacency of <A, E> by Ej.     If B 
= A then we call <B, U> a spanning sub-hypernet of <A, E>. We write <B, U> ∠    <A, E>. 
The maximum sub-hypernet <B, E↑B>, of a hypernet <A, E>, that is induced by B ⊆ A, is 
such that Ei ∈ E belongs to E↑B iff Ei ⊆ B.  
 
Let <A, E> be any hypernet and let X be the set of all those sub-hypernets of <A, E> that are 
of the form <A - B, E ↑(A - B) > where B ⊆ A. Then <X, ∠ > is a distributive lattice under ∪ 
and ∩ of hypernets, with null element <∅, ∅> and universal element <A, E>. This can be 
shown easily because ∪ and ∩ for hypernets are defined in terms of set ∪ and set ∩.  
 
There is a one-to-one correspondence between the set of walks in a hypernet <A, E> and the 
set of semi-walks in any given interpretation I [<A, E>] of <A, E>. 
 
We now turn our attention to the question of isomorphism. In Part I of [GVS99] we defined 
structural analogy of CRKS’s in terms of CRKS isomorphism, giving - to the best of our 
knowledge - the first formal definition of analogy. The notion of formalized analogical 
reasoning, and of teaching/learning by analogical modelling, is critical to the work in Part I of 
[GVS99], and a key to the practical use of structural analogy is the rather complex 
constructional scheme given there for finding isomorphic (sub-) relation nets. It appears that 
we can do a little bit better, through the medium of hypernets, by side-stepping the problems 
involved in relative permutation differences between potentially isomorphic (sub-) relation 
nets. To begin, we revise the definition of isomorphism of relation nets.  
 
Given two relation nets <A, S> and <B, T> with | A | = | B | and | S | = | T |, we say that <A, 
S> and <B, T> are isomorphic iff there exists a pair of one-to-one correspondences g: A→ B 
and h: S→ T which are such that tuple Ti = <A1, ....Ar, ..., An>, where each entry is an entry of 
a member of A, belongs to S iff tuple h(Ti) = <B1, ...., Bs, ..., Bm>, belongs to T, where m = n 
and where each entry is an entry of a member of B, and B1 = g(A1), Bm = g(An), and every 
entry Ar, r ≠ 1 and r ≠ n, in Ti is mapped to some Bs = g(Ar) with r not necessarily equal to s. 
The equivalent for hypernets is rather less taxing, and is as follows. Two hypernets <A1, E1> 
and <A2, E2>, with | A1| = | A2| and | E1| = | E2|, are said to be isomorphic iff there exists a pair 
of one-to-one correspondences g: A1 → A2 and h: E1 → E2 such that A1i ∈ A1 belongs to E1j 
∈ E1 iff g(A1i) belongs to h(E1j) and (A1i , E1j, A1k) is a vertex adjacency in <A1, E1> iff (g 
(A1i), h (E1j), g (A1k) ) is a vertex adjacency in <A2, E2>. 
 
Given two hypernets <A1, E1> and <A2, E2>, how can we find an isomorphism between 
them? We can use the following:  
 
Constructional scheme 1.4.1 
(1) Check that | A1| = | A2| and | E1| = | E2| . Indeed if | A1| < | A2| and/or | E1| < | E2| we 

may be able to find an isomorphism between <A1, E1> and a sub-hypernet <B, U> ∠ 
<A2, E2> with | A1| = | B| and | E1| = | U| . 

(2) Let (A11, E1i, A12) be any vertex adjacency in <A1, E1>. Try to match (A11, E1i, A12) 
with some vertex adjacency (A21, E2j, A22) in <A2, E2> for which we can begin to 
define g and h by setting g(A11) = A21, g(A12) = A22, and h(E1i) = E2j ∈ E2 such that E2j 
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= {g(A11), g(A12)}∪ {g(A1k) ∈ A2 | A1k ∈ A1 and A1k ∈ (Ei -{ A11, A12}) and |E1j | = 
|E2j | so that |E1i |= | h(E1i ) = E2j |}. If we can find no such matching then no 
isomorphism <g, h> exists. 

(3) If we can find one such partial matching, of an (A11, E1i, A12) and some (A21, E2j, A22), 
then the next step is as follows. Try to expand the present domains of g and h to 
incorporate all vertex adjacencies that involve A11 and/or A12 in <A1, E1>. Do this for 
as many “new” vertex adjacencies of this kind as possible. If there are “new” 
adjacencies that cannot be covered, disregard them. Move to step 4. If there are no 
“new” vertex adjacencies that can be covered in this step, return to step 2 and start 
over with another vertex adjacency in <A1, E1>. 

(4) Try, as in step 3, to expand the present domains of g and h to cover all vertex 
adjacencies in <A1, E1> that involve at least one of the “already covered” vertices of 
<A1, E1>. If no expansion is possible, return to step 2 and start over with another 
vertex adjacency in <A1, E1>; otherwise move to step 5. 

(5) Repeat step 4 until no more vertex adjacencies in <A1, E1> can be covered, or until we 
get any contradiction. At that stage we have an isomorphism from a sub-hypernet of 
<A1, E1> into <A2, E2>. If that sub-hypernet is not <A1, E1> then we store the 
isomorphism and start over with step 2, eventually finding several hopefully non-
trivial (i.e. not just a single vertex adjacency that is isomorphic with some vertex 
adjacency in <A2, E2>) sub-hypernets of <A1, E1> that are isomorphic with some sub-
hypernet of <A2, E2>. From those isomorphisms that we find, we can choose the most 
appropriate for our purpose at the time of choice. Recall from [GVS99] that several 
different sub-hypernets of <A1, E1> can serve as isomorphic structural 
models/analogies of the same sub-hypernet of <A2, E2>, and one sub-hypernet of <A1, 
E1> can serve as an isomorphic structural model/analogy for several different sub-
hypernets of <A2, E2>.♦ 

 
Comment: The two hypernets are stored as two edge tables. It is clear that we would start 
with step 2 by choosing a vertex adjacency in <A1,E1> and reading the edge table of <A2, E2> 
to find a preliminary “match” for which we can define g and h. If a match is found we move 
to step 3 in which a computer examines each of the possible domain extension vertex 
adjacencies, i.e. edges of <A1, E1> that are incident with one of the vertices of that matched 
vertex adjacency, in <A1, E1>, from step 2. Notice that since <A1, E1> and <A2, E2> are 
given, the vertex adjacencies of both are fixed. (Normally one would, in storing an edge, let 
the first and last members of that edge set list in the edge table be the two vertices adjacent by 
that edge.) The rest of the implementation works in essentially the same way as step 3.  
 
At this stage we should note that, as mentioned above, the vertex adjacencies of a hypernet 
are fixed, so there is no essential difference between the implementation of hypernet 
constructional schemes and the equivalent ones for relation nets. This is why we have not, in 
the text, even presented some of those hypernet constructional schemes that are essentially the 
same as their relation net equivalents.  
 
In applying constructional scheme 1.4.1 we must take account of 
• other edges in E1 by which A11and A12 are vertex adjacent, 
• other edges in E2 that are “set equal” to E2j, and 
• potential edge adjacencies by > 1vertices in <A1, E1>, when trying to find an initial 

vertex adjacency match in step 2 of the scheme. 
 
Now it appears that it may well be easier in general to automate the search for hypernet 
isomorphisms than for relation net isomorphisms due to the necessity to take into account 
matching tuples “modulo relative permutation” in the latter case. With this in mind, we 
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present the following two theorems.  
 
To set the scene, let <A1, E1> and <A2, E2> be hypernets and let <A1, T1> and <A2, T2> be 
relation nets and let | A1 | = | A2 |, | E1 | = | E2 |, and | T1 | = | T2 |. Further, let D1 =  {(A11, E1j, 
A12) | A11, A12 ∈ A1, E1i ∈ E1, and (A11, E1i, A12) be a vertex adjacency in <A1, E1>}, D2 = 
{(A21, E2i, A22 ) | A21, A22 ∈ A2, E2i ∈ E2, and (A21, E2i, A22 ) is a vertex adjacency in <A2, 
E2>}, and let | D1 | = | D2 |.  
 
Now consider the following diagram: 
 

                                                       <g1, g2 >   

                   <A1, E1>                                                           <A2, E2>            

 

                          I1  I1
-1                                                                                       I2  I2

-1 

 

                      <A1, T1>                                                        <A2, T2> 

                                                           <h1, h2 >                
 

Figure 1.4.4.  Isomorphisms and interpretations 
 
Here <g1, g2 > is a hypernet isomorphism and <h1, h2 > is a relation net isomorphism, I1 and I2 
are interpretations. All these mappings are one-to-one-correspondences, so their inverses are 
well-defined simple reversals. 
 
Theorem 1.4.2: Let <A1, E1> and <A2, E2> in the diagram be isomorphic hypernets. Then 
there exist interpretations I1 [<A1, E1> ] = <A1, T1> and I2 [<A2, E2> ] = <A2, T2> such that 
<A1, T1> and <A2, T2> are isomorphic relation nets. ♦ 
 
Proof: Consider any vertex adjacency (A11, E1i, A12) in <A1, E1>. The matching vertex 
adjacency is (g1(A11), g2(E1i), g1(A12)) in <A2, E2>. I1 is defined as follows. I1 takes (A11, E1i, 
A12) to precisely one ni-tuple T1i ∈ T1 in <A1, T1>. Let T1i =  <I1 (A11), ..., I1 (A1r), ..., I1 
(A12)> where the entries other than I1 (A11) and I1 (A12) consist of ni - 2 entries of some I1 
(A1r) with A1r ∈ E1i and A1r may be A11 or A12 and A11 may be equal to A12, and where every 
member of E1i is mapped to at least one entry in T1i = I1 [E1i]. I2 is now defined to map 
(g1(A11), g2(E1i), g1(A12) ) in <A2, E2> to precisely one tuple T2j ∈ T2 where T2j = <I2 (A21), ..., 
I2 (A2k), ..., I2 (A22)> with A21 = g1(A11), A22 =g1(A12) and every entry A2k = g1(A1r ) with k not 
necessarily equal to r, and where every member of g2(E1i) is mapped to at least one entry in 
T2j = I2 [(g2(E1i))]. Now we define <h1, h2 > such that h1: A1 → A2 and h2: T1 → T2 are both 
one-to-one correspondences, and for every T1i = <I1 (A11), ..., I1 (A1r), ..., I1 (A12)> ∈ T1, h2 
(T1i) ∈ T2 is given by 

h2 (T1i) = <h1 ( I1 (A11)), ..., h1 ( I1 (A1r)), ..., h1 ( I1 (A12)) > with  
h1 ( I1 (A11)) = I2 (A21) = I2 (g1(A11)),  
h1 ( I1 (A12)) = I2 (A22) = I2 (g1(A12)), 
h1 ( I1 (A1r)) = I2 (A2k) = I2 (g1(A1r)), 

where the number of entries in T1i and h2 (T1i) is clearly the same, and every I1 (A1r), r ≠ 1 and 
r ≠ 2, in T1i is mapped to some I2 (A2k) with k not necessarily equal to r. Thus, <h1, h2 > is a 
relation net isomorphism that maps <A1, T1> onto <A2, T2>. ♦ 
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Theorem 1.4.3: Let <A1, T1> and <A2, T2> in our diagram be isomorphic relation nets. Then 
there exist abstractions M1[<A1, T1>] = <A1, E1> and M2[<A2, T2>] = <A2, E2 > such that 
<A1, E1> and <A2, E2 > are isomorphic hypernets. ♦ 
 
Proof: In the proof of theorem 1.4.2 we constructed <h1, h2>. Here we will construct <g1, g2>, 
given that <h1, h2 > is an isomorphism. Essentially, what we do is to set M1 = I1

-1 and                             
M2 = I2

-1  and reverse the process of the proof of theorem 1.4.2. An arbitrary tuple T1i in <A1, 
T1>, with T1i = <A11, ..., A1r, ..., A12> is matched with precisely one tuple h2 (T1i) = <A21, ..., 
A2k, ..., A22> with A21 = h1 (A11), A22 = h1 (A12) and A2k= h1 (A1r) with k ≠ 1 and   k ≠ 2 and k 
not necessarily equal to r. Now apply I1

-1 to <A1, T1> and I2
-1 to <A2, T2>. T1i = <A11, ..., A1r, 

..., A12 > is mapped, by I1
-1, to the tuple set, E1i ∈ E1, of T1i and a vertex adjacency (I1

-1 (A11) , 
E1i, I1

-1 (A12)), and h2 (T1i) = <h1 (A11), ..., h1 (A12)> ∈ T2 is mapped, by I2
-1, to the tuple set, 

E2j ∈ E2, of h2 (T1i ) and a vertex adjacency (I2
-1( h1 (A11)), E2j, I2

-1( h1 (A12)). It is easy to see 
that we can define a hypernet isomorphism <g1, g2 > from <A1, T1> onto <A2, T2> simply by 
setting 
I2

-1 ( h1 (A11)) = g1 ( I1
-1 (A11)), 

I2
-1 ( h1 (A12))= g1 ( I1

-1 (A12)),  
g2 (E1i) = E2j = g2 ( { A11, ..., A1r, ..., A12} ) = { g1(A11), ..., g1(A1r), ..., g1(A12)}, and E1i ≠ ∅.  
 
These two theorems can be of considerable assistance. In particular, theorem 1.4.2 can help in 
finding relation net isomorphisms. 
 
Let <A1, E1> and <A2, E2 > be hypernets and <A1,T1> and <A2,T2> be relation nets. Consider 
the following diagram: 
                                                             <β1,β2,>  

                   <A1, E1>                                                                   <A2, E2> 

                                   

                      M1         I 1                                           I 2       M2 

 

          

                     <A1, T1>                                                                   <A2,T2> 

                                                                    LE 
 

Figure 1.4.5 Language Equivalence 
 
 
Here the abstraction M1 is the inverse of the interpretation I1 and M2 the inverse of I2, and   
<β1, β2> is a hypernet isomorphism. Each tuple T1i ∈ T1 is mapped to its tuple set M1 [T1i] in 
<A1, E1>, then by <β1, β2> to the isomorphic tuple set <β1, β2> (M1 [T1i]) in <A2, E2>, and 
thence by I2 to a tuple I2 (<β1, β2> (M1 [T1i])) = T2j, where if T1i is an n1i-tuple then       
I2(<β1,β2>(M1 [T1i])) is an n2j-tuple with n1i and n2j both at least |M1 [T1i]| = |<β1, β2>(M1 

[T1i])| and n1i and n2j are not necessarily equal, and T1i = I1(<β1, β2> (M2[T2j])), and this holds 
for each T1i∈ T1 and each T2k∈ T2. We call <A1, T1> and <A2, T2> language equivalent (LE) 
relation nets iff for each T1i ∈ T1 there is at least one T2j = I2(<β1, β2>(M1[T1i])) ∈ T2 and for 
each T2j ∈ T2 there exists at least one T1i = I1 (<β1, β2>(M2 [ T2j ])) ∈ T1.   
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Given a study material CRKS - see [GVS99] - for which the statements are set out in 
language A, we can use the definition to find a “language equivalent” CRKS in which the 
statements are set out in another teaching language B. LE is an equivalence relation on the 
class of relation nets. Preservation of vertex adjacencies can be a severe constraint. 
 
For Ai ∈ A of a hypernet <A, E> we define: 
(1) The set E(Ai) ⊆ E of all edges in the name of Ai by E(Ai) = {Ej ∈ E | for every vertex 

adjacency of the form (Ar, Ej , As ) in <A, E> we have Ai ∈ (Ej - { Ar, As }) }. 
(2) The set E [Ai] ⊆ E of all edges with Ai by E [Ai] = {Ej ∈ E | Ai ∈ Ej}. 
(3) E(B) denotes the set of all E(Ai) with Ai ∈ B and a similar statement applies to E [B],         

with B ⊆ A. 
(4) The meet <A, E> of two hypernets <B, F> and <C, G> is defined by <A, E> =  <B ∩ 

C, F ∩ G > and <A, E> is a unique hypernet. 
(5) The join <A, E> of two hypernets <B, F> and <C, G> is defined by <A, E> =  <B ∪ 

C, F ∪ G > and <A, E> is a unique hypernet.  
 
The meet of <B, F> and <C, G> is written <B, F> ∩ <C, G>, and their join is written  <B, F> 
∪ <C, G>. In (4) the only way in which F and G can share edges is that those shared edges 
are subsets of B ∩ C. Thus we have the following: 
 
Theorem 1.4.4: If Ei ∈ E, and hypernet <A, E> = <B ∩ C, F ∩ G > is the meet of hypernets 
<B, F> and <C, G>, then Ei ⊆ (B ∩ C), but the converse is not necessarily true. ♦ 
 
Proof: The first part is trivial. For the converse, we notice that Ei ⊆ (B ∩ C) can be true if Ei 
belongs to only one of F or G. ♦ 
 
The join and meet operations may of course be successfully applied to the sub-hypernets of a 
given hypernet. 
 
The adjacency function Γ: A → ℘(A) of a hypernet <A, E> is defined by, for all Ar ∈ A,    
Γ( Ar) = {As ∈ A | (Ar, Ej , As) for some Ej ∈ E} ∪ {Ar}. 
 
By a walk-family f (Ar ⎯ As) in a hypernet <A, E> we mean a non-empty set of walks 
between Ar and As in <A, E>, the members of which all have the same subsequence over A 
while being pair-wise distinct in edge subsequences over E. By a sub-walk-family of f(Ar ⎯ 
As), we mean a walk-family f (Am ⎯ An), r ≤ m < n ≤ s, for which every member is a 
subsequence of at least one member of f(Ar ⎯ As ). A walk-family can have just one member. 
 
We now define the following three terms for hypernets. 
 
(1) Let Ar, Aj, As ∈A in a hypernet <A, E>, and let Ar ⎯ As be a given walk in <A, E>. 

Then Aj is said to be vertex between Ar and As on Ar ⎯ As iff Aj belongs to the vertex 
subsequence of Ar ⎯ As or to at least one edge Ei that lies on the walk Ar ⎯ As, or 
both. (Of course both cases are covered if Aj belongs to at least one of the edges of the 
walk.) We write (Ar - Aj - As). 

(2) Aj is said to be reachable from Ar in <A, E> iff there is a path between Ar and Aj in  
<A, E>. Every vertex is taken to be reachable from itself by a path of length zero. 

(3) The reachability function ℜ: A → ℘(A) of a hypernet <A, E> is defined by, for all   
Ar ∈A, ℜ(Ar) = {As ∈ A | As is reachable from Ar in <A, E>}. 
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(4) The meanings of Γ(B) and ℜ(B) for B ⊆ A are obvious.  
 
Next we tackle the notion of a cascade. Consider a hypernet <A, E> and a collection of 
subnets of <A, E>: <B0, D0>∠ <B1, D1>∠ …∠<Bk, Dk>∠ … ∠<Bn, Dn>. Thus, for each k = 
0, 1, …, n - 1, we have <Bk, Dk> ∠ <Bk+1, Dk+1>, i.e. Bk ⊆ Bk and Dk ⊆ Dk+1. Such a 
collection of subnets of <A, E> is called a fast access cascade from B0 in <A, E> if, and only 
if (iff), we have 
(1) B0 ⊆ A and D0 = ∅, and 
(2) D1 ⊆ E is chosen in such a way that for each vertex adjacency (Ar, Ej, As), Ej ∈E, we 

have that Ej belongs to D1 iff Ar or As belongs to B0 . 
(3) B1 is B0 together with the union of all the Ej in D1 and in general for k = 2, 3, … 
(4) Dk ⊆ E is chosen in such a way that for each vertex adjacency (Ai, Ek, Aj), Ek ∈E, we 

have that Ek belongs to Dk iff Ai or Aj belongs to Bk-1, or Ek belongs to Dk-1 , so Dk-1 ⊆ 
Dk, and 

(5) Bk is Bk-1 together with the union of all the Ek in Dk, so Bk-1 ⊆ Bk.  
 
Such a cascade is said to be a limited access cascade from B0 in <A, T> iff at each step k =  1, 
2, ... , an edge Ec belongs to Dk, iff it belongs to Dk-1 or all, but possibly one, of the members 
of Ec belong to Bk-1, and that one is either Ar or As in each vertex adjacency (Ar, Ec, As) used 
in choosing the Ec at each step k = 1, 2, … . 
 
More formally, we have the following: The nested sequence {<Bk, Dk> | k ≥ 0} of sub-
hypernets of a hypernet <A, E> is called a fast access cascade from B0 iff 
(1) B0 ⊆ A and D0 = ∅, and 
(2) D1 ⊆ E is chosen in such a way that for each vertex adjacency (Ar, Ej , As), Ej ∈ E, Ej 

belongs to D1 iff Ar or As belongs to B0, and 
(3) B1 = B0 ∪ (the union of all the Ej that belongs to D1), and in general for k = 2, 3, … 
(4) Dk ⊆ E is chosen in such a way that for each vertex adjacency (Ar, Ej , As ), Ej ∈ E, Ej 

belongs to Dk iff it belongs to Dk-1 or Ar or As belongs to Bk-1, so Dk-1 ⊆ Dk, and 
(5) Bk = Bk-1 ∪ (the union of all the Ej that belong to Dk), so Bk-1 ⊆ Bk.  
 
Such a cascade is said to be a limited access cascade from B0 in <A, E> iff, at each step k = 1, 
2, ..., we choose Ei ∈ Dk iff it belongs to Dk-1 or all, but possibly one, of the members of Ei 
belong to Bk-1, and that one is either Ar or As in each vertex adjacency (Ar, Ei, As) used in 
choosing the Ei ∈ Dk, k = 1, 2, ....  
 
Note that that particular one of Ar or As in each case does of course belong to A, but may or 
may not belong to Bk-1. Again such cascades stop on the same conditions as for relation net 
cascades - see [GVS99]. 
 
Hypernets all exhibit strong vulnerability: If we delete Ak ∈ A from a hypernet <A, E> then 
we delete every edge adjacency by Ak in <A, E>, and also every edge Ei ∈ E for which Ak ∈ 
Ei, i.e. we delete E [Ak]. Because strong vulnerability expresses context sensitivity in certain 
hypernets - see [GVS99] and later work in this report - we introduce the following notion. 
 
By the context-hypernet <A, E>[Ak] of Ak ∈ A in a hypernet <A, E> we mean that sub-
hypernet of <A, E> that consists of every Ei ∈ E that has Ak ∈ Ei , i.e. E [Ak] together with the 
union of all the members of E [Ak] , i.e. the set of vertices {Aj ∈ A| Aj ∈ Ei and Ei ∈ E [Ak]}. 
<A, E>[Ak] is a hypernet. 
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We return to our example in figure 1.4.1 and illustrate the later notions met in this section: 
• sets E (Ak) and E [Ak]: E(3) = {E5} and E[3] = {E1, E6, E5, E4}. 
• adjacency function: Γ(4) = {2, 3, 4, 5}, and Γ(5) = {5, 4}. 
• walk-family: f (2 ⎯ 5) = {(2, E5, 4, E7, 5), (2, E2, 2, E5, 4, E7, 5), (2, E5, 4, E7, 5, E6, 

5), (2, E2, 2, E5, 4, E7, 5, E6, 5} or any non-empty subset of this set. 
• reachable: ℜ (2) = A - {6}, ℜ (2) = ℜ (1) = ℜ (3) = ℜ (4) = ℜ (5). 
• fast access cascade: B0 = {2}, B1 = {2, 1, 4, 3}, B2 = {2, 1, 4, 3, 5}. 
• limited access cascade: B0 = {1, 2}, B1 = {1, 2, 3}, B2 = {1, 2, 3, 4}, B3 = {1, 2, 3, 4}, 

stop. 
• context-hypernet: The context-hypernet of 4 ∈ A, i.e. <A, E>[4], has vertex set A[4] = 

{4, 2, 3, 5} and edge set E[4] = { E5, E4, E7}. 
 
We will see that the notion of a cascade, which may be regarded here as a controlled search 
technique, becomes an essential part of the theory of the hypernet equivalent of a CRKS. 
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2: Some Characteristics of Hypernets 
 

 
2.1 Connectedness, Components, and Vertex Bases 

 
 
While this chapter applies to an arbitrary hypernet <A, E>, we are concerned mainly with the 
case in which <A, E> is a KH. 
 
Definition 2.1.1: A hypernet <A, E> is said to be connected iff for every a, b ∈ A there is at 
least one path a ⎯ b in <A, E>. ♦  
 
Theorem 2.1.1: A hypernet <A, E> is connected iff it has a closed spanning walk, i.e. a walk 
that meets every a ∈ A at least once or, in other words, a walk in which every a ∈ A occurs at 
least once in the subsequence over A. ♦ 
 
Proof: trivial. ♦ 
 
We need to know even more about paths. What characteristics of a hypernet are dependent 
upon what sorts of paths? Let’s begin to see. Much of what we find is directly related to 
similar situations in standard graph theory and relation net theory - see [GVS99], Part III.  
 
Definition 2.1.2: A sub-hypernet <B, U> of a hypernet <A, E> is called a component of  <A, 
E> iff it is a maximal connected sub-hypernet of <A, E>, where by maximal we mean that to 
add any a ∈ (A - B) or any Ei ∈ (E - U) to <B, U> will result in a sub-hypernet of  <A, E> that 
is not connected. ♦ 
 
Theorem 2.1.2: If <B0, U0> and <B1, U1> are distinct components of a hypernet <A, E> then 
B0 and B1 are disjoint, i.e. B0 ∩ B1 = ∅.  ♦  
 
Proof: Suppose that b ∈ B0 ∩ B1, and let a ∈ B0 and c∈ B1. Then there is a path a ⎯ b in 
<B0, U0> and a path b ⎯ c in <B1, U1>, so there is a path from any vertex in <B0, U0> to any 
vertex in <B1, U1>, which means that <B0, U0> ∪ <B1, U1> lies in a single component of  <A, 
E>. The theorem follows. ♦ 
 
Theorem 2.1.3: Let <A, E> be any hypernet. Then  
(1) every a ∈ A belongs to precisely one component of <A, E> and  
(2) every vertex adjacency, and hence also every edge Ei, belongs to at most one 

component. ♦ 
 
Proof:  
(1) Assume that a ∈ A belongs to two distinct components of <A, E>. Then, as in the 

proof of theorem 2.1.2 above we reach a contradiction.  
(2) Suppose that vertex adjacency (a, Ei, b) is such that a is in a component <B0, U0> of   

<A, E> and that b is in a distinct component <B1, U1> of <A, E>. Then it is easy to see 
that since every vertex in <B0, U0> is reachable from a, and every vertex in <B1, U1> 
is reachable from b, every vertex in <B0, U0> is reachable from every vertex in <B1, 
U1>. The theorem follows from this contradiction. ♦ 
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Theorem 2.1.4: The distinct components of a hypernet <A, E> induce an equivalence relation 
on A. ♦ 
 
Proof: It is easy to see that reachability is reflexive, as we regard each vertex as reachable 
from itself by a path of length zero, symmetric and transitive. ♦ 
 
It follows immediately from theorem 2.1.4 that: 
 
Corollary 2.1.1: Reachability in a hypernet <A, E> partitions A into equivalence classes that 
are precisely the vertex sets of the components of <A, E>. ♦  
 
We will see that in a sub-hypernet of a KH <A, E>, for example, it is vital to know what 
subsets of A are such that every vertex can be reached from at least one member of that subset 
in searching in <A, E>. The following theorems begin to give us a hold on this problem. 
 
Definition 2.1.3: A vertex basis for a hypernet <A, E> is a set V ⊆ A such that every a ∈ A is 
reachable from at least one v ∈ V, and V is minimal in the sense that no proper subset of V 
has this property. ♦ 
 
Theorem 2.1.5: Every a ∈ A of a hypernet <A, E>, that has only a loop incident with it or is 
an isolate or a complete isolate in <A, E>, belongs to every vertex basis of <A, E>.♦ 
 
Proof: Follows from the fact that no such vertex is reachable from any vertex but itself. ♦ 
 
Theorem 2.1.6: V ⊆ A of a hypernet <A, E> is a vertex basis of <A, E> iff  
(1) every a ∈ A is reachable from at least one v ∈ V, i.e. ℜ(V) = A, and  
(2) no v ∈ V ⊆ A is reachable from any w ≠ v, w ∈ V, in <A, E>. ♦ 
 
Proof: We need only show that (ii) is equivalent to minimality of V. Suppose that V is a 
vertex basis of <A, E> and that w, v ∈ V and that w and v are mutually reachable in <A, E>. 
Then every a ∈ A that is reachable from v is also reachable from w, so v is not necessary in 
V, i.e. V is not minimal. The theorem follows. ♦ 
 
Corollary 2.1.2: No two members of V lie in the same component of <A, E>. ♦ 
 
Proof: Follows from the definitions of vertex basis and of component. ♦ 
 
Corollary 2.1.3: Every hypernet <A, E> has at least one vertex basis. ♦ 
 
Proof: A certainly fulfils condition (1) of theorem 2.1.6, so we can find at least one V ⊆ A 
that fulfils condition (2) as well. ♦ 
 
Theorem 2.1.7: If V ⊆ A is a vertex basis of a hypernet <A, E> then there is precisely one v 
∈V in each component of <A, E>, and |V| is precisely the number of components of <A, E>. ♦ 
 
Proof: Follows at once from the definition of component as we only need one vertex from 
each component to reach every a ∈ A. Suppose that v, w ∈ V lie in the same component of 
<A, E>. Then it is clear that we do not need both v and w in a vertex basis. V is not minimal, 
contradicting the given fact that V is a vertex basis of <A, E>.♦ 
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Theorem 2.1.8: If <B, U> ∠ <A, E> then every vertex basis of <A, E> contains a vertex 
basis of <B, U>. ♦ 
 
Proof: Let V ⊆ A be any vertex basis of the hypernet <A, E>. Then every a ∈ A is reachable 
from some one vertex v ∈ V. Since <B, U> ∠ <A, E> it is clear that every vertex b ∈ B ⊆ A 
is reachable from at least one v ∈ V in <B, U>. Thus we can find a vertex basis of <B, U> 
inside V by applying the minimality condition to V inside <B, U>. ♦ 
 
Recall: Let a ∈ A of a hypernet <A, E>. By ℜ(a) we mean the collection of all b ∈ A that are 
reachable from a by at least one path a ⎯ b in <A, E>. We always let a ∈ ℜ(a). 
 
Since connectedness of a (sub-) hypernet is a rather desirable property, we should note the 
following:  
 
Theorem 2.1.9: Given a ∈ A of a hypernet <A, E>, the hypernet < ℜ(a), E↑(ℜ(a) >, i.e. the 
maximum sub-hypernet of <A, E> that is induced by ℜ(a), is connected. ♦ 
 
Proof: Every b∈ ℜ(a) is reachable from a, and every E1∈ E↑(ℜ(a)) is a subset of ℜ(a). The 
theorem follows. ♦ 
 
It is easy to show that the set of all primaries of a KH <A, E> constitutes a unique vertex basis 
of <A, E>, and the set of all goals a unique vertex contra-basis, when we consider derivation 
paths in <A, E>.  
 
