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ABSTRACT
In recent years, new forms and techniques of teaching have
appeared, based on the Internet and on multimedia applica-
tions. In the teleteaching Project Virtual University of the

Upper Rhine Valley (VIROR), multimedia simulations and

animations complement traditional teaching material. Lec-
turers use Java applets in their courses to explain complex
structures. These are then stored in a multimedia database
to enable asynchronous learning.

The wavelet transform has become the most interesting new

algorithm for still image compression. Yet, there are many
parameters within a wavelet analysis and synthesis: choice
of the wavelet �lter bank, decomposition strategy, image
boundary policy, quantization threshold, etc.

We consider the wavelet transform to be a typical exam-

ple of a complex, hard{to{understand algorithm that needs
illustration by interactive multimedia. In this article, we
present the didactic background and the implementation of
a sample applet on the discrete wavelet transform, as taught
in our multimedia course.

Keywords
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1. INTRODUCTION
Multimedia applications o�er new facilities that are con-

quering the world of distance education. The University of
Mannheim launched a pilot teleteaching project with the
University of Heidelberg in 1995, and since 1998, the four
universities in the Upper Rhine Valley: Mannheim, Karl-
sruhe, Heidelberg and Freiburg, are aÆliated in the much

larger project VIROR [1]. Their engagement is twofold: (1)
synchronous teleteaching between remote lecture rooms and
(2) production of interactive material for both a `live' lecture
and for asynchronous learning, i.e. learning material that is
stored on a multimedia database.

Factors determining the success of a lecture in this teleteach-
ing scenario are the modularity of the lecture and the didac-
tic concept of the modules. In traditional teaching lecturers
often employ a series of still images of a time{dependent
topic to visualize a concept. Their presentation then resem-
bles a 
ip{book, whereby the more complex a topic is, the

more pages of still images it will involve, causing students
to lose sight of the general idea.

Java{based interactive demonstrations and simulations are
a state{of{the{art technology which is helpful to overcome
this didactic problem. But many applets just emulate a

video or present a simple animation, where `start', `pause'
and `stop' are the only user interactions. Our experience is
that an applet will successfully support the learning process
only if it implements two major didactic postulates: (1) let
the user play an active role, and (2) take the user by the

hand, provide a concrete goal and guidance.

The wavelet transform is the most important new algorithm
in image compression. Its compression performance is supe-
rior to that of the discrete cosine transform used in JPEG.
Nevertheless, in the implementation of a wavelet transform,

practical aspects call for attention that are not present in
theoretical discussions: choice of the wavelet �lter, boundary
extension policy, decomposition policy, decomposition depth,
and decoding policy for lossy coding. Theory says that longer
�lters possess better approximation qualities, but on the
other hand, shorter �lters allow a deeper descent into the

iteration process, and thus achieve better concentration of
the energy of an image.

This article exempli�es the advantages of interactive demon-
strations, using the wavelet transform as an example. We
also discuss the diÆculties encountered in designing a didac-

tically valid graphical user interface (GUI). The GUI allows
the interactive experimentation with the above parameters.
In order to motivate the learners, didactic design issues have
been considered in the implementation. We have created a
strong intuitive teaching tool to point out the concepts of

the wavelet transform in image coding, along with its weak-
nesses and its strengths.

The article is organized as follows. In Section 2 we cite re-
lated work in the �eld of interactive teaching material that
is realized as Java applets. Section 3 reviews the wavelet

transform and details the aspects that are important for
our simulation. Section 4 presents our applet in detail. It



is subdivided into practical considerations and didactic con-

siderations. Section 5 describes an empirical evaluation of
the wavelet transform. As the parameter space is highly
complex, and the visual implications of a parameter setting
are by no means obvious to the non{expert, students were
asked to judge the visual e�ects in di�erent test series. The
article concludes in Section 6 and gives an outlook on future

work.

2. RELATED WORK
A large number of institutes are developing educational Java
applets: The journal JERIC [2] is tightly related to a data-
base [3] where teaching applets are stored. In computer
science, [4][5] represent good databases for teaching applets.

