
Increasing productivity in High Energy Physics data
mining with a Domain Specific Visual Query

Language

Inauguraldissertation

zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von

Licenciado em Engenharia Informática e de Computadores

Instituto Superior Técnico, Universidade Técnica de Lisboa

Vasco Miguel Moreira do Amaral

aus Cascais, Portugal

Mannheim, 2004

Dekan: Professor Dr. Jürgen Potthoff, Universität Mannheim

Referent: Professor Dr. Guido Moerkotte, Universität Mannheim

Korreferent: Professor Dr. Reinhard Männer, Universität Mannheim

Tag der mündlichen Prüfung: 17. Februar 2005

Acknowledgments

I thank my mother, father, brother and Patricia for all the care, love
and moral support.

My gratitude goes also:

• To Prof. Dr. Guido Moerkotte and to Dr. Sven Helmer, for believing
in my work and for all the technical support while advising my thesis.

• To the Pi3 department for the friendly atmosphere that makes a
pleasant working environment.

• To Simone Seeger for helping me with the English corrections of my
text.

• To the Portuguese Governmental Foundation of Science and Tech-
nology FCT for the Phd. scholarship (ref. SFRH / BD / 8918 /
2002).

• To Prof. Dr. João Carvalho project manager of the Portuguese LIP
Hera-b group, and to Prof. Dr. António Amorim. Due to them and
to this project I got introduced to the HEP world and contacted
with a real running HEP experiment.

• To some of my good friends that contributed in a way or in the
other to this beautiful phase of my life: Levi Lúcio, Andrej Gorǐsek,
António Rendas, Hugo Castelo Branco, Steven Aplin, Lawrence
Jones, Carl-Christian, Rita Torres, Daniel Peralta.

• To Science, the noble and beautiful Mankind’s greatest invention!

Zusammenfassung

Diese Arbeit entwickelt die erste anwendungsspezifische visuelle An-
fragesprache für Hochenergiephysik. Nach dem aktuellen Stand der Tech-
nik ist Analyse von experimentellen Ergebnissen in der Hochenergiephysik
ein sehr aufwendiger Vorgang. Die Verwendung allgemeiner höherer Pro-
grammiersprachen und komplexer Bibliotheken für die Erstellung und
Wartung der Auswertungssoftware lenkt die Wissenschaftler von den Kern-
fragen ihres Gebiets ab. Unser Ansatz führt eine neue Abstraktionsebene
in Form einer visuellen Programmiersprache ein, in der die Physiker die
gewünschten Ergebnisse in einer ihrem Anwendungsgebiet nahen Notation
formulieren können.

Die Validierung der Hypothese erfolgte durch die Entwicklung einer
Sprache und eines Software-Prototyps. Neben einer formalen Syntax wird
die Sprache durch eine translationale Semantik definiert. Die Semantik
wird dabei mittels einer Übersetzung in eine durch spezielle Gruppierung-
soperatoren erweiterte NF2-Algebra spezifiziert. Die vom Benutzer er-
stellten visuellen Anfragen werden durch einen Compiler in Code für eine
Zielplattform übersetzt. Die Benutzbarkeit der Sprache wurde durch eine
Benutzerstudie validiert, deren qualitative und quantitative Ergebnisse
vorgestellt werden.

Abstract

We propose the first Domain Specific Visual Query language for High
Energy Physics in order to tackle the problem of the physicist’s reduced
productivity in the High Energy Physics data mining phase. This ap-
proach comes in contrast to the current one where the user is distracted
from Physics by having to code his queries using a general purpose lan-
guage and complex frameworks. Our new language introduces an abstrac-
tion layer where the physicists describe their queries using a notation from
their domain of speech. We validated our approach by designing the lan-
guage and implementing a prototype. The language is defined by a formal
syntax together with a semantics defined translationally into a interme-
diate language, an NF2-Algebra extended by us with special grouping
operators. A visual language compiler generates a target source code that
deals with the particular existing frameworks. The usability of this pro-
posed language is also evaluated in this report by performing a study with
real users. We discuss in this report quantitative and qualitative mea-
surements concerning the user’s productivity, by comparing the former
traditional approach with our new one.

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Scientific Domain of the Thesis 3
1.4 Thesis Outline . 3

I Problem Definition 5

2 Context of the Work 7
2.1 Overview of High Energy Physics 7
2.2 The Detector . 9

2.2.1 The Machinery . 10
2.2.2 On-line System - the Triggers and Data Acquisition

System . 12
2.2.3 Off-line System - Data Reconstruction 14
2.2.4 Analysis System . 17

2.3 Historic Perspective of the Analysis Systems 17
2.3.1 Unstructured Approach 18
2.3.2 Analysis Frameworks 21
2.3.3 Object-oriented Frameworks 23
2.3.4 Current and Future Trends 24

2.4 Summary . 25

3 The Physics Analysis Process 27
3.1 Defining Physics Analysis- Low versus High Level 27
3.2 Monte Carlo Simulation 28
3.3 Analysis Schema . 29

i

ii TABLE OF CONTENTS

3.4 The Query Patterns . 31
3.4.1 Query Steps . 32
3.4.2 Example Query . 34

3.5 Summary . 36

4 Problem statement 37
4.1 The Problem . 37
4.2 Time Consuming Querying Process 39
4.3 Motivation for the Thesis 41
4.4 Summary . 41

II Preliminary Concepts 43

5 Query Systems 45
5.1 Introduction to Query Systems 45
5.2 Query Systems Taxonomy 46

5.2.1 Textual Query Languages 48
5.2.2 Non-Textual Query Languages 50
5.2.3 Visual Database Interfaces 58
5.2.4 Summary of Features 59

5.3 Building a Visual Query System 59
5.3.1 The Visual Language 61
5.3.2 Human Factors . 61

5.4 Summary . 61

6 Domain Specific Modeling 63
6.1 Introduction to Domain Specificity 63
6.2 Modeling Strategy . 64
6.3 DSL Engineering Process 66
6.4 Advantages and Disadvantages 66
6.5 DSL “Attempts” in HEP 68
6.6 Summary . 69

III Tackling the Problem 71

7 The Solution 73
7.1 Proposed Approach . 73

TABLE OF CONTENTS iii

7.2 Why a DSVQL? . 75

7.3 Expected Results . 75

7.3.1 System Overview 76

7.4 Summary . 77

8 Query Language - PHEASANT QL 79

8.1 Introduction . 79

8.2 Syntax . 80

8.2.1 Concrete versus Abstract Syntax 80

8.2.2 Overview of PHEASANT QL 80

8.2.3 PHEASANT QL Alphabet - Symbolic Notation . . 81

8.2.4 Grammar . 89

8.3 Semantics . 94

8.3.1 The Target Language - Intermediate Algebra Oper-
ators . 95

8.3.2 Language Description 111

8.4 Summary . 137

9 Prototype Framework - PHEASANT 139

9.1 General Overview . 139

9.1.1 Roles and Use Cases 140

9.1.2 Architecture . 141

9.1.3 Technology Used for the Implementation 143

9.2 User Interface - The Visual Editor 144

9.2.1 Related Work and Design Decisions 144

9.2.2 The Architecture of the Visual Editor 147

9.2.3 Future Work . 151

9.3 The Generation of a Logical Query Plan 152

9.3.1 AST Generator . 153

9.3.2 Logical Query Plan Generator 156

9.4 Code Generation . 158

9.4.1 Query Plan Optimization 159

9.4.2 Target Code Generation 159

9.5 Summary . 165

iv TABLE OF CONTENTS

IV Evaluation of the Research 167

10 Evaluation 169
10.1 Related Work . 170

10.1.1 Human Factors . 170
10.2 A Definition of Usability 171
10.3 The Evaluation . 172

10.3.1 Recruitment of Participants 173
10.3.2 Task Preparation 174
10.3.3 Pilot Session . 175
10.3.4 Training Session . 175
10.3.5 Evaluation Session 176

10.4 Results . 177
10.4.1 Effectiveness - Errors 177
10.4.2 Efficiency - Resulting Times 181
10.4.3 User Satisfaction 182

10.5 Summary . 183

11 Conclusions 185
11.1 Thesis Summary . 185
11.2 Contributions from This Thesis 186
11.3 Suggestions for Future Work 187

V Bibliography 189

VI Appendix 203

A The BEE framework 205

B Physical operators’ algorithms 207
B.1 Stream Class . 207
B.2 Table-scan/Selection . 208
B.3 Table-scan/Selection . 208
B.4 Operators for sets . 209
B.5 Operator for Unnesting . 211
B.6 Operators for Join . 212
B.7 Operators for Nest . 213

List of Figures

2.1 Colliding a beam of particles against a target. 8

2.2 The HERA-B detector machine 9

2.3 The life phases of a typical HEP experiment. 10

2.4 The Triggers and the Data Acquisition System 13

2.5 Data produced by the HEP machine before the reconstruction 15

2.6 Informal description of the results of the major transforma-
tion phases. 16

2.7 User builds his own query system from scratch 18

2.8 User codes with different sets of available libraries 19

2.9 Multi-users’/programmers’ query over a framework 21

3.1 Detailed UML model of the analysis of the relevant event
data . 29

3.2 UML details of the reconstructed Vertex and Particle. . . . 31

3.3 Object graph representing the physics’ analysis database at
the instance level . 32

3.4 Query steps for general analysis 33

3.5 Example of a user’s query, (pseudocode based on a real
query). 35

4.1 Sequences of query steps 39

5.1 Categorization of existing query systems since 1970 46

5.2 Example of tabular languages taken from [18]. 52

5.3 Example of GraphLog [37]. 53

5.4 Cigales [79] Metaphor-based. Uses the map metaphor. Ex-
ample taken from [18]. 56

5.5 Hybrid language VOODOO[50] (based on OQL). 57

v

vi LIST OF FIGURES

6.1 Domain-specific development 65

7.1 Unifying framework - The user views his particular analysis
framework in the same way as others. 74

7.2 System services . 76

8.1 Example of a complete query: the D+ decay 82
8.2 Collecting the data in step 1 82
8.3 Signature of the Collection PHEASANT Operators 83
8.4 Collecting the data in step 2 83
8.5 Signature of PHEASANT Operators for the Event filtering 84
8.6 Selection, Aggregation, Transformation, Transformation Re-

sult . 84
8.7 A) Comparison B) Minimal distance 85
8.8 Signature of PHEASANT Operators in the decay descrip-

tion step. 87
8.9 Specification of the result set:1D, 2D, 3D, Value result and

operator omission . 87
8.10 Signature of PHEASANT’s Result Operators 88
8.11 Context-sensitive graph grammar 89
8.12 PHEASANT’s BNF-like grammar 91
8.13 Terminal definitions . 93
8.14 Grammar of the textual elements of PHEASANT QL . . . 94
8.15 Type signature of our algebraic operators 105
8.16 Operators of the target algebra 106
8.17 Example of an algebraic form represented as a tree. 110
8.18 Map operator - Translates the visual query into our algebra. 111
8.19 Translation rules from the AST to query Plan - Collection-

Event materialization . 112
8.20 Used symbols . 113
8.21 Translation rules from the AST to query Plan Collection-

Event materialization . 114
8.22 Mapping result of collection query example 116
8.23 Mapping the Event specification operator 117
8.24 Mapping result of an example of Event Specification 118
8.25 Translation rules for the selection operator 119
8.26 Translation rules for the selection operator 120
8.27 Simple Selection example 121

LIST OF FIGURES vii

8.28 Translation rules from the Transformer operator 122
8.29 Example of the mapping of the transformer operator . . . 124
8.30 Translation rules for the references operators 125
8.31 Example of the mapping of the reference operator 127
8.32 Translation rules for the aggregator operator. 128
8.33 Result of a simple aggregator operator example 129
8.34 Translation rules for the minimal distance operators. . . . 130
8.35 Result of the minimal distance example 132
8.36 Translation rule of the comparison operator 133
8.37 Result of a comparison simple example 134
8.38 Result set transformation rules. 135
8.39 Signature of the histogram aggregate functions 135
8.40 Transformation result of a result operator using the aggre-

gation function Sum. 136

9.1 Model levels. The domain experts will deal with the meta-
modeling of physics objects. 140

9.2 Use cases - the use cases in dark grey are covered by the
prototype implementation. 142

9.3 General structure . 143
9.4 Transformation from CSG to ASG 146
9.5 Components of the Visual Editor 147
9.6 PHEASANT query layout 148
9.7 Meta-description of the concrete symbols 150
9.8 Specifying the schema in PHEASANT 151
9.9 Generation of a logical query plan 152
9.10 Unfolding the QCollection 153
9.11 Naive rewriting of the comparison operators 154
9.12 The D+ decay example rewritten with a naive approach . . 155
9.13 Rewriting the graph into a tree by restructuring the com-

parison nodes . 155
9.14 Source code generation . 159
9.15 Physical operators: Signature of the Table-scan 162
9.16 Interacting with the storage engine 163

10.1 The evaluation process steps 172
10.2 Effectiveness C++/BEE: Huge error rate. 178
10.3 Effectiveness Pheasant: Huge correct rate. 179

viii LIST OF FIGURES

10.4 Error analysis in BEE framework (percent values) 180
10.5 Error analysis in Pheasant (percent values) 180
10.6 Language constructs analysis: Subject evaluation. Scale

from 1(worst) to 5(best) 180
10.7 Efficiency of C++/BEE vs. Pheasant: Less training time

required. 181
10.8 Efficiency C++/BEE vs. Pheasant: Much less time to com-

plete the task. 182
10.9 Time analysis - The result times were rounded to multiples

of 5 minute units. 183
10.10Effectiveness C++/BEE vs. Pheasant: More confidence

from the user. 184

11.1 Research areas . 187

Chapter 1

Introduction

For the physicist, the analysis phase of High Energy Physics (HEP) is the
culmination of years of work on an experiment. In this phase, physics
experimentalists look at the sheer volume of data collected by detector
machines and try to infer statistical physics results.