We close this section with a few observations. Given a hypernet <A, E>, let U1 ⊆ U2 ⊆ E. 
Then 
 
(1) for all a ∈ A, d(a) in <A, U1> ≤ d(a) in <A, U2> ≤ d(a) in <A, E>. 
(2) For all a, b∈ A, if b is reachable from a in <A, U1> then it is reachable from a also in  

<A, U2> and in <A, E>. 
(3) For all a, b ∈ A, if a is adjacent to b in <A, U1> then it is also adjacent to b in <A, U2> 

and in <A, E>. 
(4) If <A, U1> is connected then so are <A, U2> and <A, E>. 
(5) Every component of <A, U1> is a connected sub-hypernet of a component of <A, U2> 

which is, in turn, a connected sub-hypernet of a component of <A, E>.  
(6) If <A, E> has no circuits then <A, U2> has no circuits, and if <A, U2> has no circuits 

then <A, U1> has none.  
(7) Every vertex basis of <A, U1> contains a vertex basis of <A, U2>, which, in turn, 

contains a vertex basis of <A, E>.  
 



Modelling Knowledge Systems using Relation Nets and Hypernets   44

2.2 Vulnerability 
 
Consider an arbitrary hypernet <A, E>. Each of the components of <A, E> should be 
“strongly connected”, and it follows that analysis of the vulnerability of these components 
with respect to deletion of edges, and of vertices, is very relevant in order to see which edges 
and vertices are critical to the connectedness of <A, E>. This is particularly important for 
KHs. 
 
We begin by considering the “critical edges” of <A, E>. Which edges are vital to the 
preservation of connectedness? Which edges can be deleted without affecting the 
connectedness of the components of <A, E>? 
 
Definition 2.2.1: Let a, b ∈ A of a hypernet <A, E>. We say that a and b are joined in <A, E> 
iff there is at least one path a ⎯ b in <A, E>. Otherwise a and b are said to be non-joined in 
<A, E>.♦ 
 
Definition 2.2.2: Let a, b ∈ A of a hypernet <A, E>, a ≠ b, and consider any edge Ei ∈ E. Ei is 
said to be between a and b in <A, E>, written (a - Ei - b), iff a and b are joined in <A, E> and 
every path a ⎯ b in <A, E> goes via Ei, i.e. Ei is a member of the edge subsequence of every 
path a ⎯ b in <A, E>. ♦ 
 
Note that we have defined "between" for vertices in a similar fashion. 
 
The following theorems tell us something about how destructive deletion from <A, E> can be, 
and something about what kind of destruction arises. We need to be very careful about what 
we “trim” from <A, E> before we start to search in it! 
 
Theorem 2.2.1: Let a, b ∈ A of a hypernet <A, E>, a ≠ b, and let Ei ∈ E. We have (a - Ei - b) 
iff a and b are joined in <A, E> and every path a ⎯ b in <A, E> is such that the (one) vertex 
adjacency by Ei is a subsequence, of length 1, of a ⎯ b. ♦ 
 
Proof: If (a - Ei - b) then a and b are joined in <A, E> and every path a − b is such that there is 
a vertex adjacency by Ei in a − b. If a and b are joined in <A, E> and every path a − b in  <A, 
E> is such the vertex adjacency by Ei is in a − b then Ei is between a and b, i.e. ( a − Ei − b ), 
in <A, E>.♦ 
 
From the theorem we get 
 
Corollary 2.2.1: If a and b of the theorem are adjacent vertices then λ({a, b}) = {Ei } ♦ 
 
and 
 
Corollary 2.2.2: If (a - Ei - b) then deletion of Ei from <A, E> deletes all a ⎯ b paths in <A, 
E>.♦ 
 
Note that deleting the vertex adjacency (a, Ei, b) does not necessarily mean that a and b are no 
longer adjacent: We may have {Ei} ⊂ λ({a, b}). 
 
Let C1 be the class of connected hypernets and C0 be the class of non-connected, i.e. 
disconnected, hypernets. 
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Definition 2.2.3: Let <A, E> be a hypernet with Ei ∈ E. We write Ec

i for E - {Ei}. We call Ei 
an (x, y)-edge of <A, E> iff <A, E> is in Cx and <A, Ec

i > is in Cy. Ei is said to be a 
strengthening edge of <A, E> iff Ei is ( x, y) with x > y, and a neutral edge of <A, E> iff x = 
y. ♦ 
 
Theorem 2.2.2: There is no (0,1)-edge in any hypernet. ♦ 
 
Proof: Every path in <A, Ec

i > is also in <A, E>, so the connected class of <A, Ec
i > is at most 

that of <A, E>, i.e. deleting Ei from <A, E> can not increase the connectedness of <A, E>. ♦ 
 
At once from theorem 2.2.2, there follows 
 
Corollary 2.2.3: Every Ei ∈ E of a disconnected hypernet <A, E> is a (0,0)-edge, i.e. Ei is 
neutral. ♦ 
 
Theorem 2.2.3: Let Ei ∈ E of any hypernet <A, E>. Suppose that <A, E> is in C1. Then  <A, 
Ec

i > is in C0 iff every (closed) spanning walk in <A, E> goes via Ei. ♦ 
 
Proof: By theorem 2.1.1 <A, E> is connected iff <A, E> has a (closed) spanning walk. If 
every spanning walk goes via Ei then deletion of Ei from <A, E> leaves no spanning walk in    
<A, Ec

i>, so <A, Ec
i > is in C0. If <A, Ec

i > is in C0 then every (closed) spanning walk in <A, 
E>, which is given to be in C1, must go via Ei. ♦ 
 
Next we characterize especially destructive edges.  
 
Definition 2.2.4: Let Ei ∈ E be an edge of a connected hypernet <A, E>. Ei is called a bridge 
iff there exist a, b ∈ A with (a - Ei - b). ♦ 
 
It follows at once that Ei ∈ E is a bridge in <A, E>, where ⏐A⏐≥ 2, iff there exists a vertex 
adjacency {c, d}, in <A, E> for which λ ({c, d}) = {Ei}.  
 
Theorem 2.2.4: Ei ∈ E of a connected hypernet <A, E> is a bridge in <A, E> iff Ei is a (1, 0)-
edge. ♦ 
 
Proof: If Ei is a bridge then (a - Ei - b) for some a, b in <A, E>. Thus a and b are joined in <A, 
E>, and if we delete Ei from <A, E> then a and b are non-joined in <A, Ec

i > so a and b lie in 
different components in <A, Ec

i > and thus <A, Ec
i > is in C0, and hence Ei is a (1, 0)-edge. If 

Ei is a (1, 0)-edge then there must exist a, b ∈ A that are joined in <A, E> but non-joined in 
<A, Ec

i >, so we must have (a - Ei - b), i.e. Ei is a bridge, in <A, E>.♦ 
 
Theorem 2.2.5: If Ei ∈ E of a connected hypernet <A, E> is a bridge in <A, E> then every 
subset U ⊆ E of edges with Ei ∈ U is a disconnecting set of edges in <A, E>, i.e. <A, E - U> 
is disconnected. ♦ 
 
The proof follows at once from the fact that Ei ∈ U is a bridge in <A, E>. Furthermore, it 
follows from the definition of a bridge and theorem 2.2.4 that we have  
 
Theorem 2.2.6: Every strengthening edge, i.e. (1, 0)-edge, in a connected hypernet <A, E> is 
a bridge in <A, E>.♦ 
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Theorem 2.2.7: Let hypernet <A, E> be in C1, and let Ei ∈ E. Then Ei is (1, 1) in <A, E> iff 
Ei is not a bridge in <A, E>.♦ 
 
Proof: If Ei is a (1, 1)-edge then it is not a bridge in <A, E>, by the definition of a bridge. If Ei 
is not a bridge in <A, E> then Ei can only be a (1,1)-edge in <A, E> since it cannot be a (0, 
1)-edge by theorem 2.2.2. ♦ 
 
If <A, Q> ∠ <A, E>, what is the comparative vulnerability of the two hypernets? 
 
Theorem 2.2.8: Let <A, E> be a hypernet with Ei ∈ Q ⊆ E.  
(1) If Ei is a bridge in <A, E>, and <A, Q> is in C1, then Ei is a bridge in <A, Q>.  
(2) If Ei is strengthening in <A, E> then Ei is strengthening or neutral in <A, Q>.♦ 
 
Proof:  
(1) Ei is a bridge in <A, E> but <A, Q> is connected, so deletion of Ei from <A, Q> must 

disconnect <A, Q> and so Ei must be a (1, 0)-edge, i.e. a bridge, in <A, Q> since <A, 
Q> ∠ <A, E> and both are connected. 

(2) Ei is strengthening in <A, E>, i.e. it is a (1, 0)-edge in <A, E>, so it is a bridge in <A, 
E>. Now if <A, Q> is in C1 then Ei is strengthening, i.e. a bridge, in <A, Q> by part 
(1). If    <A, Q> is in C0 then, since there is no (0, 1)-edge in any hypernet, Ei must be 
neutral, i.e. a (0, 0)-edge, in <A, Q>.♦ 

 
Corollary 2.2.4: If Ei ∈ E of a hypernet <A, E> with Ei ∈ Q ⊆ E, and if Ei is a (1, 1)-edge in 
<A, Q>, then Ei is a (1, 1)-edge in <A, E>.♦ 
 
Proof: <A, Q> is in C1, and Ei is (1, 1) in <A, Q>, so there must be “a way round” Ei in <A, 
Q>, and since Ei cannot be (0, 1) in any hypernet, <A, E> must be in C1 so Ei is a (1, 1)-edge 
in <A, E> too. Simply put, if <A, Q> is connected then <A, E>, with Q ⊆ E, must certainly be 
connected as well. ♦ 
 
Corollary 2.2.5: Let <A, E> be a hypernet with Ei ∈ Q ⊆ E. Let Ei be a (1, 0)-edge in <A, Q> 
and let <A, E> be in C1. If whenever Ei is between vertices a and b in <A, Q> there is a path a 
⎯ b in <A, E> that is not in <A, Q>, then Ei is neutral in <A, E>. The converse is also true. 
Next, if Ei is between a and b in <A, Q>, and there is no path a ⎯ b in <A, E> that is not in 
<A, Q>, then Ei is a (1, 0)-edge in <A, E>.♦ 
 
Proof: Both <A, Q> and <A, E> are in C1, and Ei is a bridge in <A, Q>. Thus there exist a, b 
∈ A such that Ei is between a and b in <A, Q>, i.e. every path a ⎯ b in <A, Q> goes via Ei. 
Now if there is at least one path a ⎯ b in <A, E> that does not go via Ei, then Ei is not 
between a and b in <A, E> so Ei is a (1, 1)-edge in <A, E>, i.e. neutral in <A, E>. If Ei is 
neutral in <A, E> but a bridge in <A, Q>, and both <A, E> and <A, Q> are in C1, then there 
exist a, b ∈ A such that Ei is not between a and b in <A, E>, i.e. Ei is neutral in <A, E>, but (a 
- Ei - b) in <A, Q>. Thus there is at least one path a ⎯ b in <A, E> that does not go via Ei 
whenever we have (a - Ei - b) in <A, Q>. Finally, if (a - Ei - b) in <A, Q>, i.e. Ei is a bridge in 
<A, Q>, and there is no a ⎯ b path that is not in <A, Q>, then deletion of Ei from <A, E> 
disconnects <A, E>, i.e. Ei is a bridge in <A, E>, because every a ⎯ b path in <A, E> is in 
<A, Q>, and all such a ⎯ b paths go via Ei. ♦ 
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2.3 Edge Bases 
 
Reachability in <A, E> is critical for searches in it. If we “trim” some edges from <A, E> 
before a search, we must do it in such a way that critical reachability is preserved. This leads 
us to the notion of edge bases.  
 
Definition 2.3.1: Let <A, E> be any hypernet with B ⊆ E. B is called an edge basis of    <A, 
E> iff for all a, b ∈ A we have a ∈ ℜ(b) iff a ∈ ℜB (b), where ℜB (b) is the reachability 
function of <A, B>, and no proper subset of B has this property.♦ 
 
We must now try to characterize an edge basis. Which edges belong to an edge basis, and 
how do we look for them in <A, E>? 
 
Theorem 2.3.1: Ei ∈ E of a hypernet <A, E> is between a and b in <A, E>, a, b ∈ A, i.e. (a - 
Ei - b), iff Ei belongs to every edge basis of <A, E>.♦ 
   
Proof: If (a - E i- b) then we can only get a ∈ ℜ (b) in <A, E> by having Ei in every edge 
basis of <A, E>. If Ei belongs to every edge basis of <A, E> then there must exist a, b ∈ A 
such that a ∈ ℜ (b) and every path a ⎯ b goes via Ei, so (a - Ei - b). ♦ 
 
Theorem 2.3.2: If for a, b ∈ A of a hypernet <A, E> there is a unique path a ⎯ b in <A, E> 
then {Ei ∈ E⏐ a ⎯ b goes via Ei} is contained in every edge basis of <A, E>.♦ 
 
Proof: Every Ei via which a ⎯ b goes is such that (a - Ei - b), so by theorem 2.3.1 each such 
Ei belongs to every edge basis of <A, E>.♦ 
 
Theorem 2.3.3: Let <A, E> be any hypernet and let B ⊆ E. B is an edge basis of <A, E> iff  
(1) B preserves reachability in <A, E> and  
(2) for every Ei ∈ B there exist a, b ∈ A with (a - Ei - b). ♦ 
 
Proof: Preservation of reachability is one part of the definition of an edge basis. We must 
show that (2) is equivalent to minimality of B. Suppose that there is an edge Ej ∈ B for which 
there exist no a, b ∈ A with (a - Ej - b). Then we can preserve the reachability of a from b 
without Ej, so we do not need Ej in B, i.e. a proper subset (B - {Ej}) ⊆ B will preserve 
reachability, so B is not an edge basis. ♦ 
 
Clearly edge bases, reachability and connectedness are related. How? 
 
Theorem 2.3.4: B ⊆ E is an edge basis of a connected hypernet <A, E> iff <A, B> is a 
minimal connected sub-hypernet of <A, E>, i.e. there is no connected sub-hypernet <A, D> 
with D ⊂ B. ♦ 
 
Proof: Let B be an edge basis of <A, E>. For every Ei ∈ B there exist a, b ∈ A with (a - Ei - 
b), and since <A, E> is connected Ei is a bridge in <A, E>. So we cannot leave any  Ei ∈ B out 
of B because we would then be left with a disconnected hypernet <A, B - {Ei}>. Thus <A, B> 
is minimal and it is connected because B preserves reachability in the connected hypernet <A, 
E>. Conversely, if <A, B> is a connected sub-hypernet of <A, E> then B must preserve 
reachability in <A, E>. Since <A, B> is minimal, B is a minimal set of edges that preserves 
reachability in <A, E>, so B is an edge basis of <A, E>. ♦ 
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There must be a relationship between connectedness and (closed) spanning walks. What is it? 
 
Theorem 2.3.5: Let <A, E> be any hypernet. If W is a closed spanning walk of minimal 
length in <A, E> then Q = { Ei ∈ E ⏐W goes via Ei} ⊆ E contains an edge basis of <A, E>. ♦ 
 
Proof: If W is a closed spanning walk in <A, E> then <A, E> is connected. If W has minimal 
length then Q certainly preserves reachability in <A, E>, so Q must contain at least one edge 
basis of <A, E>. ♦ 
 
Have we now got enough information to find an edge basis in a hypernet? The answer is yes. 
  
Theorem 2.3.6: To find an edge basis for a hypernet <A, E> we may use the following:  
 
Constructional scheme 2.3.1: Let D be the set of all vertex adjacencies of all a and b, a ≠ b 
and a, b ∈ A. Each such vertex adjacency has one or more Ei ∈ E in λ({a, b}), for each of 
which we have (a, Ei, b), so {a, b} ⊆ Ei.  
 
Stage 1 
(1) Define a bipartite graph with vertex sets V1 and V2 where V1 = {{a, b} ∈℘(A)⏐a and 

b are adjacent vertices in <A, E>} = D and V2 = E, and set V = V1 ∪ V2 for that 
bipartite graph. Join each {a, b} ∈ V1 to each Ei ∈ V2 = E for which (a, Ei, b), using a 
unoriented edge. These are all the vertices and edges of our bipartite graph. Each 
vertex adjacency in V1 = D is adjacent with at least one Ei ∈ V2 = E, and each Ei ∈ V2 
is adjacent with precisely one member of V1, in our bipartite graph. 

(2) For every s ∈ V1, choose any one of the vertices t ∈ V2 that is adjacent with s in our   
            graph. Mark that vertex r ∈ V2. 

(3)       Let L1 ⊆ V2 be the set of marked vertices after step (2). L1 contains at least one edge  
            basis of <A, E>, and ⏐ L1 ⏐ ≤ ⏐E⏐. 
End of stage 1. 
 
Proof of stage 1: It is clear that L1 contains at least one edge basis of <A, E> at this stage 
because L1 “covers” every vertex adjacency in <A, E>. If a is reachable with b, a, b ∈ A and a 
≠ b, then it is clearly reachable with b in <A, L1>. That ⏐L1⏐≤ ⏐E⏐follows from the fact that 
every Ei ∈ L1 “covers” one “new” vertex adjacency. Further, L1 is a minimal set of edges that 
“covers” every vertex adjacency in <A, E>, because each Ei ∈ L1 ⊆ E covers a vertex 
adjacency by Ei. ♦ 
 
Stage 2 
(4) Examine L1 as follows. Find an Ei ∈ L1 that satisfies the following condition: For all a, 

b ∈ A, whenever there is a path a ⎯ b via Ei in <A, E> there is also a path a ⎯ b in 
<A, E> that goes via members of a subset of L1 - {Ei} only. If there is no such Ei ∈ L1, 
then {Ei ∈ E⏐Ei ∈ L1} is an edge basis of <A, E>. If there is such an Ei, set L2 = L1 - 
{Ei}. Repeat the test on the members of L2. Either {Ei ∈ E⏐Ei ∈ L2} is an edge basis 
for    <A, E> or we define L3 = L2 - {Ei} for some Ei ∈ L2.  

Proceeding in this way we find an Ln that is one of the edge bases of <A, E> for some natural 
number n with n ≤ ⏐E⏐. 
End of stage 2.  
 
Proof of stage 2: To show that Ln ⊆ L1 is an edge basis for <A, E> we must prove that Ei ∈ L1 
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necessarily belongs to an edge basis of <A, E> iff there exist a, b ∈ A such that there is at 
least one path a ⎯ b in <A, E> that goes via Ei and that no path a ⎯ b in <A, E> goes via any 
non-empty subset of L1 - {Ei}. First, if there is at least one path a ⎯ b in <A, E> that goes via 
Ei, and no path a ⎯ b in <A, E> goes via any non-empty subset of L1 - {Ei}, then removal of 
Ei from L1 means that a is not reachable with b in <A, L1 - {Ei}>, so L1 - {Ei} does not contain 
an edge basis of <A, E>. But L1 does contain at least one edge basis of <A, E>, so Ei must 
belong to every edge basis of <A, E> that is contained in L1. Conversely, if for all  a, b ∈ A 
such that there is at least one path a ⎯ b via Ei ∈ L1 in <A, E> there is a path a ⎯ b in    <A, 
L1 - Ei}> then L1 - {Ei} contains at least one edge basis of <A, E>, and so Ei does not 
necessarily belong to an edge basis B ⊆ L1. Thus we have the correct criterion for rejecting an 
Ei ∈ L1. ♦ 
 
Comment: Step 1 constructs a bipartite graph that can be generated by computer. The 
following steps use that graph and can easily be implemented by reading the bipartite graph, 
which will be stored as a set of edges from which we can read and mark edges as we use them 
in the CS. Step 4 will require that one constructs the path tree for <A, E>. If <A, E> is a KH 
then one can use a minor modification of CS 1.3.7. If not then we may use a relatively simple 
search in <A, E>, roughly as follows: Given a, b ∈ A, run a fast access cascade, in <A, E>, 
from B0 = {a}. If we do not find b in some Bn then there are no a ⎯ b paths in <A, E>; b is 
not reachable from a, so drop b and look at a ⎯ c paths, c ∈ A and c ≠ b. If b ∈ Bn  for some 
n, with <Bn+1, En+1> = <Bn, En>, then we have all a ⎯ b paths inside <Bn, En>. Now <Bn, En> 
contains all a ⎯ b paths and we can use essentially CS 1.3.7 to set up the path tree for <Bn, 
En>. Now delete Ei ∈L1 from <Bn, En> and see if there are still a ⎯ b paths left.  If, for each 
Ei ∈L1 , for this arbitrary a, b ∈ A, a ≠ b, we find that after deleting Ei from <Bn, En> there 
remains at least one a ⎯ b path that goes via members L1 − {Ei} only, and this holds for every 
choice of a and b, then Ei is not a member of any edge basis of <A, E> that is included in L1 
and we start again with L2 = L1 − {Ei}. If not, i.e. if Ei lies on every a ⎯ b path for at least 
one choice of a and b, then Ei belongs to at least one edge basis of <A, E> that is included in 
L1, and if this is true for every Ei ∈ L1, then L1 is an edge basis of <A, E>. Computer 
implementation of part 4 is thus tedious, but simple in principle. We choose any a and b and 
set up the path tree displaying all a ⎯ b paths. We delete Ei from the path tree. We see if there 
is still at least one a ⎯ b path.  If there is, we repeat for each choice of a and b. We reject Ei if 
there is an alternative path, which must be via members of L1 - {Ei}, for every choice of a and 
b. If for even one choice of a and b we find that Ei lies on every a ⎯ b path then we keep Ei as 
a member of an edge basis of <A, E> and move on to test another member of L1. Repeat until 
every member of L1 has been tested for deletion or acceptance, thus moving through L2, L3, --
- in turn we find an edge basis for <A, E> in L1.  
 
To close this section we return to theorem 2.3.5. Related to a set of edges that preserves 
reachability, i.e. an edge basis, is a set of edges that preserve connectedness.  
 
Definition 2.3.2: Let <A, E> be a connected hypernet. A connectedness preserving set of 
edges of <A, E> is a set Q ⊆ E which is such that <A, Q> is connected. ♦ 
 
How can we find a minimal connectedness preserving set Q ⊆ E in <A, E>? 
 
Theorem 2.3.7: Let <A, E> be a connected hypernet. W is a spanning walk of minimal length 
in <A, E> iff EW = { Ei ∈ E ⏐W goes via Ei} is a minimal set of edges that preserves the 
connectedness of <A, E>. ♦ 
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Proof: If W is a spanning walk of minimal length in the connected hypernet <A, E> then 
every Ei such that W goes via Ei is needed to preserve the connectedness of <A, E>. 
Conversely, if E' ⊆ E is a minimal connectedness preserving set of edges for <A, E> then, 
since <A, E> is connected, it has at least one spanning walk, and at least one of these 
spanning walks will use all, and only, the members of E'. Since E' is minimal, such a spanning 
walk will be of minimal length ⏐E'⏐. ♦ 
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2.4 Deletion of Vertices 
 
It is possible that we may want to “trim” vertices from <A, E> before certain searches are 
carried out. In doing so we must preserve the connectedness and reachability necessary for the 
search, so we must know, quite precisely, the vulnerability of <A, E> with respect to deletion 
of each Ai ∈ A. This is not an easy matter!  
 
We open this discussion with a comment in the form of a lemma. Let <A, E> be any hypernet, 
and let B ⊆ A. Consider the following sub-hypernets of <A,E> - see section 1.5 and definition 
2.1.1 - 
• <B, E↑B>   
• <A,E(B)> 
• <A,E[B]>  
• <A,E>[B]  
 
If B = A then all but possibly the second are precisely <A,E>. We see from the definitions, 
that E ↑B ⊆ E (B) ⊆ E [B]. 
 
Lemma 2.4.1: 
(1) <A, E (B)> ∠ <A, E [B]> 
(2)       < B, E↑B>  ∠  <A, E>[B] ∠ <A,E[B>]>. ♦ 
 
Proof:  
(1) To construct <A, E [B]> from <A, E (B)> we must add zero or more edges to <A, E 

(B)>. 
(2) First notice that the context-hypernet <A, E>[B] has vertex set at least B. To construct 

<A, E>[B] from <B, E↑B> we must add zero or more vertices to B, and also zero or 
more edges to E↑B. Next notice that <A, E>[B] has edge set E[B], so to construct <A, 
E [B]> from <A, E>[B] we must add zero or more vertices. ♦ 

 
What we need to do, basically, is to examine the relationship between “joinedness” and 
vertices in order to begin to see what deletion of a vertex may do to a hypernet <A, E>. 
 
Theorem 2.4.1: Let a, b, c be distinct members of A in a hypernet <A, E>. Then (a - b - c) in 
<A, E> iff a and c are joined in <A, E> and non-joined in <A - {b}, E↑(A - {b})>.♦ 
 
Proof: If we have (a - b - c), so a and c are joined in <A, E>, and we delete b from <A, E> to 
produce <A - {b}, E↑(A - {b})> then all paths a ⎯ c disappear from <A, E>, so a and c are 
non-joined in <A - {b}, E↑(A - {b})>. Conversely, if a and c are non-joined in <A - {b}, 
E↑(A - {b})> but are joined in <A, E>, then joining the context-hypernet of b to <A - {b}, 
E↑(A - {b})> to produce <A, E> must add in a set of at least one path a ⎯ c, and b will be 
between a and c on all those added a ⎯ c paths, i.e. we will have (a - b - c) in <A, E>.♦ 
 
What is a “worst case” vertex deletion? 
 
Definition 2.4.1: A vertex b ∈ A of a hypernet <A, E> is called a cut-vertex of <A, E> iff 
there exist a, c ∈ A such that (a - b - c) in <A, E>.♦ 
 
Theorem 2.4.2: Let <A, E> be a connected hypernet. The following statements are logically 
equivalent for every b ∈ A: 
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(1) b is a cut-vertex in <A, E>. 
(2) <A - {b}, E↑(A -{b})> is disconnected. 
(3) There exists a partition {A1, A2} of A - {b} such that for all a ∈ A1 and all c ∈ A2 

we have (a - b - c) in <A, E>. 
(4) There exist a, c ∈ A such that (a-b-c) in <A, E>.♦ 
 
Proof: 
(1) ⇒ (2): If b is a cut-vertex of <A, E> then there exist a, c ∈ A such that (a - b - c) in <A, 
E>. But then a and c are not joined in <A - {b}, E↑(A - {b})>, so they belong to different 
components of <A - {b}, E↑(A - {b})>, and hence <A - {b}, E↑(A - {b})> is disconnected. 
(2) ⇒ (3): <A - {b}, E↑(A - {b})> is disconnected. Let A1 ⊂ A be the vertex set of a 
component of <A - {b}, E↑(A -{b})> and A2 be the vertex set of any other component of this 
hypernet. Let a ∈ A1 and c ∈ A2. Since <A - {b}, E↑(A - {b})> is disconnected there is no 
path a ⎯ c in <A - {b}, E↑(A - {b})>, but since <A, E> is connected there is at least one path 
a ⎯ c in <A, E>, and every such path has b vertex between a and c in <A, E>, so (a - b - c) in 
<A, E>. 
(3)  ⇒ (4): Follows at once from (3). 
(4)  ⇒ (1): Follows at once from the definition of a cut vertex. ♦ 
 
Corollary 2.4.1: Vertex b ∈ A of a connected hypernet <A, E> is a cut-vertex of <A, E> iff 
<A - {b}, E↑(A -{b})> has more components than <A, E>.♦ 
 
Proof : Follows from part (2) of theorem 2.4.2. ♦ 
 
The next small hold that we can get on the slippery business of vertex deletion involves trying 
to find out what deletion of a particular vertex from <A, E> does to its connectedness.  
 
Definition 2.4.2: Vertex b ∈ A of a hypernet <A, E> is called an (x, y)- vertex of <A, E> iff 
<A, E> is in Cx and <A - {b}, E↑(A - {b})> is in Cy. b is called an strengthening vertex iff   x 
> y, a neutral vertex iff x = y, and a weakening vertex iff x < y. ♦ 
 
Theorem 2.4.3: If hypernet <A, E> is in Cx and hypernet <A, Ec(a)> is in Cy, where Ec(a) =  
E - E(a), then x ≥ y. The theorem also holds for E[a]. ♦ 
 
Proof: Follows at once from the fact that deleting the edges E(a) ⊆ E, i.e. the edges in the 
name of a, from <A, E> to produce <A, Ec(a)> cannot increase the connectedness class of <A, 
E> as there are no (0,1)-edges in any hypernet. Thus x ≥ y (see theorem 2.2.2). ♦ 
 
Note in passing that there can exist weakening vertices, i.e. (0, 1)-vertices, in a hypernet.  
Consider the following example: 
 
a) <A, E> in C0:  
                            a■                            ■ c            ■ b   
 
 
b)<A{b},E↑(A{b})>in C1: 
 
                           a■                     ■c       
  

{a,c}  

{a,c}  
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Let’s try to get as close to definite answers as we can.  
 
Theorem 2.4.4:  
(1)   If b ∈ A is an (x, y)-vertex in <A, Ec(b)> then it is a (z, y)-vertex in <A, E> with z ≥ x. 
(2)   If b ∈ A is a (z, y)-vertex in <A, E> then it is an (x, y)-vertex in <A, Ec(b)> with z ≥ x. ♦ 
 
Proof: First notice that deleting b from <A, Ec(b)> yields <A - {b}, Ec[b]>, as does deleting b 
from <A, E>, and we are given that <A - {b}, Ec[b]> is in Cy.  
 
(1) Starting with <A - {b}, Ec[b]> we get <A, Ec(b)> by adding b and all the edges of  Ec(b) - 
E[b]. The result <A, Ec(b) > is in Cx. To get <A, E> from <A, Ec(b)> we must add all the 
edges of E - Ec (b), i.e. all the edges of E(b), and we get <A, E> which is in Cz. Now we 
cannot have z < x because adding edges to a hypernet can only strengthen its connectedness 
or leave it the same, so z ≥ x.  
 
(2) Starting with <A - {b}, Ec [b]>, which is in Cy, we get <A, E> by adding b and all the 
edges of E[b] and <A, E> is in Cz. Now to get <A, Ec(b)> from <A, E> we must delete all the 
edges of E(b). Let the connectedness class of <A,Ec(b)> be Cx.Then by theorem 2.4.3, z ≥ x. ♦ 
 
Corollary 2.4.2: For a hypernet <A, E> with b ∈ A, the particular cases of the theorem are:  
a) b is x, y in <A, Ec(b)>  ⇒ b is (z, y) in <A, E> with z ≥ x 
     1, 1                      1, 1 
     1, 0                      1, 0 
     0, 1                      1, 1 or 0, 1 
           0, 0                      1, 0 or 0, 0 
 
 
b) b is (z, y) in <A, E> ⇒ b is x, y in <A, Ec(b)> with z ≥ x. 
     1, 1                      1, 1 or 0, 1 
           1, 0                      1, 0 or 0, 0 
           0, 1                      0,1 
           0, 0                      0, 0  ♦ 
 
 
We cannot get much further with the topic of vertex deletion, which is not to say that it is an 
unimportant topic. The rest of this section lists some points that may be helpful in examining 
specific cases of vertex deletion.  
 