Within the VIROR project, a Java{based module on ac-
counting is being developed [6], and our own courses on
`multimedia technology' and `computer networks' are sup-
plemented with other Java simulations [7][8].

The Web contains numerous tutorials on and simulations

or demonstrations of the wavelet transform. Without giv-
ing a complete list, we cite the twin dragon applet by J.
Kova�cevi�c [9], the wavelet applet by W. Sweldens [10], the
wavelet tutorial by R. Polikar [11], and Armara'a wavelet
page [12]. The former two applets deal with two very spe-
ci�c questions on the design of wavelet �lters and are not

suited for introductory courses. The latter tutorials provide
a lot of background information on theory and application
of the wavelet transform in image processing, but they are
not interactive. The important step of actively involving a
learner in the new topic thus remains unconsidered.

The wavelet tutorial by Matlab [13] is very powerful and al-
lows more parameter settings than the presented simulation.
However, Matlab is a commercial product which must be li-
censed before use. Students also have to learn the Matlab
programming language in order to be able to handle its fea-

tures. Our simulation pursues an alltogether di�erent goal:
to provide a powerful, easy{to{use tool free of charge.

3. THE WAVELET TRANSFORM
A wavelet is an (ideally) compact function, i.e., outside a
certain interval it vanishes. Implementations are based on
the fast wavelet transform (WT), where a given wavelet
(`mother wavelet') is shifted and dilated so as to provide

a base in the function space. The family of the shifted and
dilated wavelets thus approximates an arbitrary function. In
other words, a one{dimensional function is transformed into
a two{dimensional space, where it is approximated by coef-
�cients that depend on the time (determined by the transla-

tion parameter) and on the scale, i.e., frequency (determined
by the dilation parameter). | By convention, the notion of
time is used even for signals that depend on location rather
than on time. Thus, a wavelet{transformed image is also
located in the time{scale domain. | The localization of a
wavelet in time spread (�t) and frequency spread (�!) has

the property �t�! = const. However, the resolution in time
and frequency depends on the frequency. This is the so{
called `zoom'{phenomenon of the WT: it o�ers high tem-
poral localization for high frequencies while o�ering good
frequency resolution for low frequencies. Consequently, the
WT is especially well suited to analyze local variations such

as those in still images: a high{frequency part of an image

(e.g., a transition from colored foreground to black back-

ground) will be analyzed by short, high{amplitude wavelets.
Low variations (e.g., color within the same object) will be
analyzed by long, low{amplitude wavelets.

3.1 Wavelet Transform and Filter Banks
By introducing multiresolution, Mallat [14][15] made an im-
portant stride in the application of wavelet theory in mul-

timedia, the transition from mathematical theory to �lters.
A multiresolution analysis is implemented via high{pass �l-
ters, resp. band{pass �lters (i.e., wavelets) and low{pass �l-
ters (i.e., scaling functions). Low{pass �lters let all frequen-
cies pass that are below a certain cut{o� frequency, while
removing the remaining frequency components from the sig-

nal. High{pass �lters work vice versa. In this context, the
wavelet transform of a signal can be realized with a �lter
bank via successive application of a 2{channel �lter bank
consisting of high{pass and low{pass �lters: the detail coef-
�cients (resulting from the application of the high{pass resp.
band{pass �lter) of every iteration step are kept apart, and

the iteration starts again with the remaining approximation
coeÆcients (from application of the low{pass �lter) of the
transform.

This matching of a discrete signal with a wavelet �lter is real-
ized via the mathematical notion of convolution. In practical

regards, this means that the �lter is `laid over the signal',
�lter coeÆcients and signal coeÆcients that lay one upon
the other are multiplied, and the �lter is shifted to the next
location.

Mathematically speaking, let Vi denote an approximation
space, and Wi denote a detail space. Let V0 denote our
starting space, i.e., the space where the original signal `lives'.
What has been described above can then be written as

V0 = V
�1 �W

�1

= V
�2 �W

�2 �W
�1

= V
�3 �W

�3 �W
�2 �W

�1 (1)

= : : : ;

where � denotes the direct sum of two spaces.