The software systems in these areas have been growing in line with
the complexity of the experiments. Unfortunately, for the software of
mining the data stored, the growth took an unstructured way. This is
reflected negatively in the whole process performance, meaning both user’s
productivity (in terms of man hour) and the query systems’ efficiency (in
terms of speed, space and cpu usage).

The work described in this thesis wants to intervene by mitigating the
problems on the users productivity. We achieve this by pioneering a new
approach for doing physics analysis by making use of a Domain Specific
Visual Query Language.

1.1 Motivation

The study of coherent techniques for the development of proper flexible
query systems has been neglected by the physics community. To some
extent, this situation is explained by the fact that until now, programming
with General Purpose Languages (GPL) and some hacking solutions were
enough to deal with the problem for the very few people that used to
control the whole process of the small experiments. This situation gave the
community the erroneous feeling that little investment would be necessary

1

2 CHAPTER 1. INTRODUCTION

to develop a proper software solution. However, the complexity of the
analysis frameworks has grown considerably, due to the enormous size of
the data. The next generation of experiments like ATLAS[34], LHCb[32]
and CMS1 [28] in LHC2 [31] require structured and performant software
systems, which means efficient query algorithms and high productivity.

This is calling for experts, both from the fields of physics and of com-
puter science, to work together on the development of a robust analysis
framework. To continue the approach used until now would result in
strong lack of performance (at all levels: inefficiency, non-productivity).
Physicists are motivated to investigate physics and want to decouple their
responsibility from the details of the system, but in reality, they are forced
by these systems to behave like end users and application developers.
Their productivity decreases greatly with time. Yet on the other hand,
since the existing frameworks do not provide clear levels of abstraction,
the computer scientists are forced to have a proper background in physics
in order to have room for improving the efficiency of the system by de-
veloping proper optimization techniques. As a consequence, this situation
calls for a new strategy to introduce the required productivity, modularity
and efficiency in a controlled way.

To find a properly structured solution is very important for this branch
of science, since for the coming generation of physics detector machines
with their dimension and complexity, the traditional techniques are not
sufficient.

This situation is an interesting challenge for computer science, since
a new application area for this science is opened. This domain of re-
search has, for instance, requirements which are very different from those
in business and industry. A full investigation must be done to find the core
technology best suited to develop a query framework for this particularly
complex domain.

1.2 Objectives

The aim of this work is to to increase the user productivity and introduce
a framework that allows computer experts to investigate efficient ways to

1Compact Muon Solenoid
2Large Hadron Collider

1.3. SCIENTIFIC DOMAIN OF THE THESIS 3

optimize the High Energy Physics analysis process without requiring to
be physics experts.

We achieve this by introducing an engineering methodology and mak-
ing use of a declarative Domain Specific Visual Query Language (DSVQL)
to raise the abstraction level in the existing query systems and to give
room to new optimizations of different levels. In order to corroborate our
argument, we have implemented a prototype framework, called PHEAS-
ANT, and a visual language named PHEASANT QL. This framework was
developed in the context of the last big experiment, HERA-B in DESY3,
running in Europe before the LHC era. It is an interesting case study,
since it has real data to study and users to interact with.

1.3 Scientific Domain of the Thesis

In order to investigate the solution for this domain, we crossed several sci-
entific domains, basing our solution on their techniques. The most impor-
tant among them are Physics Computing (PC), Domain Specific Modeling
(DSM), Database Computing (DC) with Flexible Query Systems (FQS),
Human Centric Interfaces (HCI) and Visual Query Languages (VQL).

1.4 Thesis Outline

This thesis is divided into four major parts:

• The first part deals with the problem definition. Here, we introduce
the reader to the context of High-Energy Physics experiments. It
is followed by a description of the data mining phase, also called
data analysis, and finishes with the problem specification and the
motivation for our work.

• In the second part, we introduce some concepts that are useful for the
argumentation of our proposed hypothesis in the next part. Query
systems taxonomy and domain specific modeling are described.

• The third part approaches the hypothesis. Using domain modeling,
a language and a corresponding framework are designed. The core
technologies are detailed.

3Deutsches Elektronen Synchroton in Hamburg, Germany

4 CHAPTER 1. INTRODUCTION

• The fourth and last part is dedicated to the evaluation results and
conclusions.

Part I

Problem Definition

5

Chapter 2

Context of the Work

In this chapter, we familiarize the reader with the environment of High
Energy Physics (HEP) and the computing activities involved. This way,
we lay the foundations for the problem definition presented in the next
chapters, concerning the physicist data mining phase (commonly known
as analysis in the HEP community).

In Section 2.1 we start by giving a quick overview over the physics
goals. We can only roughly sketch the basics of HEP, due to the complexity
of the subject and space constraints. A good introduction to the subject
can be found in [61]. Then we explain the common architecture of the HEP
experiments and give a historical perspective of the analysis frameworks
and the analysis tools evolution.

2.1 Overview of High Energy Physics

Generally speaking, physicists try to discover new short-lived particles and
their properties or the properties of their interactions, in order to develop
a model of the real world at a subatomic level. For this, they use e.g. large
accelerators in which particles collide with others, and detector machines
composed of sub-detectors to measure the results. The accelerator supplies
the particles, which are grouped into bunches, with energy taking them
close to the speed of light (large kinetic energy), making them collide with
other particles, fixed targets or other beams of particles.

When masses slam together at huge kinetic energies, their energy con-
verts to new particles and their kinetic energies. The bigger the initial

7

8 CHAPTER 2. CONTEXT OF THE WORK

Proton
Beam

Target

+D
0
SK

+π

+π

 -π

Detector

Figure 2.1: Colliding a beam of particles against a target.

kinetic energy is, the bigger the masses of the products potentially are.
The new mass resulting from the very high energy collisions will appear
as different, unusual, and interesting particles. Some of them have a short
life, so they decay into other particles before they can be detected. Those
particles that live longer, due to their more stable nature, will be detected
by sub-detectors which track them in space, identify their type and de-
termine their energy. As an example, we have in Fig.2.1 the collision of
a proton beam with a target. This produces a particle called D+. D+

decays to other particles before reaching the detector. Nevertheless, its
decay products live long enough to cross the detector machine and be
detected.

When the experiments are running, a period of data acquisition, a so-
called run begins as soon as the system stabilizes. The time-span during
which two bunches collide is called an event. From now on, we will see
an event as an abstract granular entity that refers to the data taken by
the detector machine immediately after the collision during this referred
time span. In the main detector machine, large sub-detectors, which are
independent of each other, record the results of an event. Unfortunately, it
is technically infeasible to gather all information of all collisions (due to the
sheer volume of data), so the physicists filter the data with several levels
of triggers. The resulting data is initially stored on tape. After having
examined the data, the accelerator and the detectors are reconfigured (if
necessary), and another run can be started.

The reconstruction and investigation of decays and decay chains of
short-lived particles are the main computationally demanding tasks of the
data analysis, which starts after the data acquisition. Roughly speaking, in

2.2. THE DETECTOR 9

this phase, physicists have to select those kind of decays and particles they
are interested in. For this selection, it is usually necessary to reconstruct
parts of the particles’ trajectories (also called segments), to match them
with other segments in order to reproduce the full particle trajectories
(called tracks), to extract further properties, and to deduce the complete
decay chain.

2.2 The Detector

0 m

160 mrad

p

e

magnet

vertex detector

target inner tracker

5 10 15 20

hi−Pt tracker

outer tracker

ring imaging cherencov detector

transition radiation detector

electromagnetic calorimeter

muon detector

Figure 2.2: The HERA-B detector machine

The work described in this thesis was developed in the context of the
HERA-B experiment, based in Germany at the DESY1 Laboratory.

HERA-B is the biggest working experiment in Europe, before the next
generation of probing machines comes around 2007 at CERN2. For Hera-
B, 32 institutes and about 250 collaborators from 13 countries are working
together. The machine built, depicted in Fig.2.2, was meant to search for
CP violation in decays of B mesons into the “gold plated” decay mode
B → J/ΨK0

S, the details of this concepts is out of the scope of this thesis
but can be consulted in [35].

1Deutsches Elektronen-Synchroton in Hamburg, Germany
2European Laboratory for Particle Physics, Geneva, Switzerland

10 CHAPTER 2. CONTEXT OF THE WORK

Data Acquisition

Comissioning
Detector

Data
Reconstruction

Data Analysis

of the Detector

Design and
Assemble

(On−line system)

(Off−line system)

(Analysis System)

Figure 2.3: The life phases of a typical HEP experiment.

In Fig.2.3 we sketch the five typical life-phases of a HEP experiment
. It starts by the design and detector assemble, followed by its commis-
sioning. As soon as the detector is ready the data acquisition takes place
making use of the on-line systems technology (hardware and software).
Once the data is collected the off-line systems will take the role of looking
at the signal data and construct interesting physics quantities. Finally,
with this quantities the end-user (the physicist) will proceed to analyze
(or mine) this generated data.

In the next section , we have a look at the detector machine and its
components. Together with this description, we also explain the last three
referred phases of the hep experiment. We describe the on-line systems
which are used in the acquisition phase, also called data production. Fol-
lowing that we describe the off-line systems and at last the analysis (the
final computing intensive phase of the experiment).

2.2.1 The Machinery

Everything starts with the accelerator, which produces a beam of particles.
As the name indicates, the accelerator is the piece of hardware which
provides energy for the particles, accelerating them close to the speed of
light. Basically, there are two kinds of accelerators: linear accelerators,
where the long tunnels have the shape of a straight line, and circular

2.2. THE DETECTOR 11

accelerators.
In DESY, this machine is called HERA. It is a large underground ring

tunnel, 10 meters below the surface, with a circumference of 3 km. The
tunnel is 5 meters in diameter3.

In HERA, the beam consists of a lined up sequence of several groups of
particles of the same type separated by a given distance, called bunches in
the physics jargon. These bunches come with a frequency of 96 η seconds,
i.e. this figure denotes the distance between the bunches.

After the particles are accelerated, the collision takes place. There are
two approaches to provoke the collisions: either fixed target or colliding
beams. In the first approach, particles are made to crash into a solid
block or gas of some type. The second approach is based on the concept of
making two bunches of particles which travel into opposite directions meet
at a certain point in space. In HERA-B, wires of different materials, called
the target, are approached to the beam while the bunches are passing by,
provoking collisions with the particles on the wires at a very fast rate,
which is called the interaction rate.

After the collision, it is necessary to detect and measure the results.
Big detector machines are built around the interaction region, extending
from a point very near the collision to dozens of meters away. They mea-
sure the particles that survive longer, like electrons or muons, and their
properties (charge, invariant mass of the particles that are generated, di-
rection and momentum, etc.). With this information, it is possible to
reconstruct the original particles from which they decayed, proving their
existence, and to measure the desired properties of the interactions be-
tween them.

The typical HEP experiment apparatus consists of:

• Interaction region/Target: Where the collision takes place.

• The detector:

Vertex track detector: Measures coordinates of the hits provoked
by vertex particles very near to the interaction region.

Magnet: Deflects the passing particles with an angle which is pro-
portional to its momentum.

3The future circular accelerator under construction at CERN, called LHC, will have
a perimeter of 28 km. The planned TESLA will be a linear collider with a length of 33
km.

12 CHAPTER 2. CONTEXT OF THE WORK

Ring Imaging C̆erenkov Detectors (RICH): Identifies the kind
of particles.

Tracker detector: Measures several coordinate hits along the par-
ticles’ trajectories.

Electronic/Hadronic calorimeter: Measures the energy of elec-
trons or hadrons and identifies (separates) them.

Muon chamber: Identifies and measures muon particles.

The general structure of the machine is described in Fig.2.2.

The main idea of these different layers on the detector is to generate
enough combined information to explain which particles crossed the de-
tector and provide this information to the people doing analysis, who will
try to reconstruct what happened during the collision.

2.2.2 On-line System - the Triggers and Data Acqui-
sition System

Due to the sheer volume of data, it is technically infeasible to gather all
information of all collisions. Moreover, in many cases the probability of
producing the interesting reactions the physicists are searching for is very
low, compared to other kinds of reactions. As an example, HERA-B was
searching for interactions that have certain particles in the final state.
With the rate of 10 million of collisions per second, in other terms, a
frequency of 10 MHz, that kind of event will be produced only once every
1011 interactions (collisions). Therefore, complex filtering trigger systems
have to be designed in order to separate the few interesting interactions
from the large background of uninteresting events. In HERA-B, a three-
level trigger system was built.

During the processes of data acquisition and reconstruction, the large
data sets of these experiments are stored onto robotic tape systems.

The schematics of the data flow during the data acquisition are de-
scribed in the Fig.2.4. We dedicate the rest of this section to explain the
components depicted.

The data is pipelined in the data acquisition system (DAQ) and waits
for the different trigger decisions. During this phase, about 1500 software
processes are running on several Linux clusters.

2.2. THE DETECTOR 13

FLT

SLT

TLT

Detector Machine

 Storage
Third Level

Raw Data

Raw+Reconstructed Data

Filter Trigger
 Decision Environmental

 Data

On−Line System

Beam
Collision

Figure 2.4: The Triggers and the Data Acquisition System

• First Level Trigger (FLT)- As soon as the analog signal comes
out of the detector chambers, it is amplified, discriminated (by mak-
ing the difference between what is a valid signal and what is just
noise), and digitized in an electronic board named Front End Driver
(FED). All this data is pipelined and waits for a decision. This deci-
sion is taken by the first level trigger hardware within a time frame
of 10µs. It consists in looking at the hits in the several sub-detectors
and identify trajectory patterns that justify acception or rejection
of the information. This level is dealing with a data rate of 5× 1012

bytes/s.