Theorem 2.4.5: Let B ⊆ A be any non-empty set for a hypernet <A, E>, and let B' = A - B. 
Further let E(B) = (∪ E(b) for b ∈ B) ⊆ E and E [B] = (∪ E [b] for b ∈ B) ⊆ E. Then we have  
(1) Ec(B) = (∩ Ec (b) for b ∈ B) and Ec [B] = (∩ Ec [b] for b ∈ B). 
(2) <A - B, E↑(A - B)> =< B', E↑(B')> is a sub-hypernet of <A - {b}, E↑(A - {b})> for 

every b ∈ B. 
(3) <A, Ec(B) > is a sub-hypernet of <A, Ec(b)> for every b ∈ B. 
(4) <B', E [B']> = ∩ <A - {b}, E [A - {b}]> for b ∈ B, where B' = A - B, so the order of 

the deletion of the  b ∈ B ⊆ A does not affect the result. ♦ 
 
Proof: 
(2) and (3) follow at once because it is less “damaging” to <A, E> to remove one b ∈ B from 
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<A, E> than to delete all the members of B from <A, E>.  
(4) We consider the case in which B = {a, b} ⊆ A since it is obvious if B = {a}, a ∈ A. First, 
<B', E [B']> = <A - {a, b}, E [A-{a, b}]>. Next we examine <A - {a}, E [A - {a}]> ∩  <A - 
{b}, E [A-{b}]>. Its underlying set is (A - {a}) ∩ (A - {b}) = (A - {a, b}). Its set of edges is E 
[A-{a}] ∩ (E [A-{b}], i.e. all the edges in E that do not involve a ∈ A and do not involve b ∈ 
A, i.e. E [A-{a, b}].  
Thus <A - B, E [A - B]> = <B', E [B']> = ∩ <A- b}, E [A-{b}]> over all b ∈ B in this case, 
and since ∩ and ∪ are commutative, the order in which the members of B are deleted does 
not matter. ♦ 
 
Here follow some observations that are all relatively easy to prove. Consider a hypernet   <A, 
E> with a, b ∈ A and a ≠ b, and the list  

• <A, E>, <A - {a}, E↑(A - {a})>,  
• <A - {b}, E↑(A - {b})>,  
• <A - {a, b}, E↑(A - {a, b})>,  
• <A, Ec(a)>, <A, Ec(b)>, <A, Ec({a, b}) >  

of sub-hypernets of <A, E>. Then 
 
(1) Let s ∈ A - {a, b}. d(s) in <A, E> is ≥ its value in all the other members of the list. Its 

value in <A, Ec(a)> is ≥ its value in <A - {a}, E↑(A - {a})>, in <A - b}, E↑(A - {b})>, 
in <A - {a, b}, E↑(A - {a, b})> and in <A, Ec (a)>, <A, Ec (b)> and <A, Ec ({a, b})>. 
Its value in <A - {a}, E↑(A - {a})> is ≥ its value in <A - {a, b}, E↑(A - {a, b})>, and 
its value in <A, Ec ({a, b})> is ≥ its value in <A - {a, b}, E↑(A - {a, b})>. Further, its 
values in <A, Ec (a)>, <A, Ec (b)> and <A, Ec({a, b})> are ≥ its values in <A, Ec [a]>, 
<A, Ec[b]> and <A, E c[{a, b}]> respectively. 

(2) Vertex adjacency and edge adjacency in <A - {a, b}, E↑(A - {a, b})> ensures these 
adjacencies in all the other members of the list.  

(3) For all s, t ∈ (A-{a, b}) the length of the shortest s ⎯ t path in <A-{a, b}, E↑(A-{a, 
b})> is ≥ the length of the shortest s ⎯ t path in each of the other members of the list.  

(4) If <A, Ec({a, b}) > is connected then so are <A, Ec(a) >, <A, Ec(b) > and <A, E>. 
Every component of <A, Ec({a, b}) > is a sub-hypernet of a component of <A, E>.  

(5) Every vertex basis of <A, Ec({a, b}) > contains a vertex basis of <A, Ec(a)>, of < A, 
Ec(b)>, and of <A, E>. ♦ 
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2.5 Hypertrees 
 
The simplest hypernet in which to conduct searches will be produced if <A, E> is trimmed to 
a hypertree or a spinney. These structures are described below. 
 
Definition 2.5.1: A hypernet <A, ET> is called a hypertree iff <A, ET> is minimally 
connected in the sense that deletion of any Ei ∈ ET will disconnect <A, ET>.♦ 
 
As a direct consequence of the definition we see that  
• Every hypertree is connected. 
• A hypertree has no circuits. 
• For every a, b ∈ A of a hypertree <A, ET>, either λ({a, b}) = ∅ or λ({a, b}) is a singleton.  
•  For every a, b ∈ A of a hypertree <A, ET>, there exists one and only one path a ⎯ b  
    in <A, ET>. 
 
Hypertrees are, as one might expect, typical of trees and play the same sort of role in hypernet 
theory as trees do in graph theory. Hypertrees are simple, but can be important as sub-
hypernets of <A, E>. We present a few theorems that help to characterize hypertrees.  
 
Theorem 2.5.1: The following statements are logically equivalent:  
(1) T = <A, ET> is a hypertree. 
(2) T is connected and has no circuits. 
(3) T is connected and has ⏐A⏐- 1 edges each of which labels a distinct vertex adjacency. 
(4) T has no circuits, and has ⏐A⏐ - 1 vertex adjacencies each of which has a singleton  

label. 
(5) For all a, b ∈ A, there is precisely one path a ⎯ b in T. ♦ 
 
Proof:  
(1) ⇒ (2): If T is a hypertree then it is minimally connected, so it is connected. Assume that 
there is a circuit in T. Then deletion of any edge in this circuit cannot disconnect T, so T is not 
minimally connected. It follows that T has no circuits.  
(2) ⇒ (3): If T is connected then it has at least ⏐A⏐ - 1 edges, and thus vertex adjacencies 
with at least a singleton label on each. If T has more than ⏐A⏐ - 1 edges then it must have at 
least one circuit. It follows that T has precisely ⏐A⏐ - 1 edges. If two of these edges belong to 
one label set then there is an arc that has no label from T, which is impossible, so each edge in 
T must belong to a singleton label on a vertex adjacency. 
(3) ⇒ (4): By the argument above, T can have no circuits as it is connected and has ⏐A⏐ - 1 
edges. Since each edge labels a single vertex adjacency there are ⏐A⏐ - 1 vertex adjacencies, 
and each of these has a singleton label consisting of a unique edge, though we may have 
edges that are equal sets of course, because T has no circuits. 
(4) ⇒ (5): T has no circuits, and has ⏐A⏐ - 1 vertex adjacencies each with a singleton label. It 
follows that T is connected, so for a, b ∈ A there is at least one path a ⎯ b in T. Suppose 
there was another distinct path between a and b in T. Then T would have at least one circuit. 
It follows that for all a, b ∈ A there is a unique path a ⎯ b in T.  
(5) ⇒ (1): T has precisely one path a ⎯ b for all a, b ∈ A, so T is connected. Deletion of any 
edge on such a path will disconnect T, so T is minimally connected, and hence T is a 
hypertree. ♦ 
 
Definition 2.5.2: A vertex a ∈ A of a hypertree T = <A, ET> is called a pendant of T iff   d(a) 
= 1. Any a ∈ A that is not a pendant has d(a) ≥ 2 and is called an internal vertex of T. ♦ 
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Since a tree T = <A, ET> has ⏐A⏐ - 1 vertex adjacencies, each with a singleton label, 
summing over all a ∈ A yields Σ d(a) = 2 (⏐A⏐ - 1), and this number is divided among the 
⏐A⏐ vertices in such a way that no a ∈ A has d(a) = 0. If ⏐A⏐ ≥ 2, so that the sum of the 
degrees is ≥ 2, then T has at least two pendants. Deletion of any internal vertex from any 
hypertree T will disconnect T.  
 
Theorem 2.5.2: An element a ∈ A of a hypertree T = <A, ET> is a pendant of T iff there is 
precisely one edge Ei ∈ ET with{a} ⊂ Ei that is incident with a. ♦ 
 
Proof: If a ∈ A is a pendant then we must have precisely one edge Ej ∈ ET incident with a 
and with {a} ⊂ Ej so that d(a) = 1. Further, there can be no other edge Ek ∈ ET that is incident 
with a, because then d(a) would not be 1 and so a would not be a pendant of T. Conversely, if 
we have precisely one edge Ej ∈ ET with {a} ⊂ Ej that is incident with a then it is clear that 
d(a) = 1, so a is a pendant of T. ♦ 
 
Next we meet a property of hypertrees that does not appear for trees.  
 
Theorem 2.5.3: Deletion of a pendant a ∈ A from a hypertree T = <A, ET> will disconnect T 
iff there is at least one vertex adjacency (c, Ei , d), c, d ∈ A and Ei ∈ ET, with a ≠ c and a ≠ d 
and a ∈ (Ei - {c, d}), and d(a) = 1. ♦ 
 
Proof: If only a pendant a is deleted from T then this will not disconnect T, so if this deletion 
is to disconnect T then deletion of a must delete at least one edge not incident with a from T. 
Conversely, if a ∈ A and a ∈ (Ei - {a, d}) for some (c, Ei, d) in T then deletion of a from T 
will disconnect T, and since d(a) = 1, a is a pendant. ♦ 
 
Definition 2.5.3: Given any connected hypernet <A, E>, T = <A, ET> with ET ⊆ E is said to 
be a spanning hypertree of <A, E> iff T is a minimally connected sub-hypernet of <A, E>.♦ 
 
Theorem 2.5.4: Every connected hypernet <A, E> has at least one spanning hypertree. ♦ 
 
Proof: <A, E> is connected. By part (2) of theorem 2.5.1, if <A, E> has no circuits then it is a 
hypertree and is of course spanning. If <A, E> has a circuit, delete one edge on that circuit 
and test the result. Either it is connected and has no circuits, so it is a spanning hypertree, or it 
is connected and has a circuit. In the latter case, delete one edge on that circuit and test the 
result. Either it is connected and has no circuits, so it is a spanning hypertree, or it is 
connected and has a circuit. Proceeding in this manner we produce a spanning hypertree that 
is a sub-hypernet of <A, E>. ♦ 
 
Let <A, E> be a hypernet and let T = <A, ET> be a spanning hypertree of <A, E>. The ⏐ET⏐= 
⏐A⏐- 1 edges are called branches of <A, E> with respect to T, and the remaining   |E - ET| 
edges of <A, E> are called chords of <A, E> with respect to T. Since any hypernet  <A, E> is 
such that A is partitioned by the components of <A, E>, and since each of these components 
has at least one spanning hypertree, <A, E> can be spanned by a forest of k spanning 
hypertrees where k is the number of components of <A, E>, and of course k = 1 iff <A, E> is 
connected.  
 
Consider a connected hypernet <A, E> and a spanning hypertree T = <A, ET> of <A, E>. 
Now there may be another spanning hypertree T' = <A, E'T> of <A, E> that differs from T 
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only inasmuch as for at least one vertex adjacency (a, Ei , b) in T, T' has in it the vertex 
adjacency (a, Ej , b) with a, b ∈ A and Ei, Ej ∈ E, Ei ∈ ET, Ej ∈ E'T, and Ei ≠ Ej. This leads to 
the following definition.  
 
Definition 2.5.4: Let T = <A, ET> be a spanning hypertree of a connected hypernet <A, E>. 
The join of all the spanning hypertrees of <A, E> that have precisely the same vertex 
adjacencies {a, b}, a, b ∈ A, as T but are pairwise different in at least one vertex adjacency by 
virtue of containing that vertex adjacency by an edge Ej ∈ E different from the edge Ei ∈ ET 
by which the same two vertices are adjacent in T, is called a spinney of <A, E>.♦ 
 
A spinney has no circuits.  
 
The following theorem is a standard for spanning trees, but for hypertrees it has a slight twist 
in the tail. 
 
Theorem 2.5.5: Let <A, E> be a connected hypernet. A sub-hypernet <A, ET>, ET ⊆ E, of 
<A, E> is a spanning hypertree of <A, E> iff, for all a, b ∈ A, transferring any Ei ∈ (λ({a, b}) 
- λT({a, b})) to λT({a, b}), where λT is the labelling function of T, yields a connected 
spanning sub-hypernet <A, (ET ∪ {Ei})> of <A, E> such that <A, (ET ∪ {Ei})> has precisely 
one closed walk of length 2 that uses two distinct edges but only one arc {a, b}. ♦ 
 
Proof: If transferring any edge from (λ({a, b}) - λT({a, b})) to λT({a, b}) yields a spanning 
sub-hypernet of <A, E> that has precisely one closed walk of length 2 as in the theorem 
statement then <A, ET> is minimally connected and must be a spanning hypertree of <A, E>. 
Conversely, if <A, ET> is a spanning hypertree of <A, E> then transferring precisely one edge 
Ei from (λ({a, b}) - λT({a, b})) to λT({a, b}) for any a, b ∈ A that are vertex adjacent in   <A, 
ET> will yield at least one such closed walk, with vertices a and b in <A, (ET ∪ {Ei})>, since 
<A, ET> is minimally connected. The transfer cannot yield more than one such closed walk 
unless ⏐λT({a, b})⏐ > 1 before the transfer, which is impossible since <A, ET> is a hypertree 
and thus ⏐λT({a, b})| = 1. ♦ 
 
While we will not pursue the topic here, the next definition opens the way to the study of 
circuits in terms of spanning hypertrees.  
 
Definition 2.5.5: Let <A, E> be a connected hypernet and let T = <A, ET> be a spanning 
hypertree of <A, E>. A closed path formed by transferring precisely one edge Ei from (E - ET) 
to ET to produce <A, (ET ∪ {Ei})> is called a fundamental circuit of <A, E> with respect to 
T. The number of chords, and hence the number of fundamental circuits, of a connected 
hypernet <A, E> is the same with respect to every spanning hypertree <A, ET> of <A, E>. 
This number is called the cyclomatic number ν(<A, E>) of <A, E>. ♦ 
 
An analysis of circuits in a trimmed <A, E> is part of further trimming to a hypertree or 
spinney. We have seen how to use fast access cascades, or in this case, equivalently, limited 
access cascades, on the arcs (without labels) of a trimmed <A, E> to find out whether any 
given Ai ∈ A lies on at least one circuit - see constructional scheme 1.3.4.  
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2.6. Connectivity and Cut-Sets 
 
Another approach to the analysis of <A, E> is to examine its “connectivity” - see below. An 
introduction to the notion of connectivity in hypernets follows. We focus on the question of 
connectedness of components of <A, E> (or a trimmed <A, E>). How “strongly” are they 
connected, and what do we have to do, minimally, to destroy their connectedness? This 
clearly is of some importance when “trimming” before a search.  
 
Definition 2.6.1: Let <A, E> be a connected hypernet. R ⊆ E is an edge cut-set of <A, E> iff 
<A, (E - R)> is a disconnected sub-hypernet of <A, E> and no proper subset of R has this 
property. V ⊆ A is a vertex cut-set of <A, E> iff <A - V, E↑(A - V)> = <Vc, E↑Vc> is a 
disconnected sub-hypernet of <A, E> and no proper subset of V has this property. ♦ 
 
Observations: Let <A, E> be a connected hypernet.  
(1) {a} ⊆ A is a vertex cut-set of <A, E> iff a is a cut-vertex in <A, E>. 
(2) If R ⊆ E is an edge cut-set of <A, E> and every Ei ∈ R is such that a ∈ Ei, a ∈ A, but 

is not adjacent with any vertex by Ei , then a is a cut-vertex in <A, E>. 
(3) If we partition A into two sets A1 and A2 then any minimal set of edges of <A, E> the 

deletion of which cuts all the paths a1 ⎯ a2 with a1 ∈ A1 and a2 ∈ A2 is an edge cut-
set of <A, E>. Any minimal set of vertices of <A, E> with the same property is a 
vertex cut-set of <A, E>. 

(4) T = <A, ET> is a hypertree iff every Ei ∈ ET constitutes an edge cut-set {Ei} of T. 
Further, {c} ⊆ A is a vertex cut-set of <A, ET>, i.e. c is a cut-vertex of T, iff c is an 
internal vertex of T or c is such that c ∈ Ei - {a, b} for at least one vertex adjacency (a, 
Ei , b) in T with a, b ∈ A and c ≠ a and c ≠ b and Ei ∈ ET. ♦ 

 
Definition 2.6.2: Let <A, E> be a connected hypernet. The smallest number of vertices that 
must be deleted from <A, E> to disconnect it is called the vertex connectivity vc <A, E> of 
<A, E>, and the smallest number of edges that must be deleted to disconnect <A, E> is called 
the edge connectivity ec <A, E> of <A, E>.♦ 
 
Recall that deleting a vertex adjacency (a, Ei , b) from a hypernet <A, E> means to delete Ei 
from λ({a, b}), and that this does not delete the arc between a and b unless λ({a, b}) = {Ei}. 
 
Theorem 2.6.1: Let <A, E> be a connected hypernet. Then vc<A, E> ≤ ec<A, E> = minimum 
degree, min d(a), of all the a ∈ A in <A, E> when loops are disregarded. ♦ 
 
Proof: We can clearly disconnect <A, E> by deleting min d(a) edges from <A, E>, thereby 
cutting off vertex a. Deletion of these edges Ei can be achieved by deleting one vertex from 
each of these edges Ei other than vertices adjacent by that Ei (one of which is of course a). It 
follows that, since these vertices need not all be distinct for distinct edges, vc<A, E> ≤ ec<A, 
E>.  It is clear that ec<A, E> = min d(a). ♦ 
 
The next three theorems present simple characteristics of an edge cut-set.  
 
Theorem 2.6.2: R ⊆ E is an edge cut-set of a spinney S = <A, E> iff there is at least one pair 
{a, b} ⊆ A for which R = λ({a, b}).♦ 
 
Proof: If R = λ({a, b}) then deletion of R from S will disconnect S and no proper subset of R 
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will “cut” a from b, so R is an edge cut-set of S. If R is an edge cut-set of S then deletion of R 
from S must “cut” the arc between two vertices a, b ∈ A in S. It follows that R ⊇λ({a, b}) for 
some a, b ∈ A, and no proper subset of R will “cut” a from b, so R =λ({a, b}) . ♦ 
 
Theorem 2.6.3: Every edge cut-set R ⊆ E of a connected hypernet <A, E> is such that at least 
one edge from every spanning hypertree of <A, E> belongs to R. ♦ 
 
Proof: If deletion of R from <A, E> does not entail deletion of at least one edge from each 
spanning hypertree of <A, E> then there will remain in <A, E - R> at least one spanning 
hypertree of <A, E>. But then <A, E - R> is connected, so R cannot be an edge cut-set of  <A, 
E>. It follows that deletion of an edge cut-set from <A, E> “cuts” every spanning hypertree of 
<A, E>.♦ 
 
Theorem 2.6.4: Every closed path of length > 1, in a connected hypernet <A, E>, has an even 
number of edges in common with every edge cut-set of <A, E>.♦ 
 
Proof: Let R ⊆ E be an edge cut-set of <A, E>. Deletion of R from <A, E> will partition A 
into two subsets, A1 and A2, in <A, E - R> in such a way that for any a1 ∈ A1 and any a2 ∈ A2 
there is no path a1 ⎯ a2 in <A, E - R> because there is at least one member of R on every 
such path. Consider any closed path P in <A, E>. If all the vertices that lie on this closed path 
belong to A1, or if they all belong to A2, then R has zero edges in common with that path. If 
some of the vertices on P belong to A1 and others to A2, then P must cross back and forth 
between A1 and A2. Start tracing P at a1 ∈ A1 for example. P must end at a1, so, in tracing P, 
every time we move to A2 with an edge on P we must move back to A1 with another edge on 
P (since P is a path). Thus P shares an even number of edges with R. ♦ 
 
Theorem 2.6.5: A set R ⊆ E is an edge cut-set of a connected hypernet <A, E> iff <A, E - R> 
= <A, Rc> is a maximal disconnected spanning sub-hypernet of <A, E> in the sense that for 
all R' with Rc ⊆ R' ⊆ E, <A, R'> is a connected hypernet. ♦ 
   
Proof: If R ⊆ E is an edge cut-set of <A, E> then <A, Rc> is a disconnected sub-hypernet of 
<A, E>, and no Rs ⊂ R has this property, so if R' is such that Rc ⊂ R' then <A, R'> is 
connected, i.e. <A, Rc > is a maximal disconnected spanning sub-hypernet of <A, E>. 
Conversely, if <A, Rc > is a maximal disconnected spanning sub-hypernet of <A, E> then 
deletion of R from <A, E> disconnects <A, E>, and deletion of any R' ⊂ R will not disconnect 
<A, E>, i.e. <A, (R')c > is connected. It follows that no proper subset of R will, when deleted, 
disconnect <A, E>, so R is an edge cut-set of <A, E>. ♦ 
 
Constructional Scheme 2.6.1: Let R ⊆ E be any disconnecting set of edges of a connected 
hypernet <A, E>. To find an edge cut-set included in R we may proceed as follows.  
 
(1) Find any Ek ∈ R such that Ek is a bridge in <A, E>. Then {Ek} ⊆ R is an edge cut-set 

of <A, E>. If there is no such member of R, proceed to (2). 
(2) Choose any Ek ∈ R and form <A, E - {Ek}>. Find any Eℓ∈ R - {Ek} such that Eℓ is a 

bridge in <A, E - {Ek}>. Then {Ek, Eℓ} ⊆ R is an edge cut-set of <A, E>. If there is no 
such member of R - {Ek}, set Rt

1 = {Ek} and proceed to (3).  
(3) Choose any Em ∈ R - Rt

1 and set Rt
2 = {Em} ∪ Rt

1. Form <A, E - Rt
2 > (which is      

<A, E - {Em, Ek}> here). Find any Eℓ ∈ R - Rt
2 such that El is a bridge in <A, E - Rt

2 >. 
Then Rt

2 ∪ {El} is an edge cut-set of <A, E>. If there is no such member of R - Rt
2, 
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repeat (3) defining Rt
m = {El} ∪ Rt

m-1, m = 3, 4, ..., successively. Eventually we find 
an edge cut-set Rt

n, or we find Rt
n = R, for some n, in which case R is an edge cut-set 

of  <A, E>. ♦ 
 
Comment: What we need to do is to find a bridge in (a sub-hypernet) of <A, E>, if one exists 
- see definition 2.2.4. First we recall that if Ei is a bridge in <A, E> then there is a vertex 
adjacency {a, b} in <A,E> such that λ ({a, b}) = {Ei}, where |A | ≥ 2. To find a bridge in a 
hypernet (with two or more vertices) then, we choose any vertex adjacency from the edge 
table of that hypernet and read the edge table to find whether that vertex adjacency occurs 
more than once. If it does then the edge on our choice vertex adjacency is not a bridge. If it 
does not, i.e. if it occurs only once in the edge table, then the edge on our vertex adjacency is 
a bridge in our hypernet. Test every vertex adjacency in turn until we find a bridge and stop, 
or until we have tested all vertex adjacencies and found no bridge.  
 
The scheme works because we know that R is a disconnecting set so there must be an edge 
cut-set included in R, and we keep “weakening” <A, E> by taking out members of R from 
<A, E> successively until we find, in R, a bridge of <A, E - Rt

m> in which case Rt
m ∪ 

{bridge} is an edge cut-set of <A, E>, or we do not find a bridge in any step in which case R 
is an edge cut-set of <A, E>. 
 
What about spinneys? 
 
Theorem 2.6.6: B ⊆ A is a vertex cut-set of a connected hypernet <A, E> iff B is a minimal 
set of vertices such that for every spinney S of <A, E> there is at least one internal vertex of S 
that belongs to B, or there is at least one vertex adjacency {a, b} in S such that a ∉ B and  b ∉ 
B and every Ei ∈ λ({a, b}) has (Ei - {a, b}) ∩ B ≠ ∅, or both. ♦ 
 
Proof: Suppose that B is a vertex cut-set. Then if the condition does not hold deletion of B 
from <A, E> will leave at least one hypertree T ∠ <A, E>, so <A - B, E↑(A - B) will be 
connected, contradicting the fact that B is a vertex cut-set of <A, E>. Conversely, if the 
condition holds then deletion of B from <A, E> disconnects every spinney S � <A, E>, and 
thus also <A, E>. Since B is minimal, B is a vertex cut-set of <A, E>. ♦ 
 
There is more about spinneys. 
 
Theorem 2.6.7: Let <A, E> be a connected hypernet and B ⊆ A be a vertex cut-set of <A, 
E>, and let S be any spinney in <A, E>. 
(1) Suppose that <A, E - E↑B> is connected, and let T = <A, ET> be a spanning hypertree 

in S. T = <A, ET> is a spanning hypertree of <A, E - E↑B> iff every Ei ∈ ET is such 
that  Ei  ⊄  B.  

(2) If T = <A, ET> is a spanning hypertree in <A, E - E(B) > then at least one internal 
vertex of S belongs to B. ♦ 

 
Proof: Recall that E↑B = {Ei ∈ E ⏐ Ei ⊆ B}. 
 
(1) If T is a spanning hypertree of <A, E - E↑B > then every Ei ∈ ET has Ei ⊄ B because if 
this were not so then Ei would not be a member of E - E↑B but would belong to E↑B and 
could thus not belong to a spanning hypertree in <A, E - E↑B >. Conversely, if every Ei ∈ ET 
has Ei ⊄ B then every Ei ∈ ET belongs to E - E↑B, so deletion of E↑B ⊆ E from <A, E> does 
not affect T = <A, ET>. T is a spanning hypertree of S ∠ <A, E>, so T is a spanning hypertree 
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of <A, E - E↑B>.  
 
(2) Recall that E(B) ⊆ E, B ⊆A, of <A, E> is the set E(B) = {Ei ∈ E ⏐(a, Ei, b), a, b ∈ A and 
(Ei - {a, b}) ∩ B ≠ ∅}, i.e. the set of all edges in the name of at least one member of B. Now 
T = <A, ET> is a spanning hypertree in <A, E - E(B)>, and B is a vertex cut-set of <A, E> so 
<A - B, E↑(A - B)> is disconnected. Thus deletion of all the edges of E(B) leaves <A, E - 
E(B)> connected, so <A, E - E(B)> has a spanning hypertree T, but deletion of B from <A, 
E> leaves <A - B, E↑(A - B)> disconnected, and this can only happen if B contains at least 
one internal vertex of T or at least one pendant of T that has a ∈λ({c, d}) for at least some c ≠ 
a and d ≠ a, a, c, d, ∈ A but c, d ∉ B, so that deletion of B from <A, E> will disconnect <A, 
E> but deletion of E(B) from <A, E> will not   disconnect <A, E>. ♦ 
 
A little more about the usefulness of spinneys follows, and then we close by pointing out a 
relationship between a cut-vertex and an edge cut-set.  
 
Theorem 2.6.8: Let B ⊆ A be a vertex cut-set of a connected hypernet <A, E>. Then <A, E - 
E(B)> is disconnected iff every spinney S of <A, E> has at least one vertex adjacency {a, b}, 
a, b ∈ A, such that every Ei ∈ λS({a, b}) has (Ei - {a, b}) ∩ B ≠ ∅, where λS is the labelling 
function of S. ♦ 
 
Proof: If <A, E - E(B)> is disconnected, by deleting only E(B) from <A, E>, then every 
spinney S of <A, E> is disconnected by the deletion of E(B) from <A, E>. To do this, deletion 
of E(B) from any spinney S must involve deletion of at least one arc in S. Thus there must be 
an {a, b} in S such that λS({a, b}) ⊆ E(B), so for each Ei ∈ λS({a, b}) we must have (Ei - {a, 
b}) ∩ B ≠ ∅. Conversely, if every spinney S in <A, E> has at least one vertex adjacency {a, 
b} such that every Ei ∈ λS({a, b}) has (Ei - {a, b}) ∩ B ≠ ∅, i.e. λS({a, b}) ⊆ E(B), then <A, E 
- E(B)> is disconnected. ♦ 
 
Theorem 2.6.9: If a ∈ A is a cut-vertex of a connected hypernet <A, E>, but not of  <A, E - 
E(a)>, then E(a) = {Ei ∈ E ⏐ (c, Ei, d) is a vertex adjacency by Ei in <A, E> and a ∈ (Ei - {c, 
d})} includes an edge cut-set of <A, E>. ♦ 
 
Proof: Deletion of a ∈ A from <A, E> leaves us with a disconnected hypernet <A - {a}, 
E↑(A - {a})>, but deletion of a from <A, E - E(a)> leaves it connected, i.e. <A - {a}, E - 
E(a)> is connected. Note that E - E(a) is the set of all the edges of E that are not in the name 
of a, while E↑(A - {a}) is the set of all edges that do not have a in them, so  E↑(A - {a}) ⊆ (E 
- E(a)). In corollary 2.8.2 on deletion of vertices we showed that if a is a cut-vertex of <A, E>, 
i.e. is (1, 0) in <A, E>, then it is (1, 0) or (0, 0) in <A, (E(a))c> =  <A, E - E(a)>. Now a is not 
a cut-vertex in <A, E - E(a)>, so it is not (1, 0) in <A, E - E(a)> and must thus be (0, 0). Thus 
<A, E - E(a)> is disconnected, so E(a) must be a disconnecting set of edges in <A, E> and 
hence E(a) includes an edge cut-set of <A, E>. ♦ 
 
Finally, we notice that if <A, E> is connected but <A, E - E (a)> is disconnected, then a is a 
cut-vertex of <A, E>.  The contra-positive is:   
If a is not a cut-vertex of <A, E> then <A, E - E (a) > is connected.  
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2.7 Blocks 
 
Inside components of <A, E>, or a trimmed <A, E>, we may have “less vulnerable” sub-
hypernets called blocks. Producing a relevant block in a component of <A, E>, by 
“trimming”, can be important in restricting search regions in <A, E>. An introduction to 
blocks follows. 
 
Definition 2.7.1: By a block <B, G> of a hypernet <A, E> we mean a maximal connected 
sub-hypernet, of <A, E>, that has no cut-vertex. ♦ 
 
Any block of <A, E> is a sub-hypernet of a component of <A, E>. 
 
Characterizing blocks is reasonably easy, and can be important with reference to searching in 
blocks of <A, E>. The following theorems approach such a characterization, culminating in 
theorem 2.7.3. 
 
Theorem 2.7.1: If <B, R> is a block of a hypernet <A, R> then <B, R> is a sub-hypernet of 
some block of a hypernet <A, E> with R ⊆ E. ♦ 
 
Proof: If <B, R> is a block of <A, R> then it is a sub-hypernet of <A, E>. Since <B, R> must 
then be a connected sub-hypernet, of <A, E>, with no cut-vertex, it is a sub-hypernet of some 
maximal connected sub-hypernet, of <A, E>, that has no cut-vertex, so <B, R> is a sub-
hypernet of some block of <A, E>. ♦ 
 
Theorem 2.7.2: Let <B, G> be a block of a hypernet <A, E>, with ⏐B⏐≥ 3. Then 
(1) there is no b ∈ B such that <B, G - G(b)> or <B - {b}, G↑(B - {b})> is in C0, and  
(2) there is no bridge in <B, G>, and  
(3) if every Ei ∈ G has ⏐Ei⏐ > 2 then there is no bridge in <B, G>. ♦ 
 
Proof:  
(1) <B, G> is connected. If there were some b ∈ B such that <B, G - G(b)> or <B - {b}, 

G↑(B - {b})> were disconnected then b would be a cut-vertex of <B, G>, so <B, G> 
would not be a block.  

(2) Suppose that Ei ∈ G is a bridge in <B, G>. Then there is a vertex adjacency (a, Ei, b), 
a, b ∈ B, that provides the only path between a and b in <B, G>. Since <B, G> is 
connected, and ⏐B⏐≥ 3, it follows that at least one of a and b is a cut-vertex of <B, 
G>. This contradicts the given fact that <B, G> is a block. 