This multiresolution theory is `per se' de�ned only for one{
dimensional wavelets on one{dimensional signals. Applica-
tion of the WT on still images requires an extension into

two dimensions.

3.2 Wavelets in two dimensions
Still images are two{dimensional discrete signals. Thus, a
multiresolution analysis requires two{dimensional wavelet
�lters. As two{dimensional wavelet �lter design remains
an active �eld of research [16][17][18], current implementa-

tions are restricted to separable �lters. Separability denotes
the fact that the successive application of a one{dimensional
�lter into one dimension and afterwards into the second di-
mension, is mathematically identical to a two{dimensional
wavelet transform from the outset.

The successive convolution of �lter and signal in both di-
mensions opens two potential iterations: non{standard and
standard decompositions. When formula (1) is extended to

two dimensions via the tensor product, i.e., V
(2)

0 = V0 � V0,



the decomposition into approximation and detail starts iden-

tically in the �rst decomposition step:

V
(2)

0 = V0 � V0

= (V
�1 �W

�1)� (V
�1 �W

�1)

= V
�1 � V

�1 � V
�1 �W

�1 �W
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�1 �W
�1 �W

�1

=: (2) (2)

Here, the standard decomposition iterates on all approxima-
tion spaces V

�1, resulting in
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�2)� (V
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�2)� (V
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�2)�W
�1
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after the second iteration step, thus in 9 summands. In this

sum, the only remnants of the �rst iteration (cf. (2)) are the
details of step 1, i.e., W

�1. The approximations V
�1 of the

�rst iteration (cf. (2)) are dissected into approximations and
details of the next level, i.e., V

�2 and W
�2.

(a) Standard
decomposition.

(b) Non{stan-
dard decompo-
sition.

Figure 1: Two methods of decomposition in two di-
mensions. Here, decomposition depth=4.

The non{standard decomposition, however, only iterates the
purely low{pass �ltered approximations V

�1�V�1 and leaves
the mixed terms unchanged. This results in

(2) = (V
�2 �W

�2)� (V
�2 �W

�2)� V
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�1;

thus in 7 summands. In this non{standard decomposition,
the mixed terms V

�1 � W
�1 and W

�1 � V
�1 of the �rst

iteration remain unchanged.

The di�erence between both decompositions is thus that the

standard decomposition iterates also the parts of the ap-
proximations that are located within mixed terms, while the
non{standard decomposition iterates only purely low{pass
�ltered components. Consequently, the standard decompo-
sition results in many more summands in the time{scale do-
main. Figure 1 demonstrates the two policies in graphical

form.

3.3 Image Boundary
A digital �lter is applied to a signal by convolution. Con-
volution, however, is de�ned only within a signal. In or-
der to result in a mathematically correct, reversible wavelet
transform, each signal coeÆcient must enter into filter

length/2 calculations of convolution (here, the subsampling

process by factor 2 is already incorporated). Consequently,
every �lter longer than 2 entries, i.e., every �lter except
Haar requires a solution for the boundary coeÆcients of the
signal. Furthermore, images are typical signals with a rel-
atively short signal length (in rows and columns), thus the
boundary treatment is even more important than e.g. in

audio coding. Two common boundary policies are circular
convolution and padding.

3.3.1 Circular Convolution
The idea of circular convolution is to `wrap' the signal around
at the boundary, i.e., wrap the end of a signal to the begin-
ning (or vice versa). Figure 2 (a) illustrates this approach.
In so doing, circular convolution is the only boundary treat-
ment that maintains the number of coeÆcients for a WT,
simplifying storage handling. However, the time information

contained in the time{scale domain of the wavelet trans-
formed coeÆcients `blurs': the coeÆcients in the time{scale
domain that are next to the right border (resp. left bor-
der) also a�ect signal coeÆcients that are located left (resp.
right). In the example of Figure 2 (a), this means that in-
formation on pixels 1 and 2 of the left border of the original

signal is contained in the entries a, c and d of the time{scale
domain. c and d are the coeÆcients that due to circular
convolution contain information on the `other' side of the
signal.