• Second Level Trigger (SLT)- The data resulting from the FLT is

14 CHAPTER 2. CONTEXT OF THE WORK

distributed among 1000 Sharc[15] Digital Signal Processors (DSPs)[54].
These DSPs are installed in VME crates4 with a very efficient data
bus, which transports the data to the third/fourth level trigger. The
SLT is a programmable layer that allows to run algorithms real time
constrained for selections based on additional information coming
from the detector. It executes pattern recognition algorithms to re-
construct the trajectories of the particles inside the detector and
can determine the invariant mass of the particles in order to decide.
These algorithms have to take the decisions in 1 ms, this level is
dealing with a data rate of 25× 109 bytes/s.

• Third/Fourth Level Trigger (TLT)- The information is then
pipelined to a cluster [46, 47] composed of 240 microprocessors nodes.
These nodes run a program for the full reconstruction of the events,
make some looser selection of the interesting ones, and, based on
some computed likelihoods, classify them in the different categories
that may be interesting for the different kinds of physics analysis.
This reconstruction is more time consuming, therefore the trigger
decision has to be taken in 10 ms. This level is dealing with a data
rate of 250× 106 byte/s.

Finally, the raw data (signal information) and on-line reprocessed
data (physical quantities extracted by the recognition algorithms which
were run on the raw data) are stored on tape with a data rate of 2.4× 106

bytes/s.

2.2.3 Off-line System - Data Reconstruction

The real-time system described previously provides a first level of analysis
and selection of physics data, which has to be processed automatically.

When the data storage/production is finished, we can categorize the
kinds of data[12, 13] produced and/or used in an experiment detector
machine in the following way (see Fig.2.5):

• Basic HEP constants: for example constants like masses of dif-
ferent particles.

4VERSAmodule Eurocard. Systems for mission-critical and real-time applications.

2.2. THE DETECTOR 15

Figure 2.5: Data produced by the HEP machine before the reconstruction

• Environmental Data:

Setup - Cabling connections and software configurations.

Geometry - There is a nominal geometry that describes the
shape of the detectors, their positions, etc. It is obtained mechan-
ically (by automatic reading of the measuring instruments) during
the data acquisition and afterwards with the calibration and align-
ment data.

Calibration and Alignment - The geometry of the detectors
is obtained mechanically, by reading the measuring instruments dur-
ing the acquisition. However, the accuracy of the detector position
is obtained only in the order of millimeters, which is less precision
than needed later. Therefore, it is necessary to apply alignment al-
gorithms in order to determine with a precision of µmeters where
the detector and its sub-detectors are located, compared to the beam
position (and, in the case of the sub-detectors, between each other).
The alignment algorithms make use of calibration and alignment
data. This data is stored during the data acquisition and corrected

16 CHAPTER 2. CONTEXT OF THE WORK

afterwards by the sub-detector experts.

Period (or Slow Control): Status, Luminosity - Condi-
tions like atmospheric pressure and temperature can influence the
precision of the machine. This information, which does not change
very fast, is stored in a database system[6, 14].

• Event Data (raw):

Event, sub-detector FED bit pattern - Signal data is char-
acterized by being written once and never modified.

(a) Raw data (b) Physics quantities (c) Detector interaction (d) Decay (e) Basic physics

Figure 2.6: Informal description of the results of the major transformation
phases.

Data cannot be used directly as it comes from the detector (it con-
sists only of electronic signals). Therefore, it needs to be transformed
into some quantities the physicist is able to handle and to understand.
As a consequence, the raw data is transformed in several phases. These
transformation phases are shown in Fig.2.6 from a) to e). Briefly, we can
describe the process at the conceptual level as follows.

The raw data in (a), composed by read-out addresses of the detec-
tor, bit patterns, etc., is first converted to the description of the hits (i.e.
points of interaction of the particles) in each layer of the detector (b).
To pass from (a) to (b), several problems like noise, detector inefficiency,
ambiguity, resolution, alignment, and variations in temperature must be
solved by calibration, noise reduction, and alignment algorithms. As a
result, information about the interaction of the particles with the detector
material is obtained. This is the starting point for the next phase, which
is the pattern recognition of physical segments, clusters, and rings. This
way, particles crossing the detector are identified (c). This last computed
information is used by the scientists for the decay studies(d). The re-
sults will provide physical statistics and probability figures to support the
theoretical model of particle interaction under investigation (e).

2.3. HISTORIC PERSPECTIVE OF THE ANALYSIS SYSTEMS 17

2.2.4 Analysis System

One of the main tasks of the data analysis software in experiments on
high energy physics is the reconstruction and investigation of decays and
decay chains of short living particles. A lot of information from different
reconstruction algorithms (e.g. reconstructed primary vertices, particle
identification, momentum determination etc.) must be combined in order
to identify trajectory combinations which have a common origin and be-
long to the decay of another particle. The reconstructed decayed particle
can be itself a decay product in a complex decay chain and used as an
input for further decay reconstruction.

Roughly speaking, the analysis systems are composed of a visualization
tool, a set of scientific calculation libraries, and a storage manager (a
detailed description with the history of its evolution is contained in Section
2.3). Traditionally, in a first step of his analysis, the user selects a subset of
data from the storage manager. Then, several reconstruction algorithms
with scientific calculations filter out data and compute new values that are
stored in private collections. Finally, the new data collection is visualized
in the visualization tools (for instance by histograms). In Chapter 4, we
will explain the analysis phase in more detail.

2.3 Historic Perspective of the Analysis Sys-

tems

In this section, we are going to describe the structure of the analysis sys-
tems, i.e. the storage and visualization tools, and their historic evolution.
With this description, we already start approaching the nature of the
problem in the analysis phase. In fact, understanding the evolution of
the architectures will help us to understand both how the legacy systems
dictated the system architecture of the present experiments and what the
main reasons for the growing dissatisfaction of their end users are.

We will describe the evolution from the early stages, dominated by an
unstructured approach, till the time these frameworks adopted the object-
oriented design. We will end with a description of the current trends and
future tendencies.

Since we will use the concepts of the levels of abstraction in a DBMS,
we will shortly define what we understand by the three levels: conceptual

18 CHAPTER 2. CONTEXT OF THE WORK

(or external), logical, and physical. In summary, the conceptual model
is concerned with the real world view and understanding of data; the
logical model is a generalized formal structure according to the rules of
information science; the physical model specifies how this will be executed
in a particular DBMS instance.

2.3.1 Unstructured Approach

Second Level
 Storage

Third Level
 Storage

I/O

Application

codes and gets results

User/Developer

copies files to
 second level
 storage

Figure 2.7: User builds his own query system from scratch

In the early and small experiments, data was usually organized in
compressed, self-describing data formats stored in flat files. The user
was responsible for fully coding the complete query, including loading the
data from files into main memory, query computation and result analysis
code (see Fig.2.7). A deep knowledge of programming, especially in the
FORTRAN language, was necessary. The data schema and the storage
formats were unstructured and changed very often, which made the code
difficult to reuse and maintenance a nightmare.

2.3. HISTORIC PERSPECTIVE OF THE ANALYSIS SYSTEMS 19

In the early experiments, this approach was easy to handle. However,
when both the data volume and the schema grew, the community soon re-
alized that a lot of main memory was needed. The code for executing I/O
tasks had to be redone continuously. The user also had to worry about
things like how to minimize the number of accesses to the tertiary stor-
age, which was possible only by knowing beforehand which files contained
relevant events and where they were physically located in the system. In
addition to all that, the user did not always implement the most efficient
code. In consequence, to build up a library that brings the relevant parts
into main memory for processing became the next design concern.

Second Level
 Storage

Third Level
 Storage

I/O

Copies Files to
 Second level
 Storage

Codes Selection

Physics Selection
 Application

User/Developer

Scientific & Statistics
 Calculation Package

Codes Visualization
(histogramms) Statistics and

Visualization

Visualizing

 Package

Stores Private selection

N−Tuple

I/O

Figure 2.8: User codes with different sets of available libraries

Specialized packages (see Fig.2.8) were developed to provide a set of in-
dependent libraries providing specialized I/O together with algorithms for
physical analysis and mathematical calculation, and functions for statis-
tics, histogramming and visualization. The user still had to deal with
the growing complexity of the data’s physical layout, but had access to a
widely dispersed set of packages to re-use (“glue”) instead of doing every-

20 CHAPTER 2. CONTEXT OF THE WORK

thing by himself.
A standard storage format for event data called ZEBRA[21] was de-

fined for the data stored in files in HEP. It was quickly adopted in most
of the HEP experiments, since it simplified the code for looping inside the
files. The event is seen as the granularity of the data, the contents of them
as black boxes, which had to be interpreted by the user code.

Typically, the use case would start by a pre-selection of files that might
contain interesting events. The user had to program many lines of code
using imperative languages like FORTRAN to specify the application code
representing the query. The query program would loop over the event
data stored in each file, compute new values and determine if they were
interesting enough to store in a specific flat file on a local workstation. In
the physicists jargon, the result was an n-tuple table. This table was then
used for the final statistical calculations.

At this point, these analysis frameworks made no distinction between
the physical and the logical levels and, obviously, the conceptual model
was not completely covered. The user had to know the specific layout
and particular storage location of the data. In order to extract the data
from different complex sources and to deal with the complexity of the
data, including the transfer to main memory, it was necessary to write
code. These frameworks became too complex to use, and the practical
reusability of the produced code was limited.

The volume of the data (that had risen to magnitudes of terabytes)
and its storage, together with the need for expensive computer resources,
forced that hundreds (sometimes thousands) of users at different levels
(physicists doing analysis, component experts extracting and generating
physics analysis data, system administrators) had to access the data in
central data repositories. At the same time, all of them were expecting a
highly efficient system.

Visualization Tools

By then, tools like PAW[33] had appeared, which provided the end user
with subroutines that would integrate the I/O package for accessing the
referred n-tuple, and with data visualization packages (mostly histogram-
ming). While this was very convenient for generating histograms and
statistical calculus, it was extremely difficult to use complex data struc-
tures that required references among data objects (this problem will be

2.3. HISTORIC PERSPECTIVE OF THE ANALYSIS SYSTEMS 21

more clear in the next chapter when we describe the conceptual model and
the logical schema). Besides, a method to identify all data items was nec-
essary. Queries at this level were obviously limited and totally dependent
on the structure of the tuples defined by the user.

2.3.2 Analysis Frameworks

Physics Selection

Event Data
 Manager

 Framework

 File

Scientific & Statistics

 Calculation Package

Statistics and

Visualization

Codes Selection

Visualizing

 Package

Codes Visualization
(histogramms)

User/Developer

I/O
Stores Private selection

N−Tuple

I/O

Figure 2.9: Multi-users’/programmers’ query over a framework

A second generation of approaches to this problem, (see Fig.2.9), still
used by many experiments world-wide, started to implement hybrid object-
oriented frameworks, like ARTE[4], where the other paradigms were in-
herited. The idea was to cope with the growing user demand for query
applications which use an object-oriented design.

These frameworks were meant to centralize all the packages for sup-
porting the tasks emerging during the life phases of the experiment, in-
cluding data production, simulation, transformation (in physics jargon

22 CHAPTER 2. CONTEXT OF THE WORK

re-processing) of the raw data into physics data, and finally the analysis
phase. Cluster solutions were chosen in order to increase computational
power with cheap commercial hardware.

Although not worrying about the specific requirements for the analysis
phase, the great achievement of these systems was to provide transparent
access to every file with persistent event data. It did not matter whether
it resided in secondary or tertiary storage. It gave rise to several projects
whose mission was to optimize the I/O performance.

This second generation approach provided the end user with the ”main
event loop abstraction”, where the program loops over the event data
elements stored in the file and hands them over to the physics algorithms
that are responsible of knowing the proper schema and extracting the
required information into main memory. Typically, the user had to know
in which file he would find the event data elements he was interested in
before running the physics algorithms on them.

These frameworks were also developed with the goal of distributing the
queries and data on computer clusters in a multi-user environment. Some
of them have primitive load-balancing capabilities. They did not exploit
parallelism.

Although they still do not hide the complexity of the data struc-
ture of the events from the end user, these frameworks introduced more
modularity and integrated the dispersed packages. Nevertheless, they
were strongly bound to a particular physics experiment’s implementations,
which meant that the user had to re-learn them in every new experiment,
and was dependent on legacy code. This way, algorithms were coded
in several general purpose languages and paradigms, with steep learning
curves and with a high risk of being inefficient when badly written by
inexperienced users.

These systems also do not present different views for the different users
involved as they do not hide the unnecessarily complex data structures
from the end users. As a result, users had to map domain concepts into
design concepts and then to implementation concepts, without any ab-
straction involved. Partially, this confusion was already generated by the
physicist’s dual role of developer and end user.

2.3. HISTORIC PERSPECTIVE OF THE ANALYSIS SYSTEMS 23

2.3.3 Object-oriented Frameworks

Attracted by the advantages of a DBMS - for example, concurrency con-
trol, indexing support and query capabilities - some recent HEP experi-
ments, like BaBar5 and AMS6, implemented solutions based on a commer-
cial OODBMS. Unfortunately, this approach has shown to be problematic
- in part due to some inexperience of the community in OO design, and
greatly due to the non-scalability of the available OODBMS commercial
solutions.

The introduction of the OODBMS technology allowed a clear sepa-
ration between the physical and the logical levels and allowed some op-
timization approaches like the introduction of vertical partitioning[87] of
event data or bitmap indexes[48].

Visualization Tools

JAS[30](Java), ROOT[81](C++) and other visualization tools became the
object-oriented evolution of PAW. Since the relative failure of OODBMS
usage for HEP purposes, the tendency now is to change this situation
by developing a more adequate storage layer underneath the visualiza-
tion tool. This way, both visualization and storage are combined in the
same tool, and the user programs the complete query in the same pro-
gramming paradigm. In order to make an HEP object persistent, special
machine independent I/O mechanisms are being developed (an example
is the package ROOT I/O[81]).