(3) If every Ei ∈ G of the block <B, G> has ⏐Ei⏐> 2, then consider a vertex adjacency     
(a, Ei, b), a, b ∈ Ei ∈ G. If Ei is a bridge in <B, G> then deletion of any c ∈ (Ei - {a, 
b}) will disconnect <B, G>, so c would be a cut-vertex of <B, G>, which is 
impossible. It follows that there is no bridge in <B, G>. ♦ 

 
Corollary 2.7.1:  
(1) If a and b are distinct vertices of <B, G> then, for all c ∈ B, c ≠ a and c ≠ b, there is at 

least one path a ⎯ b that does not go via any Ei ∈ G for which c ∈ Ei. 
(2) If Ei ∈ G is a bridge in <B, G> then ⏐Ei⏐ = 2.  
(3) For all a ∈ B, there are no two distinct vertices b, c ∈ B such that every path b ⎯ c in  

<B, G> goes via some vertex adjacency (d, Ei, f) with a ∈(Ei - {d, f}). ♦ 
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Proof:  
(1) Follows from the fact that c is not a cut-vertex of <B, G>, so <B, G - G(c)> is 

connected.  
(2) If Ei ∈ G with⏐Ei ⏐> 2 were a bridge in <B, G> then, given any vertex adjacency       

(a, Ei, b) by Ei in <B, G>, a, b ∈ B, each c ∈ B with c ∈ (Ei - {a, b}) would be a cut-
vertex of <B, G>.  

(3) If there were such an a ∈ B, it would be a cut-vertex of the block <B, G>. ♦ 
 
Theorem 2.7.3: The following assertions are logically equivalent: 
(1) <B, G> is a block, of hypernet <A, E>, with ⏐B⏐≥ 3. 
(2) For all distinct a, b, c ∈ B of a hypernet <B, G> ∠ <A, E> there exists at least one 

path a ⎯ c, in <B, G>, which is such that b is not between a and c on a ⎯ c, and <B, 
G> is a maximal such sub-hypernet. 

(3) For all distinct a, b, c ∈ B of a block <B, G> ∠ <A, E>, there exists a path P1 joining a 
and c in <B, G> that satisfies the following conditions: 
a) P1 has length ≥ 2. 
b) Given any b ∈ (B - {a, c}) such that b is between a and c on P1, it is always 

possible to find a path P2 joining a and c in <B, G> such that b is not between a and 
c on P2, and <B, G> is a maximal such sub-hypernet of <A, E>. ♦ 

 
Proof:  
(1) ⇒ (2): There certainly exists a path a ⎯ c in <B, G> because <B, G> is a block with ⏐B⏐ 
≥ 3. Now b is not a cut-vertex of <B, G>, so we do not have (a - b - c), i.e. b is not between a 
and c on every path a ⎯ c in <B, G>. It. follows that there is at least one path    a ⎯ c in <B, 
G> such that b is not between a and c on that path. Because <B, G> is a block it is a maximal 
such sub-hypernet of <A, E>. 
(2) ⇒ (3): There is a path joining a and c in <B, G> such that b is not between a and c on that 
path. Let P1 be the path a ⎯ b ⎯ c, so P1 has length ≥ 2, and P1 exists because, from (2), 
every pair of vertices in B are joined in <B, G>. Further, we know from (2) that there exists a 
path a ⎯ c, in <B, G>, which is such that b is not between a and c on that path. Any such path 
will do for P2. Finally, maximality of <B, G> from part (2) remains valid because we have 
only used (2) to derive (3). 
(3) ⇒ (1): We know that ⏐B⏐ ≥ 3 because the length of P1 is at least 2. Further, all distinct a 
and c in B are joined in <B, G>, so <B, G> is connected. Now there are no distinct      a, b, c 
∈ B such that (a - b - c), for in choosing P1 as the concatenation of paths a ⎯ b ⎯ c we would 
then not be able to find a path P2 joining a and c such that b is not between a and c on P2. 
Thus <B, G> also has no cut-vertices, and we have derived (1). ♦ 
 
A final small point is set out in the next theorem.  
 
Theorem 2.7.4: Let <B0, G0> and <B1, G1> be distinct blocks, of a connected hypernet   <A, 
E>, for which B0 ∩ B1 = B01 ≠ ∅. Then B01 = {b}, a singleton, and given any a ∈ (B0 - B01) 
and any c ∈ (B1 - B01), b is between a and c on every path a ⎯ c in <B0 ∪ B1, G0 ∪ G1>, i.e. 
(a - b - c) in <B0 ∪ B1, G0 ∪ G1>. ♦ 
 
Proof: <B0 ∪ B1, G0 ∪ G1> is clearly not a block in <A, E>, and B01 ≠ ∅, which means that 
<B0 ∪ B1, G0 ∪ G1> is a connected sub-hypernet of <A, E>, so there exists at least one b ∈ 
B0 ∪ B1 such that b is a cut-vertex of <B0 ∪ B1, G0 ∪ G1>. Now b ∉ (B0 - B01) for, if it were, 
then b would be a cut-vertex of <B0, G0>, but <B0, G0> is a block. Similarly b ∉ (B1 - B01), so 
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we have b ∈ B01. Let p ∈ B01, with p ≠ b. Then we can find a path a ⎯ p in <B0, G0> such 
that b is not between a and p on a ⎯ p because b is not a cut-vertex of  <B0, G0>. Similarly 
we can find a path p ⎯ c in <B1, G1> such that b is not between p and c on p ⎯ c because b is 
not a cut-vertex of <B1, G1>. But then b is not between a and c on the concatenation of paths a 
⎯ p ⎯ c, which contradicts the fact that b must be a cut-vertex of <B0 ∪ B1, G0 ∪ G1>. Thus 
there is no such p ∈ B01, so B01 = {b}, and since b is a cut-vertex of <B0 ∪ B1, G0 ∪ G1> it 
follows that b must be between a and c on every path a ⎯ c in  <B0 ∪ B1, G0 ∪ G1> where a 
∈ B0 and c ∈ B1 and a ≠ b and c ≠ b. ♦ 
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3: Knowledge Hypernets 
 

3.1 Derivability 
 
We now turn our attention to the hypernet equivalent of a CRKS, called a Knowledge 
Hypernet (KH). Much of the work on KHs parallels that on CRKS’s. In a KH the data items 
of the NET are concept-names that could label course units.  
 
Let <A, T> be any CRKS, and let M(<A, T>) = <A, E> be the unique hypernet that arises 
from <A, T> by abstraction M. <A ,E> is then simply the hypernet that is abstracted from <A, 
T> by replacing each tuple Ti ∈ T with the tuple set Ei of Ti and preserving each vertex 
adjacency.  It is clear that <A, E> inherits the CRKS characteristics of <A,T> and we call 
every hypernet that is abstracted from a CRKS a Concept-Relationship Knowledge Hypernet, 
abbreviated to KH. Thus a KH has the following inherited properties and these may be 
regarded as a definitive description of a KH.  
 
By a Concept-Relationship Knowledge Hypernet, or simply a KH, we mean a hypernet  <A, 
E> such that 
(1) for all a ∈ A, a ∈ Ei ∈ E for at least one (non-loop) edge Ei, so E[a] ≠ ∅. Thus each a 

∈ A is associated with at least one other vertex of <A, E>. 
(2) There are no loop edges in <A, E>.  
(3) <A, E> is complete, by which we mean here that <A, E> has no isolates. 
(4) Every a ∈ A is derivable in <A, E>.  
(5) There is at least one p ∈ A that is a (hyper-)primary of <A, E>.  
(6) There is at least one g ∈ A that is a (hyper-)goal of <A, E>.   
(7) <A, E> has no closed derivation walks. ♦ 
 
From this point on we can visualize a direction for every vertex adjacency {a, b}, a, b ∈ A, in 
any KH <A, E>, namely the direction imposed by derivation. Thus we may replace arcs with 
arrows in each KH. How do we view the (hyper-)primaries and goals of a KH? 
 
Let <A, E> be any KH. Then p is a (hyper-)primary of <A, E> iff every vertex adjacency {p, 
b} by one or more Ej ∈ E that belong to λ({p, b}) is such that  
(1) p has only one (trivial) derivation by a path of length zero and a set of hypothesis X = 

∅ and  
(2) b is derivable by virtue of at least one X and betweenness sequence, for the vertex 

adjacency {p, b}, that starts with p and ends with b.  
 
Next, g is a (hyper-)goal of <A, E> iff there is no vertex adjacency {g, a} on any derivation 
path for any vertex a ∈ A in <A, E>. It is evident that since every vertex of <A, E> is a 
derived vertex, we must have the following: 
(1) There is at least one (hyper-)primary p ∈ A of <A, E> for which there exists at least 

one vertex adjacency (p, Ei, b), b ∈ A, in <A, E> for which every member of (Ei - {b}) 
is a primary of <A, E>. 

(2) For every (hyper-)goal g ∈ A of <A, E>there is at least one derivation path, from 
some primary to g, for which every betweenness sequence ends with g and has no 
other entry of g in it. 

 
We will now henceforth drop the prefix hyper- for KHs. 
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It is easy to show that, in a KH <A, E>, no primary of <A, E> is reachable from any other 
primary of <A, E> by means of any derivation path. The same applies to the goals of <A, E>. 
Notice that in every KH there must be at least one edge in which all but one member of that 
edge are primaries of that KH, just as is the case for CRKS’s. 
 
We now turn to a description of the inherited derivability in a KH. It is essentially the same as 
that for a CRKS, but we repeat it here, and examine it quite closely in section 3.2. It is vital to 
have a complete grasp of the technical aspects of derivability when working with CRKS’s and 
KHs in practice. 
 
Definition 3.1.1: A betweenness sequence for a path-family f(a1 ⎯ an) in a hypernet <A, E> 
is found as follows. First, for all the members of λ({ai, ai+1}), i = 1, 2, ..., n - 1, for each vertex 
adjacency in f(a1 ⎯ an) by which ai and ai+1 are adjacent in f(a1 ⎯ an), we list ai, Ei1, Ei2, ..., 
Eim(i), ai+1. We then chain these lists together in succession from a1 to an for f(a1 ⎯ an). Next 
we write out each Eix in the sequence, i.e. we replace each Eix by the members of the set {v ∈ 
A⏐v ∈ Eix}, i = 1, 2, ..., n - 1, getting a sequence of members of A starting with a1 and ending 
with an. This is a betweenness sequence for f(a1 ⎯ an) in <A, E>. Such a betweenness 
sequence is clearly not unique. (Note that a path-family is not empty, and it may only have 
one member.) ♦ 
 
Next we deal with the detail of the inherited derivability in a KH. The following definition of 
derivability should be read in conjunction with that for formal schemas. 
 
Definition 3.1.2: 
(1) Given any KH <A, E> and a set X ⊆ A, we say that a ∈ A is immediately derived 

from hypotheses X iff there is at least one x ∈ X and at least one Ei ∈ E by which 
there is a vertex adjacency (x, Ei, an(i) = a), with every member of (Ei - {an(i)}) a 
member of X.  

 
(2) Given any KH <A, E> and a set X ⊆ A, we say that a ∈ A is derivable in terms of 

hypotheses X in <A, E> iff there is a path p ⎯ a, p ∈ A, in <A, E> such that there 
exists at least one betweenness sequence S for p ⎯ a with the property that for every t 
∈ S we have  

          a) t is a primary of <A, E> or     
          b) t ∈ X or  
          c) t is immediately derived from a subset of St, where St is the set of all 

predecessors of t in S. 
(3) We say that a ∈ A is derivable from P in <A, E>, or simply derivable in <A, E>, 

where P is the set of all primaries of <A, E>, iff a is derivable in terms of some X ⊆ A, 
by virtue of at least one path p ⎯ a and a betweenness sequence S for p ⎯ a, with 
either X = ∅ or such that every x ∈ X is derivable from P. 

(4) If a ∈ A is derivable in <A, E>, by virtue of a path p ⎯ a, where p is derivable in <A, 
E>, then  p ⎯ a is called a derivation path for a in <A, E> and each such path to a is 
called a derivation path for a in <A, E>, and a is said to be a derived vertex of <A, 
E>.♦ 

 
Definition 3.1.3: The context-hypernet of a ∈ A in a knowledge hypernet <A, E> is a 
hypernet <A, E>[a] = <A[a], E[a]> ∠ <A, E> that is defined as follows. E[a] is, as defined 
before, the set of all Ei ∈ E that have a ∈ Ei, and A[a] = {b ∈ A⏐ b belongs to at least one of 
the Ei ∈ E[a] }.♦ 
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Thus we can write A[a] = {∪ Ei ⏐Ei ∈ E[a]}. Since E[a] = E↑A [a], because E↑A[a] is the set 
of all Ei ∈ E with Ei ⊆ A[a] and each such Ei must have a ∈ Ei given that A[a] = {∪ Ei⏐Ei ∈ 
E[a]}, we can also write <A,E>[a] = <A[a], E↑A[a]>, the maximum sub-hypernet of <A,E> 
that is induced by A[a] ⊆ A. So <A,E>[a] = <A[a], E[a]> = <A[a], E↑A[a]>. Deleting a ∈ A 
from a hypernet <A,E> entails deleting all the vertices and edges of <A,E>[a]. 
 
Definition 3.1.4: A KH <A, E> is said to be connected iff there is at least one path between 
every pair of distinct vertices in <A, E>.� 
 
As for CRKS’s, we have the following: 
 
Theorem 3.1.1: If a KH <A, E> is connected then it is complete, but the converse is not 
always true. ♦ 
 
Proof: If <A, E> is connected then it has no isolates, so <A, E> is complete. To prove that the 
converse is not always true we exhibit the following hypernet, which is complete but not 
connected: 
 
                   c ■                        d ■           

         

   λ ({a, c})                 λ({b, d})      

                 

                  a   ■                       b  ■    
 

where λ({a, c}) = {Ei} and Ei = {a, b, c} and where λ({b, d}) = {Ej} and Ej = {b, d} for 
example. Notice in passing that if we delete b, for example, then we get  
 
          c ■               a ■                d ■                     
 
The next two theorems tell us something useful about paths in a KH. 
 
Theorem 3.1.2: Let <A, E> be a KH. There is at least one derivation path that joins each 
primary of <A, E> to some goal of <A, E> in <A, E>, and there is at least one derivation path 
that joins each goal of <A, E> to some primary of <A, E> in <A, E>.♦ 
 
Proof: Let p be any primary of <A, E>. There is at least one derivation path incident with p. 
Follow that path incident with p. <A, E> has no circuits, and thus this path must have a finite 
length and can only be incident with a goal on the end of the path because no derivation path 
can end with another primary of <A, E>. Let g be any goal of <A, E>. There is at least one 
derivation path incident with g. Again <A, E> has no circuits so this path, which we follow in 
the “reverse derivation” mode, must have finite length and must end with a primary on the 
other end because it could not end with another goal of <A, E> unless we go with a derivation 
path to that goal, thus mixing forward and reverse directions along that path, and thus 
generating a “derivation semi-path” that is not a derivation path. ♦ 
 
Theorem 3.1.3: Let <A, E> be a KH, and let a ∈ A be neither a primary nor a goal of  <A, 
E>. Then there is at least one derivation path p ⎯ g in <A, E>, p some primary of  <A, E> 
and g some goal of <A, E>, such that a lies on p ⎯g, i.e. a is a member of the vertex 
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subsequence of p ⎯ g. ♦ 
 
Proof: Since <A, E> is a KH, a is a derived vertex in <A, E>. Since a is a derivable, there is a 
derivation path p⎯a, p ∈ A, with p primary, in <A, E>. By theorem 3.1.2 this path must 
continue on to some goal of <A, E>.♦ 
 
We now need to say something more definite about paths in a KH. 
 
Constructional Scheme 3.1.1: To construct a derivation path tree, for a KH <A, E>, 
displaying and distinguishing every derivation path from each primary of <A, E>. We will 
refer to vertices and edges of <A, E> and nodes and branches of the tree. Note that we should 
bear in mind that derivation imposes “directionality” on a KH. It is clear that we can follow 
paths in a KH in the “derivation direction” only. This directional ordering on paths in a KH 
may appear just to reduce a KH to a CRKS, but in the case of a KH we have  
(1) a simplification of the process of finding CRKS isomorphisms and  
(2) no ordering and no repetition of vertices in the edges by which vertices are adjacent 

other than preservation of vertex adjacencies.  
(3) In an interpretation of a KH <A, E>, the tuple that arises from any Ei ∈ E can use the 

members of Ei in any order and can repeat any v ∈ Ei any number of times in that tuple. 
 
Thus we have the potential, for example, to use any teaching meta-language when we pick an 
interpretation of a KH in the educational applications mentioned in [GVS99]. The KH model 
is more flexible than the CRKS one in applications, and we have a strong link between the 
two models.  
 
One final point before we tackle the constructional scheme: Derivability of a vertex b by 
virtue of a path a ⎯ b in a hypernet depends, for the induced direction of derivation onto  a ⎯ 
b, on the existence of at least one appropriate betweenness sequence for a ⎯ b. We will see, 
in the following section, that there is a very specific characterization of appropriate 
betweenness sequences. Now for the scheme: 
 
First we introduce an unlabelled dummy node to serve as the root of the (derivation) path tree, 
and one only node for each primary of <A, E>. Connect each such node to the root with an 
unlabelled branch, and label each non-root node with the appropriate primary from A. From 
each node for a vertex v ∈ A the tree now develops as follows. Find every vertex adjacency 
(v, Ei, w) in <A, E> for which w is derived through v and Ei, and suppose that Ei = {v = c1, c2, 
..., ck, ..., cn-1, cn}, and let cn = w. Thus we find all such edges Ei with Ei = {v = c1, c2, ..., ck, 
..., cn(i)-1, cn(i)} for some n(i). We now plot a new node for each such cn(i), and insert a branch 
between each node for v and every node for each of these cn(i). Each such branch is now 
labelled with the edge Ei that generates it, and each node for a given cn(i) is labelled with that 
cn(i). Repeat this for every Ei ∈ E. The resulting tree exhibits, along the paths from the root, 
every (derivation) path from a primary to a goal in <A, E>, and distinguishes these paths. 
Each primary of <A, E> is represented by one only node, and every goal of <A, E> by at least 
one node. ♦ 
 
Comment: Similar to CS 1.2.7. 
 
Constructional Scheme 3.1.2: Find all the derivation paths between vertex u and vertex v in 
a KH <A, E>. Because of the derivation induced directionality in <A, E>, we can think of 
ourselves looking for all paths “from” a given u ∈ A “to” a given v ∈ A. 
First we should note that we can run a fast access cascade against the derivational direction in 
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any KH just as easily as with this direction or without direction - see section 1.4.  
 
(1)    Run a fast access cascade backward from A0 = {v} in <A, E>. Let the resulting hypernet 

be <A', E'>. If u ∉ A' then there are no u ⎯ v paths in <A, E>. 
(2)    If u ∈ A', then proceed as follows in <A', E'>. Find all the edges that label a vertex 

adjacency which “starts” with u. Let these edges be E1, E2, ..., Em, and let their “end” 
vertices be v1, v2, ..., vk, ..., vm-1, vm respectively. Each time vk = v, k = 1, ..., m, we have 
found a path u ⎯ v of length 1. Mark each such edge and its vertex adjacency in E' as a  
u ⎯ v path edge. 

(3)   Find all the unmarked edges in <A', E'> that “start” with any vk ≠ v among the vertex 
adjacencies found and marked in step (2). We now plot a tree as follows  

 
                                                                      u 

 

               E1            E2       Ek                 Em 

 

      

             v1                      v2                      .....         vk                   .......                                   vm 

 
 

from step (2), and then continue the development of the tree by inserting a separate 
branch between each vk ≠ v of step (2) and the vertex wh ∈ A' for each edge by which vk 
is adjacent with wh.      
If any of these vertices wh = v then we have now found all the u ⎯ v paths of length 2 in  
<A', E'> ∠ <A, E>. Again mark all the edges and vertex adjacencies used in this step to 
find u ⎯ v paths of length 2, and proceed to step (4) with all the unmarked edges in E' 
and all those wh ∈ A' with wh ≠ v. 

(4)    Repeat step (3) for the next level of the tree, marking the edges and vertex adjacencies 
used in each stage of the generation of u ⎯ v paths of lengths 3, 4, ..., if any, until all the 
usable edges in E' and their vertex adjacencies in <A', E'> have been marked by this 
procedure. ♦ 

 
Comment: Similar to CS 1.2.8. 
 
Before we move on to consider some theorems about KHs, we should mention the following 
point. 
 
Theorem 3.1.4: Let <A, E> be a KH and consider any vertex adjacency / arc {Ai, Aj} in <A, 
E>. Let λ({Ai, Aj}) = {E1, E2, …, En}, and suppose that Aj is derived from Ai with Ek for at 
least one value of k = 1, …, n. Then Ai is not derived from Aj by any member of λ({Ai,Aj}).♦ 
 
Proof: If Aj is derived from Ai with any member Ek of λ({Ai,Aj}), and Ai is derived from Aj 
with any member Em of λ({Ai,Aj}), then <A, E> has a closed derivation walk, which 
contradicts the fact that <A, E> is a KH. ♦ 
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3.2 Knowledge Hypernet (KH) Theorems 
 
 
As for CRKS’s, we have the following key point: 
 
Theorem 3.2.1: A KH <A, E> can be generated by a limited access cascade from the set B0 ⊆ 
A of all the primaries of <A, E> iff every a ∈ A is derivable in <A, E>, i.e. <A, E>.♦  
 
Proof: If <A, E> is generated from B0 by a limited access cascade then, in each step of the 
cascade, every new vertex generated belongs to an edge Ei ∈ E which is such that every 
vertex in Ei but the single new vertex, if any, is a primary or a vertex generated in a previous 
step. Thus for every new vertex v generated in step n of the cascade there is, at that stage, at 
least one (derivation) path p ⎯ v, of length n, in <Bn, En>, and each such path has a 
betweenness sequence S. Every member of B0 is primary, so it is trivially a derived vertex by 
virtue of a derivation path of length zero. B1 is the union of a number of sets of the form   B0 
∪ {t} for at least one non-primary t ∈ A, and, in <B1, E1>, E1 is a set of edges, each with one 
or more primaries and t, and each such edge labels a vertex adjacency, i.e. a path of length 1, 
{p, t} where p is some primary. This path is clearly a derivation path for each such t in <A, 
E>, so each such t is a derived vertex and hence every member of B1 is a derived vertex.  
 
Suppose that every member of Bn-1 in <Bn-1, En-1>, for all n = 1, 2, ..., n - 1, is a derived vertex 
in <A, E> and consider <Bn, En>. Now our set Ei - {t} is such that every one of its members is 
derivable by the induction hypothesis. But then, with (s, Ei, t), t is derivable in terms of 
hypotheses X = (Ei - {t}), and every member of X is derivable by the induction hypothesis, so 
t is derivable, and so every member of Bn is derivable in <Bn, En>. It follows that, because 
<Bn, En> = <A, E> for some n, every vertex a ∈ A is derivable in <A, E>. 
 
Conversely, suppose that every a ∈ A is derivable in <A, E>. Then <A, E> can be generated 
by a limited access cascade from its set of primaries B0 as follows. B0 is the set of primaries 
of <A, E>, and E0 = ∅. E1 is the set of all edges Ei ∈ E such that every member of Ei but one 
is a primary of <A, E>, i.e. a member of B0. B1 is the union of B0 and all the new (non-
primary) vertices generated in step 1 of the cascade. In general Ek, k = 2, 3, ..., is chosen in 
such a way that Ei ∈ Ek ⊆ E iff all but possibly one member of Ei belong to Bk-1. Bk is Bk-1, in 
which every member is derivable in <Bk-1, Ek-1>, together with the set of all new vertices 
generated in step k. Eventually, for some n, <Bn, En> = <A, E> because every a ∈ A is 
derivable in <A, E> and the cascade generates only derivable new vertices in each step. ♦ 
 
The following theorems and corollaries bring out the major characteristics of derivability in a 
KH. These are essential in “rounding off” the initial recursive definition of derivability: We 
must, from now on in all applications of KHs, fully understand the notion of derivability, and 
this understanding can be enriched with the aid of these theorems and corollaries and their 
proofs. 
 
Theorem 3.2.2: If a ∈ A of a KH <A, E> is derivable in terms of  X ⊆ A, with X = ∅ or every 
x ∈ X derivable in <A, E>, by virtue of a derivation path p ⎯ a, p a primary of <A, E>, and a 
betweenness sequence S for p ⎯ a, then every t ∈ S is derivable in <A, E>. ♦ 
 
Proof: Since p is a primary it is derived by a derivation path of length zero with betweenness 
sequence S = X = ∅. Run a limited access cascade from the set B0 of all primaries of <A, E> 
in <A, E>. If p ⎯ a is a path of length n then we must “find” p ⎯ a in <Bn, En> because a is 
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derivable. Let an appropriate betweenness sequence for p ⎯ a, i.e. one which makes p ⎯ a  a 
derivation path, be S and set X = S. Then, since a is derivable and S = X ≠ ∅, we see that 
every member of S is derivable in <A, E>. ♦ 
 
Theorem 3.2.3: Let <A, E> be a KH with a ∈ A any non-primary vertex of <A, E>. If a is 
derivable in <A, E>, by virtue of a path p ⎯ a where p is immediately derived from 
hypotheses X = ∅, then p is a primary vertex of <A, E>. ♦ 
 
Proof: p is immediately derived from X = ∅. The only vertices that can be immediately 
derived from ∅, trivially by a derivation path of length zero, are the primaries and isolates of 
<A, E>. <A, E> has no isolates, so p must be a primary of <A, E>.♦ 
 
We now set out some corollaries of theorems 3.2.1, 3.2.2, and 3.2.3. 
 
Corollary 3.2.1: Let S be a betweenness sequence for a (derivation) path p ⎯ a in a KH  <A, 
E>. If every t ∈ S is derivable in <A, E> then every t ∈ S is immediately derived from some 
X ⊆ A in <A, E>.♦ 
 
Proof: Let t ∈ S. Then t is derivable, so there must be at least one derivation path to t in  <A, 
E>. Let {s, t} be an arc on that derivation path and let Ei ∈ λ ({s, t}). Then let X = Ei-{t}, and 
t is immediately derived from X in <A, E>.♦ 
 
Corollary 3.2.2: If vertex a ∈ A of a KH <A, E> is derivable in <A, E> then a is immediately 
derived from some Xa ⊆ A. ♦ 
 
Proof: If a is derivable in <A, E> then there must be some derivation path p ⎯ a for a, p 
primary, in <A, E>. Let the vertex adjacency with a on p ⎯ a be (x, Ei, a), x ∈ A and Ei ∈ E, 
and let Xa = (Ei - {a}). Then a is immediately derived from hypotheses Xa in <A, E>.♦ 
 
The converse of Corollary 3.2.2 is as follows. 
 
Corollary 3.2.3: Let <A, E> be a KH.  If every a ∈ A is immediately derived from some set 
of hypotheses Xa ⊆ A, then every a ∈ A is derivable in <A, E>.♦ 
 
Proof: If a ∈ A is immediately derived from Xa then there is at least one arc {x, a} with at 
least one label element Ea ∈ λ ({x, a}) such that {Ea - {a}} ⊆ Xa. Now consider x: x is 
immediately derived from some Xx ⊆ A, so we can find an arc {y, x} and a label element Ex 
for it such that {Ex - {x}} ⊆ Xx. Consider y. We can repeat the above for y, finding an arc{z, 
y} and a label Ey for it such that {Ey -{y}} ⊆ Xy. Continuing in this fashion we work our way 
back to a primary p, since <A, E> is finite and has at least one primary, which is immediately 
derived from Xp = ∅, and we have found a path p ⎯ a, in <A, E>, with an obvious 
betweenness sequence S for it.  
 
Now suppose that p ⎯ a is not a derivation path. Then there is at least one b ∈ S that is not 
derivable in <A, E> - see the contra-positive of theorem 3.2.2. But we know that b is 
immediately derived from some Xb ⊆ A, so there is an arc {c, b} with a label Ej on it, and {y} 
∪ {Ej - {b}} ⊆ Xb ⊆ A. As for a, we can trace back to define a path from a primary to b in 
<A, E>. If this path is a derivation path for each such b then we are done. If not, then there is 
at least one c in this path that is not derivable, and we repeat the procedure for each such c. 
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This regression of paths must stop with a derivation path in each case because <A, E> is finite 
and has at least one primary. It follows that p ⎯ a must be a derivation path, because every 
member of S is derivable in <A,E>, so a is derivable in <A,E> - see parts (3) and (4) of 
definition 3.1.2. ♦ 
 
Corollary 3.2.4: If every path incident with a primary of a KH <A, E> is a derivation path in 
<A, E> then every a ∈ A is derivable in <A, E>. ♦ 
 
The proof follows at once from the definitions of derivation path, derivable and KH. ♦ 
 
Corollary 3.2.5: Let <A, E> be a KH and let p be any primary of <A, E> and a be any non-
primary of <A, E> such that there is a path p ⎯ a in <A, E>. Then p ⎯ a is a derivation path 
in <A, E>, i.e. a is derivable in <A, E>, iff every b ∈ A, b ≠ a, that is between p and a on  p ⎯ 
a is derivable in <A, E>. ♦ 
 
Proof: Let p ⎯ a be a derivation path with betweenness sequence S for p ⎯ a. b ∈ A, b ≠ a, 
is between p and a on p ⎯ a if b ∈ S for some S, and by theorem 3.2.2 every b ∈ S is 
derivable in <A, E>. Conversely, let every b ≠ a, that is between p and a on p ⎯ a, be 
derivable in <A, E>. Then b ∈ S for some S, and if every member of S is derivable in <A, E> 
then a is derivable. But this means that a is derivable in terms of at least one X ⊆ A with   X = 
∅ or every member of X derivable in <A, E>, and at least one path from a primary to a must 
be a derivation path for a in <A, E>. Choose X = S ≠ ∅ for our path p ⎯ a and it follows that    
p ⎯ a is a derivation path for a in <A, E>.♦ 
 
Corollary 3.2.6: Let <A, E> be a KH. Every a ∈ A is derivable in <A, E> iff every path  p ⎯ 
a, p primary and a ∈ A, in <A, E> is a derivation path. ♦ 
 
Proof: The reverse implication is corollary 3.2.3. If every a ∈ A is derivable then there exists, 
by definition of the term derivable (from the set P of all primaries of <A, E>), at least one 
derivation path p ⎯ a, p primary, in <A, E>.♦ 
 
Corollary 3.2.7: A KH <A, E> can be generated by a limited access cascade from the set of 
all its primaries iff every path incident with a primary of <A, E> is a derivation path. ♦ 
 
The proof follows at once from theorem 3.2.1 and Corollary 2.2.1. ♦ 
 
Corollary 3.2.8: Let <A, E> be a KH. Every a ∈ A is derivable in <A, E> iff every a ∈ A is 
immediately derived from some set Xa of hypotheses which is such that every x ∈ Xa is a 
derived vertex in <A, E>. ♦ 
 
Proof: If every a ∈ A is derivable then there is at least one derivation path p ⎯ a for a in <A, 
E>. Let (x, Ei, a) be the vertex adjacency with a that lies on such a path p ⎯ a, Ei ∈ E. Then a 
is immediately derived from Xa = (Ei - {a}), and every x ∈ Xa is derivable. Conversely, let 
every a ∈ A be immediately derived from some set Xa of hypotheses such that every x ∈ Xa is 
a derived vertex in <A, E>. Then there exists at least one vertex adjacency (x, Ej, a), Ej ∈ E, 
with (Ej - {a}) ⊆ Xa. Now x is a derived vertex, as is every other member of Xa. Thus there is 
at least one derivation path p ⎯ x for some primary p, and we can concatenate p ⎯ x and (x, 
Ej, a) to make up a path p ⎯ a. Since every member of Ej - {a} is derivable in <A, E>, we see 
by Corollary 3.2.4 that every b ≠ a in p ⎯ a is derivable. Let S be an appropriate betweenness 
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sequence for p ⎯ a, and set X = S. Then a is derivable in terms of X, i.e. derivable, because X 
≠ ∅ but every x ∈X is derivable in <A, E>.♦ 
 
Collecting some of the results of this section together, we have proved the following. 
 