3.3.2 Padding Policies
Padding policies have in common that they add coeÆcients
to the signal on either border. The border pixels of the sig-
nal are padded with filter length-2 coeÆcients. Conse-
quently, each signal coeÆcient enters into filter length/2

calculations of convolution, and the transform is reversible.
Many padding policies exist: zero padding where 0's are
added, constant padding where the signal's boundary coeÆ-
cient is padded, mirror padding where the signal is mirrored
at the boundary, spline padding where the last n border
coeÆcients are extended by spline interpolation, etc. All

padding policies have in common that storage space in the
wavelet domain is physically enlarged at each iteration step
(cf. Figure 2 (b)). A strength of all padding approaches,
however, is that the time information is preserved.

A comparison of the iteration behavior between both boun-
dary policies states the following. Convolving the signal
with a �lter is only reasonable for a signal length greater
than the �lter length, and each iteration step reduces the
size of the approximating signal by factor 2. Both policies
stop iteration when the signal length has shrunk to �lter

length. Consequently, the decomposition depth for circular
convolution varies with the �lter length: the longer the �l-
ter, the fewer decomposition iterations are possible. With
padding, however, the iteration depth is independent of the
selected wavelet �lter bank; only the size of the approxima-
tion in each iteration level varies with the �lter bank (see

Section 4.1.1 and Table 1 for more details).
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(a) Circular Convolution.
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(b) Mirror Padding.

Figure 2: Circular convolution versus mirror padding for a signal of length 8 and a �lter of length 6. Here,
the �lter is a low{pass �lter, thus the coeÆcients resulting from the convolution form the approximation
entries. In (a), the approximation contains half as many entries as the original signal. Together with the
details, the entries of the wavelet domain require the same storage space as the original signal. In (b), the

padding results in in
ated storage space in the wavelet domain.

3.4 Synthesis Strategies
Until now, we have discussed some problems and solutions
with wavelet analysis, i.e., forward transform. The decoding
process that transform coeÆcients of the time{scale domain

back into signal coeÆcients is called synthesis. A wavelet
transform is mathematically reversible. For compression
reasons though, one is interested in a well{directed discard-
ing of information. Of course, this discarding should result
in minimum visual deterioration.

One of the reasons for the success of the wavelet transform
in image processing is the WT's quality to decompose an
image into multiresolution levels of the same image, which
re
ects the human visual perception: when an image is be-
ing presented to a person, he/she �rst resolves the greater
context of the situation: a car, a donkey, a crowd of people.

Subsequently, more and more details enter the perception:
the model and color of the car, the individuals in the crowd.
Finally, details might be resolved: scratches in the paint,
expression of joy in a face [19].

In this section, we discuss two di�erent discarding policies

for data compression, and two policies to represent a signal
in coarser resolution.

3.4.1 Compression
In transform{based image compression, data reduction is a
three{step process: discarding information in the time{scale
domain, run{length encoding and Hu�man encoding. In this

article we concentrate on information discarding only. Two
major discarding policies prevail: block{wise discarding and
quantization.

The block{wise discarding policy takes advantage of the idea
that a wavelet transform has been constructed such that the

least important information, the details, are separated out
�rst. Inversely, the approximations are supposed to contain
the most important information. They are decoded �rst. If
capacity allows, time{scale blocks containing detail informa-
tion are subsequently added in the decoded image. If not,
whole blocks of detail coeÆcients are discarded. A major

drawback to this scaling approach is the very coarse gran-

ularity. In non{standard decomposition, the �rst iteration
results in 4 blocks, thus it would allow to synthesize either
25% of the information, or 50%, 75%, or 100%. Even though
the blocks shrink with increasing steps of the iteration, this
policy is not arbitrarily scalable.

Quantization is a better approach. Here, a certain thresh-
old is set. All coeÆcients of the time{scale domain that are
below this threshold are discarded. This policy implements
the hypothesis that large absolute coeÆcients contain the
visually important information. The approximation coeÆ-

cients normally surpass the threshold and are maintained.
The di�erence to the above discarding policy is that large
coeÆcients of the detail blocks are now maintained. Fur-
thermore, this discarding approach is arbitrarily scalable by
adjusting the value of the threshold.