As such tools were originally designed to deal with a local storage of
the selected n-tuple data in the physicist’s computer, the mission of turn-
ing the tool into a distributed very large database within a distributed
heterogeneous multi-user environment is necessarily very difficult to ac-
complish.

Although these tools are meant to support the user during the query
programming phase, they have a confusing logical schema that is unrelated
to the conceptual one. The physicist has to twist the way he conceptualizes
the data into the unnatural object model these tools support. They still
imply object-oriented programming activities using a growing number of
complex library of functions which are difficult to learn by the end user.

5SLAC, USA
6NASA, USA

24 CHAPTER 2. CONTEXT OF THE WORK

2.3.4 Current and Future Trends

In 1997, in a vision paper at the VLDB conference, the community pre-
sented the requirements for their domain [43] with the idea of pushing the
limits of technology. Some goals for the next generation of systems were
set:

• Deal with petabytes of data.

• Support hundreds of simultaneous queries.

• Return partial results of queries in progress (with time estimates for
their completion) and provide interactive query refinements.

• Deal with data on secondary and tertiary storage access for simul-
taneous queries.

• Provide an environment for data analysis that is identical on desktop
workstations and centralized data repositories.

• Support statistical selection mechanisms (uniform random sampling).

• Provide a flexible schema which supports versioning.

In part motivated by these requirements, some future experiments,
especially in CERN (Atlas/CMS/LHC-B,etc.), are embracing the devel-
opment of a new system called GRID. The leading role of the CERN
institution worldwide normally has a strong influence on the technology
chosen for the other physics experiments in the future.

The main mission of GRID computing is to coordinate distributed
heterogeneous hardware and storage resources among a dynamic set of
individuals and organizations in order to achieve a common goal. It in-
volves the studies of peer-to-peer solutions applied to this domain’s re-
quirements with development and implementation in different areas such
as data replication, migration, security, processing, load balancing and
networking philosophies. Still at its starting phase, it aims to be the next
big revolution on networking for scientific computation in 2007, when the
next big experiments at CERN (ATLAS, CMS) start to run.

In spite of the very complex, but promising technology, to our knowl-
edge no serious studies exist about the conceptual model for the analysis,

2.4. SUMMARY 25

logical schemas and analysis query patterns. We predict that this will
become a serious gap in the future when it starts to be necessary to tackle
the problem of user’s productivity. The other problem directly related to
the lack of abstraction layers will be when the experts try to tune the
computational performance of the query systems.

2.4 Summary

In this chapter, we have introduced the physicist’s HEP analysis phase and
described the structure of the typical HEP systems. We have also given
an overview of the physics activities involved, trying to avoid unnecessary
complex descriptions that are beyond the scope of the thesis.

From this chapter, we would like to highlight some key ideas that will
be handy for the discussion in the following chapters:

• Only part of the total experiment’s stored data is actually used for
physics analysis.

• In order to mine the data, the end user adopts a dual role of appli-
cation programmer and user.

• The developed tools do not allow for data independence.

• The complexity of the data structures and the representation of the
data is not hidden from the user.

In the next chapter, we are going to describe in detail the physics
analysis process and the problem we propose to solve.

26 CHAPTER 2. CONTEXT OF THE WORK

Chapter 3

The Physics Analysis Process

This chapter is dedicated to describe the physics analysis process in more
detail. The documentation in this area under the perspective of computer
science is typically very poor, inconclusive and sometimes contradictory.
Therefore, we expect to bring some light into this subject with our own in-
terpretation resulting from the experience we have with real users running
analysis systems in a running experiment (HERA-B).

We start by explaining the difference between low-level and high-level
analysis. Then, we proceed with an overview of the schema. We finalize
by explaining what major steps are involved while querying the physics
data, and which query patterns we might expect.

3.1 Defining Physics Analysis- Low versus

High Level

There is still some controversy about the concepts of low-level analysis in
the physics community. Therefore, we are going to define our understand-
ing of them in the rest of this section.

Traditionally, analysis used to involve writing code in a General Pur-
pose Language (GPL), like C++, Fortran, etc. This code was responsible
for performing the whole data transformation chain in the same user ap-
plication program, which includes the reconstruction of physics data from
the raw data and the analysis. This implied the use of specific data from
the detector machinery such as information on geometry, calibration and
alignment, to reprocess the raw data in order to produce the physics data

27

28 CHAPTER 3. THE PHYSICS ANALYSIS PROCESS

and to run the query algorithms. This kind of analysis, now called low-
level analysis, is a legacy from old experiments. It resulted to some extent
from the need that the users had to start with their analysis while the
detectors were still at the phase of confirming that the system function
matches the operational needs, also called commissioning phase1. The
main reason for this situation is that, as in any complex research experi-
ment, when using cutting edge technology, the behavior of the machines
is not always completely understood.

Low-level analysis was only possible thanks to the relatively small de-
tectors. They were characterized by having both small data sets and
relatively simple data structures. The sub-detectors’ description data was
very reduced.

At present, due to the very large data set and the complex queries
required for the new generation of experiments, this analysis is no longer
possible. Re-processing the whole data set takes several months. In con-
sequence, the control of such data re-processing activities should no longer
be on the users’ side, but shift to some other actors like the experiment’s
management. Then the low-level analysis is left to the machine experts
that will only perform machine tests over small data sets. On the other
hand, high-level analysis, which queries simply physics data and ignores
the details of the machinery involved, is the new way of analysis.

High-level analysis involves generating queries only on physics data,
with a specific data model in order to return the interesting statistical
results.

3.2 Monte Carlo Simulation

As we explain in the next section, while describing the analysis data model,
it is very common in Physics to use the so called Monte Carlo simulation
technique (for more details consult any statistics book, for instance [83]).
It consists in the random generation of values for certain variables ac-
cording to a model. It is generally used when there is the requirement
to automatically analyze the effect of varying inputs on outputs of the
modeled system. This simulation technique was named for Monte Carlo,
Monaco, where the primary attractions are casinos containing games of

1The four main phases of the experiment are: design, construction, commissioning
and operation (or data production).

3.3. ANALYSIS SCHEMA 29

chance such as roulette wheels, dice, and slot machines, that exhibit ran-
dom behavior.

This statistics technique is very often used for the generation of sim-
ulated physics data. It follows a complex model to simulate all the par-
ticles that cross the detector, their interactions between them and with
the detector, in order to simulate the data that comes out of the detector
(”hits”).

3.3 Analysis Schema

Event
FilledBunch
CoastingBeam
Tag

Particle
Px
Py
Pz
Energy
mass

Rec_Particle

Secundary Vertex

Vertex
x
y
z

Rec_VertexPrimary Vertex

MC_Event

MC_Truth VertexMC_Truth Particle

Rec_Event

Event_Collection

Run
Begin
End
Trigger

1

1

1

1

n

n

n

n

Figure 3.1: Detailed UML model of the analysis of the relevant event data

Based on our case study, the Hera-B experiment, and physicists’ de-
scriptions of other experiments taking place worldwide, we derived the
conceptual model of the analysis data in a UML diagram that is de-
picted in Fig.3.1. It consists of the following entities: the generalized

30 CHAPTER 3. THE PHYSICS ANALYSIS PROCESS

Collection, from which other Run or even others are inherited; Rec Event

that aggregates Rec Particle, Rec Vertex (that can be of two types: pri-
mary or secondary), and the simulation events MC Event that inherit from
Rec Event and store extra information MC Particle, MC Vertex.

The attributes of the entity Run, a typical specialization of the entity
Event Collection, define meta-data information for the Event data that
is being collected, such as the parameters of the experiment, e.g. the setup
of the detectors, the time span of the data acquisition and general quality
issues.

Event attributes describe properties of the set of particles involved in
an event. This entity can have up to ≈ 10 different attributes of mostly
Boolean and up to 80 enumerated types with a list of enumerated values
comprising up to 80 values. These attributes are mainly referring to the
usage of certain algorithms for the re-processing of the particular event.
Some, but few, double precision attributes might be used. Finally, an
attribute of type integer might be used to specify the version of the same
raw event that was reprocessed.

Events can be simulated or real. A simulation means that the produc-
tion of random collisions is simulated, by using the Monte Carlo method,
and that the particles and vertexes are reconstructed using the same soft-
ware algorithms as if they had really crossed the detector. These par-
ticles and vertexes are generated with exactly the same attributes as in
a real reconstruction. The difference of this simulated data to the real
one, concerns only the so-called Monte Carlo truth, (in Fig.3.1 MC Truth

Particle and MC Truth Vertex), which are a one-to-one association of
the exact information about the simulated particles and vertexes. This
MC Truth gives the information about the particles and vertexes as if
they were crossing the detector before the reconstruction algorithms track
and identify them. Mostly, given the complexity of the pattern recogni-
tion algorithms, the path of the particles identified is the nearest possible
approximation to reality. This kind of information is used extensively for
the determination of error rates and efficiency figures. Attributes for this
entity can be Boolean values, for instance, or a list of enumerated values
in an attribute tag.

Fig.3.2 consists of various entities for the description of particles, ver-
texes and their corresponding simulation. Almost all of these attributes
are double precision numbers.

A particle is, in general, described by its momentum, its mass and the

3.4. THE QUERY PATTERNS 31

Rec_Vertex
Vertex Error

- Covariance Matrix
- Chi Squared

Particle ID
- Likelihoods

Rec_Track
- x,y,z

Track Error
- Covariance Matrix
- Chi Squared

Rec_Particle

Figure 3.2: UML details of the reconstructed Vertex and Particle.

coordinates of the first measured point of its trajectory. In the case of
a decaying particle, the point could be the decaying vertex. In the case
of neutral particles they can be described by the energy deposited in the
calorimeter detector and the position of this energy deposition, since they
do not have a measured trajectory.

In Fig.3.3, we present an informal object graph of the described data
model. It represents the physics analysis’ database at the instance level
as it was defined in Hera-B. Along with it, we show some figures to give
an idea of the proportions and number of objects taken for the analysis
phase. These figures concern data taken over a period of 6 months.

3.4 The Query Patterns

The physics data for the analysis can be described as WORM (Write
Once and Read Many). Typically, the analysis queries are issued only
once. This means that every new physics query requires a new application
code. Nevertheless, almost all have one sequence in common (see Fig.3.4),
where the first three major steps are selecting the available data (first
filtering out pre-defined collections, like Runs, and then retrieving sets of
the contained Events), reconstruction of the decay for each event, and the
last one is visualization of statistics data (usually using histograms).

32 CHAPTER 3. THE PHYSICS ANALYSIS PROCESS

~692

Run Private

Event

~100 per Event

SecondaryVertex

0..5 per Event0..10 per Event

PrimaryVertex Particle
Particle PrimaryVertex SecondaryVertex

1..5 per Event

~31.176.798 Real Events ~10.000.000 Simulated Events

~100 per Event ~10 per Event

Figure 3.3: Object graph representing the physics’ analysis database at
the instance level

In this section, we are going to describe the different patterns and give
the pseudo-code of a real life example.

3.4.1 Query Steps

In order to sieve out interesting subsets of events, the analysis starts by
selecting the Collections. This involves partial match queries over some
Collection attributes. Usually, this makes use of up to 5 dimensions.

The second phase implies range queries over a small subset of the
Event properties. While the events can have as much as ≈ 10 different
attributes, i.e. ≈ 10 dimensions, the number of properties restricted by
mostly range and partial match queries is usually much smaller, typically
1 to 4.

With the filtered event data collected in the first and second step,
the physicists now try to reconstruct decay chains as a third step. At
this level, retrieval techniques must deal with many difficult problems:
enormous quantities of data, high data dimensionality, low-dimensional

3.4. THE QUERY PATTERNS 33

• 1 - Run/tag selection:

– Trigger selection

– Run period

• 2 -event Selection:

– Filled bunch

– No coasting beam

– No empty events

– Refined confirmation of the trigger

– ...

• 3 - Reconstruction:

– Track selection

– Particle ID filter condition

– Combination of tracks

– Vertexing

– Kinematic or geometric filter conditions

– ...

• 4 - Histogramming and/or comparison with Monte Carlo Simulation

Figure 3.4: Query steps for general analysis

region queries, and highly skewed data distributions. However, they are
not interested in all decays that took place in an event, but want to sort out
data that is irrelevant to their current investigations. This also involves
computing and caching of intermediate results.

The third step starts by selecting the different particles, “leaves”, of
the decay tree. This involves selection predicates with range queries over
typically up to 8 dimensions. Sometimes, with the simulated data, the user
might be interested in the Monte Carlo truth. This will imply navigational
queries, which in the object oriented databases corresponds to the use of

34 CHAPTER 3. THE PHYSICS ANALYSIS PROCESS

path expressions with implicit joins to single-valued attributes (where the
particle or vertex objects refer to the corresponding MC Truth Particle
and MC Truth Vertex). This phase is followed by explicit join queries with
few range predicates, together with more or less complex mathematical
functions to derive properties (which creates new intermediate results).
The next operation might imply nearest-neighbor queries of the newly
computed results with some other stored data (like vertices).

The fourth and last step consists of the visualization of the results
(in form of histograms, tree-like structures, n-tuples, etc.). Group-by and
aggregate queries can be used at this level.

Querying does not necessarily stop here: users can go back to the
previous steps and reformulate their query.

3.4.2 Example Query

In order to give a more concrete idea of the typical user’s query code, we
are going to present a query of medium complexity (see Figure 3.5) in
pseudocode. In this example, we are going to abstract the physics details
and only present the algorithm that performs the data manipulation.

The conditions that are presented in the algorithm are mostly conjunc-
tive expressions. These might make use of user or system defined functions
(like geometrical distances etc.).

The query starts with selecting a collection of runs. From these, a sec-
ond step will retrieve a sub-selection of events according to new predicate
conditions.