Theorem 3.2.4: Let <A, E> be a KH. Then precisely the whole of <A, E> can be generated 
by a limited access cascade from the set B0 of all the primaries of <A, E> 
(1) iff every a ∈ A is derivable in <A, E>, which is true  
(2) iff <A, E> is a KH, which is true  
(3) iff every path p ⎯ a, p a primary and a ∈ A, is a derivation path in <A, E>, which is 

true 
(4) iff every a ∈ A is immediately derived from some set Xa ⊆ A of hypotheses which is 

such that every x ∈ Xa is a derived vertex in <A, E>, which is true 
(5) iff every b ≠ a that is between p and a, p a primary and a ∈ A, on every path p ⎯ a in 

<A, E> is derivable in <A, E>. ♦ 
 
Running a limited access cascade from the set of all primaries in a hypernet <A, E> provides 
an automated method of testing <A, E> for KH status. 
 
Definition 3.2.1: By a derivation adjacency in a KH <A, E> we mean a vertex adjacency  (a, 
Ei, b), a, b ∈ A and Ei ∈ E, that lies on a derivation path for b in <A, E> and is such that every 
x ∈ (Ei - {b}) is derivable in <A, E>. ♦ 
 
Theorem 3.2.5: Let <A, E> be a KH. Then every vertex adjacency (a, Ei, b), a, b ∈ A and Ei 
∈ E, in <A, E> is a derivation adjacency of <A, E>. ♦ 
 
Proof: Consider an arbitrary vertex adjacency (a, Ei, b) in <A, E>. Since <A, E> is a KH both 
a and b are derivable in <A, E>. Then either (a, Ei, b) is on a derivation path for a in  <A, E>, 
or it is on a derivation path for b in <A, E>. Suppose, without loss of generality, that (a, Ei, b) 
lies on a derivation path for b. Then (a, Ei, b) is a derivation adjacency because every x ∈ (Ei - 
{b}) is derivable in <A, E>. ♦ 
 
We now begin to turn our attention to the sort of uses of KHs outlined for CRKS’s in 
[GVS99]. 
 
Definition 3.2.2: Given a KH <A, E> and any non-primary a ∈ A, we define a derivation 
path hypernet D(p ⎯ a) for a derivation path p ⎯ a in <A, E> to be a sub-hypernet of <A, E> 
that  
(1) contains p ⎯ a and  
(2) is a hypernet in which the only primaries and isolates are all primaries of <A, E> and 

in which every non-isolate is derivable, and  
(3) is minimal in the sense that p ⎯ a is not a derivation path in any sub-hypernet 

produced from D(p ⎯ a) by deleting from it any vertex or any edge. ♦ 
 
We should notice that a derivation path hypernet for a ∈ A in <A, E> is not generally unique 
because there may be several derivation paths for a in <A, E>. 
 
Definition 3.2.3: Given a KH <A, E> with a ∈ A, we define the predecessor hypernet P(a) of 
a in <A, E> to be that sub-hypernet of <A, E> that is generated by running a fast access 
cascade in the reverse of the direction of derivation from B0 = {a} in <A, E> as follows: E0 = 
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∅. <B1, E1> contains all the derivation adjacencies, incident with a, through which a is 
derived, i.e. that lie on any derivation path for a in <A, E>. This fixes E1, and B1 is a together 
with the set of all the vertices in all the members of E1. <B2, E2> contains all the derivation 
adjacencies incident with each b ∈ B1, including those through which b is derived in <A, E>, 
which specifies E2, and B2 is B1 together with the set of all vertices in all the members of E2, 
and so on. The cascade will stop with a primary, or primaries, of <A, E>. It is clear that P(a) 
is a KH with goal a and set of primaries a subset of the set of primaries of <A, E>.♦ 
 
It is easy to show that the next theorem follows from the definitions above. 
 
Theorem 3.2.6: Given a KH <A, E> with a ∈ A, the join of all the D(p ⎯ a) in <A, E>, p 
some primary of <A, E>, is a sub-hypernet of P(a). ♦ 
 
The converse of the theorem is not generally true, as can be shown by simple counter 
examples - see [GVS99]. 
 
Definition 3.2.4: Let <A, E> be a KH and Ei ∈ E an edge of <A, E>. By a hypercluster for Ei 
we mean any minimal sub-KH, of <A, E>, that has Ei as one of its edges, where by minimal 
we mean that if we delete any vertex or edge from a hypercluster for Ei then the resulting 
hypernet is not a KH that has Ei in it. ♦ 
 
A hypercluster for a given Ei ∈ E in a KH <A, E> is not generally unique. A cluster <A, T> 
for a tuple Ti has vertex set A at least the tuple set of Ti and has at least Ti ∈ T. A hypercluster 
<A, E> for an edge Ei has Ei ⊆ A and Ei ∈ E, i.e. it has at least vertex set Ei and at least edge 
set {Ei}. 
 
Constructional schemes to find the D(p ⎯ a), and P(a), in a KH <A, E> are easily adapted 
from [GVS99]. The last three definitions are important in the modelling of study material, as 
can be seen from [GVS99]. In this case, the case of hypernets, their application potential is 
broader than for the CRKS’s of [GVS99]. 
 
Theorem 3.2.7: C is a cluster for Ti ∈ T in a CRKS <A, T> iff D is a hypercluster for Ei = 
I[Ti] in a KH <A, E>, where <A, T> = I[<A, E>] and C = I[D] for some interpretation I. ♦ 
 
Proof: Follows easily from the definition of an interpretation and its inverse, and the 
definition of a KH. ♦
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3.3  Restricting the Domain of a Search 
 
 
Given a KH <A, E>, it is often important to have ways of “trimming” <A, E>, i.e. of 
restricting the region of search before a search for items begins. There are four basic ways to 
do this in hypernet theory, each of which confines a search to a “relevant” sub-hypernet.  
 
Suppose that a search is to begin with a set A0 ⊆ A. Items pertinent to this choice of A0 lie in 
the sub-hypernet found by running a fast access cascade, (either “forward” or “backward” or 
independent of “derivation direction”, depending on the kind of search intended), starting 
with <A0, E0> = <A0, ∅>, in <A, E>. Every walk in the resulting sub-hypernet <An, En> can 
be followed through and to items that are related to a member, or to members, of A0. The 
cascade can be run automatically to termination, or it can be run interactively step-by-step 
until the user decides that items in further steps will be irrelevant for his/her purpose.  
 
Another interactive method of search is to run a sequence of fast access cascades. We start 
with <A0, ∅> and run the first cascade until we reach a step in which we want to discard some 
items. Thus we reach <A1

n(1), E1
n(1)>, and then we choose the sub-hypernet <A2

0, E2
0> ∠ 

<A1
n(1), E1

n(1)> induced by our choice of A2
0 ⊆ A1

n(1). Now we start a new fast access cascade 
in <A, E> with <A2

0, E2
0> and run it till we wish to discard some items from <A2

n(2), E2
n(2)>. 

Next choose <A3
0, E3

0> ∠ <A2
n(2), E2

n(2)>, the sub-hypernet induced, by A3
0 ⊆ A2

n(2), in 
<A2

n(2), E2
n(2)>, and run a third fast access cascade from <A3

0, E3
0> in <A, E>. Continue until 

we decide to stop or the sequence of cascades terminates.  
 
A different sub-hypernet of <A, E> that will contain items pertinent to the choice of A0, i.e. 
related to the member or members of A0 in <A, E>, is the one found by running a limited 
access cascade from <A0, ∅ > in <A, E>. Again this cascade can be run until it terminates, or 
it can be run step-by-step as for fast access cascades. Of course the resulting sub-hypernet 
may be <A0, ∅ >. This will happen if no edge incident with any member of A0 is a subset of 
A0 but for one member of that edge (for use in the first step of the cascade).  
 
We can of course run a sequence of limited access cascades as described above for fast access 
cascades. We can also run a sequence of cascades from <A0, ∅ >, in <A, E>, in which we not 
only choose what sub-hypernet with which to begin the new cascade at each stage, but also 
whether to continue with a fast access cascade or a limited access cascade.  
 
A third method of constraint of search domain in <A, E> falls into two sub-types. If the user 
is interested in every edge of <A, E> that involves a given Ai ∈ A0 then this information is to 
be found in the context-hypernet <A, E> [Ai] of Ai in <A, E>. This is of course easy to read 
off from the edge table of <A, E>.  
 
If A0 has more than one member then we have two possibilities. The first is to form the join of 
the context-hypernets of the members of A0, and the second is to form the meet of those 
context-hypernets over the members of A0. In the first case the user has potential access to 
every edge of E that involves vertices related to at least one member of A0, and in the second 
case to every edge of E that involves vertices related to all members of A0. Thus in the first 

case the set of edges E[A0] induces the join and in the second case the edges are those of the 
meet of the E[Ai], Ai ∈ A0, over A0, and these edges induce the meet of the context-hypernets 
of the Ai ∈ A0. 
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3.4 Trimming a Knowledge Hypernet 
 
 
We now return to the prerequisite chain of figure 1.4.3. The hypernet version presented in 
section 1.4 is an example of a knowledge hypernet if the vertex adjacencies are chosen 
appropriately. In figure 3.4.1 below we display the sub-hypernet that arises from a fast access 
cascade that is run backwards, i.e. opposite to the derivation direction, from module 454 in 
the hypernet equivalent of figure 1.4.3. This is one example of trimming, and the result is 
itself a KH. We then run a limited access cascade from the only primary, the dummy vertex, 
demonstrating a partial ordering of the modules in the “routes” from the dummy to 454. This 
information can be abstracted from figure 1.4.3. In the KH version, that abstraction is a 
simple matter of reading from the edge table of the whole KH, which can be done by a 
straightforward computer program.  
 

          
  

                                                  34;{354,454}                  42;{350,454} 

 

       26;{342, 354}                                                                                      29;{350, 343}               

 

                                  12;{240,246,342}                                                            16;{245,240,246,350}       

 

                         

 

                   10;{241, 246}                              11;{241,Math 239, 240}                 

            

                                           7;{241, 134}                                                8;{134, 245}                 

 

  

 

      2;{133,134}                       y;{dummy,133}                                 x;{dummy, Math 239}                   

             

                               3;{132, 134}                                                                       z;{dummy,131}            

                                                         1; {131,132}                       

 

 
 

Figure 3.4.1: An example of a trimmed KH 
 

342 343

132 131

454

240

350354 

246 245241 

dummyy134 133 Math239
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In a fast access cascade 
backward from 454, the new 
vertices met in each step are: 

That cascade follows edges set out below: 

Step 1 454 34 {454, 354} 8 {134, 245} 
Step 2 354,350 42 {350, 354} 7 {241, 134} 
Step 3 342, 343, 245, 240, 246 26 {342, 354} 2 {133, 134} 
Step 4 134, 241, Math 239 29 {350, 343} 3 {132, 134} 
Step 5 133, 132, dummy 16 {245, 240, 246, 350} 1 {131, 132} 
Step 6 131 12 {240, 246, 342} x  {dummy, Math 239} 
  11 {241, Math 239, 240} y {dummy, 133} 
  10 {241, 246} z {dummy, 131} 

 
In a limited access cascade from {dummy}, the new vertices met in each step are: 
Step 0 Dummy vertex Step 4 240, 246 
Step 1 131, 133, Math 239 Step 5 350, 342  
Step 2 132, 134 Step 6 454, 343, 354 
Step 3 245, 241   

 
The dummy vertex is the only primary. 454, 343, Math 239 and 246 are the goals of the 
trimmed KH. The information in this table is incomplete in the sense that we are not told how, 
and at what stage a student can get to Math 239 on his way to 454. Our limited access cascade 
from the dummy, shows how a student can progress through the curriculum to 454. If we run 
a fast access cascade backward from another fourth year module, for example, and then join 
the resulting KH with that for 454, we get an interesting KH in which to now run a limited 
access cascade from the dummy vertex. Clearly the join and meet of the KHs will yield 
important information. KH representation of a curriculum lends itself to proper planning of a 
curriculum via simple analysis of the resulting KH as we begin to see here - see chapter 4,5 
and 6. Here we notice, in passing, the critical vulnerability of the “route map” to 454 at 
module 134. 
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3.5 Menger’s Theorem 
 
 
It is clear that we need techniques aimed at analysing a hypernet <A, E>. In particular we 
need to examine the inter-relational status of the vertices of <A, E> and to investigate the 
paths in <A, E>. The two are intimately associated.  
 
Suppose that we have a (trimmed or untrimmed) hypernet <A, E>. We assume the <A, E> has 
no complete isolates in it. It certainly has walks, and hence paths, in it if it is to be useable, 
and in this section we begin to examine the “flow” of the search in <A, E>, from an initial 
sub-hypernet <A0, ∅ > ∠ <A, E>. Here is the first of a number of techniques that assist in an 
analysis of a NET and in the design of new material that is to be added to the NET, and this 
one involves Menger’s Theorem in <A, E>.  
 
We will introduce the theorem, and state and prove it, stage by stage in parallel for relation 
nets and hypernets; the left part denotes the part for relation nets, the right part that for 
hypernets. 
 
Definition 3.5.1:
 
The path-net N(P) of a path P in relation 
net <A,T> is the minimum subnet <B,U> 
∠ <A,T> that contains P. By this we mean 
that U ⊆ T is the set of tuples that appear 
in P, and B is the union of all the tuple sets 
of the members of U. N(P) is a minimum 
subnet inasmuch as if we delete any 
member of U or any member of B then P 
no longer lies in the resulting relation net. ♦ 
 

 
The path-hypernet N(P) of a path P in a 
hypernet <A,E> is the minimum sub-
hypernet <B,U> ∠ <A, E> that contains P. 
By this we mean that U ⊆ E is the set of 
edges that appear in P, and B is the union 
of all the members of U. N(P) is a 
minimum sub-hypernet inasmuch as if we 
delete any member of U or any member of 
B then P no longer lies in the resulting 
hypernet. ♦

 
Definition 3.5.2:  
 
Two u → v paths, Pk and Pm, in a relation 
net <A, T>, are said to be interdependent 
paths iff the meet N(Pk) ∩ N(Pm) of their 
path-nets has at least one vertex other than 
u and v in it. A set {P0, ..., Pn} of u → v 
paths in <A, T> is called an 
interdependent set iff ∩ N(Pr), r = 0, 1, ..., 
n, has at least one vertex other than u and v 
in it, and it is a maximal interdependent 
set iff it is not a proper subset of any 
interdependent set of u → v paths in <A, 
T>.♦ 

Two u ⎯ v paths, Pk and Pm, in a hypernet 
<A, E>, are said to be interdependent 
paths iff the meet N(Pk) ∩ N(Pm) of their 
path-hypernets has at least one vertex other 
than u and v in it. A set {P0, ..., Pn} of u ⎯ 
v paths in <A, E> is called an 
interdependent set iff ∩ N(Pr), r = 0, 1, ..., 
n, has at least one vertex other than u and v 
in it, and it is a maximal interdependent 
set iff it is not a proper subset of any 
interdependent set of u ⎯ v paths in <A, 
E>. ♦

 
 
Notice that the semi-paths in <A, T> are equivalent to the paths in <A, E> = M [<A,T>]. 
The next two theorems show why interdependent sets are important in connection with 
vulnerability of paths between any two given vertices.  
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Theorem 3.5.1: (see also theorems 5.1 and 12.6 of [GVS99]) 
 
Let {P0, ..., Pn} be any interdependent set 
of u → v paths in <A, T>. Deletion of any 
w ∈ (A - {u, v}) that belongs to the vertex 
set of ∩ N(Pr) from <A, T> will “cut” all 
the paths Pr, i.e. none of the paths of the set 
exists in the subnet which results when w 
is deleted from <A, T>.♦ 

Let {P0, ..., Pn} be any interdependent set 
of u ⎯ v paths in <A, E>. Deletion of any 
w ∈ (A - {u, v}) that belongs to the vertex 
set of ∩ N(Pr) from <A,E> will “cut” all 
the paths Pr, i.e. none of the paths of the set 
exists in the sub-hypernet which results 
when w is deleted from <A, E>.♦

 
Proof:  
(a) for <A, T>: see [GVS99]. 
(b) for <A, E>: We must show that if w is a vertex, with w ≠ u and w ≠ v, of ∩ N(Pr), then it 

is between u and v on every Pr. Let w be a vertex of ∩ N(Pr), and assume that w is not 
between u and v on some Pt. Then w does not belong to the vertex set of N(Pt), and hence 
it is not a vertex of ∩ N(Pr), which contradicts the hypothesis. ♦ 

 
Theorem 3.5.2: (see theorems 5.2 and 12.2 of [GVS99]) 
 
Let S = {P0, ..., Pn} be a maximal 
interdependent set of u → v paths in <A, 
T>. Deletion of any w ∈ (A - {u, v}) that 
belongs to the vertex set of ∩ N(Pr) from 
<A, T> cuts precisely those u → v paths in 
<A, T> that belong to S. ♦ 

 Let S = {P0, ..., Pn} be a maximal 
interdependent set of u ⎯ v paths in <A, 
E>. Deletion of any w ∈ (A - {u, v}) that 
belongs to the vertex set of ∩ N(Pr) from 
<A, E> cuts precisely those u ⎯ v paths in 
<A, E> that belong to S. ♦

 
 Proof:  
(a) for <A, T>: see [GVS99]. 
(b) for <A, E>: From theorem 3.5.1 we know that deletion of w cuts all the Pr ∈ S. Assume 

that deletion of w from <A, E> cuts at least one u ⎯ v path P ∉ S. Then w is between u 
and v on P, so w belongs to the vertex set of N(P). But then, since w also belongs to the 
vertex set of every N(Pr) with Pr ∈ S, S is not a maximal interdependent set because the 
vertex set of (∩ N(Pr)) ∩ N(P) contains {u, v, w}. The theorem follows. ♦ 

 
Theorem 3.5.3: (see theorems 5.3 and 12.8 of [GVS99]) 
 
The set of all u → v paths, in <A, T>, that 
are cut by the deletion of w ∈ (A - {u, v}) 
from <A, T> is an interdependent set of u 
→ v paths in <A,T>, but it is not 
necessarily maximal. ♦ 

The set of all u ⎯ v paths, in <A, E>, that 
are cut by the deletion of w ∈ (A - {u, v}) 
from <A, E> is an interdependent set of u 
⎯ v paths in <A, E>, but it is not 
necessarily maximal. �♦

 
Proof:   
(a) for <A, T>: see [GVS99]. 
(b) for <A, E>: Let S = {P0, ..., Pn} be the set of all u ⎯ v paths, in <A, E>, that are cut by the 

deletion of a given w ∈ (A - {u, v}) from <A, E>. Then w is between u and v on every Pr 

∈ S, and hence w belongs to the vertex set of every N(Pr), Pr ∈ S. It follows that ∩ N(Pr) 
has at least one vertex w, other than u and v, in it, and hence S is an interdependent set. It 
is clear that S is not necessarily maximal. ♦ 
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Just as for relation nets - see p. 206 of [GVS99] - it is always possible to partition the set of all 
u ⎯ v paths in a hypernet <A, E> by the following procedure: 
 
(1) Start with any u ⎯ v path P00, and develop a maximal interdependent set of u ⎯ v 

paths S0 = {P0k| k = 0, 1, ... , n0} in <A, E> to which P00 belongs.  
(2) Delete any w0 ∈ (A - {u, v}) such that w0 belongs to the vertex set of ∩ N(P0r), r = 0, 

1, 2, .., n0, from <A, E>. This cuts all the u ⎯ v paths of S0, and only those u ⎯ v 
paths. 

(3) Start with any u ⎯ v path P10 in the sub-hypernet that results when w0 is deleted from  
<A, E>, i.e. < A - {w0}, E↑(A - {w0})>, and develop a maximal interdependent set        
S1 = { P1k| k = 0, 1, ..., n1}of u ⎯ v paths, in <A - {w0}, E↑(A - { w0})>, to which P10 
belongs. 

(4) Delete any w1 ∈ (A -{u, v, w0}) such that w1 belongs to the vertex set of ∩ N(P1r), r =   
0, 1, 2, .., n1, from < (A - {w0}), E↑(A - { w0})>. This cuts precisely those u ⎯ v 
paths  that belong to S1. Further, w0 is not between u and v on any P1i, i = 0, 1, 2, ..., 
n1. 

(5) Continuing in this way we get a partition {S0, ..., Sn} of the set of all u ⎯ v paths in   
<A, E> such that each Sr, r = 0, 1, 2, ..., n, is a maximal interdependent set of u ⎯ v 
paths in < (A - {w0, ..., wr-1}), E↑(A - {w0, ..., wr-1})>, r = 0, 1, 2, ..., n, and S0 is a 
maximal interdependent set of u ⎯ v paths in <A, E>. ♦ 

 
To see that such a partition is well defined, we notice that every u ⎯ v path in <A, E> will 
belong to at least one Sr, and that if a particular u ⎯ v path P belongs to both Sr and St with   r 
< t, then it is a path in the sub-hypernet <A - {w0, ..., wr-1,wr, ..., wt-1}, E↑(A - {w0, ..., wr-1,wr, 
..., wt-1})> which is impossible because, since P ∈ Sr, we have wr between u and v on every 
member of Sr and hence on P. 
 
Definition 3.5.3:  
 
A subset B(u → v) ⊆ A of <A, T> is 
called a separation for u and v in <A, T> 
iff < A - B(u → v), T ↑(A - B(u → v))>, 
i.e. the maximum subnet of <A, T> that 
has vertex set A - B(u → v), has no u → v 
paths. ♦ 

A subset B(u ⎯ v) ⊆ A of <A, E> is 
called a separation for u and v in <A, E > 
iff < A - B(u ⎯ v), E↑(A - B(u ⎯ v))> has 
no u ⎯ v paths. ♦ 
 

 
We go even further on the question of vulnerability with respect to paths between two given 
vertices, introducing some simple combinatorics with the next theorem and its corollaries.  
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Theorem 3.5.4: (see also theorems 5.4 and 12.9 of [GVS99]) 
 
If {S0, ..., Sm} is a partition of the set of all 
u → v paths in <A, T> such that S0 is a 
maximal interdependent set of u → v paths 
in <A, T> and, for each r = 0, 1, ..., m, Sr is 
a maximal interdependent set of u → v 
paths in <A - {w0, ..., wr-1}, T↑(A - {w0, ..., 
wr-1})>, where w0 belongs to the vertex set 
of ∩ N(Pt) over Pt ∈ S0 and wr belongs to 
the vertex set of ∩ N(Pt) over Pt ∈ Sr , then 
there exists a separation B(u → v) for u 
and v in <A, T> that has precisely m 
elements. ♦ 

 If {S0, ..., Sm} is a partition of the set of all 
u ⎯ v paths in <A, E> such that S0 is a 
maximal interdependent set of u ⎯ v paths 
in <A, E> and, for each r = 0, 1, ..., m, Sr is 
a maximal interdependent set of u ⎯ v 
paths in <A -{ w0, ..., wr-1}, E↑(A -{ w0, ..., 
wr-1})>, where w0 belongs to the vertex set 
of ∩ N(Pt) over Pt ∈ S0 and wr belongs to 
the vertex set of ∩ N(Pt) over Pt ∈ Sr , then 
there exists a separation B(u ⎯ v) for u 
and v in <A, E> that has precisely m 
elements. ♦

 
 
Proof: See [GVS99]. Proof follows at once from the partitioning and previous theorems and 
definitions. ♦ 
 
From definition 3.5.3 and the partitioning we have the following 
 
Corollary 3.5.1: (Corollaries 5.1 and 12.1 of [GVS99]) 
 
The minimum number of elements in a 
partition of the u → v paths in <A, T> into 
maximal interdependent sets, constructed 
as in Theorem 3.5.4, is equal to the 
minimum number of vertices in a 
separation B(u →v ) for u and v in <A, 
T>.♦ 
 
 

The minimum number of elements in a 
partition of the u ⎯ v paths in <A, E> into 
maximal interdependent sets, constructed 
as in Theorem 3.5.4, is equal to the 
minimum number of vertices in a 
separation B(u ⎯ v) for u and v in <A, 
E>.♦

Corollary 3.5.2: (Corollaries 5.2 and 12.2 of [GVS99])        
                 
Any separation for u and v in <A, T> can 
be used to generate a partition of the set of 
all  u → v paths in <A, T> into 
interdependent sets which are not 
necessarily maximal. ♦ 

Any separation for u and v in <A, E> can 
be used to generate a partition of the set of 
all  u ⎯ v paths in <A, E> into 
interdependent sets which are not 
necessarily maximal. ♦

 
 
Proof:  
(a) for <A, T>: see [GVS99]. 
(b) for <A, E>: Suppose that we are given a separation B(u ⎯ v) = {w0, ..., wm}. Let S0 be the 

set of all u ⎯ v paths in <A, E> that are cut by the deletion of w0 from <A, E>. Next let 
S1 be the set of all u ⎯ v paths in <A - {w0}, E↑(A - {w0})> that are cut by the deletion of 
w1 from <A - {w0}, E↑(A - {w0})>. Then let S2 be the set of all u ⎯ v paths in <A - {w0, 
w1}, E↑(A - {w0, w1})> that are cut by the deletion of w2 from <A - {w0, w1}, E↑(A - 
{w0, w1})>. Proceeding in this way we develop sets S0, ..., Sm. It is clear that each Sr, r = 
0, 1, ..., m, is an interdependent set of u ⎯ v paths, and if P is an arbitrary u ⎯ v path in 
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<A, E> then at least one of w0, ..., wm is between u and v on P, so P belongs to at least one 
of the Sr, r = 0, 1, ..., m. As we showed before, it is impossible for P to belong to more 
than one Sr, so the corollary follows because it is clear that the Sr is not necessarily 
maximal. ♦ 

 
By introducing the notion of quasi-disjoint path, we get to Menger’s Theorem, in its max-
flow, min-cut form, in the next corollary.  
 
Definition 3.5.4:  
 
Let Pr and Pt be u → v paths in <A, T>, 
where u ≠ v and the underlying sets of both 
N(Pr) and N(Pt) strictly contain {u, v}. Pr 
and Pt are said to be quasi-disjoint u → v 
paths in  <A, T> iff they belong to distinct 
maximal interdependent sets of u → v 
paths in <A, T>. ♦ 

 Let Pr and Pt be u ⎯ v paths in <A, E>, 
where u ≠ v and the underlying sets of both 
N(Pr) and N(Pt) strictly contain {u, v}. Pr 

and Pt are said to be quasi-disjoint u ⎯ v 
paths in  <A, E> iff they belong to distinct 
maximal interdependent sets of u ⎯ v 
paths in  <A, E>. ♦

 
We can now restate corollary 3.5.1 in Mengerian form. 
 
Corollary 3.5.3:  
 
The maximum number of pairwise quasi-
disjoint u → v paths in <A, T> is equal to   
min|B(u → v)|. ♦ 

The maximum number of pairwise quasi-
disjoint u ⎯ v paths in <A, E> is equal to   
minB(u ⎯ v)|. ♦

 
 
Proof: 
(a) for <A, T>: see p. 207/208 of [GVS99]. 
(b) for <A, E>: Assume that we have achieved a partition of the u ⎯ v paths in <A, E> into 

min |B(u → v)| maximal interdependent sets as referred to in Corollary 3.5.1, and that B(u 
⎯ v) is one of the corresponding separations. How many pair-wise quasi-disjoint u ⎯ v 
paths can we find in <A, E>? Certainly we can find at least min |B(u → v)| such paths, 
each in a distinct member of the partition, and each thus cut by a unique member of B(u 
⎯ v), since if deletion of a given b ∈ B(u ⎯ v) cuts more than one of these paths then 
those paths cut are not pair-wise quasi-disjoint paths. Further, we cannot find more than 
min |B(u → v)| such paths, because in that case at least two of them must belong to the 
same maximal interdependent set of the partition, which violates the condition that they 
should be quasi-disjoint u ⎯ v paths. It follows that min |B(u → v)| equals the minimum 
number of elements of a partition of the u ⎯ v paths in <A, E> into maximal 
interdependent sets, constructed as in theorem 3.5.4, which, in turn, is equal to the 
maximum number of pair-wise quasi-disjoint u ⎯ v paths in <A, E>. ♦ 

 
Menger’s theorem is important because examining “flow” through a hypernet can contribute 
to analysis of its structure. 
 
The user of a hypernet, particularly a KH, will be moving back and forth along chosen paths 
in <A, E> during any search, so we need to know as much as possible about the paths in   <A, 
E>. Menger’s theorem can tell us something about the paths available and the vulnerability of 
searches in <A, E>. We will return to Menger’s Theorem and the notion of “flow” later.         
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We now turn our attention mainly to the case in which <A, E> is a KH. Much of the theory 
that follows also applies to the kinds of restriction of <A, E> as outlined in Section 2.3 if 
those restrictions are complete hypernets in the sense that no a ∈ A has d(a) = 0 when we 
disregard loops. 
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3.6  Structural Analysis of a Knowledge Hypernet 
 
 
We now turn to structural characteristics of KHs. These are similar to those exposed in the 
chapter on presentation strategies in [GVS99]. Note that we make some modifications to that 
chapter of [GVS99] here. 
 
 
The most basic structural characteristics of a KH are its vertex basis and its edge bases. The 
set of primaries of a KH is its unique vertex basis, and, in the terminology of graph theory, the 
set of goals of a KH is its unique vertex contra-basis.  
 
Next we re-visit Menger’s Theorem. We visualize certain searches in terms of “flows”, so  
Menger’s Theorem is essential to this endeavour.  
 
 
Application of Menger’s Theorem in a KH yields two interesting insights into the structure of 
a KH. Let K = <A, E> be a KH with set of primaries P and set of goals G. Convert K to a KH 
Z as follows: Delete from K all edges that consist of only a primary and a goal or that consist 
of only primaries and a goal. Next add dummy vertices π and γ to K, and add new dummy 
edges {π, p} for each p ∈ P and {γ, g} for each g ∈ G. This completes the construction of Ζ = 
Ζ0. The set of all π ⎯ γ paths in Ζ, that have a given vertex v0 of K between π and γ is called 
a bundle of π ⎯ γ paths and is denoted by S0. Every member of S0 is cut by deletion of v0 
from K. Consider a minimal separation   B(π ⎯ γ) for π and γ in K and let B(π ⎯ γ) = {v0, v1, 
..., vn}. Deleting the context-hypernet of v0 from K deletes all the members of bundle S0, 
deleting that of v1 deletes the set S1 of all π ⎯ γ paths in what remains of K from that 
remaining hypernet, i.e. all the  π ⎯ γ paths in <A - {v0}, E↑(A - {v0})> that have v1 between 
π and γ in K, and so on, producing a partition of all the π ⎯ γ paths in Z into n bundles. Two 
π ⎯ γ paths Pr and Pt are said to be quasi-disjoint iff they belong to two distinct bundles. 
Then Menger’s Theorem states that the maximum number of quasi-disjoint π ⎯ γ paths in Z 
is equal to min ⏐B(π ⎯ γ)⏐. The paths deleted from K in constructing Z are all of length 1 
and are easy to deal with separately. Since two quasi-disjoint π ⎯ γ paths can share at least 
one vertex v of K, i.e. some v may be between π and γ on both paths, we introduce the 
following: Two π ⎯ γ paths are said to be independent iff (i) they are quasi-disjoint and (ii) 
no vertex v of K is between π and γ on both paths. It is easy to see that if the two paths are 
independent then they are quasi-disjoint, but a simple counter example will show that the 
converse is not generally true.  
 