4. THE WAVELET TRANSFORM APPLET
For teaching purposes the wavelet transform for still images,
as described above, was implemented as a Java applet. We
used Java 1.3, the swing GUI classes and the Java Advanced

Imaging (JAI) package. The WT demonstration enables
the user to experiment with all the di�erent aspects of the
discrete wavelet transform on still images described in Sec-
tion 3. In this section, we focus on practical considerations
as well as on didactic issues in the design of the applet.

Since the theoretical presentation of a demonstration (like
in this article) cannot substitute practical experience, we
highly recommend that the reader access the applet [20] and
play around with its features.

4.1 Practical Considerations
The practical considerations illuminate two important fac-
tors of the applet: visualization of the time{scale domain
and representation of synthesis{in{progress. Finally, the im-

plemented heuristic for quantization is discussed.

4.1.1 ‘Painting the Time–Scale Domain’
The applet visualizes the coeÆcients in the time{scale do-

main. As the wavelet{transformed coeÆcients are not pixel



values, di�erent aspects need to be considered: normaliza-

tion and range.

Normalization. The orthogonal Daubechies{n �lters dis-
cussed in this article have the property that the sum of
the low{pass �lter coeÆcients is

p
2 > 1. Application of

this �lter on a signal thus raises the average luminance byp
2. Pixel values though can be painted only in the range 0

(black) to 255 (white). One way out is to set all pixel val-
ues in the time{scale domain brighter than 255 to 255 (cf.
Figure 3 (a)). Similarly, the high{pass �lter results in detail
information towards the approximation. In other words, the
details specify the variation of a speci�c pixel towards an av-

erage. This variation can be positive or negative. One could
draw these coeÆcients by cutting o� the negative parts and
considering only the positive values (Figure 3 (a)). With

(a) No normal-
ization.

(b) Normaliza-
tion.

Figure 3: The two possible realizations of `painting
the time{scale coeÆcients' (Daubechies{2 wavelet
�lter, standard decomposition).

normalization, we denote the e�ect that the coeÆcients in
the time{scale domain are `edited' before they are visualized.
Therefore, the coeÆcients in the low{pass �ltered regions are
divided by powers of

p
2. This makes the total luminance of

the approximation remain constant. The high{pass �ltered
coeÆcients are elevated by 128, so that former negative vari-
ations appear darker and former positive variations appear
brighter (cf. Figure 3 (b)).

Growing Spatial Rage with Padding. As we have discussed

in Section 3.3, boundary padding policies result in an `en-
larged' time{scale domain. This enlargement increases with
every iteration. Moreover, only the iterated (low{pass �l-
tered) parts are in
ated, thus the time{scale domain does
not grow symmetrically.

We illustrate the problem with an example. We analyze
an image of size 256 � 256 pixels with the Haar �lter and
the Daubechies{20 �lter. The decomposition policy is non{
standard, the boundary is treated with zero padding. Ta-
ble 1 shows the size of the purely low{pass �ltered part (i.e.,

left upper corner) in each iteration step.

Consequently, the coeÆcients in the time{scale domain in
the example with the Daubechies{20 �lter contain many
`padded' coeÆcients, and only a minor number of `real' ap-
proximation coeÆcients. When the time{scale domain of

a wavelet{transformed image with padding policy is visu-

Level of iteration Size of `upper left corner'
Haar Daub.{20

1 128� 128 147 � 147

2 64� 64 93� 93
3 32� 32 66� 66
4 16� 16 52� 52
5 8� 8 45� 45
6 4� 4 42� 42
7 2� 2 40� 40

8 1� 1 39� 39

Table 1: The size of the time{scale domain with
padding depends on the wavelet �lter.

(a) All coeÆ-
cients in the
time{scale
domain with
zero padding.

(b) All co-
eÆcients in
the time{
scale domain
with mirror
padding.

(c) : : : and
`what we
would prefer
for painting'.