With this filtered selection, the user starts with the selection of the
constructed decay he is interested in. Usually, the algorithm starts by
selecting the particles and combining them to form the vertexing. This
vertexing can have 2,3 or more particles combined, or even several vertexes
can be generated, depending on the type of physics the user is interested
in. A system or user defined vertexing function computes the values of
the decaying particle. Sometimes, we make use of an operation like de-
termining which vertex stored in the event list of vertexes has a minimal
distance from another one. Finally, some of the values, newly computed
or not, are stored to be visualized.

As a last step, the visualization tool is fed with the results and displays
the information, typically making use of histograms.

3.4. THE QUERY PATTERNS 35

1) Declare: List Runs , List Events, List Results
2) Result is a list of particle1, particle2, Computed Vertex and Vertex

Step number 1
3) while(run=nextRun()) {
4) if(conditions) Runs.append(run)
5) }

Step number 2
6) foreach run in Runs {
7) while(event=run.nextEvent()) {
8) if(conditions) Events.append(event)
9) }

Step number 3
10) Declare: List Particles and List Vertexes
11) foreach event in Events {
12) Particles= event.GetParticle(conditions)
13) Vertexes= event.GetVertex(conditions)
14) particles=Particles
15) While (particles.notempty()) {
16) headParticle=particles.head()
17) particles=particles.tail()
18) foreach auxParticle in particles {
19) if (condition(auxParticle) and condition(head, auxParticle)) {
20) Declare: distance=∞ and MinVertex={}
21) computedVertex=ComputeVertex(headParticle,auxParticle)
22) foreach vertex in Vertexes {
23) if(distant(vertex,ComputedVertex)<distance) {
24) distance=distant(vertex,Vertex)
25) MinVertex=Vertex
26) }
27) }
28) if(MinVertex.notNULL)
29) Result.append(headParticle,
30) auxParticle, computedVertex, MinVertex)
31) }
32) }
33) }

Step number 4
34) Histogram(userSetup, Results)

Figure 3.5: Example of a user’s query, (pseudocode based on a real query).

36 CHAPTER 3. THE PHYSICS ANALYSIS PROCESS

3.5 Summary

In this section, we have described the analysis phase by introducing the
physics data model and describing the query patterns.

Since the queries depend mainly on the kind of physics the researcher
is looking for, they were usually considered unpredictable and complex.
However, as we have shown, they tend to show a common pattern. We
are going to use this characteristic pattern as part of the solution of the
problem defined in the following chapter.

Chapter 4

Problem statement

”The three most important factors that determine the success or failure
of a database system are performance, performance, performance!”...”at
least one of these three references to performance implies that of end-users
when interacting with the system to access data, i.e., user productivity.”
(for researchers) ”twisting their way of thinking so that it fits that of the
available systems is simply something they are not willing to spend time.”
Yannis E. Ioannidis.[62]

In the previous chapters, we have described the context of HEP exper-
iments and explained in detail the area of physics data analysis where we
want to make our intervention.

In this chapter we concisely explain the problem between the end-user,
the physicist, and the present HEP query systems, and therefore introduce
our resulting motivation for this thesis.

4.1 The Problem

As we have explained in the last chapter, the analysis queries, which are
complex and apparently issued only once, show some common patterns
in reality. This situation justifies the usage of flexible query systems that
explore these patterns to query the physics data stored in order to improve
user productivity.

As already mentioned in the context description, the development pro-
cess of the analysis frameworks was very unstructured. Forced by the

37

38 CHAPTER 4. PROBLEM STATEMENT

circumstances, the users became developers, partially because of legacy
systems and partially because no software engineering solution existed
that tackled the problem from its roots in a structured way. In fact, the
result was the development of frameworks that do not provide data inde-
pendence, showing complex data structures and schemas without hiding
the physical layer details. Typically, these frameworks make use of several
GPLs and a multiplicity of complex entry points. In other words, they
have complex interfaces.

The current systems are disadvantageous for the three types of system
actors involved: normal users, system expert users and system developers.

Normal users, or non-experts, are usually physicists willing to do physics
analysis without any background on the analysis systems implemented by
the experiment’s experts. Generally, they are dissatisfied since they are
usually not very good at programming. They do not have the neces-
sary background for performance optimization at any level. Hence, they
spend too much time with learning, coding, producing both semantic (al-
gorithms) and syntactic errors and waiting for the results. Thus, they are
distracted from physics.

Experts are characterized by having a deep knowledge of the experiment-
specific schema. They are experienced in the framework internals and
(usually) master the programming language and paradigm. They expect
from the system flexibility and expressiveness. Generally, they cope with
the current situation, but with the growing complexity of the systems,
coding for analysis is getting more and more time consuming .

Generally, for developers or system maintainers the work is complex
because there are no abstraction levels. This means that any produced
changes affect the whole chain, and implies that the users tend to reject
changes. Like in other engineering projects where it is difficult to design
modular software, efficiency and performance problems are not easy to
solve. For these system actors, which are no experts in physics, it is very
difficult to change the situation since the documentation about the do-
main is very poor and sometimes contradictory. Use cases are not clear
without a profound understanding of the physics involved, with the neg-
ative consequence that only few serious studies on query patterns can be
found (see [56]).

The consequence of the described situation is a lack of efficiency in the
analysis process. As we are going to describe in the next section, there
are important tasks that are time consuming and which depend directly

4.2. TIME CONSUMING QUERYING PROCESS 39

on the user’s skills.
As a summary, we can say that scientists analyzing HEP data are often

distracted from their real work because they have to learn many details
on computer science that are completely unrelated to physics. Thus, the
analysis of data generated by detectors in High Energy Physics (HEP)
experiments can be a tedious, inefficient and cumbersome chore. This
problem is very well known and mentioned by the experts in the field, so
we want to tackle it in this thesis.

4.2 Time Consuming Querying Process

Figure 4.1: Sequences of query steps

If we try to track productivity bottlenecks and, consequently, propose
changes to improve the situation, we should look at the whole analysis
process and understand which parts are more time consuming. This way
the weaknesses can be more easily pinpointed.

We use the term end-user for both normal and expert users, which are
referred to in the last section.

40 CHAPTER 4. PROBLEM STATEMENT

Giving an overview of the analysis steps, we can roughly depict a se-
quence process like in Fig.4.1. We can observe that the time spent on
this activity changes widely because there are so many different steps in-
volved. The total time spent on analysis depends on the complexity of the
query, the experience of the end user in programming, the programming
environment and the execution of the analysis frameworks.

From the end user’s perspective the total time spent consists of:

• time spent learning the programming language - ranges widely, de-
pending on the user, but our experience shows that this tends to
take between 1 to 3 months;

• time spent with the analysis framework - usually, a month is neces-
sary;

• time spent programming the complete query - ranges from taking
three days to two weeks;

• time for debugging syntax errors and semantic errors (bad algo-
rithms) - some hours or some days.

The first and second estimation can only be applied to the normal
physicist, since the expert should spend time close to 0 . The third and
fourth estimation should be close to the lower bound for the expert users,
and closer to the upper bound for the normal physicist.

On the other hand, the system spends time with storage and query
computation, depending on the size of the data set. In Hera-B, this used
to take from 3 hours up to three days. Additional time is spent with
the communication network, the data replication and the visualizing tool,
but, as this is of no importance compared to the size of the rest, we can
simply ignore it. Although the user bears the responsibility for this, we
also consider the time for the execution of inefficient algorithms. Here,
time from three hours up to three days is lost because the result of the
query is always given at the end of the execution, and the user does not
have access to intermediate results to realize the problem.

The direct conclusion from this is that there is too much responsibility
for the performance of the system on the user’s side. With the state-of-the
art technologies and methodologies, it is a very difficult and speculative
task to estimate how long it will take to run a query.

4.3. MOTIVATION FOR THE THESIS 41

4.3 Motivation for the Thesis

The present situation is not satisfactory, especially with the growing com-
plexity of the HEP systems and data storage requirements.

Given the list of problems described, this motivates the introduction
of a solid design methodology. It provides the HEP community with a
way to develop a robust solution where a flexible query system for this
specific domain is produced. There was no previous attempt to tackle this
problem, which constitutes a challenging motivation for this thesis.

The solution we search should solve the major problem of the user,
lack of productivity, by simplifying the way he writes his queries. In other
words, the new approach should increase performance by reducing the bur-
den of the user of being responsible for the optimization, it should improve
the learning curve,it should reduce the error generation rate without los-
ing flexibility and expressiveness, and, finally, it should reduce the query
production time.

We can expect immediate benefits from the required solution. The
framework that will be proposed will serve as a guideline for future sys-
tematic studies on how to optimize efficiency of the system and reduce
bottlenecks in the analysis process. This way, developers should have
a well-designed framework, where they are able to increase the software
performance (with better efficiency), without interfering with the user’s
activities.

4.4 Summary

Scientists analyzing HEP data are often distracted from their real work
because they have to learn many details that are completely unrelated to
physics. Thus, the analysis of data generated by detectors in High Energy
Physics (HEP) experiments can be a tedious, inefficient and cumbersome
chore.

This means that they have the main responsibility for producing opti-
mized code for the analysis tasks.

This problem is very well-known in the area. To our knowledge, until
now no real attempt has been made to tackle the problem in a compre-
hensive and methodical manner.

The main highlights from this chapter can be summarized as follows:

42 CHAPTER 4. PROBLEM STATEMENT

• State of the art: Analysis too cumbersome and inefficient

• Motivation for our work: Build a solution that introduces a method-
ology to increase productivity and performance in HEP data analy-
sis.

In the next part, we introduce some software engineering concepts and
computer science tools that is used throughout the rest of the thesis.

Part II

Preliminary Concepts

43

Chapter 5

Query Systems

5.1 Introduction to Query Systems

In the previous part of this thesis we have explained the context of HEP
experiments and the problem it is facing with the current solutions for
analyzing/mining their data. The need to increase the user’s productivity
motivates our intervention in the traditional HEP query systems.

In order to understand what are the common approaches, from Com-
puter Science and Software Engineer, that best fit into our requirements
we decided to proceed with a survey of the area. This helps us to decide
on what concepts we can reuse for our solution.

Generally, we can define query systems as facilities to process requests
for information from a database. There are two ways to access the data:
programming languages to write application programs, and query lan-
guages.

In many modern database systems, the user has to make requests for
information in the form of a stylized query that must be written in a special
query language. This language can be used to interactively interrogate the
database and retrieve useful information.

The user interaction with the database includes four main tasks: schema
definition, query formulation, data update and data visualization. In this
chapter, we concentrate on surveying the different general approaches to
the formulation of queries, and we will discuss the benefits and drawbacks
of each solution. We finish this chapter by detailing some topics which
have to be taken into account when developing Visual Query Systems.

45

46 CHAPTER 5. QUERY SYSTEMS

5.2 Query Systems Taxonomy

1970 1975 1980 1985 1990 1995 2000
LUNAR

Ren
dez

Vouz

LADDER
PLANES

PHILIQ
A1

CHAT-80

MASQUE

ASK
JA

NUS

DATALOG

EUFIDLDC

TQA TELIIN
TELLECT

LOQUI

AMAZE

QBE
GEOQUEL

tim
ber

Form
an

ag
er

FADS
PCQUERY

VDM/V
DL

Gra
phLog

GOOD

GQL

PIC
QUERY+

OOQBE

Hyp
er

Log

SUPER

SNAP
OdeV

iew

PBL+
OHQLOQD

PESTO

QUIV
ER

Kale
yd

oquer
y

VOODOO

CUPID

SDMS
GUID

E

LID IS
ISSKI

KIV
IE

W
PIC

ASSO

O2L
ook

Ske
tch

!
CIG

ALES

ERC

G+ Hy+QBD*QBD*

NLIB
S

VQL-M
K

Pas
ta-

3

DOODLE

QPE
PSQL

PROBE

PIC
QUERY

BBN’S
-P

ARLANCESQL
DAPLEX

VIS
TA

OQL

HQL/E
ER

G-W
HIZ

VQL-V
AD

EMBS Tab
leT

alk

Visual Query Systems
Ta

bu
la

r

Te
xt

ua
l

V
is

ua
l

La
ng

ua
ge

s

Interfaces

Browsers and Visualizers

Visual

Metaphores

Hybrid
OODBL

Graphical

Form

Skeleton

Artificial

Natural

Figure 5.1: Categorization of existing query systems since 1970

Various types of query languages have been developed to interact with
storage bases. In order to better understand the work already done in
the area, we have investigated a representative set of query languages and
categorized them by their paradigm.

Our proposed categories that we will further detail in the next sections
are:

• Textual languages:

– Natural Languages (known by everybody)

– Artificial languages(learnt and known by specialists):

Pure textual languages.

Textual languages with graphical result

• Non-textual languages:

5.2. QUERY SYSTEMS TAXONOMY 47

– Tabular languages:

∗ Skeleton

∗ Form

– Graphical languages

– Visual based languages (metaphor based)

– Hybrid

• Visual database interfaces

In Fig.5.1 we categorize some examples of query systems. This chart
is not exhaustive, for instance, we do not specify XML languages and
we also do not mention languages developed from 1998 on. Nevertheless,
we consider these languages to be already representative of the different
categories proposed.

In order to be able to compare the different alternatives of query sys-
tems, when analyzing them, we will take particular attention to the fol-
lowing base comparison criterias:

• Expressiveness - Is the able to produce complex queries?

• Easy to learn - How fast is the user able to start using the language
in its plenitude?

• Syntax error free - How easy is it to produce syntax errors? (e.g.
misspelling)

• Semantics error free - How easy is it to produce queries that do not
do what the user thinks it does?

• Small conceptual distance- How close are the representation of the
data entities, language primitives and their manipulation to the way
the user conceptualizes them? Does the language force the user to
think about this aspects in a different way that he had conceptual-
ized them?

• Memorizable - Can the user easily remember the language syntax?

• Easy to use - Does the user gets confused with the language while
using it?

48 CHAPTER 5. QUERY SYSTEMS

• Non-ambiguous - Can a query have multiple interpretations for the
user?