Definition 3.6.1: A set of pairwise independent π ⎯ γ paths in Z is called a flow, and the 
measure of a flow is defined to be the number of paths of the flow. ♦ 
 
Theorem 3.6.1: The measure of a maximum flow for π and γ through Z is less than or equal 
to min ⏐B(π ⎯ γ)⏐.♦ 
 
Proof: Follows from Menger’s Theorem for Z and the fact that independent paths are quasi-
disjoint, but the converse is not necessarily true, so there cannot be more paths in a flow than 
there are pair-wise quasi-disjoint π ⎯ γ paths in Z. ♦ 
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The members of a minimal vertex separation B(π⎯ γ) in Z are critical in K, as are the paths in 
a maximum flow, in some applications. Dealing with the paths of length 1 that were deleted 
from K to produce Z, if any, is easy after applying the theorem. 
 
Menger’s Theorem also applies in edge form, as briefly outlined below. By an edge 
separation E (π⎯γ) for π and γ in Z we mean a set of edges of K, which, if deleted from Z, 
will leave no π⎯ γ paths in Z. By an edge-bundle in Z we mean the set of all π ⎯ γ paths that 
use a particular edge of K. Pick an edge e0 of K. Let edge bundle S0 be the set of all π⎯ γ 
paths in Z that use e0. Delete from Z the common edge, e0, of each of the members of S0. 
Repeat this process in what remains of Z, defining bundle S1 for edge e1. Continue until no 
more π ⎯ γ paths remain. Two π ⎯ γ paths are said to be quasi-edge-disjoint iff they belong 
to two distinct edge-bundles. Now Menger’s Theorem states that the maximum number of 
pair-wise quasi-edge-disjoint π ⎯ γ paths in Z is equal to the minimum number of members 
in an edge separation E(π⎯γ) in Z, i.e. min⏐E(π ⎯ γ)⏐.  
 
Since two quasi-edge-disjoint paths can share an edge of K, we define the following notion. 
Two π ⎯ γ paths in K are said to be edge-independent iff  
(1) they are quasi-edge-disjoint and  
(2) no edge of K lies on both π ⎯ γ paths.  
 
If two π ⎯ γ paths are edge-independent then they are quasi-edge-disjoint, but the converse is 
not generally true. 
 
Definition 3.6.2: A set of pairwise edge-independent π ⎯ γ paths in Z is called an edge-flow, 
and the measure of an edge-flow is defined to be the number of π ⎯ γ paths in the edge- 
flow. ♦ 
 
Theorem 3.6.2: The measure of a maximum edge-flow for π and γ through K is less than or 
equal to min ⏐E(π⎯γ)⏐.♦ 
 
Proof: Follows from the edge version of Menger’s Theorem for Z and the fact that edge-
independent π ⎯ γ paths are quasi-edge-disjoint but the converse is not necessarily true, so 
there cannot be more paths in an edge-flow than there are pair-wise quasi-disjoint π ⎯ γ paths 
in Z. ♦ 
 
Can we get closer to the measure of a flow? Consider Z, and partition the set of all π ⎯ γ 
paths in Z as follows. Delete any vertex v0 of K from Z, and let S0 be the set of all π ⎯ γ 
paths in Z that are cut by that deletion. Let <B0, E0> ∠ K be the hypernet that is defined to be 
the context-hypernet of all the vertices of K that are between π and γ on any π ⎯ γ path in S0, 
i.e. <B0, E0> is the join of all the context-hypernets of each vertex of K that is between π and 
γ on any π ⎯ γ path in S0. Delete <B0, E0> from Z, and let <B1, E1> be the sub-hypernet of Z 
that remains after this deletion. Choose any v1 ∈ (B1 - {π, γ}), delete v1 from <B1, E1>, and let 
S1 be the set of all π ⎯ γ paths in <B1, E1> that are cut by that deletion. Now delete from <B1, 
E1> the context-hypernet of all the vertices of <B1, E1> that are between π and γ on any π ⎯ γ 
path in S1. Continue in this way, defining Sr for r = 0, 1, ..., t, until St+1 has no π ⎯ γ paths. 
Then a flow of measure (t + 1) can be found by choosing precisely one π ⎯ γ path from each 
Sr. The set of vertices vr, r = 0, 1, ..., t, is an example of what is said to constitute a flow-
separation F(π ⎯ γ) for π and γ in Z, and we clearly have: 
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Theorem 3.6.3: The measure of a maximum flow for π and γ through K is equal to       
min⏐F(π ⎯ γ)⏐. ♦ 
 
Can we do a similar thing for edge-flows? We can indeed. Delete every edge of every 
member of S'0, where S'0 is the set of all π ⎯ γ paths of Z that are cut by the deletion of edge 
e0 from K. Next choose any edge e1 of K that remains after the deletion of all edges of all the 
paths in S'0. Let S'1 be the set of all π ⎯ γ paths, in what remains of Z, if any, that are cut by 
the deletion of e1 from the remaining hypernet, and then delete from that remaining hypernet 
all the edges of every member of S'1. Continuing in this way we partition all the π ⎯ γ paths 
in Z into sets S'0, S'1, ..., S'n. Now two π ⎯ γ paths are edge-independent iff they belong to two 
distinct S'i, because the two paths are certainly quasi-edge-disjoint and they can share no edge 
of K. 
 
Thus we have: 
 
Theorem 3.6.4: The measure of a maximum edge-flow for π and γ through Z is equal to min 
⏐G(π ⎯ γ)⏐, where G(π ⎯ γ) is an edge-flow-separation for π and γ in Z, i.e. G(π ⎯ γ ) is a 
set of edges such as e0, e1, ..., en that generate a partition of π ⎯ γ paths such as S'0, S'1, ..., S'n 
respectively. ♦ 
 
Since deletion of vertices of K is more destructive than deletion of edges from K in general, 
because of strong vulnerability, we have the following. 
 
Theorem 3.6.5: If two π ⎯ γ paths P1 and P2 in Z are independent then they are edge-
independent, but the converse is not generally true. ♦ 
 
Proof: Since P1 is independent of P2, P1 and P2 are quasi-disjoint, and P1 and P2 share no 
vertex of K, i.e. no vertex of K is between π and γ on both P1 and P2. Since P1 and P2 are then 
vertex-disjoint, they must clearly be edge-disjoint, so they are edge-independent because they 
belong to different edge bundles: Edge-disjoint implies quasi-edge-disjoint, but the converse 
is not true in general. If P1 and P2 are edge-independent then they may clearly share a vertex 
of K, so they are not, in general, independent π ⎯ γ paths. ♦ 
 
Corollary 3.6.1: min ⏐F(π ⎯ γ)⏐ ≤ min⏐G(π ⎯ γ)⏐ in Z. ♦ 
 
Proof: Follows at once from Theorem 3.6.5. ♦ 
 
Since deleting the context-hypernet of all vertices in all the π ⎯ γ paths on which some vertex 
v lies is more destructive than deleting only the context-hypernet of v, we have: 
 
Theorem 3.6.6: min ⏐F(π ⎯ γ )⏐ ≤ min⏐B(π ⎯ γ)⏐. ♦ 
 
Since deleting all the edges of S'i is more destructive than deleting just the generating edge ei, 
we have: 
 
Theorem 3.6.7: min ⏐G (π ⎯ γ)⏐ ≤ min⏐E (π ⎯ γ)⏐. ♦ 
 
Finally, for the same reason, we have: 
 
Theorem 3.6.8: min ⏐B(π ⎯ γ )⏐ ≤ min ⏐E (π ⎯ γ )⏐. ♦ 



Modelling Knowledge Systems using Relation Nets and Hypernets 
 

87

 
Thus we have: 
 
Corollary 3.6.2: 
min ⏐F(π ⎯ γ)⏐ ≤ min ⏐G (π ⎯ γ )⏐ ≤ min⏐E (π ⎯ γ )⏐ and 
min ⏐F(π ⎯ γ)⏐ ≤ min ⏐B(π ⎯ γ )⏐ ≤ min ⏐E (π ⎯ γ )⏐. ♦ 
 
Facets of Menger’s Theorem will be useful in some applications inasmuch as they separate 
out certain vertices, edges and derivation paths for special attention. 
 
Constructional Scheme 3.6.1: To find a set of quasi-disjoint π ⎯ γ paths in Z. 
 
(1) Choose any non-primary, non-goal vertex v0 of Z = Z0. Delete all π ⎯ γ paths that use 

any edge that has v0 in it. This deletes bundle b0 of π ⎯ γ paths; every such path is 
“cut” by deletion of v0. Choose and mark any one path from bundle b0. Delete the 
context-hypernet of v0 from Z = Z0. Let the resulting sub-hypernet of Z be Z1. 

(2) Repeat (1) with the subscript 0 running through the values 1, 2, 3, …, and subscript 1 
running through values 2, 3, 4, …, defining v1 and b1 and Z2, v2 and b2 and Z3, and so 
on until, after deleting the context-hypernet of vn from Zn, there are no more π ⎯ γ 
paths left in Zn+1. The paths chosen, one from each bundle b0, b1, b2, …, bn, constitute 
a set of quasi-disjoint π ⎯ γ paths in Z, and the set {v0,v1,…,vn} constitutes a vertex 
separation for Z. While it is minimal, it is not necessarily a minimum separation. ♦ 

 
Comment: Z is a KH. Use CS 3.1.1 to construct the path tree for Z. Mark every π ⎯ γ path 
on which there is an edge Ei with v0 ∈ Ei. This is bundle b0 of paths. Choose any one π ⎯ γ 
path from b0 and store that path. Delete the context-hypernet of v0 from Z = Z0 - see definition 
3.1.3. - and let the resulting sub-hypernet of Z = Z0 be Z1. Now we just repeat as per step 2.  
 
Constructional Scheme 3.6.2: To find a set of quasi-edge-disjoint π ⎯ γ paths in Z. 
 
(1) Choose any edge of Z = Z0 that is not incident with π or γ. Call that edge E0. Delete all   

π ⎯ γ paths in Z0 that use E0. These paths constitute edge bundle b0. Choose any one 
path from b0. Now delete that edge from Z0, and let the resulting sub-hypernet of Z = 
Z0 be Z1 

(2) Repeat (1) with subscript 0 running through the values 1, 2, 3, …, and subscript 1 
running through the values 2, 3, 4, …, defining E1 and b1 and Z2, E2 and b2 and Z3, and 
so on until, after deleting En from Zn, no more π ⎯ γ paths are left. The paths chosen, 
one from each bundle b0, b1, b2, …, bn, constitute a set of quasi-edge-disjoint π ⎯ γ 
paths in Z, and the set {E0, E1,…, En} constitutes an edge separation for Z. While it is 
minimal, it is not necessarily a minimum edge separation. ♦ 

 
Comment: Similar to CS 3.6.1, but here we are deleting edges, so in this case we do not need 
to find a context-hypernet at any stage. 
 
Matchings and Coverings. In Chapter 5 of [GVS99] we discussed a variety of presentation 
strategies, and this section of the report picks up some of that work, but with a different 
emphasis. Before continuing with this section, we look at matchings and coverings as both 
are important facets of the structure of a KH. One of the key approaches to finding matchings 
is the construction of a bipartite graph G from a KH <A, E> as follows. Order the edges of 
<A, E> in any way, and plot them as vertices of G in two columns E1 = E and E2 = E, each in 
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the defined order. Join two distinct vertices of G, v1 ∈ E1 and v2 ∈ E2 that are adjacent by at 
least one vertex a ∈ A in <A, E>. From this graph G one can write an algorithm to find a 
matching in <A, E>, where we recall that a matching is defined as follows. 
 
Definition 3.6.3: A matching M ⊆ E in a KH <A, E> is a set of edges of <A, E> that are pair-
wise non-adjacent. M is a maximal matching iff we can add no edge of <A, E> to M without 
destroying the matching property. ♦ 
 
It is easy to find a maximal matching, in <A, E>, using G - see [GVS99] p. 74 for example. 
The members of a maximal matching are pair-wise “independent” edges inasmuch as no two 
of them are adjacent edges in <A, E>. A relatively large value of ⏐M⏐ compared with ⏐E⏐ 
will indicate a certain poverty of derivation paths, so maximal matching can be important in 
analysing the structure of <A, E>. Now recall vertex covering. 
 
Definition 3.6.4: A vertex cover of a KH <A, E> is a set of edges Ec ⊆ E which is such that ∪ 
Ei, Ei ∈ Ec, is equal to A. A minimal vertex cover of <A, E> is a set of edges that, together, 
involve each a ∈ A at least once, and from which we may delete no edge without destroying 
the covering property. ♦ 
 
If we find a maximal matching in <A, E> then we can convert it to a minimal vertex cover - 
see [Ber89]. A minimum cover will tell us the minimum number of edges that “say 
something” about each a ∈ A in <A, E>, and presents us with a set of edges that actually does 
this. Constructional Scheme 5.4 in [GVS99] can easily be re-written to find a minimal vertex 
cover for <A, E>. 
 
Next we turn to the KH equivalent of a tuple oriented partial presentation strategy, not 
dealt with in [GVS99] but sometimes relevant for structural analysis of a KH. Let <A, E> be 
any KH. 
 
Definition 3.6.5: By a primary edge of <A, E> we mean an Ei ∈ E such that every member of 
Ei, but precisely one, is primary in <A, E>, and that one other vertex is non-primary in <A, 
E>. ♦ 
 
(a) Starting with the primary edges of <A, E>, we can order the edges of <A, E> 

as follows: 
(b) Let L0 be the set of all primary edges of <A, E>, and there must of course be at 

least one. Now we start to describe a procedure in terms of our bi-partite graph 
G. Mark the members of L0, in E1 and in E2, in G, and then delete all edges of 
G that link members of L0. 

(c) Define Define L1 ⊆ E as follows. A vertex Ei ∈ E1 (and of E2) in G belongs to 
L1 iff it is adjacent with at least one member of L0 in G. Delete all edges of G 
that link members of L1. Now partially order the members of L1 as follows. Let 
the order of each ℓ1 ∈ L1 be ⏐ℓ1 ∩ Α0⏐ where Α0 is the set of all vertices that 
belong to any member of L0, and arrange the members of L1 in partial order of 
decreasing order, those with maximum order being said to be closest to L0 
because they are, among the members of L1, most closely associated with the 
vertices involved in the members of L0. 

(d) Repeat step b with L0 and A0 replaced by L1 and A1, and L1 and A1 replaced by 
L2 and A2, where An, n = 1, 2, …, includes all previous Ai, and so on, until Lk 
has been defined and we then find Lk+1 = ∅. We have then dealt with some of 
the edges of <A, E> in a partial order that consists of successive steps with a 
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partial ordering of edges in each step. 
(e) Finding the “strongest” associations of edges, in each step, with edges in all 

the previous steps can be another indication of the strength of association in a 
KH. It is clear that one can define a partial presentation strategy, i.e. a 
hierarchy of nested sub-hypernets of   <A, E>, along these lines. In practice ∪ 
Li ⊆ E may constitute only a very small subset of E, but we can consider it as 
displaying “core associations” among (some of) the vertices of <A, E>. 

 
 

To implement this procedure is easy. 
 

Another indication of the kind of association that should be examined in a KH <A, E> is the 
case of spiralling - see [GVS99]. Here we can regard this as a way of sorting knowledge 
about a ∈ A if spiralling occurs for a (as it often does). Suppose that we have, in the 
predecessor hypernet P(a) of a ∈ A, a sub-hypernet that contains at least one derivation path, 
from a primary, for a, that does not use a, i.e. a is not between the relevant primary and a on 
this path other than as the “end” vertex of that path, and at least one derivation path for a that 
does use a “on the way to a”. The minimum sub-hypernet of P(a) that contains the join of the 
derivation path hypernets of all such paths in P(a) is then said to constitute a recursive, or 
bootstrap, approach to a in P(a), and thus in <A, E>. It is called the recursive sub-hypernet of 
a in <A, E>, and it contains at least one derivation path hypernet, for a, that does not use a, 
and at least one that does. Knowledge about a ∈ A in <A, E> is first to be found in the 
recursive sub-hypernet for a in <A, E>, if one exists, starting with those derivation paths that 
terminate at a but do not use a anywhere else in them, thus establishing preliminary 
knowledge of a in <A, E>. Then the other derivation paths in the recursive sub-hypernet can 
be dealt with, and then P(a), and then finally the context-hypernet of a in <A, E>. This 
provides us with a graded approach to finding all the knowledge about a in <A, E>.  
 
Constructional Scheme 5.5 in [GVS99] can easily be transcribed to provide a way of finding 
the recursive sub-hypernet of a ∈ A in <A, E>. A recursive sub-hypernet is unique. 
 
Deductive Complexity of a CRKS - see [GVS99] - can be usefully transcribed to a KH. It is 
clear that a limited access cascade from the primaries of a KH <A, E> generates a hierarchy, 
in <A, E>, in the form of a nested sequence of KH sub-hypernets of <A, E>. We will be 
concerned with that hierarchy and the notion of deductive distances in <A, E>, which we 
recall here. 
 
Definition 3.6.6: The deductive distance from the primaries of a KH <A, E> of a ∈ A is 
defined by dd(a) is the level of a in <A, E>, where that level is the step number in a limited 
access cascade from the primaries of <A, E>, in <A, E>, in which a is first encountered in that 
cascade. ♦ 
 
The primaries of <A, E> constitute B0, so they are in level zero of the cascade, so dd(p) = 0 
for every primary of <A, E>. Next we recall CS 2.1.1. In it we showed how to construct a tree 
that displays every path from each primary of <A, E> as a unique path in that tree. Now we 
label that tree, as we construct it, by marking all its branches and nodes in a way that allows 
us to compute what we call the deductive complexities DCOM. Again we refer to vertices and 
edges of  <A, E>, and to nodes and branches of the path tree. 
 
First we introduce an unlabelled dummy node to serve as the root of the tree, and one only 
node for each primary of <A, E>. Each such node is joined to the root by an unlabelled 
branch. Every node, other than the root, is labelled with (concept-name, deductive distance of 
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the vertex represented by that node, deductive complexity DCOM of that node). So far we 
have  
                                                                     root 
 
 

 

 

         

                        p1, 0, 1           p2, 0, 1          ...........                                       pn, 0, 1 

 

 
 
for the n primaries of <A, E>, where dd(pi) = 0 for every primary and we set DCOM (pi) = 1 
for every primary. For each node for a vertex u ∈ A, the path tree now develops as follows. 
Find every edge Ei by which there is a vertex adjacency (u, Ei, v) where Ei ={u = c1, c2, …, cm 
= v}. We plot a new node for vertex v for each edge Ej ∈ E by which there is a vertex 
adjacency (u, Ej, v) for this u and v, and insert a branch from each node for u to every node 
for v. Each such branch is labelled with the index k of the edge Ek that generates it, together 
with all the members of Ek other than the two vertices which are adjacent by Ek in <A, E>. 
Thus, for our example Ei above, we would get a branch from each node for u to every node 
for v in the path tree, and that branch would have label i; c2, c3, ..., cm-1, where any order of 
the cs will do. Each new node for v is labelled with its concept-name, its deductive distance 
from the primaries of <A, E>, and the node value of DCOM. The node value of DCOM is 
computed from the edge that generates the particular, unique, branch to that node by setting 
DCOM = DCOM for the “beginning” node of that branch + Σ (dcom of the node for cs) from 
s = 2 to m-1 over all the cs written along that branch in the branch label. We set dcom(cs) 
equal to any minimal value of DCOM of a node for the vertex cs. In the case of an edge    {u, 
v}, the branches between u and v for this edge are all labelled with the index of this edge and 
the set ∅ of vertices, and for such a branch we set DCOM for the end node of the branch, i.e. 
the one furthest from the root, to DCOM for the beginning node of that branch +1. 
 
Next we number the nodes of the path tree. Number the root zero, and then number all sons 
from left to right. Now we assign a value of dcom for each concept-name that appears in any 
branch label as follows. Fill in DCOM for each node that has dd = 1. Certainly this is possible 
because all the primaries have dd = 0 and every node at dd = 1 represents a vertex that was 
derived in terms of primaries only. Next, proceed to nodes for vertices at dd = 2, then at    dd 
= 3, and so on in turn, using the following method. For each concept-name v in a branch label, 
look in the path tree for any node for v that has a minimal value of DCOM among those 
nodes. Suppose that we choose node number n for v: Then dcom(v) = DCOM(n), and 
wherever v occurs in any branch label we enter dcom(v) and (n) next to v in that label. To see 
that this assignment of values of DCOM is possible for all the non-root nodes of the path tree, 
consider the following informal argument. In level 0 we have all the primaries, and each 
primary has a node for which DCOM = 1. Since each primary is trivially derived by a 
derivation path of length zero, we must set dcom = DCOM = 1 for each node for a primary. 
This takes care of the first stage of filling in DCOM and dcom. We now temporarily define a 
first derivation path for any non-primary vertex v of <A, E>, in <A, E>, as follows. Suppose 
that v is in level n, n ≥ 1, in <A, E>. A first derivation path for v is any derivation path for v, 
in <A, E>, for which every vertex u used on that derivation, i.e. in an edge of that derivation 
path, is in a level m < n. 
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Let v be any vertex, of <A, E>, that lies in level 1, and let D(v) be any first derivation path for 
v in <A, E>. Then the only vertices of <A, E> that are used in reaching v by means of D(v) 
are primaries of <A, E>, and this includes the case of ∅ labels. It follows that we can assign a 
value of DCOM to that node copy of v that lies at the “end” of the unique path, in the path 
tree for <A, E>, which corresponds with this first derivation path D(v) for v. Notice that there 
must be at least one first derivation path in <A, E> for every v ∈ A in any given level, 
because <A, E> can be precisely generated by a limited access cascade from its primaries. We 
now assign a value of DCOM to the relevant node copy of v for every first derivation path for 
v. Any minimal value of DCOM assigned to a node copy of v in the path tree using this 
procedure for v ∈ A can be chosen to be the value of dcom for v, and this value is now fixed 
for v so we fill it in, together with the number of the chosen node copy of v, at every 
occurrence of v in a label in the path tree. We do this for every v ∈ A that lies in level 1, and 
this is possible because each such vertex has at least one first derivation path, in <A, E>, that 
involves only primaries, possibly with a ∅ label, in reaching that vertex.  
 
Next suppose that we are done with all level n vertices of <A, E> for some n ≥ 1. Thus every 
vertex of <A, E> that lies in level m ≤ n has been associated with at least one value of DCOM 
and with a single value of dcom. Let v now be any vertex of <A, E> that lies in level (n+1) in 
<A, E>, and let D(v) be any first derivation path for v in <A, E>. The only vertices of <A, E> 
that are used in reaching v by means of D(v) are vertices u in levels m ≤ n, so each such 
vertex u is associated with some node copies for each of which we have a value of DCOM, 
and all those copies have the same previously chosen value of dcom. It follows that we can 
now compute a value of DCOM for that node copy of v which lies at the “end” of the unique 
path, in the path tree of <A, E>, that corresponds with this first derivation path D(v) for v. We 
do this for each first derivation path for v. Any minimal value of DCOM associated with 
some node copy of v in the path tree using this first derivation path procedure for v can be 
chosen to be the value of dcom for v and attached to every occurrence of v in a branch label 
of the path tree, together with the number of the node copy of v which was chosen in 
assigning the value of dcom to v. We repeat this for every vertex of <A, E> that lies in level 
(n+1): This is possible because each such vertex has at least one first derivation path that 
involves only vertices in levels m ≤ n, and possibly ∅ labels, in reaching that vertex, and at 
least one such path must exist because <A, E> can be precisely generated by a limited access 
cascade from its primaries. Since <A, E> and its path tree are finite, it follows that the 
assignment of DCOM and dcom values for every node in that path tree can be achieved: 
DCOM(n) can be computed for every node n in the path tree of <A, E>. 
 
Using the path tree of a KH <A, E> we can, by combining the DCOM and deductive distance 
values for each leaf (pendant) of the path tree, where each leaf is a copy of some goal of   <A, 
E>, assign a complexity value to each derivation path in <A, E>, thereby establishing a partial 
order of the derivation paths in <A, E> from the least complex to the most complex. This 
leads to a presentation strategy - see [GVS99].  
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3.7  Gauges of Complexity 
 
 
In this section we begin to see how we can investigate the complexity of a KH, from various 
points of view, by introducing some gauges of complexity for a KH. We will see how this is 
relevant to our model <A, E>.  
 
Definition 3.7.1: The vertex context number of a ∈ A in a KH <A, E> is given by Vc(a) = 
⏐A[a]⏐ and the edge context number of a is given by Ec(a) = ⏐E[a]⏐, where <A[a], E[a]> = 
<A,E>[a] is the context-hypernet of a in <A, E>. ♦ 
 
Definition 3.7.2: By the degree d(a) of a ∈ A in a KH <A, E> we mean the sum of all 
the⏐λ({a, b})⏐ over all b ∈ A for which λ({a, b}) ≠ ∅. By the in-degree id(a) of a we mean 
the sum of all the ⏐λ({a, b})⏐ over all b ∈ A for which λ({a, b}) ≠ ∅ and (a, Ei, b), Ei some 
edge of <A, E> which is such that (a, Ei, b) lies on a derivation path for a in <A, E>. By the 
out-degree od(a) of a we mean the difference od(a) = d(a) - id(a). ♦ 
 
Definition 3.7.3: By the flow at a ∈ A in a KH <A, E> we mean the number f(a) =   
min{id(a), od(a)}. ♦ 
 
Definition 3.7.4: By the path-multiplicity at a ∈ A in a KH <A, E> we mean the number 
p(a)= id(a) ∗ od(a). ♦ 
 
Definition 3.7.5: By the local context number of a ∈ A in a KH <A, E> we mean  | ∪ ( Ei - 
{a}) | where the union is taken over all Ei ∈ E with Ei ∈ λ({a, b}) and b ∈ A. ♦ 
 
So far all our gauges should have relatively high values in any KH model of a “real world” 
situation. Relatively low values will indicate a weakness of association among vertices. 
 
Definition 3.7.6: Let <A, E> be a KH, and let S ⊆ A with S ≠ ∅. The rank of S, r(S), in   <A, 
E> is defined by r(S) = max ⏐S ∩ Ei⏐ over all the Ei ∈ E. The number r(A) is called the rank 
of <A, E>.♦ 
 
Definition 3.7.7: Let <A, E> be a KH. A sub-family EM ⊆ E is called a matching if the edges 
of EM are pair-wise disjoint. ♦ 
 
Definition 3.7.8: A transversal of a KH <A, E> is a set T ⊆ A such that T ∩ Ei ≠ ∅ for all Ei 
∈ E. The transversal number of <A, E> is the minimum number of vertices in any transversal 
of <A, E>. ♦ 
 
Of interest for KHs are maximum matchings, which tell us something about “essential” edges 
in the case in which “knowledge” is being modelled and we have ∪ Ei = A where the union is 
taken over the edges of EM, and the transversal number which tells us how many “essential” 
vertices belong to A.  
 
Definition 3.7.9: Let <A, E> be a KH, and consider a limited access cascade from the set of 
all primaries of <A, E>. The deductive distance dd(a) of a ∈ A from the primaries of    <A, 
E> is n iff a is first found in <Bn, En>, i.e. in the (n+1)th step of the cascade, i.e. a ∉ Bn-1. By 
an n-slice of <A, E> we mean the set of all a ∈ A that are first found in <Bn, En>, i.e. in the 
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(n+1)th step of the cascade, i.e. a ∈ (Bn - Bn-1). Let Nn ⊆ A be an n-slice of <A, E>, and let a 
∈ Nn. Then the weighted deductive distance, wd(a), of a from the primaries of <A, E> is 
defined by wdd(a) = ∪ Ni where the union is taken over i ∈ {0, 1, ..., n - 1} = n ∈ N. ♦ 
 
We would, in most applications, not want dd(a) or wdd(a) to be relatively large compared to 
their values for other vertices of <A, E>. 
 
Definition 3.7.10: Let a ∈ A of a KH <A, E> belong to an n-slice Nn in <A, E> for some n ∈ 
N. Then ⏐Nn⏐ is called the width W(a) of <A, E> at a. ♦ 
 
Associated with the rank of a set S ⊆ A of a KH <A, E> is the following. 
 
Definition 3.7.11: Let <A, E> be a KH, and let P ⊆ A be the set of primaries of <A, E>. By 
the scope of a set B ⊆ A in <A, E> we mean the set Sc(B) ⊆ E defined by Sc(B) = {Ei ∈ E ⏐ B 
∩ Ei ≠ ∅}. By the scope number of B ⊆ A in <A, E> we mean ⏐Sc(B)⏐. Sc (P) is called the 
primary scope of <A, E>, and ⏐Sc (P)⏐the primary scope number. ♦ 
 
We would like the primary scope number to be relatively high - it is at least ⏐P⏐-, and if 
Sc(B) is relatively low then B is relatively weakly associated with other members of A. If    B 
= {a} then Sc({a}) = E[a]. 
 
Definition 3.7.12: Let <A, E> be a KH with Ei ∈ E and S ⊆ A. The edge rank r(S, Ei) of Ei 
with respect to S is defined by r(S, Ei) = ⏐S ∩ Ei⏐. ♦ 
 
Definition 3.7.13: By a vertex covering C of a KH <A, E> we mean a sub-family C ⊆ E such 
that the union of all the edges in C is A. ♦ 
   
We would be interested in minimal vertex coverings, again a measure of “essential” vertices 
in <A, E>. Minimum traversals and maximum matchings are fairly closely related - see 
[Ber73]. 
 
Next we turn to analysis of a KH <A, E> by means of edge ranks in order to illustrate one use 
of some of our gauges. Run a limited access cascade from the set B0 of all the primaries of 
<A, E>, setting E0 = ∅ as usual. Suppose we have completed step n of the cascade, i.e. we 
have <Bn, En> ∠ <A, E>. (Bn - Bn-1) is an n-slice, of <A, E>, with width ⏐Bn - Bn-1⏐. Now 
complete step n+1 of the cascade, producing <Bn+1, En+1>, and consider (En+1 - En). Let Ei ∈ 
(En+1 - En) and let edge rank 1 of Ei be given by r1((Bn+1 - Bn), Ei) = ⏐(Bn+1 - Bn ) ∩ Ei⏐. This 
is the number of “new” vertices found in step (n+1) that belong to Ei, a “new” edge found in 
step (n+1). Let the equivalence class of Ei in (En+1 - En ) induced by the rank 1 value of Ei be 
denoted by r1[(Bn+1 - Bn), Ei]. We now partially order these equivalence classes, from the 
smallest to the largest, by r1 value. Call the r1 value of each class the r1-difficulty of that class.  
 