Figure 4: `Trimming' the approximation with

zero padding and mirror padding. The parame-
ters have been set to non{standard decomposition,
Daubechies{20 wavelet �lter bank, and iteration
level 4.

alized, we actually `cheat' a bit as we cut o� the padded
coeÆcients from visualization. Figure 4 illustrates the prob-
lem. This raises a new question: how can we distinguish the
`real', i.e., approximating coeÆcients in the time{scale do-
main from the padding coeÆcients? The size of the `real' ap-
proximation coeÆcients at each level is known. The method

of �nding them has been realized di�erently for zero padding
and mirror padding.

With zero padding, the implementation supposes that the
original image is not all black. An iteration on the rows and

columns of the image then searches for non{black boundary
pixels (cf. Figure 4 (a)). As the target size of the `real'
approximation is known, this approach is stable even given
some black border pixels.

Mirror padding does not allow the same easy approach. Fig-

ure 4 (b) illustrates that the low{pass �ltered coeÆcients in
the time{scale domain with mirror padding extend in each
iteration with mirrors of the image's borders. These have the
same gray values as the original image, however; thus detec-
tion of the approximation signal by comparison of the gray
values to the `padded' coeÆcients would not work. Our solu-

tion was to cut out a piece of the target size from the middle



of the corresponding time{scale domain. As the `real' ap-

proximations are not necessarily in the middle (cf. Figure 4),
this approach is unstable, i.e., the deep iteration steps might
draw coeÆcients in the low{pass �ltered parts of the image
that signify padding rather than `real approximation'.

4.1.2 Representation
The synthesis reverses the analysis, thus the synthesis starts
with the low{pass �ltered part and subsequently adds infor-
mation contained in the band{pass and high{pass �ltered
regions of the time{scale domain, which increases spatial res-
olution. Independently of whether information in the time{

scale domain has been discarded or not, there are three ways
to represent the subsequent resolution of an encoded image:
a synthesis{in{progress can be represented by reversal of the
analysis, by growing spatial resolution or by interpolation.
Figure 5 demonstrates the three representation policies.

(a) Analysis
reversal.

(b) Growing
spatial reso-
lution.

(c) Interpola-
tion.

Figure 5: Representation of synthesis{in{progress
of an 256 � 256 gray{level image `Lena'. The image
is analyzed using the Daubechies{2 wavelet �lter,
non{standard decomposition of depth 7, and circular
convolution. (a) Analysis reversal at level `3:5'. (b)

and (c) The low{pass size of the image is 32� 32.

Analysis Reversal is the canonical way. The details are
painted, and the synthesized image `grows blockwise'. The
screenshot shows the process when the vertical details of
level 4 have already been added, but the horizontal details

have not (thus level `3:5').

Growing spatial resolution `draws' only the purely low{pass
�ltered approximation. When the synthesis starts, the ap-
proximation is a very small image (in the extreme, 1 � 1

pixel, depending on the parameters). Subsequently, as more
and more information is added, the spatial size of this ap-
proximation continues to grow until it has reached the size
of the original. This approach implements growth in the
form of the Laplacian pyramid [21].

Interpolation always in
ates the current approximation to
the original size of the image and adds missing pixels by
interpolation. The question remains which interpolation
strategy shall be implemented: simple `cloning', linear in-
terpolation, bilinear, cubic, or bicubic | there are many
options. In general, visual results are acceptable with cubic

interpolation.

4.1.3 Quantization
The applet implements a heuristic for quantization. Fig-
ure 6 (a), `step 3: Synthesis parameter selection' contains
a selection box for an integer quantization threshold. The
coeÆcients in the time{scale domain that are below the se-
lected threshold are discarded. Since the approximation co-

eÆcients approximate the original signal, they constitute the
most important part of the time{scale domain. Thus, the
purely low{pass �ltered coeÆcients shall not be diminished
in quality, and we have implemented the quantization such
that it operates on (at least once) high{pass �ltered coeÆ-
cients only.