• Formalizable - Can we formally express the language’s semantics?

A summary of all this characteristics according to the different query
systems can be found by the end of this chapter in table 5.5.

5.2.1 Textual Query Languages

Textual query languages can be either natural or artificial.

Natural Query Languages

The natural query system allows the user to access information stored in
a database by requests in some natural language (text through keyboard
input and/or voice recognition). An interesting description can be found
in [16].

Advantages:

• There are no artificial languages to learn (because queries are for-
mulated in user’s native language).

• These languages are better for some questions (negations and quan-
tifications).

• The context of the dialogue is supported.

Disadvantages:

• Linguistic coverage is not obvious and is hard to remember.

• Linguistic has often conceptual failures, meaning that there are a lot
of ambiguities still to resolve.

• The user assumes intelligence.

• These languages usually imply a tedious configuration.

• The computer is an inappropriate medium for this kind of languages.

The state of the art in this field is a great deal of R&D in some areas
(e.g. dictionaries, parsing, etc.). But scientists still do not agree on a
common theory or technique for this area.

5.2. QUERY SYSTEMS TAXONOMY 49

Artificial Query Languages

Relational calculus can be considered as a formal query language based
on mathematical logic, and queries in this language have an intuitive and
precise meaning. Relational algebra is another formal query language,
based on a collection of operators for manipulating relations, which is as
powerful as the calculus [27].

Based on the relational algebra, there exist textual languages like
the declarative languages SQL, or QUEL, and the functional language
DAPLEX[86], etc.

Although OODBs exist already since 1986 [70], they got the first query
language, OQL[3], not until 1994. Deductive databases, on the other hand,
are a combination of a conventional database containing facts, a knowledge
base containing rules, and an inference engine which allows the derivation
of information implied by the facts and rules. Commonly, the knowledge
base is expressed in a subset of first-order logic languages like Datalog.

In the category of artificial query languages, we will also consider the
extensions to textual query languages with visualization techniques (very
often used for geographic applications). The query is described textually
and the system retrieves its result set in visual format. Examples of these
are: GEO-QUEL, Query-by-Picture Example (QPE)[26], PSQL, PROBE,
PICQUERY[64].

We do not consider textual query languages with visualization tech-
niques included into the interfaces category (described later). The main
reason is that while with the former languages the user can express an
elaborated query, in the later category, queries have a fixed simple pat-
tern (therefore are not very expressive).

Advantages:

• Besides the formalization, one of the main advantages of textual
languages is the reduced ambiguity.

• Existing query languages typically allow to work on the logical level,
but not on the conceptual level.

Disadvantages:

• These languages rely on the user’s memorization of their syntax.

50 CHAPTER 5. QUERY SYSTEMS

5.2.2 Non-Textual Query Languages

Non-textual query languages, also called direct manipulation languages,
usually imply visual query systems (VQS). Those systems make use of
visual query languages (VQL) which express the request visually with a
set of defined operators. These languages make use of the visibility of the
objects of interest and their direct manipulation.

VQSs try to make it easy to deal with the logical model. They make
use of VQLs to get closer to the mental model, which is a difficult task,
since at two dimensions the ambiguity increases greatly, compared to the
one dimension of text queries. In order to pursue this goal, the language
should be characterized as follows: it should be clear (without many visual
objects), easily readable, simple, and unambiguous (from the point of view
of the interpretation by a computer program).

Presently, there is a very active research on visual query databases
for formalization, user-interaction techniques and expressiveness. In [25],
there is an exhaustive and systematic study of VQSs for querying tradi-
tional databases that deal with alphanumeric data.

General advantages:

• There is less distance between the user’s mental model of reality and
the representation of reality proposed by the computer.

• The basic functionality of the interaction is easy to learn.

• Highly efficient also for expert users, mainly because of the possibil-
ity of defining new functions and features.

• The rate of semantic and syntactic errors is significantly reduced.

General disadvantages:

• These languages are more difficult to design. A visual query might
not have a unique translation into a textual query.

• They are more difficult to implement.

• Some types of query languages show a lack of formalization, in con-
trast to textual query languages.

5.2. QUERY SYSTEMS TAXONOMY 51

• As for textual query languages, but specifically for visual languages,
systems dealing with image data, non-structured text data, geo-
graphical data and physics data have different characteristics. The
system must deal with the different kinds of data, and its data model,
in distinct ways.

A wide variety of visual query languages have been studied over the
years, each designed for a particular data model. For instance, we can find
visual languages for specific applications like temporal databases, hyper-
text systems, statistical databases, geographic databases, video databases,
etc. Usually, the data these systems have to deal with ranges from image
data, unstructured text data or geographical data to alphanumerical data,
each having different characteristics.

In order to find interesting properties we have categorized different
VQLs according to their similarities into: tabular languages, graphical-
based languages, metaphors and hybrid languages. We will specify each
of them in the rest of this section.

Very shortly, we can say that the first successful visual query lan-
guages were the tabular ones, based on the relational data model and
ER modeling tools. The next generation of visual languages to appear
were the graph-based ones, characterized by their great expressive power
and their formalization strength. They were, however, awkward to use
since they were strictly bound to the logical model and did not try to
deal with the conceptual model. Graph-based languages used both rela-
tional and object-oriented models. Other general visual languages were
the metaphor-based that dealt with the conceptual model but lacked the
flexibility and formalization of graph-based ones, especially because of the
fact that they tend to be ambiguous. Finally, hybrid-based languages,
which use the object-oriented data model, tried to pick the best quali-
ties from the different approaches and are nowadays the most promising
languages.

Tabular Languages

They are considered to be the first visual query languages that brought
the concept of user-friendliness and flexible querying into the evolution of
artificial textual languages.

52 CHAPTER 5. QUERY SYSTEMS

 6

Output
plot-number

n

Plot
plot-number zones geometry

Historical-Monument

n Z g1 g2

Z

z1
type

'urban'

z1 : Zone

buffer(g2,500)g1

Inside

geometry

_____________________ INSIDE buffer(LINK-1,500)

plot query form

plot-number :
owner-name :
plot-address :
geometry :
zones ∃∩

zone-number :
type :
geometry :

name :
address :

LINK-1geometry :

zone query form

monument query form

mt-number :___________

______urban

(a) VQL[90], Skeleton-based (b) OOQBE[88], Form-based

Figure 5.2: Example of tabular languages taken from [18].

• Skeleton-based - Each relation is represented by a two-dimensional
skeleton in which the column headings show the names of the rela-
tions and the names of the attributes. The query is expressed by
filling the skeletons with a combination of variables, constants and
keywords that give an example of the possible answer. An example
can be found in Fig.5.2(a).

Query-by-example [94] was one of the first attempts which analyzed
querying in a non-textual way (used as a basis for many commercial
database systems). It is very convenient for simple queries, but
awkward for complex ones. It supports transitive closure, which is
an extension of relational query languages. It has been extended to
deal with aggregate queries.

Another formally defined language of this kind, VQL[90], makes use
of different data models: relational, extended relational and object-
oriented.

• Form-based - Seen as an evolution of skeleton-based languages mak-
ing use of the multi-windowing technology. Each object type has
its own dedicated window. In this window, the user can see menus
of commands, lists of predefined constants or menus of operations
just by clicking the mouse on buttons or icons. For a query, the
user fills out the forms of the related object types. An example can
be found in Fig.5.2(b).Examples of this languages are: G-WHIZ[77]
for the functional data model where recursive queries are allowed,
OOQBE[88] (Object oriented query by example), and PICQUERY+
[64].

5.2. QUERY SYSTEMS TAXONOMY 53

Advantages:

• Generally, these languages are user-friendly (form-based more than
skeleton-based). It is more convenient than just typing on the key-
board.

• These languages have less things to learn. It is not necessary to
remember the database schema, and the user is aware at any point
how to navigate through it.

Disadvantages:

• Complex queries have an awkward representation. Some join oper-
ations must be expressed by means of variables, which is a source of
mistakes.

• These languages have very poor visual representation of the data
model concepts.

Graph Query Languages

� � ��� � � �

� � ��� � � �

� � 	

� 	�� � �
 � � � �

� � �
 	
� � � 	

� 	�� 	

� � � � � � �

��� ��� � � ��� �

� � �
 � � �

� 	 �

� �
�

 	 �

� �

� �

� � � �

� � ��� � ��� � �

��� ��� � � � ��� �

� � � ��� � � � � � � �

� � � � � � �

� � � �

� � � �

� � � �� �

� �

� � � � � � �

� � � � � � � ��� ��� � � ��� �

��� ��� � � ��� �

��� ��� � � ��� �� � � � � � �

 !

"$# "$%

&'#

&'%

"

&(# &(%

)
* + + , - * . /�0 1 * + 2 3�+ 0

2 4 5 + 4 6

5 + 4 6

2 4

5 0 * 7 , 8�. 0 9

5 0 * 7 , 8�. 0

7 2 4 1�: ; 4 <�< 0 ; 2 0 /

(a) Graph representation of a flights schedule database (b) Query of feasible flight connections

Figure 5.3: Example of GraphLog [37].

Graphical query languages correspond to queries that are actually
graphs (graph-theoretic perspective). It is based on the use of symbols

54 CHAPTER 5. QUERY SYSTEMS

which represent the data model concepts. These symbols, such as rect-
angles, circles and arrows, are pure graphical conventions without any
metaphorical power. As a consequence, they need to be explained and
memorized.

GQLs are more suited to be formalized, given their precise mathemati-
cal structure (i.e., graph). This formalization makes it possible to compare
them with other query languages and to precisely evaluate their expressive
power.

The database schema is usually visualized by a graph where nodes
represent the objects and arrows the relations between them. With their
knowledge acquired by schema browsing, end-users express their query
following a mode which varies with the considered language:

• The user builds a query graph in a separate window. This graph uses
the symbols of the database schema. The user can also use some new
conventions in order to visualize a selection predicate, for instance,
or to mark the elements which must be printed in the query result.

• The user directly marks on the database schema graph which el-
ements are relevant for the query, and then he also uses different
menus to to specify the selection criteria.

The majority of these languages is based in the context of visualization
in deductive databases. The semantics of the graphical primitives is given
as a translation to Datalog. Mostly, they were declarative and meant to
query graphs. Examples of these are GOOD[58], GraphLog[37], Hyperlog,
VDM/VDL, VQL[72], G2QL[53], etc.

Other kinds of graph-based languages make use of graphs purely for
specifying primitives that can be mapped to textual language commands.
The use of graphs is mostly related to the formalization power and, conse-
quently, to the unambiguity that it provides. The semantics of the graph-
ical primitives is given as a translation of statements of an object-oriented
programming language supported by the underlying database. There
are several examples of this last type of graph-based languages query-
ing both entity-relationship and object-oriented models. Listing them we
find: SNAP[22], QBD∗[17], QBD∗, VQL-MK[72], ERC[42], SNAP[22],
GQL[76], that use the functional querying paradigm.

Hygraphs are an extension to the graph theory, incorporating blobs in
addition to edges. A blob relates a containing node with a set of contained

5.2. QUERY SYSTEMS TAXONOMY 55

nodes. It is possible to assign semantics to the relationships represented
by blobs. Some other concepts were added through colored graphs (G-
Log[78]), where the body of the rule is colored red and the head green.
The same directed labeled graphs are used to represent database schema
and instances. The nodes of the instance graphs stand for objects, and
the edges indicate relationships between values. Examples of this type of
languages are Hy+ [36] and G+[41].

Main advantages:

• These languages are more formalizable.

• They make better use of the visual medium than tabular languages.

• These languages are powerful enough to express more complex queries
(transitive closure, recursion and computation of paths in directed
graphs).

• It is a natural way of querying schema intensive domains, where we
find a large number of classes and many interrelationships between
them.

Main disadvantages:

• Requires experienced programmers to exploit its power, since it uses
of a lot of symbols that are only graphical conventions.

• The visual notation does not have a direct meaning, (a triangle
means something that is defined by the person that designed the
language). Instead, they have underlying concepts that are not per-
ceived in a metaphorical way.

• They are costly to design and implement.

• Complex queries very easily become unreadable.

• These languages need to be explained and memorized.

• The semantic distance between the real world and the database uni-
verse is still too big for the normal end-user/non-programmer.

56 CHAPTER 5. QUERY SYSTEMS

�
working

area

selection

save
CIGALES help

end

Inclusion

Intersection

Adjacency

path distance

utilitaries

aggregates

data model

Figure 5.4: Cigales [79] Metaphor-based. Uses the map metaphor. Exam-
ple taken from [18].

Metaphor-based Visual Languages

This kind of visual languages uses metaphors to show the concepts. Meta-
phors take the mental model of the end-user into account. An example of
these languages is VISTA[20], where the metaphor is a room with objects
to manipulate inside, or Cigales[79] (see Fig.5.4), representing a map.

The way the user expresses his query varies widely and mainly depends
on the metaphor chosen by the language developer.

Advantages:

• These languages offer an intuitive and incremental view of the queries.

Disadvantages:

• It is very difficult to find an adequate metaphor for a problem in a
given context.

• There is no proper software engineering methodology to design such
a language.

• The risk of failing as a query language is very high.

• Very often, a multidisciplinary development team (computer scien-
tists, psychologists, designers, etc.) is required.

5.2. QUERY SYSTEMS TAXONOMY 57

• Usually these languages have poor expressive power.

• Very often these languages suffer from execution inefficiency.

• The system might have multiple interpretations for a query.

• These languages have difficulties to handle objects that do not nec-
essarily have a visual representation (like arrays, lists, stacks, and
application-oriented data types like forms and documents).

The Hybrid Approach

Figure 5.5: Hybrid language VOODOO[50] (based on OQL).

This category of languages uses the power of formalization of graphs
(defining the abstract syntax with them) and the concrete syntax (mak-
ing use of combined menu-based and simple metaphor-based solutions) to
reduce the mental gap.