Next consider any one of these classes. Inside r1[(Bn+1 - Bn), Ei] we define another 
equivalence relation on this set of edges, all of which have the same edge rank 1 value, as 
follows, looking now at the “dependence” of these edges on the vertices in (Bn - B0). Let edge 
rank 2 be r2((Bn - B0), Ej), where Ej ∈ r1[(Bn+1 - Bn), Ei]. The r2 values specify equivalence 
classes r2[(Bn - B0), Ej] ⊆ r1[(Bn+1 - Bn), Ei]. Every member of any of these equivalence 
classes has the same r2 value, and we partially order these r2 equivalence classes, inside 
r1[(Bn+1 - Bn), Ei], from smallest to largest r2 value, the relevant r2 value being called the r2-
difficulty of the associated equivalence class.  
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Next consider an r2[(Bn - B0), Ej] class. Inside this equivalence class we define a third 
equivalence relation as follows. Let edge rank 3 be defined by r3(B0, Ek) = ⏐B0 ∩ Ek⏐, with Ek 

∈ r2[(Bn - B0), Ej]. This specifies equivalence classes r3[B0, Ek] ⊆ r2 [(Bn - B0), Ej]. Again of 
course every member of r3[B0, Ek] has the same r3 value, and again we partially order these 
edge rank 3 equivalence classes from smallest to largest r3 value. This r3 value is called the  
r3-difficulty of the relevant class. 
 
Now we can choose an equivalence class of minimal r1 value, then one, inside that class, of 
minimal r2 value, and then one, in that r2 class, of minimal r3 value. This allows us to choose 
those Ei ∈ En+1 of minimal difficulty (to learn - see [GVS99]) and work through each r1 
equivalence class from minimal to maximal difficulty in <Bn+1, En+1>. 
 
Finally, consider any given interpretation I [<A, E>] = <A, T> of the KH <A, E>. Clearly  
<A, T> is a CRKS (from the definition of interpretation). Now consider I (Ei) = Ti, Ei ∈ E and 
Ti ∈ T. The number of entries in Ti, call it the length of Ti, is at least ⏐Ei⏐. We partially order 
the edges of each r3[B0, Ek] from smallest to largest tuple length of the I [Eℓ], Eℓ ∈ r3[B0, Ek], 
regarding those edges corresponding with minimal length tuples to be the least difficult in 
r3[B0, Ek]. This defines equivalence classes in each r3[B0, Ek], each being characterized by a 
tuple length value called the r4-difficulty of the class. We do the same in each r2[(Bn - B0), Ej] 
⊇ r3[B0, Ek], and then in each r1[(Bn+1 - Bn), Ei] ⊇ r2[(Bn - B0), Ej], using r4-difficulty to 
partially order edges in each equivalence class at each r3, r2 and r1 level in turn. We can use 
the values of all four gauges, r1, r2, r3 and r4, to partially order all the tuples in any CRKS <A, 
T> = I [<A, E>] from “least difficult” subset of T to “most difficult” subset of T, providing us 
with a tuple-ordering strategy in presenting <A, T> - see [GVS99].  
 
Definition 3.7.14: Let p ⎯ g be any primary to goal (derivation) path in a KH <A, E>, and 
write p ⎯ g as p = A1, <A1, A2>, A2, <A2, A3>, A3, … Aq, <Aq, Aq+1>, Aq+1 = g. For all   <Ai, 
Ai+1>, i = 1, 2, …, q, let ⏐ℓ (<Ai, Ai+1>)⏐ = ni. The pumping constant for p ⎯ g is the 
product of all the ni. ♦ 
 
The pumping constant for p ⎯ g tells us how many distinct p ⎯ g paths there are in the path-
family f(p ⎯ g). The constant is ≤ the total number of distinct p ⎯ g paths in <A, E>. It tells 
a teacher how many choices he has in getting from p to g by the path-family f(p ⎯ g). The 
notion of a pumping constant also applies to any sub-path of p ⎯ g. 
 
 



Modelling Knowledge Systems using Relation Nets and Hypernets 
 

95

3.8 Accommodation, Analogy and Reasoning 
 
 
Assuming the hypernet <A, E> is a KH, we now turn to three other facets: 
• Adding to a KH. 
• Analogy. 
• Reasoning. 
 
Definition 3.8.1: By an accommodation of a KH <A, E> we mean any restructuring of <A, 
E>, for example adding 1 to the weight of an edge Ei ∈ E every time that Ei is used in any 
way, thereby emphasizing certain edges of <A, E> in the sense that the higher the weight of 
an edge in the current, accommodated hypernet, the greater the “user familiarity” with that 
edge. By a unit edge accommodation we mean adding one edge to <A, E>. By a unit vertex 
accommodation we mean adding one vertex to <A, E>. By a hypercluster accommodation 
we mean adding a hypercluster for some new edge to <A, E>. ♦ 
 
Definition 3.8.2: In the case of unit accommodations and hypercluster accommodations of a 
KH <A, E>, we say that the accommodation is assimilated by <A, E> iff the restructured 
hypernet that results is itself a KH. ♦ 
 
It is clear that a unit edge accommodation of a KH <A, E> in which all the members of the 
new edge are elements of A is the simplest form of accommodation. A unit vertex 
accommodation of a vertex v ∉ A will of course never be assimilated: We need to add in, as 
well, appropriate associations with members of A, in the form of new edges, to produce a 
context-hypernet for v that is assimilated by <A, E> if our objective is to construct KHs from 
simple structures. If a unit edge accommodation involves an edge in which there is at least 
one vertex v ∉ A then we have a slightly less complex problem, because here we introduce 
both v and an edge that has v as a member.  
 
As was indicated in [GVS99], the most “natural” kind of accommodation is (hyper) cluster 
accommodation, because of the key role of (hyper) clusters in teaching/learning and in finding 
(KH) CRKS isomorphisms in practical situations in which analogical modelling is used.  
 
Next, let us point out that even though a hypercluster is, by definition, a (minimal) KH for a 
given edge, accommodating a hypercluster into a KH does not always lead to effective 
assimilation of that hypercluster. Certainly the join of the KH <A, E> and a hypercluster that 
is disjoint from <A, E> will yield a KH, so that hypercluster is assimilated by <A, E>, but this 
is a trivial situation of little importance: What we need to do is to consider only such 
hyperclusters that are not disjoint from <A, E>, i.e. the meet of <A, E> and the hypercluster 
in question has at least one vertex, and here there may be real problems that require to be 
dealt with to achieve assimilation of the hypercluster by <A, E>. If we deal with the case in 
which the meet is <∅, ∅>, the accommodation and assimilation are useless in restructuring 
<A, E> in practice. What we need for effective assimilation is that we add to <A, E> and the 
hypercluster in question enough vertices and edges to end up with a restructured hypernet 
<A', E'> that is a KH and is such that the hypercluster introduced belongs to a component of 
<A', E'>. See section 4.3 for a simple example of (hyper)cluster accommodation. 
 
Combining unit and hypercluster accommodations can always produce, with enough 
perseverance, an effective assimilation. Some brief comments on accommodations in the case 
of CRKS’s are presented in [GVS99].  
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Before briefly discussing isomorphism, analogy, teaching by modelling and our models 
reasoning in KH theory, we should note the following. The notion of invariance is the basis 
of inductive reasoning in KH theory – see Chapter 9 of [GVS99]. It first arises in connection 
with the establishment of primitive concepts in the pre-linguistic and early linguistic stages of 
human learning. A primitive concept is one that is established by means of concrete examples 
only. At the lowest levels of learning, primitive concept-names must be treated as primaries – 
there is no other choice. Thus, for instance, a mother may initially partially establish the 
concept-name “red” by verbalizing to the child, in association with appropriate examples, 
“red roof”, “red car”, “red jersey” and so on. The invariant is the sound for “red”. The rest of 
the words should be unconnected among the examples so as to provide verbal noise against 
which the invariant stands out. This kind of situation is represented by means of a KH that 
arises from the CRKS of a primitive binary relationship as follows: 
 
      
 ● 

 

 ●   

  

 ● 

    

 ●   

    

 ● 

   
 
 
A primitive binary relationship such as “x is red” for example, induces a primitive KH as 
depicted in the diagram above. The vertex on the right represents the invariant and is called an 
attention point. The vertices on the left represent a (growing) set of examples from which the 
invariant is inductively abstracted, from the noise of unassociated sound for example. From 
the left-to-right, each edge represents a statement of relationship of the form “is an example 
of”. Read from left-to-right each edge in a primitive KH represents a trivial KH isomorphism, 
which is called an abstraction isomorphism in general. Such abstraction isomorphisms 
express the process of induction from examples that lead to an invariant. This serves as the 
basis of the CRKS/KH model of inductive reasoning and is called elementary induction. In 
general the examples on the left may be CRKS’s/KHs and the vertex on the right an invariant 
(sub-) structure.  
 
Once an attention point exists, and with it possibly a concept-name, the learner can start 
positively to seek new examples of the relevant attention point, thus inducing new edges. 
Such edges, read from right-to-left, are each associated with a statement of primitive (binary) 
relationship of the form “is a property of” for instance. Each such edge represents a trivial KH 
isomorphism, called an algorithmic isomorphism in the primitive KH that is under 
construction. Such algorithmic isomorphisms express the process of finding, or constructing, 
examples of an invariant. In general the invariant  on the right may be a KH/CRKS for 
example, and the vertices on the left (sub-)KHs/CRKS’s found, or constructed, all to be 
isomorphic with the KH/CRKS on the right. 
 
While a primitive concept is established by means of examples all other concepts, called 
secondary concepts, are established by relating them to primitive concepts and/or other 

● 
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secondary concepts. In the case of a primitive concept, the more examples of it the better it is 
established. In the case of a secondary concept, the more statements of relationship that 
involve it, the better it is established. In both cases, the more statements of relationship, in a 
give CRKS/KH, that involve the given concept-name the more precise the meaning of that 
concept-name in that CRKS/KH, as gauged by its context-net in that CRKS/KH. 
 
To see if two given CRKS’s are isomorphic, we go via the two KHs subtracted from those 
CRKS’s. If two KHs (CRKS’s) are isomorphic then we say that they are structurally 
analogous. The use of structural analogy in teaching/learning by virtue of the use of 
“modelling” has been discussed, in the case of CRKS’s, in [GVS99], and the discussion 
applies to KHs as well. Further, an example of structural analogy is presented in Chapter 7 of 
[GVS99], and again that work can be transcribed to the case of KHs.  
 
What, then, is the reason for introducing KHs in this connection? Well, the central problem is 
that of finding, if possible, an isomorphism between two sub-CRKS’s: Given <A1, T1> and 
<A2, T2>, how can we find and construct an isomorphism between them? In [GVS99] a rather 
complex constructional scheme to do this, if possible, was presented. We now wish to point 
out that an easier solution appears from the notions of interpretation and abstraction. Setting 
up the problem in the field of teaching/learning “new” knowledge by referring to given 
knowledge, i.e. in the sphere of teaching by the use of a “model” of new knowledge in terms 
of given knowledge, we visualize the following situation in which we need to construct an 
isomorphism, i.e. a structural analogy, to compare new, developing knowledge with given 
knowledge. 
 
It could be useful, in defining search patterns in our KH <A, E> to find structurally analogous 
sub-hypernets of <A, E>. 
 
We start with existing knowledge in the form of a CRKS K = <A, T> and some “new” 
observations in the form of a cluster K' = <A', T'> for some tuple of “new” concept-names. 
Now in seeking a match, in K, for K', we meet the first, and greatest, problem in trying to set 
up an isomorphism/structural analogy between a sub-CRKS of K and the cluster K': that of 
relative permutations. How do we recognise a match between a tuple in K and a tuple in K' 
when we have to take account of all possible permutations of both tuples? Bearing in mind 
that the whole procedure is a trial-and-error attempt to find the “best” structural analogy - see 
Chapter 8 in [GVS99] - we side-step this problem while maintaining the basic approach used 
in [GVS99], as outlined briefly below. 
 
First we abstract K = <A, T> and K' = <A', T'>, producing KH <A, E> and the hypercluster 
KH <A', E'> respectively. Now relative permutations are irrelevant. Next we look at the 
member or members of E', assuming that not all members of E and of E' are unordered pairs, 
and find a matching of <A', E'> in <A, E> by matching all the sets in E' with a collection of 
the same number of sets in E that form a hypercluster in <A, E>, if possible. There may be 
several such matchings, so it is better, but not essential, to start with a number of “new” 
hyperclusters and try to match them simultaneously. Even then there may be more than one 
possible initial matching, but continuing with the construction will show which initial 
matching is “best”. (Of course one can also apply heuristics in deciding between several 
possible matchings, but our formal measure of relative success is the number of vertices and 
edges in the final matching.)  
 
Next we turn the isomorphism found from <A', E'> into a hypercluster in <A, E> round, and 
expand its domain in <A, E> one edge at a time, each edge having as “large” a meet with the 
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current domain of the growing isomorphism in <A, E> as possible. Each edge projected by 
the tentative expansion of the domain of our KH isomorphism is tested as follows. We define, 
at each stage of the “prediction” from <A, E>, an interpretation of the “predicted” KH, based 
on expanding the inverse of the abstraction of <A', E'>, and producing for each predicted edge 
a tuple from that edge. What tuple? Well, combining the abstraction of <A, T> with the 
potential KH isomorphism and the developing interpretation we can identify the potential 
matching tuple in <A, T>, so we can construct a matching tuple in the growing “new 
knowledge” CRKS that arises out of <A', E'>.  
 
Now try to provide semantics for that predicted new tuple by trying to write an appropriate 
and consistent statement of relationship for that tuple, identifying the relevant “new” concept-
names in that tuple. If this effort is “acceptable”, and judging that may require some empirical 
work suggested by the predicted tuple, then we accept the “prediction”; if not then we move 
on to another “prediction”. Eventually we will have found no isomorphism, or several from 
which to choose, and can use the matching sub-hypernet of <A, E> as a “model” of the “new” 
knowledge for use in presenting the “new” knowledge. There is just one further stipulation: 
The matching relation nets must be CRKS’s, and thus the matching hypernets must be KHs, 
in the case of teaching/learning applications, but in other applications we can broaden the 
approach to isomorphic matching of general hypernets. To write a constructional scheme for 
the procedure briefly outlined above is easy. 
 
Finally, the section on the use of abstraction isomorphism and algorithmic isomorphism in the 
field of problem solving (- see also section 8.5 in [GVS99] -) is easily transcribable to KH 
representations of top-down algorithms. In fact, as pointed out in chapter 1, the entire 
treatment of problem solving in [GVS99] is best done in terms of KHs because in [GVS99] 
we forced an arbitrary order onto the members of the edges. Either top-down direction, with a 
singleton vertex basis, or bottom-up direction, with a non-empty, non-singleton vertex basis, 
can be “read into” the hypernet. If read top-to-bottom, we have a (usually connected) 
hypernet; if read bottom-to-top we have derivation path ordering in a (usually connected) KH. 
In the case of connectedness, which is clearly desirable, a fairly generous slice of the theory 
of hypernets is applicable in the analysis of the structure of the kind of hypernets referred to 
in chapter 1, and considerable simple computer support for such analysis can easily be made 
available. 
 
As pointed out in [GVS99], the isomorphism finding procedure can also be used in other 
education oriented applications, for example such as in finding and analysing “common 
ground” for the current study material among the CRKS’s/KHs drawn up by the members of a 
class of learners. 
 
CRKS models of reasoning were introduced in Chapter 9 of [GVS99], and all that is said 
there can be transcribed to KH models. Models of intuitive and deductive reasoning are based 
upon sequences of fast access and limited access cascades respectively. Inductive reasoning is 
based on finding what is common among a number of CRKS’s by means of abstraction 
isomorphisms, and then projecting this structure into (partially) similar new CRKS’s by 
means of algorithmic isomorphism, thereby describing common inductive reasoning formally. 
If only two CRKS’s are involved we describe one as a structural analogue of the other. We 
are of course assuming that all these CRKS’s can have disjoint vertex sets. 
 
Deductive reasoning may be described as “vertical reasoning” and is geared to developing the 
consequences of a set of primary concept-names or, in general, certain “basic facts”. This 
might also be described as “male reasoning”, and is predominant in basic education in many 
fields. In contrast, inductive reasoning may be described as “lateral reasoning” with some 
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justification, and can also be described as analogical reasoning on the formal basis of CRKS 
isomorphism. We may also assert that this “analogical association” can be described as 
“female reasoning”. Though we do not of course claim that all males reason vertically and all 
females laterally, since many people are adept at both methods of reasoning, there seems to be 
cause to claim that many female learners have more difficulty than males in certain fields of 
education as the result of the “male orientation” of organization and presentation of study 
material. We believe that much more emphasis should be placed on analogical reasoning in 
teaching and research if we want to achieve a balance between establishing new concepts and 
the development of their consequences.  
 
In [GVS99] we introduced the notion of cluster sets, and from this the notion of cluster 
associations. In the KH approach to reasoning, this is the precise equivalent of plotting a 
graph in which each vertex represents the cluster set of a hypercluster, i.e. the union of the 
edges from which the relevant hypercluster is defined, and two vertices are joined iff the two 
relevant cluster sets have a non-empty intersection. Notice that we are implying that this edge 
is included in the vertex set of the (hyper) cluster for that edge. If necessary, permutations of 
the defining tuple for the (hyper) cluster can be used to construct the (hyper) cluster. 
Labelling each arc in this graph with the relevant intersection set produces a graph of the 
cluster associations involved, and following walks in this graph is our model of associative 
reasoning. 
 
At the other extreme from associative reasoning, among our five CRKS models of reasoning, 
is constructive reasoning. This is dependent upon the associations described above. In the 
other three models we assume that already constructed CRKS’s (or KHs) exist. In the 
association model only individual observations, each represented by a (hyper) cluster, exist. 
The question then is how to order at least some of those (hyper) clusters, using some or all of 
the associations in our association graph, into a body of knowledge in the form of a CRKS on 
the basis of (part of) the data displayed in that graph. How do we effectively combine 
clusters? The process of joining (hyper) clusters together to produce a CRKS (or KH) is 
termed constructive reasoning. Some mainly heuristic guidelines for this task are set out in 
Chapter 9 of [GVS99]. 
 
We have proposed derivation as a model of deductive reasoning.  More realistically we 
should refer to it as a model of inferential reasoning since every relationship/tuple is 
regarded as a rule of inference.  Deductive reasoning, as one meets it in the formal languages 
of mathematical logic and computing, is much more restrictive than inferential reasoning.  
The “domain of descriptive application” of formal languages, both in mathematical logic and 
in computing, is severely limited by comparison  with inferential reasoning, though the gross 
structure of all the formal languages involved is the same in every case. 
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4. A NET for use in Education 
 

 
4.1 NETS in general 

 
 
Consider a general NET; one in which the links between items are not necessarily associated 
with any relationship between items, but links which may be arbitrary. We introduce a 
structural model <A, E> as follows: 
 
(1) <A, E> is a hypernet. 
(2) A is a set of items. 
(3) E is defined as follows. For every item Ai ∈ A we introduce an edge set consisting of 

Ai together with all the items that are linked with Ai in <A, E>. From each such edge 
set {Ai, A1, A2, ..., Aℓ(i)} ⊆ A, for each Ai ∈ A, we introduce ℓ(i) edges Ei1, Ei2, ..., 
Eiℓ(i)}in E where Eir, r = 1,2,...., ℓ(i) is associated with a distinct arc between Ai and Ar, 
and that arc is labelled with set {Ai, A1, A2, ..., Aℓ(i)}. These are all the edges of <A, 
E>.  

(4) <A, E> has no isolates. 
 
Now suppose that we are given an initial sub-hypernet <A0, E0>∠ <A, E>, where we may 
have E0 = ∅, and wish to find all those items reachable with at least one member of A0 in <A, 
E>. Run a fast access cascade from <A0, E0> till that cascade terminates with a sub-hypernet 
<An, En>, and consider all items that belong to An - An-1 = Ă. It is quite easy to see that each 
item in Ă is reachable with at least one member of A0, and that if we run a limited access 
cascade from <Ă, ∅> to automatic termination we will get <An, En>. Thus <An, En> is a KH 
with primaries Ă and goals a subset of A0. The derivation involved is, as for problem solution 
hypernets - see chapter 1 and [GVS99] - in a bottom-up direction. 
 
Other methods of trimming <A, E> before a search are indicated in section 3.4 These would 
generally be implemented inside <An, En>, and in such trimming it would be preferable to 
preserve this bottom-up KH structure of <An, En> in the trimming process, but that is of 
course not necessary. Further, it would also be appropriate to preserve connectedness in the 
(trimmed) components of <An, En>. We will not pursue the matter here but will end with the 
comment that hypernet theory, as applied to <A, E>, can be very useful in dealing with any 
NET such as <A, E>.  
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4.2 NETS in Education 
 
 
In this section we briefly indicate how to set up, in principle, a NET <S,E>, called EDUNET, 
to represent curricula and study material. In setting up EDUNET we would follow the pattern 
of Part 1 of [GVS99], but convert all CRKS’s there to KHs. This enables us to deal with 
isomorphism much more easily, and thence to free study material, at least partially, from the 
constraints of one particular teaching meta-language through the use of Language 
Equivalence (LE) – see section 1.4. 
 
Nearly all the theory required for this endeavour appears in this work, so what remains here is 
descriptive, with reference to the appropriate terminology and theory. 
 
Each item s ∈ S of <S, E> arises from a CRKS of the form shown in Part 1 of [GVS99] by 
abstracting those CRKS’s. All this entails is to replace each tuple by the edge that arises from 
i; <A1, A2, ---, Aj, --- An(k) > with adjacency <A1, An(k )>, in a CRKS, which becomes i; 
{M(A1) = A1, M(A2) = A2, ---, M(Aj) = Aj, ---, M(Am(k) ) = Am(k) } with adjacency {M(A1), 
M(Am(k))} = {A1, A m(k)} = {A1, An(k) }, and m(k) ≤ n(k), where M is the (simple) abstraction 
used. Thus each such KH is represented by a vertex s ∈ S, i.e. an item in the NET <S, E>. 
 
From each item we can use a trivial hypernet isomorphism to move to a corresponding edge j: 
{B1, B2, ---, Bk , ---, Bm(j)} with B1 the translation of concept-name A1, Bm(j) the translation of 
concept-name Am(k) = An(k) , and Bk the translation of concept-name Aj for some k and j, and 
with m(k) = m(j). Then we can use j: {B1, --- ,Bm(j) } to define a corresponding statement of 
relationship, and hence a tuple <B1, ---, Bn, ---, Bm(j) >, in the translation, where of course the 
arity of that tuple is at least ⏐{ B1, ---, Bm(j) }⏐ and the adjacency is preserved, i.e. it is <B1 = I 
(B1), Bm(j) = I (B m(j) )> where I indicates the (simple) interpretation used.  
 
All the CRKS’s defined, for example all those defined in [GVS99], can be incorporated in 
EDUNET. With appropriate coding of the KHs that arise from those CRKS’s one can see 
EDUNET as a whole, with an item, i.e. a vertex of S, for each of the resulting KHs. Thus we 
can access any of these hypernets individually, or appropriate meets and joins of them. <S, 
E>, an EDUNET, thus has two “layers”. The top layer, denoted by <S,E>, consists of a set S 
of items that are courses in a curriclum and a set E of edges. These are defined from 
prerequisite and parallel conditions between items/courses - we refer the reader back to the 
examples of this situation in section 1.5. As a result, <S,E >, ie.. the top or curriculum layer of 
an EDUNET, is a “prerequisite and parallel NET” that is itself a KH. The lower level of <S, 
E> is reached by “opening up” an item or items of S to reveal each item as a KH that arose 
from a CRKS. In using EDUNET, then, we can initialise with a concept-name or a set of 
concept-names, or an item or set of items, and follow relational and/or link edges, as the case 
may be, in any search. Following edges in E between items can establish a relevant sub-
hypernet of EDUNET, for example in designing a degree course, after which a combination 
of edges between and in items can extract the course. Then we can use presentation strategies 
to guide teaching of that course, KH item by KH item. It is of course a CRKS interpretation of 
each KH item that is actually taught. (See also section 1.2 and section 1.4). 
 
EDUNET can be defined in phases, and presentation strategies can be prepared, for selected 
courses, by subject experts working together or individually. With each accommodation of the 
growing KH EDUNET, one can use limited access cascades to check derivation and gauges to 
check “relational integratedness”, i.e.integrity, of <S, E> and of study material, thus 
controlling the development of both edges in items and edges between items in different 
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circumstances, but using the same techniques.  
 
Briefly stated, all of the theory covered thus far is applicable to EDUNET in both layers. How 
that theory is used in the representation, analysis and presentation of the study material 
section of EDUNET is clearly set out in [GVS99], there in terms of CRKS’s but easily 
converted to KHs. The eight presentation strategies discussed in Chapter 5 of [GVS99] easily 
adapt to KHs. Chapter 8 of [GVS99] discusses the use of CRKS, now KH, isomorphism, 
which is much easier to deal with than the complex procedure set out in that chapter. Section 
8.5 of [GVS99] tackles the vital question of problem solving, which is much improved with 
our switch to KHs for action diagrams. Sections 9.2, 9.3, 9.4, 9.5 and 9.6 of [GVS99] deal 
with the CRKS models of reasoning, and the whole discussion becomes even more relevant if 
one uses KHs in place of CRKS’s. Finally, the whole of Chapter 10 of [GVS99] on the 
“potential uses of the CRKS model” is even more appropriate for EDUNET.  
 
Of course one must ask “what is the reason for the existence of the notion of a CRKS now, in 
view of this approach via KHs”? The answer is that each of the KHs, i.e. of the s ∈ S, of the 
prospective EDUNET <S, E> arises from a CRKS in some teaching language, which is (very 
simply) abstracted to form that KH. Further, what is actually taught is not the KH, but an 
interpretation of that KH in the form of a CRKS in some teaching meta-language. The 
“bottom line” is that EDUNET starts and ends with statements of relationship among concept-
names. The primary items of the KH <S, E> depend on the particular curriculum defined.  
 
Finally we remind the reader that every feature of EDUNET, from setting it up to analysing 
and presenting the study material, is assisted by simple computer support that can be based 
upon the key constructional schemes in this work.  
 
In summary, we have met two major structures, relation nets and hypernets, that are closely 
associated. The main focus is on CRKS’s, prerequisite and parallel hypernets, and KHs, and 
these notions are brought together as facets of a prospective EDUNET which, then, is the 
principal application aimed for in the longer term. We close with some brief comments about 
an EDUNET.  
 
The first thing to notice is that it is mandatory, in designing a CRKS - from which a KH can 
arise by means of a very simple abstraction - that a diagram be produced, step-by-step, in 
parallel with writing statements of relationships and construction of the appropriate tuples 
table. Such a diagram is an essential heuristic guide in the process of ensuring, a-priory, the 
existence of appropriate derivation paths and adequate integratedness as the design of the 
CRKS proceeds. It is also the visual key to presentation of a CRKS, both for learner and 
teacher, as can be seen from Chapters 5 and 10, for example, of [GVS99]. We are pointing 
out here, then, that it is virtually impossible to design a CRKS on the basis of simply writing 
down statements of relationship among chosen concept-names. We must be guided in our 
choice of statements at each stage by the developing diagram. The diagram can, for example, 
even persuade us to invent new concept-names in order to enforce, or to “smooth out”, 
derivation paths or to provide extra relationships so as to ensure alternative derivation paths to 
support “weak” regions, or to temporarily avoid complex regions of a developing CRKS. 
 
While computing can test, by limited access cascade and the use of gauges, a developing 
CRKS at each stage of development, and can assist in the production of a diagram at each 
stage, a computer cannot design an appropriate CRKS. Human designers are essential, and 
such designs by teachers will be subjective at least inasmuch as presentation strategies can 
vary from one teacher of that CRKS to another, and are also adjustable to suit a particular 
class of learners, or an individual learner. What computing can do as a basis is to store and 
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manipulate CRKS’s by listing the statements of relationships and corresponding tuples, and to 
assist in the analysis of CRKS’s and KHs, and thus of any EDUNET. 
 
The presentation of a CRKS, in the steps revealed by a limited access cascade from the set of 
primaries of that CRKS, is a parallel mode presentation technique. It has been strongly 
suggested that the brain, as a learning machine, functions in a parallel mode. It is clear that 
limited access cascades provide a (formal) model for the implementation of this parallel mode 
of brain function. 
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4.3 Illustrative Applications 
 

 
In this example, in terms of KH models, we start by assuming that the properties of addition 
of integers are discovered by induction from a number of examples such as the notion of a 
“number line” for instance, by the use of (partial) abstraction isomorphisms. Note that we 
could opt for the “common ground” of the ranges of these abstraction isomorphisms, or for 
the “best” one. 
 
We take “integer” to be the only primary concept-name and we assume that the properties of 
the relationship of equality are known. Equality is represented by the symbol =, and addition 
of integers by +. Zero is represented by the symbol 0. All concept-names about which we 
wish to say something are marked in the statements of relationship given. In order to 
demonstrate analogical reasoning, in a very small way, we distinguish between the word 
“zero” and the symbol “0” in the sense that we treat “0” as a concept-name in the statements 
of relationship, but “zero” as a non-concept-name word. This trick enables us to find a non-
trivial isomorphism between two sub-KHs of the KH that we construct from our statements of 
relationship.  
 
The statements that arise from our “observed” clusters, and the diagram of each cluster, and, 
implicitly, the hypercluster abstracted from it, follow. We would show directions, imposed by 
derivation paths, in the KHs, these being those shown in the clusters. We attempt to build a 
cluster for each tuple defined by using only previously met tuples/statements with the 
defining tuple of that cluster. For each cluster we define a complexity measure as follows. 
 
Definition 4.3.1: Given any cluster K, the cluster complexity of K is given by CCOM(K) = 
Σni where the sum is taken over all the ni-tuples of K. Given a hypercluster M [K], the 
hypercluster complexity HCOM(M [K]) = Σ⏐Ei⏐ where the sum is taken over all the edges Ei 
of M [K]. ♦ 
 
It is clear that HCOM([K]) ≤ CCOM(K).  
 
For each of the statements below, we give a cluster K which can easily be converted to the 
abstracted hypercluster M [K], together with the value of CCOM(K) and the value of 
HCOM(M [K]). These two values give us one kind of estimate of the relative difficulty of 
learning the cluster, and hypercluster, respectively. 
 
1.  Addition of integers is represented by the symbol +.  
 
A cluster for 1 is            
 
                                   int                    1; ∅                  + 
 
   
CCOM = 2 and HCOM = 2. 
 
2.  For every integer x there is a unique negation that is also an integer and is represented 
by the symbol - x. 
   
A cluster for 2 is 
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                                int       2; <int>                              - 
 
   
CCOM = 3 and HCOM = 2. 
 
3.  - ( - x), the negative of - x, for every integer x, is = x. 
   
A cluster for 3 is  
                                    -                3; <-, -, int>                      
 
 
                 2; <int> 
 
 
                                 int  
 
CCOM = 3 + 5 = 8 and HCOM = 2 + 3 = 5. 
 
4.  There is a special unique integer, for +, called zero and represented by the symbol 0. 
   
A cluster for 4 is 
  
                                 int                   4; <+>                        0 
 
                           1; ∅ 
         
               
                            +  
   
CCOM = 2 + 3 = 5 and HCOM = 2 + 3 = 5 
 
5. = holds between - 0 and 0. 
  