4.2 Didactic Considerations
Pedagogic evaluations have proven that a learner's capa-
bility of imagination decreases with an increasing level of
abstraction [22][23][24]. Thus, a topic can be imagined and

reproduced by a student only as long as its complexity does
not exceed a certain level. Highly abstract themes, though,
will never be totally understood as long as there are no
means of visualization. The better this visualization, the
greater the learning success.

As far as the wavelet transform is concerned, the learning
target of a student is to fully understand the concept of this
transformation. At the end, he/she should be able to answer
questions such as:

� How do frequency transforms work?

� What is the nature of a time{scale domain?

� What is the conceptual di�erence between standard
decomposition and non{standard decomposition?

� What is the conceptual di�erence between the di�erent
boundary treatment policies?

� Why does the achievable iteration depth depend on
the boundary policy?

� What are the most relevant di�erences between the
di�erent Daubechies{n wavelet �lters?

� What is quantization? / How is it used in the context
of the WT?

� What kind of synthesis strategies exist? / What
strengths and weaknesses do they have?

� What in
uence do the parameter settings have on the

decomposition process and image quality?

The GUI of the demonstration is divided into two parts,
the parameter de�nition window (see Figure 6 (a)) and the
transform visualization window (see Figure 6 (b)). Each

window is structured from left to right. This is the normal
direction of reading and viewing for Westerners. Three dif-
ferent background colors in the parameter de�nition window
can be found again in the transform visualization window.
They indicate the subdivision of parameters and visualiza-
tion into the following �elds: source image, analysis, and

synthesis. This simple color analogy makes it intuitively
clear that the parameters set in one window in
uence the
speci�ed part of the transformation in the other window.

The use of color, however, is only a �rst step towards a
user{friendly interface. Many Java applets are designed by

people with a good technical knowledge of a certain topic.



(a) Parameter de�nition. (b) Transform visualization.

Figure 6: The two windows of the wavelet transform applet on still images. The structure is organized from
left to right. The color analogy between both windows clari�es the correlation.

Nonetheless, the challenge remains how to make a simula-
tion intuitive for those who work with it for the �rst time.
Our experience indicates that a detailed explanation of the
background, the purpose of the demonstration, and the in-
teraction possibilities must be provided. In addition, in or-

der to motivate students, a good applet has to provide an
incentive, a stimulus to work with it. In traditional teach-
ing, this stimulus is often a test or an exam. In self{paced
learning, this incentive is necessarily of a di�erent nature.
In order to motivate the students, our applet implements

three major didactic concepts:

� The concept of user guidance takes the user by the

hand. For example, subtitles within the action panel
are provided that indicate `step 1', `step 2' and `step
3' (cf. Figure 6 (a)).

� Deactivation of buttons: The visualization window de-
pends on the parameters set in the parameter de�ni-
tion window, and on the current phase of the program.
With the speci�ed parameters, the analysis and syn-

thesis are calculated and visualized. While a calcula-
tion is in progress, the only action possible is to `pause'.
Only after calculation is complete, are all other actions
enabled again. This is made obvious by the deactiva-
tion of certain buttons during the analysis or synthesis
phase.

� Context{sensitive help: An extensive help menu has
been implemented. The menu button `help' in the pa-
rameter de�nition window opens the index page from
where every topic can be accessed. Moreover, small
`?'{icons open the same help window, but jump this
time in a context{sensitive fashion to the entry ex-

plaining the parameter in question.

5. EMPIRICAL EVALUATION
With our wavelet transform applet, we have performed sub-
jective tests with our students on the technical aspects of

the WT. They were asked:

� What does horizontal and vertical �ltering mean? /

Where is the speci�c horizontal (resp. vertical) infor-
mation to be found?

� What in
uence does the �lter length have on the de-
composition depth, i.e., the number of possible itera-
tion steps?

� What is the role of quantization, and how should quan-
tization parameters be chosen?