The underlying principle of these systems is to provide a visual repre-
sentation of the data residing within objects, and to offer visual operators
for navigating through related objects. In other words, there is a direct
correspondence between each window and an object in the underlying

58 CHAPTER 5. QUERY SYSTEMS

database. Two kinds of interactions are usually supported by these ob-
ject browsers: navigation within a collection of objects, and navigation
between objects by the way of their relationships.

In these systems, it is also very common to use the filter flow metaphor
proposed in [84], where the water flows through a series of pipes and filters
and each filter lets through only the appropriate items. The layout of the
pipes indicates the relationships of ∨ and ∧.

Examples of these languages are DOODLE [40], Kaleidoquery [74],
OdeView [2], VQL-VAD [90], SNAP [22], PASTA-3 [67], PESTO [23],
QUIVER [71], VOODOO [50].

Advantages:

• The structure of the database classes, attributes and relationships
is readily available for the users. Usually, it is just “one click away”
from the layout.

• For non-programmers, it is easy to memorize the language and to
learn the schema.

• The way to deal with filter predicates in the flow metaphor is close
to intuitive.

• Designed to deal with a general purpose query language, usually can
be mapped into object-oriented query languages.

5.2.3 Visual Database Interfaces

The main task of these systems is to perform schema browsing, or result
visualization. They are inflexible and are mostly tools for visualizing a
database, but do not contain a formally defined query language.

With this kind of system, the users can access the information easily
and quickly without having to give an exact description of it or where it
is stored in the database. There are four standard operations common
to these applications: structuring, filtering, panning, and zooming. This
means a fixed query pattern of selected project queries.

We can find examples of visual interfaces implemented on top of the re-
lational model to browse the schema: CUPID[69], SDMS[60], GUIDE[93],
LID[52], ISIS[57], SKI[65], etc. As far as interfaces for object-relational
models are concerned,we have: PBL+, DAA+ (on top of SUPER)[45],

5.3. BUILDING A VISUAL QUERY SYSTEM 59

DGJSA (on top of ODEVIEW[2]), PESTO[23], KIVIEW[73], LID[52],
etc.

Advantages:

• These languages are easy to use and very good for occasional, unex-
perienced users, with simple, repetitive requests.

• The fixed set of queries, with a very well-known query pattern, makes
the system easily optimizable.

Disadvantages:

• Do not have a properly formulated query language. As a conse-
quence, it is not possible to formulate complex, elaborated queries.

5.2.4 Summary of Features

A comparison of all the mentioned query systems is summarized in Fig.5.5.
From that, we can conclude that hybrid systems manage to gather benefits
from other visual languages. They are potentially the best approach for
developing a new language for non-experts on programming. They can
can be learned quickly and have reduced error rates. As we will see in the
following chapters, we have taken these considerations into account when
developing our own solution.

5.3 Building a Visual Query System

After we have decided the type of query system that is more appropriate
to our goals, we now have to consider the implications on its design and
development.

A VQS has the same goal as any user-interface application: it is meant
to simplify the user-system interaction. A VQS includes a VQL and a vari-
ety of functionalities to facilitate man-machine interactions. When build-
ing such a system, three major topics must be covered: schema display
and navigation, query creation and result visualization, query optimiza-
tion and evaluation.

60
C

H
A

P
T

E
R

5.
Q

U
E

R
Y

S
Y

S
T

E
M

S

Textual Visual
Natural Artificial Tabular Graphical Metaphor Hybrid Interfaces

Expressive
√ √ √ √ √

Easy to learn
√ √ √

Syntax error Free
√ √ √ √ √

Semantics error Free
√ √ √

Small Conceptual distance
√ √ √

Memorizable
√ √ √

Easy to use
√ √ √

Non-Ambigous
√ √ √ √ √

Formalizable
√ √ √ √ √

Table 5.1: Query languages comparison

5.4. SUMMARY 61

5.3.1 The Visual Language

For the development of an effective language for visual interaction with a
complex knowledge base, there are four major requirements:

• There should be given a set of visual language primitives, i.e. a set
of graphical icons that constitute the alphabet of the language.

• With this language, it must be possible for the user to easily combine
the primitives in different ways to create valid queries. This means
that a syntax and grammar for combining various visual primitives
has to be specified.

• Special symbols have to be designed which represent query targets,
database variables and logical constraints.

• For ease of conceptual visualization, it is necessary that the visual
query language developed for a particular data model consists of
primitives that conceptually (and visually) parallel the schema rep-
resentation mechanism.

5.3.2 Human Factors

VQSs are part of a special subset of user interfaces. This means that an
human-centric development of the software must be used while developing
them. The emphasis should be on the user comfort, by providing an
accessible interface, and on its usability.

The language designer should always design the language with a strong
user’s feedback, trying to understand how the tool is going to be perceived,
learned, and mastered. In order to achieve a successful system, the future
users must be properly classified into the different kinds of possible cat-
egories, and their specific requirements identified. The engineering life
cycle must include a proper validation of the language through usability
evaluation tests. This topic will be deeply discussed in chapter 10, which
is dedicated to the evaluation of our proposed language.

5.4 Summary

VQLs exist to make it easier for the end-user to deal with the database
systems.

62 CHAPTER 5. QUERY SYSTEMS

The main ideas we want to take from this section is that hybrid visual
query languages are beneficial compared to others:

• They reduce the need to previously know the database schema, at-
tributes and relationship structure before writing the query. This
means a short learning phase.

• They reduce the problem of semantic and syntactic errors, meaning
better productivity.

• They get much closer to the mental model than other languages.

Chapter 6

Domain Specific Modeling

In chapters 2 and 4 we have observed that one of the reasons for the
problem we have in hands, with the physics data analysis, is the lack of
abstraction layers. In addition to that, the solution of providing the end
user with a general purpose language is problematic for several already
discussed reasons. In Software Engineering, one solution for this kinds of
problems, when the user has to develop his own software products (and
probably is not skilled enough), but we want to increase his productivity, is
to make use of the concept of Domain Engineering and develop a Domain
Specific Language.

In section 6.1 we start by giving an introduction to the general idea
of Domain Engineering. Then, in section 6.2, we proceed by giving an
overview of the modeling strategy required. Following that, in section
6.3, we shortly discuss the engineering process and in section 6.4 we high-
light the advantages and disadvantages of domain specific languages. We
finalize with section 6.5 by observing solutions in HEP that, although un-
structured, could be considered to be remotely related to domain modeling
but that did not lead to any learned lessons.

6.1 Introduction to Domain Specificity

In order to cope with markets that evolve at a rapid pace, where it is nec-
essary to bring solutions to market quickly and to constantly develop new
software products, a procedure different from the conventional software
engineering methods is necessary.

63

64 CHAPTER 6. DOMAIN SPECIFIC MODELING

Domain engineering approaches the problem by increasing the acces-
sibility of the information systems, giving the end-users the opportunity
to develop programs. This can only be achieved by raising the level of
abstraction, making common parts explicit, and, at the same time, lim-
iting the possible design space to a single range of products. In other
words, it defines a family of applications (instead of developing products
individually) and a production facility (Domain Specific Language DSL,
generators, tools). The models generated are made up of elements repre-
senting things that are part of the domain world, not the code world.

The direct consequence of this is that less training is required to use a
process, which speeds up the software development process considerably.

Family-specific modeling languages make product families explicit, shift
the abstraction level from designs to the product concept level, and al-
low for a fast and automated variant generation. The language follows
the domain abstractions and semantics, allowing developers to work with
concepts in their particular domain.

DSLs stand in contrast to general purpose languages (GPL). While
the first are dedicated to a particular domain or problem, being small and
usually declarative, the second can be used generally for a wide field of
solutions, using imperative, functional or object-oriented styles. A GPL
is usually suboptimal for specific applications, especially where it is used
by people not trained as software engineers.

We can find implementations of domain-specific languages in areas
such as robot control [39], VLSI design [19], CASE tools [85], and GIS
[80]. To our knowledge, no DSVL exists for the analysis of data collected
in physics experiments, or other HEP purposes. An interesting summary
and inventory of references to DSLs can be found in [91].

6.2 Modeling Strategy

Domain-specific modeling works on the problem level instead of the so-
lution level. This means that models are made of elements representing
things that are part of the domain world and not the code world. It is
meant to automate a large portion of software production.

As defined by OMG[75], Domain-modeling engineering exploits a four-
layer meta-data architecture (see Fig.6.1):

6.2. MODELING STRATEGY 65

Meta−Meta−Model

Object/ Code

Model

Domain Meta−Modeler

Domain Modeler

Developer

Meta−Model

Figure 6.1: Domain-specific development

• Meta-meta-modeling layer - Is the definition of a tool that sup-
ports the domain-specific language modeling.

• Meta-modeling layer - This features the implementation of the
domain-specific modeling language, for instance a language for robot
control or for the generation of software for mobile phones. The
design tool for product families reduces the cost of creating domain-
specific tools by allowing the domain expert, the domain modeler, to
specify the syntax and semantics of a language in the form of a meta-
model and by creating the supported family members automatically.

• Model layer - The domain user, developer, uses the domain model
language to specify his application using concept structures. This
means that the developer (or user of the DSL) is able to model the
family member. For example, the user models the new robot control
software for an automobile painting procedure in a new production
line, or the new control software for the new mobile hardware.

• Object layer (or Instance layer) - This layer represents the au-
tomatic code generation. This implies the existence of a domain-
specific component library, and, of course, the automatic code gen-

66 CHAPTER 6. DOMAIN SPECIFIC MODELING

erator. The model specified is mapped to code that calls the com-
ponents.

Domain modeling should not be confused with modeling languages like
UML, since those are based on code structures and make use of semantic
concepts of programming languages. The users usually have to make error
prone mapping of domain concepts into UML and then to program code,
which requires a good knowledge of software engineering.

6.3 DSL Engineering Process

During the analysis phase of the development of a domain specific language
we must identify the problem domain, gather all relevant knowledge in this
domain and cluster this knowledge.

After this preliminary analysis, we must proceed with the family- ori-
ented software development. This entails defining the family with its ter-
minology, commonalities and variabilities. A good introduction to the
family analysis and the definition process can be found in [38]. Basically,
we identify and use the abstractions that are common to all known, or
predicted, family members, and we structure the design to allow changes.
Sources of abstraction are the terminology used to describe the family and
assumptions that are true for all family members. To identify the scope of
the family, the analysis must include predictions of how family members
will vary.

Implementation usually involves constructing a library that imple-
ments the semantic notions. In the following, we build a compiler that
translates DSL into a sequence of library calls.

6.4 Advantages and Disadvantages

From [89], comparing the benefits of DSLs over GPLs, we have:

• Familiar program notation - DSL use domain notations, which makes
the language more readable, and its specification more accessible to
the domain users (normally non-programmers).

6.4. ADVANTAGES AND DISADVANTAGES 67

• Design reuse - The user has a well-defined path to develop his ap-
plication. This is convenient since the code needs to be tested only
once.

• High-level abstraction - The users deals with constructs at a higher
level of abstraction. This way the user does not have to deal with
error-prone and low-level implementation details. As always, more
levels of abstraction reduce complexity, shortening the development
and the testing phase.

• Clear concise program specification - program specifications can be
by big factors smaller than the corresponding specification in the
GPL.

• Program checking - As a result of using a restricted language, it is
possible to catch some semantic errors which cannot be caught by
with a GPL compiler.

• Efficient execution - DSL programs can have at least the same per-
formance as in common general purpose languages.

• Reduces time and effort drastically - There is a payoff at the devel-
opment and production of family members. DSLs enhance produc-
tivity, reliability, maintainability and portability.

In addition to this list, we can say that the target code, as it is au-
tomatically generated, does not contain syntax and logic errors. This is
determined by the semantic and modeling rules captured in the meta-
model.

The obvious drawbacks of this approach are mainly related to the fact
that DSLs are difficult and costly to build, since each requires its own
significant design and development effort, and each domain supported by
a tool is specific to a certain type of problem (limited marketing).

DSLs can only be developed with the involvement of experts in the
specific field that they were developed to, since in most cases, the domain
is very complex. This development is only justified if it can be expected to
generate a number of family products. Thus, the developer must evaluate
and balance the costs of designing each tool from scratch or using a DSL.

As stated in [38], the success depends on how well the software engi-
neers can predict which family members will be needed. The concept of

68 CHAPTER 6. DOMAIN SPECIFIC MODELING

family member is not well formalized, there are no rules that enable engi-
neers to identify families easily, the prediction of variations is difficult and
implies spending time for family analysis during the development process.

6.5 DSL “Attempts” in HEP

In order to avoid to “redo the wheel”, we had to determine if any domain
specific approach has been taken before in HEP analysis.

We have observed that Analysis frameworks like ROOT[81], specifically
designed for this domain, do not hide the internal complexity of the library
of functions from the query code programmed making use of a GPL object-
oriented programming language (C++). With time, the libraries become
larger and more generic. The consequence is that the usability decreases
because of the multiplicity of entry points, parameters and options offered.

From our research we also found out that some experiments which tried
to reduce the problem of the general purpose approach, have used rudi-
mental textual domain- specific commands. We have KAL in the exper-
iment ARGUS/DESY[5] (from the early 90s), or εZ in ZEUS/DESY[29]
(from the late 90s and early 00), or even ATGEN in ATLAS/CERN[34]
(still being built). This shows that the question of how to improve the
user’s productivity in HEP is already standing for long, and developers
have been trying to answer it. Unfortunately, almost no documentation
has been written about them, and we can not proceed with a thorough
evaluation of them. Since they had no methodological approach like the
definition of the objects and their operators with the help of an alphabet
and a grammar, we cannot call them languages. They are just collections
of some common commands, with no formal specification. They were very
inflexible and confined to the scope of the experiments where they were
developed, and did not lead to their standardization. The main reason
of this is that the abstraction was weak. The positive contribution of
these tools was to help gathering domain-specific functions in component
libraries.