A cluster for 5 is  
 
                                   =             5; <-, 0>                            0 
 
 
             3; <-, -, int>                                                           4; < + > 
          
 
                             -                             +        1; ∅       int 
   
CCOM = 5 + 4 + 3 + 2 = 14 and HCOM = 3 + 3 + 3 + 2 = 11 
 
6.  The only integer that is its own negative is 0, i.e. - 0 = 0.  
  
A cluster for 6 is  
 
                                  int   6; <0, - , 0, => | 4; <+>      0 
 
     
                 2; < int>                             1; ∅                            5; < -, 0 > 
          
                              -                              +                        = 
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CCOM = 3 + 6 + 3 + 4 + 2 = 18 and HCOM = 2 + 4 + 3 + 3 + 2 = 14   (note: 4; <+> is 
necessary so as to reach 0 for use in 6). 
 
7.  = holds, for any integers x and y, between x + y and y + x.  
  
A cluster for 7 is 
 
                                  =                     7; <int, +>              + 
 
 
                                                                             1; ∅ 
          
                                                                                          int 
   
CCOM = 4 + 2 = 6 and HCOM = 3 + 2 = 5. 
 
8.  0 + x = x for every integer x with 0 under the operation +. 
  
A cluster for 8 is 
 
 
                                   0                 8; <+, =, int, 0>            + 
 
 
                                      7; <int, +>                                 1; ∅ 
          
                   
                                        
                                      =                                                     int 
  
CCOM = 6 + 4 + 2 = 12 and HCOM = 4 + 3 + 2 = 9. 
 
9.  x = x + 0 for every integer x with 0 under the operation +. 
  
A cluster for 9 is 
 
                                  =                  9; <+, 0, int, 0>            + 
 
 
                                                                                   1; ∅ 
    
                               
                                                                    0     4; <+ >     int 
 

   
CCOM = 6 + 2 + 3 = 11 and HCOM = 4 + 2 + 3 = 9. 
 
10. From statements 8 and 9 we have that = holds, for every integer x, between x + 0 and   
      0 + x, which conforms with statement 7. 
 
 A cluster for 10 is 
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                                  =     10; <int, +, 0, 0>                    + 
 
 
                                                                                1; ∅ 
                          
                              
                                                                 0     4; <+>        int 
   
CCOM = 6 + 2 + 3 = 11 and HCOM = 4 + 2 + 3 = 9. 
 
11. - x + x = zero for every integer x with - x under the operation +. 
  
A cluster for 11 is  
 
 
                                   -                 11; < +, =, int, ->         + 
 
 
                                     3; <-, -, int>                                     1; ∅ 
                
                 
                                    =                                                    int 
   
CCOM = 5 + 6 + 2 = 13 and HCOM 3 + 5 + 2 = 10 
 
12. Zero = x + (- x) for every integer x with - x under the operation +. 
  
A cluster for 12 is 
 
                                   =         12; <+, -, int, ->                 + 
 
 
                                                                                              1; ∅ 
        
                        
                                                                  -       2; <int>  int 
  
CCOM = 6 + 2 + 3 = 11 and HCOM = 4 + 2 + 2 = 8. 
 
13. From statements 11 and 12 we have that = holds, for every integer x, between x + (- x)  
 and -x + x. This conforms with statement 7. 
  
A cluster for 13 is 
 
                                   =                    13; <int, +, -, ->         + 
 
 
                                                                                                 1; ∅ 
        
                              
                                                                     -       2; <int>   int 
  
CCOM = 6 + 2 + 3 = 11 and HCOM = 4 + 2 + 2 = 8.
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14. For any integers x, y and z, = holds between x + (y + z) and (x + y) + z.  
 A cluster for 14 is 
 
                                 int             14; <=, +, +, +>⏐ 1; ∅     + 
 
 
                                                                                                 7; < int, +> 
          
                                                                                             = 
 
CCOM = 6 + 2 + 4 = 12 and HCOM = 3 + 2 + 3 = 8. 
 
Notice that we must reach + by means of 1; ∅ before we can use 14. It is easy to verify that 
each of our clusters is indeed a minimal CRKS for the tuple in question. 
 
Even this simple example is rich in associations, so the associations graph, which displays all 
possible edge adjacencies between the cluster sets (the vertices), will be very complex. (The 
cluster set of a cluster is the set of all concept-names in that cluster.)  
 
Next, we construct a CRKS from the given clusters. Because we have simplified the 
construction by using only previously defined tuples in the cluster for a particular tuple, we 
can simply start with cluster 1 and then join it with cluster 2, 3, …, 14, in that order, with no 
problem. The process will not always be so straightforward! Notice that only selected 
associations are used in constructing the CRKS. Some choices of association are as follows. 
Tuple 4 is associated, via “0”, only with tuples 5, 6 and 8. Tuple 10 is associated with tuple 5 
via “=”, and tuples 9 and 10 are associated with tuple 8 via “+”, where our choices are the 
concept-names at which we make these tuples adjacent and are among a host of such choices 
which can be made. The CRKS is shown in figure 4.3.1 
 
 

             
                                                                                   integer    

      4; <+>        
                   6; <0,-,0,=>   1; < ∅>     2; <integer>     
         14; <=,+,+,+>      - 

          
                 0  

              11; <+,=,integer,->                        3; <-,-,integer> 

                  5; <-,0> 

                                                                                                                                   =    

       
             8; <+,=,integer,0> 

             7; <integer,+> 

                                      9; <+,0,integer,0> 

                  10; <integer,+,0,0> 

                 12; <+,-,integer,->      

                                  13; <integer,+,-,->   

 
Figure 4.3.1 CRKS for the clusters. 

                    

+
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To illustrate our model of intuitive reasoning in this CRKS we run a fast access cascade from 
B1

0 = {integer}, the only primary. At each step we show only what is newly found in that 
step. 
 
Step 1:                                                           integer 
                                         
                                2; <integer > 
 
                                               6; <0, -, 0, =>                         1; ∅                                       - 
                                                4; <+>                                    4; <=, +, +, +>  
 
 
 
 
                            0                                                        +                                                = 
 
 
Step 2:  
 
                                     0                                           integer               
    - 
 
                         8; <+, =, integer, 0>                              11; <+, = integer, ->                         3; <-, -, integer> 
                                                                                       + 
                        
 
 
         3; <-, -, int> 
 
7; <integer, +>    | 12; <+, -, integer, -> 
9; <+, 0, integer, 0>  | 13; <integer, +, -, ->    = 
10; <integer, +, 0, 0>  
             
In the next step we “find” tuple 5, but no new vertices. After three steps the whole CRKS has 
been accessed. Suppose that after step 1 we decide to explore further only the concept-name 
“=”. We start a new cascade with B2

0 = {=}. T2
0 = ∅, and for T2

1 we have a choice of tuples 
that start with “=”, i.e. tuples 5, 7, 9, 10, 12 and 13. If we choose only 5, then this step 2 
yields: 
 
                                               0                 5; <-, 0>                      = 
          
 
                                                                           - 
 
For the next cascade, let’s choose B3

0 = {0, =}, and T3
1 = {5} again. We get, in this step 3, the 

newly found data 
 
Step 3:  
                                             0                        5; <-,0>                            = 
 
 
                                                                                                     7;<integer,+>                                                
                      8; <+, =, integer, 0>                                               9; <+, 0, integer, 0>   
                                                                                                   10; <integer, +, 0, 0>         
                          12; <+, -, integer, -> 
                  +                 13; <integer, +, -, ->                             
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Joining these formal schemas, leaving out the previous step 2, we see that this “controlled” 
chain of fast access cascades has generated the given CRKS. The power of this view of 
intuitive reasoning by means of a sequence of “directed” fast access cascades will only 
become apparent when the given CRKS is very large. 
 
To illustrate our model of deductive reasoning in this CRKS we run a limited access cascade 
from its primary, i.e. B1

0 = {integer}, in steps, showing what is newly derived in each step. 
  
Step 1:    
                            integer                   2; <int>                      - 
 
 
 
         1; ∅ 
 
 
          
     + 
 
Step 2: 
                       integer                                                     - 
 
      
              4; <+>                                                                3; <-, -, integer> 
 
        
    
      0                                                        = 
Step 3:  
 
                                                              integer                                                       - 
 
                                     6; <0, -, 0, =>                      14; <=, +, +, +>                11; <+, = integer, - > 
 
   8; <+, =, integer, 0>      
                       
                              0                + 
 
                           5; <-, 0>       
                                                                  7; <integer, +>, 9; <+, 0, int, 0>,  
                                                                 10; <integer, +, 0, 0>, 12; <+, -, int, ->, 13; <int, +, -, ->   
          
                                              = 
 
The join of these three formal schemas is precisely our given CRKS. Suppose that after step 2 
we decide to continue with a new limited access cascade from B2

0 = {integer, +, =}. In the 
first step of this cascade we get 
 
                           integer                                                                          = 
 
                                            14; <=, +, +, +> 
 
           4; <+>    2; <integer>     1; ∅                                         7; <integer, +> 
 
 
             0                                              -                 + 
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The next step, 2', of this second cascade yields 
 
                                     -                                                               integer 
 
 
           3; <-, -, integer>         11; <+, =, integer, ->                                6; <0, -, 0, => 
 
 
                                                                  5; <-, 0>         
  =  0 
 
  9; <+, 0, integer, 0> 
  10; <integer, +, 0, 0>                                     8; <+, =, integer, 0> 
      12; <+, -, integer,->  
   13; <integer, +, -, ->  
                    
                                                                          + 
 
 
Joining < B1

1, T1
1>, < B2

1, T2
1> and step 2' above yields the entire CRKS. 

 
Next we point out that it is easy to show that clusters 8 and 11 can be adjusted to be 
isomorphic. We change to an alternative cluster for 11, for the tuple <-, +, =, integer, -, +>, as 
shown below. 
 
                                  -               11; <+, =, integer, ->         + 
 
 
                                              7; <integer, +>                          1; ∅ 
 
 
 
                                 =                                                       integer 
 
We have deleted 3 and added 7. This does not affect the construction of the CRKS from the 
clusters. This alternative cluster and that for statement 8 are isomorphic, where “-” and “0” 
are matched, so, for example we can use this structural analogy between the two clusters to 
teach/learn cluster 11 by referring to cluster 8, previously learned, as a model of cluster 11. 
Further, it is easy to extend this isomorphism by joining cluster 9, and then cluster 10, to 
cluster 8, deleting tuple 4, and isomorphically mapping this domain onto the join of cluster 12 
and 13, without tuple 2, with our revised cluster for tuple 11. 
 
Joining clusters 8, 9 and 10 yields the CRKS 
 
                           =       7; <integer, +>, 9; <+, 0, integer, 0>,    + 
        
                                     10; <integer, +, 0, 0> 
 
                                 8; <+, = integer, 0>                                     1;∅ 
 
            
                                    (                                                          )  
                    0 4; <+>                         integer 
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Joining clusters 12 and 13 to our alternative cluster for 11 yields the CRKS 
 
                           =       7; <integer, +>, 12; <+, -, integer, ->,  + 
 
                                     13; <integer, +, -, -> 
 
                                 11; <+, =, integer, ->                                     1;∅ 
 
            
                         0              (                                                 ) integer 
  2; <integer> 
 
 
Ignoring 2 and 4, it is easy to find the isomorphism between these two CRKS’s, where 0 is 
identified with –, and we can go via the equivalent KHs. Expansion of the domain of the 
mapping one tuple at a time, starting with the isomorphism between clusters 8 and 11 
(revised), will break down when we try to map 4; <+> because 0 has been identified with -. In 
most cases isomorphic (sub-) CRKS’s/KHs will share no vertices.  
 
Digraphs constitute a sub-class of the class of relation nets, and it appears that relation nets 
have, potentially, a wider domain of practical applications when used as models in such 
applications. It is also apparent that the graphs form a sub-class of the class of hypernets, as 
do the hypergraphs. Thus, in general, hypernets should have a wider domain of practical 
applications, when used as models in such applications, than either of these two sub-classes.  
 
Referring back to figure 4.3.1 we see a simple example of one presentation strategy type by 
spiralling to +. Thus, for example, we start with tuple 1 to introduce +. Then 4 introduces 0, 2 
introduces -, followed by 3 to introduce =. Now we can use 14 to “support” +, and then 
7.9.10.12 and 13. After this we can use 6, 11,5, and 8, completeing the CRKS for integer and 
+.  
 
The context schema of + consists of all the vertices together with tuples 4, 14, 11, 8, 7, 9, 10, 
12 and 13. The context schema of 0 is 
 
  
                  integer    
           
        6; <0,-,0,=>     
           - 
          
       0  
           
       5; <-,0> 
      
         = 
 
     8; <+,=,integer,0> 
         
                 9; <+,0,integer,0> 
             10; <integer,+,0,0> 
                 
              
 
 

 
 
 

Figure 4.3.2. The context schema of 0. 
 

+
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We see that the vertex context number of 0 is 5, and its edge number is 5, regardless of 
whether we consider the context schema of 0 or the context hypernet of 0. As ⏐A⏐=5 and 
⏐T⏐=⏐E⏐=14, 0 is quite “well integrated”.  
 
For an example of the construction of a path tree see section 5.4 of [GVS99]. 
 
Next we will use a simple example to show how the use of the representation of study 
material in CRKS form is linked with, and is extended by, the notion of a KH. Our illustration 
is the partial model of CRKS theory itself, as given in Appendix A of [GVS99], in the form of 
a CRKS.  
 
The concept-names in the statements are those printed in bold. Here are the statements. 
1. The problem of devising a science of teaching has a potential solution in terms of vee 

diagrams. 
2. The problem of devising a science of teaching has a potential solution in terms of 

concept circle diagrams. 
3. The problem of devising a science of teaching has a potential solution in terms of 

concept maps. 
4. The problem of devising a science of teaching has a potential solution in terms of 

semantic networks. 
5. The problem of devising a science of teaching has a potential solution in terms of 

conceptual graphs. 
6. The problem of devising a science of teaching has a potential solution in terms of CNR-

nets. 
7. Concept maps deal with concept-names and relationships among them, as do CNR-

nets. 
8. Concept-names are represented by the vertices in a CNR-net. 
9. Relationships are represented by the tuples in a CNR-net. 
10. Tuples represent relationships in a CNR-net.  
11. A CNR-net has subnets. 
12. The set of all subnets of a CNR-net, with meet and join defined on it, forms a 

distributive lattice. 
13. A concept-name, in a CNR-net, represented by a vertex with in-degree zero and out-  
  degree ≥ 1, is called a primary. 
14. A concept-name, in a CNR-net, represented by a vertex with out-degree zero and in- 
 degree ≥ 1, is called a goal. 
15. A primary is a vertex with in-degree zero and out-degree ≥ 1 in a CNR-net. 
16. A goal is a vertex with out-degree zero and in-degree ≥ 1 in a CNR-net. 
17. A CNR-net with at least one primary, at least one goal, and no circuits, and in which  
  each concept-name is related to at least one other concept-name, is called a formal  
  schema.  
18. A formal schema that consists of all the tuples that involve a given concept-name  
  constitutes, for that concept-name, its context-schema. 
19. A formal schema in which every vertex has degree ≥ 1 is said to be complete. 
20. A formal schema may have the property that every one of its vertices is derivable. 
21. A complete formal schema in which every vertex is derivable is called a CRKS. 
22. Derivability and completeness of a formal schema characterize a CRKS. 
23. A primary in a CRKS is trivially derivable.  
24. Every statement of relationship in a CRKS is treated as an inference rule: This leads to 
  the notion of derivability. 
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25. A formal schema that is complete and in which every vertex is derivable is called a  
  CRKS. 
26. Tuples in a CRKS are preserved by CRKS isomorphism. 
27. Isomorphism of CRKS’s expresses structural analogy. 
28. Structural analogy is expressed in terms of isomorphic (sub-) CRKS’s. 
29. Isomorphism is used to express structural analogy among (sub-) CRKS’s. 
30. Derivability is realized in a CRKS by means of derivation paths. 
31. Derivation paths express derivability in a CRKS. 
32. Derivability is realized in terms of derivation paths in a CRKS. 
33. A formal schema can be searched for relevant subnets using cascades. 
34. A cascade from the primaries of a formal schema can be used to test a formal schema  
  for CRKS form. 
35. In a formal schema we can use a cascade from the primaries to test for CRKS form. 
 
These statements do not tell us much about CRKS’s, but we can continue to design more 
statements until we “cover” CRKS theory. 
 
The Tuples Table is as follows, with the tuple set for each. 
 
1. <problem, vee diagram> {problem, vee diagram} 
2. <problem, concept circle diagram> {problem, concept circle diagram} 
3. <problem, concept map> {problem, concept map} 
4. <problem, semantic network> {problem, semantic network} 
5. <problem, conceptual graph> {problem, conceptual graph} 
6. <problem, CNR-net> {problem, CNR-net} 
7. <conceptmap, concept-name, relationship, 

CNR-net> 
{concept map, concept-name, relationship, 
CNR-net} 

8. <concept-name, CNR-net> {concept-name, CNR-net} 
9. <relationship, tuple, CNR-net> {relationship, tuple, CNR-net} 
10. <tuple, relationship, CNR-net> {tuple, relationship, CNR-net} 
11. <CNR-net, subnet> {CNR-net, subnet} 
12. <subnet, CNR-net, distributive lattice> {subnet, CNR-net, distributive lattice} 
13. <concept-name, CNR-net, primary> {concept-name, CNR-net, primary} 
14. <concept-name, CNR-net, goal> {concept-name, CNR-net, goal} 
15. <primary, CNR-net> {primary, CNR-net} 
16. <goal, CNR-net> {goal, CNR-net} 
 
So far the difference is that the entries in the tuples are in a strict order, but those in the edges 
are unordered. Vertex adjacencies are preserved. 
 
17. <CNR-net, primary, goal, concept-name, 

relationship, concept-name, formal 
schema> 

{CNR-net, primary, goal, concept-name, 
relationship, formal schema} 

18. <formal schema, tuples, concept-name, 
concept-name, context-schema> 

{formal schema, tuples, concept-name, 
context-schema} 

19. <formal schema, complete> {formal schema, complete} 
20. <formal schema, derivable> {formal schema, derivable} 
21. <complete, formal schema, derivable, 

CRKS> 
{complete, formal schema, derivable, CRKS} 

22. <derivability, complete, formal schema, 
CRKS> 

{derivability, complete, formal schema, 
CRKS} 

23. <primary, CRKS, derivability> {primary, CRKS, derivability} 
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24. <relationship, CRKS, derivability> {relationship, CRKS, derivability} 
25. <formal schema, complete, derivable, 

CRKS> 
{formal schema, complete, derivable, CRKS} 

26. <tuple, CRKS, CRKS, isomorphism> {tuple, CRKS, isomorphism} 
27. <isomorphism, CRKS, structural 

analogy> 
{isomorphism, CRKS, structural analogy} 

28. <structural analogy, isomorphic, CRKS> {structural analogy, isomorphic, CRKS} 
29. <isomorphism, structural analogy, 

CRKS> 
{isomorphism, structural analogy, CRKS} 

30. <derivability, CRKS, derivation path> {derivability, CRKS, derivation path} 
31. <derivation path, derivability, CRKS> {derivation path, derivability, CRKS} 
32. <derivability, derivation path, CRKS> {derivability, derivation path, CRKS} 
33. <formal schema, subnet, cascade> {formal schema, subnet, cascade} 
34. <cascade, primary, formal schema, formal 

schema, CRKS> 
{cascade, primary, formal schema, CRKS} 

35. <formal schema, cascade, primary, 
CRKS> 

{formal schema, cascade, primary, CRKS} 

 
The CRKS diagram is presented in figure 4.3.3. The abstracted KH is easy to construct from 
figure 4.3.3. 
 
The concept-names involved in the CRKS can be translated to, or constructed in, another 
teaching meta-language, and from these we could build a KH that is isomorphic with the 
English language (in this case) KH represented by the second diagram. The new KH can now 
be interpreted as a CRKS in the “new” language in a number of ways, where we recall that if 
that “new” hypernet is a KH then each and every interpretation of it is a CRKS. Such a CRKS 
can now be used to teach/learn the knowledge represented by our English language CRKS in 
the “new” language. Heuristically, the statements from which the tuples arise in the “new” 
language should be chosen, from the alternatives for each KH edge, in a manner that best suits 
the teachers/learners in that language. It may be that the vertex adjacencies forced upon the 
designer are inappropriate in the “new” language, which will enforce redesign in order to 
preserve derivation paths.
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              problem                
  
                                       
 

1; ∅                             2; ∅                  3; ∅                                      4; ∅                             5; ∅ 
 
                6; ∅                             
  
 con map      concept map 

 

           7; <concept-name , relationship> 

                       

                 CNR-Net 

  

         9; <tuple>                     10; <relationship> 

                    15; ∅             8; ∅                   16; ∅          11; ∅                                                                           

      

   realtionship        primary      concept name         goal         subnet       tuple 

            13; <CNR-net>          14; <CNR-net> 

           
    17;<primary,goal,concept-name, 
              relationship, concept-name>     12; <CNR-net> 

       24;<CRKS>        

      
      18;<tuple,concept-name, 
                    concept-name> 

  

                                  23;<CRKS>                   formal schema      26;<CRKS,CRKS> 

           
      20; ∅                   19; ∅      

            33;<subnet>                     complete   
      
                     25;<complete, derivable>  
           21;<formal schema, 
          derivable        cascade  35;<cascade,primary>                  derivable>                   isomorphism 
 
 
              30; <CRKS>        34;<primary,                 
               formal schema,               
                formal schema>                                     27;<CRKS> 

       22;<complete,         
                formal schema>                    

 derivation path             32;<derivation path>    29;<structural analogy>   

                                    structural analogy             
 
     31;<derivable>    28;<isomorphism> 

            

Primaries are shaded.  Rectangles represent goals. 
Figure 4.3.3: A CRKS for the basis of CRKS’s  
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Next we present some statements that constitute a partial model of KH theory and that 
constitute a CRKS representation of a small part of that theory. 
 
Definition 4.3.2: By a formal hyperschema we mean a hypernet that is abstracted from a 
formal schema <A, T>.♦ 
 
A formal hyperschema <A,E> inherits the primaries and the goals of the formal schema 
<A,T> from which it is abstracted. <A, E> is such that, for every Ei ∈ E, ⏐ Ei ⏐ ≥ 2, and every 
concept-name vertex v ∈ A belongs to at least one Ej ∈ E, in <A, E>. Note that the “no-
circuits” rule for <A, T> is not meaningful in <A, E>.  
 
Here are the statements. 
1. The abstraction of a CRKS is a KH. 
2. The defining properties of a CRKS are inherited by the KH that is abstracted from it. 
6'. The problem of devising a science of teaching has a potential solution in terms of KHs. 
8'. Concept-names are represented by the vertices in a KH. 
9'. Relationships are represented by the edges in an abstracted KH. 
10'. Edges represent abstracted relationships in a KH.  
11'. A KH has sub-hypernets. 
12'. The set of all sub-hypernets of a KH, with meet and join defined on it, forms a 

distributive lattice. 
17'. An abstracted sub-hypernet with at least one primary, at least one goal, and in which 

each concept-name is related to at least one other concept-name, is called a formal 
hyperschema. 

18'. A formal hyperschema that consists of all the edges that involve a given concept-name 
constitutes, for that concept-name, its context-hypernet. 

19'. A formal hyperschema in which every vertex has degree ≥ 1 is said to be complete. 
20'. A formal hyperschema may have the property that every one of its vertices is 

derivable. 
23'. A primary in a KH is trivially derivable.  
24'. Every abstracted relationship in a KH is treated as an inference rule: This leads to the 

notion of derivability. 
26'. Vertex adjacencies in a KH are preserved by KH isomorphism. 
26a'. Edges in a KH are preserved by KH isomorphism. 
27'. Isomorphism of KHs expresses structural analogy. 
28'. Structural analogy is expressed in terms of isomorphic (sub-) KHs. 
29'. Isomorphism is used to express structural analogy among (sub-) KHs. 
30'. Derivability is realized in a KH by means of derivation paths. 
31'. Derivation paths express derivability in a KH. 
32'. Derivability is realized in terms of derivation paths in a KH. 
33'. A formal hyperschema can be searched for relevant sub-hypernets using cascades. 
34'. A cascade from the primaries of a sub-hypernet can be used to test a formal  

hyperschema for KH form. 
35'. In a formal hyperschema we can use a cascade from the primaries to test for KH form. 
 
Notice that the meaning of the term “structural analogy ” applied to KHs is broader and more 
general than when applied to CRKS’s. 
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        23' 
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              30' 
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Figure 4.3.4  Diagram of a KH for some KH properties  
 

 
The hypernet of figure 4.3.4 is indeed a KH, as can be verified by running a limited access 
cascade from its primaries, all of which are previously met concept-names. Some of the 
statements of relationship would have to be reworded to enforce derivability, primaries and 
goals of the CRKS from which the KH of figure 4.3.4 is abstracted. Notice that several more 
relationships could of course be added to the KH of figure 4.3.4. Such accommodations will 
generally require a change in the choice of primaries and goals in order to achieve 
assimilation, i.e. KH form.  
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context 
hypernet 
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4.4 Closing Comment 
 

As we remarked in [GVS 99], the recursive definition of derivability is the key to all the 
properties and uses of a CRKS. The situation is directly analogous with formal deduction in 
mathematical logic, where the vertices represent well-formed formulas, the primaries 
represent instances of axioms, the relationships represent instances of rules of inference, and 
the derivation paths are equivalent to formal deductions. Just as axioms are a one line proof of 
themselves, primaries are trivially derivable by virtue of a derivation path of length zero. 
Every derived vertex is analogous with an axiom or a theorem. “Derivable“ implies a 
particular ordering of information, and we regard knowledge as “usefully ordered 
information”. This ordering appears to indicate that the information is learnable/teachable, so 
we take as a hypothesis that “derivable implies learnable/teachable”. 
 
We have met two kinds of NET, relation nets and hypernets. As special cases we have 
CRKS’s and KHs and these two intimately linked systems constitute two different facets of 
the same structural model for acquisition, representation, retrieval, accommodation and 
assimilation, communication and management of knowledge. Indeed, the very definition of 
“knowledge” in this work is that it is data and information that fit the CRKS model. Briefly, 
we have the following synopsis: 
 
 Knowledge acquisition/ learning consists of devising concept-names and discovering 

relationships among them, i.e. “perceiving” information items. 
 
 Knowledge representation consists of constructing CRKS’s. 

 
 
 Knowledge communication/teaching involves various presentation strategies for 

CRKS’s – see also [GVS99]. 
 
 Knowledge management entails the design, selection, retrieval, deletion, assimilation, 

manipulation and analysis of (sub-)CRKS’s using the techniques presented in this 
work and in [GVS99]. 
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Appendix 
 

A1.    List of Constructional Schemes 
 
1.2.1: To determine id(Am), od(Am) and d(Am) for Am ∈ A in a relation net <A, T>. 
1.2.2: To determine R(Am), R[Am], and hence |R(Am)| and |R(Am)|, for Am∈ A in a 

relation net  <A, T>, where |X| denotes the number of members of set X. 
1.2.3: To check that <B,U> ∠ <A,T> for two given relation nets <A, T> and <B,U>. 
1.2.4: To find the isolates and the complete isolates in a relation net <A, T>. 
1.2.5: To check that relation net <B, U> is a spanning subnet of a relation net <A, T>. 
1.2.6: To find the maximum subnet <B,T↑B> of a relation net   <A, T>, where B ⊆ A. 
1.2.7: To find all the An ∈ A that are adjacent from Am ∈ A in a relation net <A, T>. 
1.2.8: Find all the vertices that are vertex between Ar and As on a given path Ar → As in a 

relation net <A, T>.  
1.2.9: Find all the vertices that are reachable from a given Ar ∈ A in a relation net       

<A, T>. 
1.2.10: Find the join of two relation nets <B, F> and <C, G>. 
1.2.11: Find the meet of two relation nets <B, F> and <C, G>. 
1.2.12: To “run” a fast access cascade from a given B0 ⊆ A in a relation net <A, T>. 
1.2.13: To “run” a limited access cascade from a given B0 ⊆ A in a relation net <A, T>. 
1.2.14: Find the context-net <A, T>[Ak] in a relation net <A, T>. 
1.3.1: To find the primaries of a potential formal schema <A, T>. 
1.3.2: To find the goals of a potential formal schema <A,T>.  
1.3.3: To check that each Ak ∈ A in a potential formal schema   <A, T> is related to at 

least one Aj ∈ A, Aj ≠ Ak, in <A, T>. 
1.3.4: To determine whether or not there are circuits of any length in a relation net <A, 

T>. 
1.3.5: To check that a given formal schema <A, T> is complete. 
1.3.6: To find the context schema of a given vertex Ak ∈ A in a formal schema <A, T>. 
1.3.7: To construct a path tree, for a formal schema <A, T>, that displays and 

distinguishes every path from each primary in <A, T>.  
1.3.8: To find all the paths of length ≥ 1 from Am ∈ A to An ∈ A in a formal schema 

<A,T>.  
1.3.9: Test to see if a formal schema <A, T> is connected. 
1.3.10: To test a complete formal schema <A, T> for CRKS form.  
1.5.1: Given two hypernets <A1, E1> and <A2, E2>, find an isomorphism between them. 
2.3.1: To find an edge basis for a hypernet <A, E>. 
2.6.1: To find an edge cut-set included in R where R ⊆ E is any disconnecting set of 

edges of a connected hypernet <A, E>. 
3.1.1: To construct a derivation path tree, for a KH <A, E>, displaying and distinguishing 

every derivation path from each primary of <A, E>.  
3.1.2: Find all the derivation paths between vertex u and vertex v in a KH <A, E>.  
3.6.1: To find a set of quasi-disjoint π ⎯ γ paths in Z. 
3.6.2: To find a set of quasi-edge-disjoint π ⎯ γ paths in Z. 
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A2.  Examples of CRKS’s 

 
All references in this section are to [GVS99].  They each consist of a section heading and 
page numbers.  
 

1. Set, member , equal, empty set and some relationships among them.  2.2  pgs 29 to 35. 
(Corrections:  pg 32 (+14) ∈ in bold, 3 times, (+15) ∈ in bold,  pg 34 (-10) is figure 
2.7   →   is presented in figure 2.7)  

2. The rotation symmetry group of the square.  5. 4 pages 75 to 78. 
3. The path tree for 2.    5.4 pgs 80 to 86. (Corrections:  pg 86 (lower diagram) insert 

arrow head at 0 and at fol–by, ( -3) notation → notion.) 
4. A formal language. 6.2 pgs 94 to 97. 
5. The displacements in a plane. 7.2 pgs 103 to 105. 
6. The triples:  An example of isomorphism. 7.3 pgs 106 to 110. (Corrections:  pg 106 

(+10)  triple–sum → bold). 
7. Commutative group.    7.4 pgs 110 to 112. 
8. CRKS’s for theorem proofs.  7.4 pgs 112 to 118. (Corrections: pg 115 (diagram) 18 → 

19, and insert arrow from gk´ to uniqueness, label 18; <=,g k, inv>; pg 117 (diagram)  
21 → 22, and insert  arrow from  g 2   to cancellation law, with label 21; <=, g 1>). 

9. A simple programming language.  11.1 pgs 173 to 181. (Corrections:  pg 179 (+6)   
below→ above. 

10. Derivation path families.  11.2  pgs 182 to 187 (Corrections:  pg 183 (+5) delete  
“indented,”, pg 184 (-4) aexp→sta 

 
Note:  Theorem 4.1 on page 55 of [GVS99] is incompletely stated.  The corrected version 
is given as Theorem 1.3.2 on page 18 of this report.   
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