The parameters of the wavelet transform form such a com-
plex scheme that the implication of a parameter setting is
not obvious to the non{expert. Table 2 gives empirical re-
sults in terms of heuristic for compression ratio, i.e., percent-
age of discarded information in the time{scale domain, and
subjective visual quality for di�erent settings of the parame-

ters wavelet �lter, decomposition policy, boundary policy and
quantization factor. The test was performed in various test
series. In series (a), the role of the quantization factor on
the quality of the decoded image was analyzed. Test series
(b) aimed at illuminating the role of the boundary policy,
while all other parameters were kept unchanged. In (c),

the boundary policies and their impact on the quantization
threshold were examined. Especially the visual di�erence
between the boundary policies when all but the approx-
imation coeÆcients were discarded was evaluated. Series
(d) �nally combined two comparisons: in
uence of the �lter
length, and in
uence of the decomposition policy.

With the help of the applet on the wavelet transform, our
students were able to categorize visual phenomena and to
express parameter setting recommendations. Concerning
e.g. the choice of the wavelet �lter, the following statements

were made: short wavelet �lters (e.g., Haar, Daubechies{
2) produce strong block artifacts as the time{in
uence of
the �lters is very limited, and thus the transition between
di�erent color regions can get very harsh. Very long �lters
(e.g., Daubechies{10 and longer) result in strong 
ickers of
the decoded image as the time{in
uence of distorted coeÆ-

cients in the time{scale domain is immense. Best visual re-
sults were obtained with medium{length wavelet �lters like
Daubechies{4, and Daubechies{5.

Our experience shows that students value this applet very
highly since theWT is a very complex and abstract function,

not easy to understand from text books.



Parameter Result
Wavelet Filter Decomposit.

policy
Boundary
policy

Quant.
threshold

Discarded
informa-
tion

Subjective visual
quality

series (a) Haar non{standard all 1 15% no visual losses
Haar non{standard all 10 76% slight artifacts, par-

ticularly in smooth
regions

Haar non{standard all 45 95% stronger artifacts;
color gradients are

represented by only
one value

Haar non{standard all max 100% only the mean gray
value of the image re-
mains

series (b) Daubechies{20 non{standard zero padding 10 83% better quality than
same parameters
with Haar �lter; hor-
izontal and vertical
strip{artifacts at the

borders
Daubechies{20 non{standard mirror

padding
10 64% same quality as zero

padding, but no
strip{artifacts at the
image boundary

Daubechies{20 non{standard circular con-

volution

10 77% similar to mirror

padding; slightly
blurry image

series (c) Daubechies{20 non{standard all 45 83� 96% strong blurs
Daubechies{20 non{standard all max 100% strong di�erences be-

tween the boundary
policies; mirror/zero
padding: decompo-
sition until level 8,
! synthesis as mean

value; circular conv.:
synthesized image is
the approximation at
level 3

series (d) Daubechies{20 non{standard circular con-
volution

25 91% strong 
ickers

Daubechies{5 non{standard circular con-
volution

25 91% better quality than
same parameters
with Daubechies{20;
good compromise

between quality and
compression factor

Daubechies{5 standard circular con-
volution

25 92% worse quality than
non{standard de-
composition; blurry

Table 2: The parameter space of the wavelet transform allows the setting of the many parameters. The

e�ects on visual quality as well as on compression ratio are not evident. This table shows the percentage
of discarded information in the time{scale domain and the subjective visual quality of the gray{level image
`Lena' (256� 256 pixels) with di�erent parameters.



6. CONCLUSION AND OUTLOOK
We have presented a highly interactive Java applet illustrat-
ing the wavelet transform for still image coding. In interac-
tive learning, not only do the algorithms have to be imple-
mented carefully, but also the didactic issue of motivation
becomes important. A GUI steers all user interactions. The

applet allows many parameter settings and combinations. It
displays not only the original and the decoded image, but
also the coeÆcients in the time{scale domain, as the wavelet
transform allows an easy interpretation of these coeÆcients.

Our future work will focus on the (technical) improvement of

the representation of the `real' approximation in the time{
scale domain for mirror padding, and we will investigate
better padding policies for the borders.

Concerning the underlying didactic assumptions of the pre-
sented applet, we will perform a thorough didactic evalu-

ation on New media in teaching versus traditional teaching

together with the Department of Education of the University
of Mannheim on 2 � 60 students in the upcoming summer
semester (SS2001). Early results are expected by mid{2001.
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