We conclude that introducing a structured domain specific language
in this HEP can be considered to be a pioneer idea.

6.6. SUMMARY 69

6.6 Summary

Domain-specific engineering methodology comes into play when a family of
applications has to be developed by users that are not necessarily software
engineers, in a specific domain. It focuses on generating a language that
gives the user the possibility to center on what to compute in opposition
to how to compute, so that he does not need to be a skilled programmer.

The development of a DSL reduces time and cost involved in the de-
velopment and modification of a family of tools in a certain domain.

70 CHAPTER 6. DOMAIN SPECIFIC MODELING

Part III

Tackling the Problem

71

Chapter 7

The Solution

In this chapter we present our proposal for solving the problem of lack of
productivity in HEP analysis, already described in chapter 4.

Our hypothesis, explained in section 7.1, is that we can solve the prob-
lem by developing a Domain Specific Visual Query Language. In section
7.2 we give arguments to support this idea. In section 7.3 we define what
we expect to obtain as result of a developed solution. Finally, we sketch
the services overview of the required system 7.3.1.

7.1 Proposed Approach

The usual way how we can simplify a user’s interaction with a system and
make it more flexible for incorporating changes is to introduce different
layers of abstraction. In the ideal case, we want to be able to abstract
the user’s point of view (conceptual layer) from the data representation
(logical layer) and this, in turn, from the actual data storage (physical
layer).

In order to raise the abstraction levels, increase productivity and give
experts a clear architecture where it is more easy increase efficiency by
tracking new points of optimization in the analysis query system, we pro-
pose to introduce a properly defined declarative visual query language
(and system) specific to the HEP domain, by means of an adequate de-
velopment process.

We propose a unifying framework for analysis, called PHEASANT
(PHysicist’s EAsy ANalysis Tool), that distinguishes between the concep-

73

74 CHAPTER 7. THE SOLUTION

PAW ROOT ARTE BEE relational
database

Fortran C++ C,C++,Fortran C++ SQL

Pheasant

VQL

g1 g2 g3 g4 g5

Figure 7.1: Unifying framework - The user views his particular analysis
framework in the same way as others.

tual, logical, and the physical layer of the data and presents the same view
to the user for each analysis framework he is working with. At the con-
ceptual level, this framework features the first declarative domain-specific
visual query language (DSVQL) for HEP analysis called PHEASANT QL
in which physicists are enabled to construct queries using familiar con-
cepts, opening up a new application area. If it is not necessary to know
implementation details or certain programming skills, it is much easier for
a user to become acquainted with the framework.

At the logical level, we provide a more detailed representation of the
data in form of a logical schema. However, this representation still hides
implementation details. The visual language queries are mapped onto an
algebra which operates on the logical schema.

At the physical level, different (existing) tools can be plugged into our
framework via code generation modules (represented by gi in Fig.7.1). A
code generation module translates the algebraic form of the query into
the appropriate syntax of the corresponding tool. This way, if the query
primitives do not change, developers may introduce changes in the core
technology, storage layer, physical model and physical algorithms without
affecting the user. With a proper abstraction design the framework can
be extended wrapping around new tools (like histograms generators) in a
quite elegant way.

7.2. WHY A DSVQL? 75

7.2 Why a DSVQL?

The concept of a domain-specific visual query language (DSVQL) gath-
ers several other concepts and their qualities into one: visual query lan-
guages, declarative languages and domain specificity. The several benefits
discussed in the previous second part of this thesis justify the combination
of them to derive the solution.

In fact, the language should be domain-specific because in this com-
plex domain, where users have to code their queries hundreds of times to
complete an investigation, it is justified to develop a solution that gathers
the patterns and data objects into the user’s conceptual notions of the
domain, and automate the generation of query code. Obviously, a fam-
ily of products has commonalities that can be explored to perform code
reuse. Moreover, the physics community is usually not trained in software
engineering. Automating the generation of code releases the burden of
writing it. In fact, general purpose languages (GPL) have shown to be
difficult for the user in this domain.

We suggest that the language should be declarative, since the user
benefits from the fact that no programming logic is involved. As we have
seen before in chapter 5, it should also be visual since it is easier to use
and learn, and reduces the error rate.

7.3 Expected Results

By introducing the DSVQL, we expect to improve the user’s productiv-
ity. This is the immediate result of introducing clear abstraction layers.
Furthermore, it helps hiding details of storage and efficiency.

An commonly accepted query language for the domain will be ben-
eficial to the end-user. The physicists non-experts in programming will
no longer have to cope with different languages in different experiments.
They will get no more error-prone mappings to other languages. As a con-
sequence, it can be expected that they will learn the system and design
their queries more quickly.

On the other hand, expert users, being used to hack their systems, will
have an extra tool to speed up their analysis, without necessarily loosing
expressive power.

Finally, developers of analysis frameworks will have a system with

76 CHAPTER 7. THE SOLUTION

properly isolated modular levels at their disposal. This improved archi-
tecture will give them plenty of room for system efficiency and design
improvements with the extra benefit that produced changes do not affect
the rest of the modules and, in consequence, the rest of the analysis chain.
The users, hopefully, will not realize the changes, except for the increased
efficiency of the system. This means that they do not need to change their
query in order to cope with a new system interface.

7.3.1 System Overview

In Fig.7.2 we sketch the general services of the system we want to develop.

Language Developer

User

Language Description

Specific Data Model
Library Components

Query Model

Target Code

Experiment Design Expert

Meta−Model

Meta−Data

Description

Description

Query

Model

Figure 7.2: System services

The developed system provides facilities for specifying the visual lan-
guage meta-model. This modeling is done by two actors: the language
developer, responsible for describing the language (and that might want
to extend the language), and the Experiment Design expert, responsible
for specifying the data model and the library of functions available to the
physicist.

At the physicist (user) modeling level, the system provides the hybrid
visual query language, whose operators were defined at the meta-model
level, with characteristics similar to what was already described in chapter

7.4. SUMMARY 77

5. This language raises the level of abstraction in such a way that the end
users can ignore the implementation of the frameworks and can share
their queries (i.e. have a way to talk about the specification of their
queries without having to go deeply into the details of the programming
environment).

Once the query is modeled by the physicist, the system will generate
the target source code, that runs on the target analysis framework.

In order to cope with the domain adaptability and evolution of both
the data schema and the library of components, we propose to use a meta-
data system (in Fig.7.2 represented at the bottom left side containing grey
boxes) that deals with the versions of the different query models (keeping
track of what versions make a given query valid), the user history, and
with the data and component library elements. This concept will not be
studied in this thesis, but we propose it as future work instead.

In the following chapters, we will describe how we have developed a
language (PHEASANT QL) and a prototype of a framework (PHEAS-
ANT) that meets the requirements.

7.4 Summary

In order to answer the question of how to develop a systematic approach to
improve the analysis’ framework performance by increasing the user’s pro-
ductivity? We propose the introduction of a declarative domain-specific
visual query language. This should be implemented by a unifying frame-
work.

• We propose a DSVQL as a way to:

– Raise the abstraction level

– Modularize the architecture

– Structure the points of optimization

– Have a more usable interface, since it is close to the user’s
concepts

• Why declarative?

– The user states the problem and not the solution

78 CHAPTER 7. THE SOLUTION

• Why visual?

– More intuitive and easy to use and learn

– Helps reducing the error rate

• Why domain specific?

– The query language deals with the physicist’s concepts.

– GPLs are difficult for the user in this domain

The next chapters, are dedicated to describe the design and develop-
ment of the solution. In chapter 8 we formally define the new language,
called PHEASANT QL, and in chapter 9 we describe the prototype frame-
work that implements it.

Chapter 8

Query Language -
PHEASANT QL

We dedicate this chapter to the complete description of the new PHEAS-
ANT Query Language. The syntax and the semantics of the language are
detailed.

8.1 Introduction

Any query language should be specified by means of a formal syntax and
semantics. This approach is beneficial since then we are forced to de-
velop both major concepts of the language and the details, leading to a
correct implementation. Additionally, the user has a unique and clearly
determined semantics for any sentence in the language.

The syntax of a language is a set of rules that define the ways symbols
may be combined to create well-formed sentences in that language. The
semantics, on the other hand, deals with the meaning of programs, i.e.
how they behave when executed on computers.

In this chapter we describe both syntax and semantics of the newly pro-
posed query language, PHEASANT QL[10, 9]. We start by summarizing
some concepts of language specification. Then, we introduce the syntax
with the notation and alphabet of our proposed language, motivating them
with the user’s conceptual layer of this specific domain. After that, we
specify the semantics of the language, making use of translational seman-
tics. In other words, we define the semantics of our language by mapping

79

80 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

it into our own Algebra (some of the operators were based on the work of
[51]).

8.2 Syntax

Commonly, the syntax definition of a language is a formalization of its
internal structure, called grammar, that lists the symbols for building
words, the word structure, the structure of well-formed phrases and the
sentence structures. This structure is often formally defined by using a
notation known as Backus-Naur Form (BNF). This BNF definition is a set
of rules where the left-hand side is a non-terminal, also called structural
type. The right-hand side is composed using both terminal symbols and
non-terminals that define the structure of the non-terminal symbol at the
left-hand side. When describing the grammar of PHEASANT QL in 8.2.4,
we will have the chance of detailing this subject more deeply.

8.2.1 Concrete versus Abstract Syntax

Concrete syntax establishes the concrete visual representation of language
elements, defining that a certain entity should be represented by a specific
geometric shape, defining the layout and spatial relationships. In visual
query languages, this is a subject important for the field visual parsing[92],
since it studies the recognition of concrete syntax elements. The result
of the interpretation of these rules is usually a spatial relationship graph
(SRG). This graph will be mapped into an Abstract Syntax Graph (ASG),
which contains only the logical structure, abstracting concrete details like
distances, shapes, sizes, etc. In this chapter, our language will be defined
by means of the Abstract Notation.

8.2.2 Overview of PHEASANT QL

The user’s conceptual view of PHEASANT is based on the stream of ob-
jects flowing through four major steps. This view, as we are explaining in
this section, motivates the design of a specific language’s visual syntax for
this domain. The underlying logical schema and manipulation of the data
is detailed in the section 8.3.1, where we describe the semantic mapping
of this language.

8.2. SYNTAX 81

When specifying a query, the user has to go through four sequential
steps, where one feeds the next. Although they are not linked visually,
the user mentally connects the steps’ flow. It starts with the operators for
data collection, meaning filtering specified sets of Event objects, which will
”feed” the rest of the query operators and, consequently, the rest of the
query steps. The omission of these operators will assume that all Event
objects from the universe of the stored events will be chosen.

As a second step, the set of Events selected will be filtered out by the
user’s filter predicates on the Event attributes. This reduced set of Events
will serve as input to the third query step of reconstruction and filtering
of specified decays. If the Event filter operators are omitted, all the event
objects are selected from the previous step.

The query described in the third step looks at the data objects (Parti-
cles and Vertexes) associated with each Event and extracts a set of Decays
for each of them. For the user, a Decay is a set of related particles, ver-
texes and objects newly generated as the result of the description of the
declarative query.

The result of this step, the set of Decays, will flow to the target oper-
ators of the fourth and last step where the result operators are specified.
The user will get as a result from his query a Histogram, a value of a
Basic type (meaning Float or Integer), or, if a result operator is missing,
a set of Decays to “feed” other analysis tools.

In the next informal description of the user perspective of the frame-
work, we use the notation {Event} to mean a set of Events, and {Decay}
to mean a set of Decays.

8.2.3 PHEASANT QL Alphabet - Symbolic Nota-
tion

In this section, we introduce the basic building blocks or visual operators
of our language with the help of a running example. We base it on the
query presented in Fig.2.1. In some of the operators we introduce, we
have associated with them a second level (indirectly visual) of textual
description of parameters like a list of attributes and filter predicates (in
a loose approximation this means a projection of a set of attributes and
a selection based on a filter predicate in the relational approach). For
the full understanding of these operators at the logical level and how they

82 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

run3

Pi+

Pi+

1D

Pi−

K0

D+

T1

T2

A1

PV

Figure 8.1: Example of a complete query: the D+ decay

interact with each other, we are going to describe the grammar and the
formal semantics in the following sections.

Fig.8.1 shows the complete query, where four major steps are inte-
grated in the visual query sentence.

Selecting Collections

R

Figure 8.2: Collecting the data in step 1

First of all, we have to decide which collection or collections of event
data to use (e.g. Runs, private event collections etc.). This task of se-
lecting the collection objects according to a predicate criteria over the
properties of the referred collections, is performed by the collection op-
erator, which is represented by a small disk symbol (see Fig.8.2). Let
us assume for a moment that we are only interested in the data from the

8.2. SYNTAX 83

third run. So, in a first step, we have a collection operator that selects this
data for us. This symbol reflects the user’s perspective on the Collection
class entity that are interpreted as collection objects (like in the object-
oriented approach). Collections’ filter sentences can be composed using a
combination of these operators with standard set operators ∩,∪, and \.
Fig.8.3 shows the signatures of the different collection operators.

The query described in this step selects a subset of the specified col-
lections. This is done by using a filter predicate over the collection. Af-
terwards, the set of events to which the selected collections refer to are
united and passed to the next phase.

In our running example, we have the left operator in the upper part of
Fig.8.1 that tells the system that we are interested in the data from the
third run. The list of attributes (hidden in the schema) is a set of proper-
ties of the run like {runid, quality, itr, otr, . . . }, and the filter predicates
would be for instance {runid = 3 ∧ itr = true ∧ otr = false}.

Collection

R

collection
pred → {Event}

Union
U {Event} × {Event} → {Event}

Intersection

U {Event} × {Event} → {Event}
Difference

\ {Event} × {Event} → {Event}

Figure 8.3: Signature of the Collection PHEASANT Operators

Selecting Events

Figure 8.4: Collecting the data in step 2

84 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

The second step involves dealing with the set of Events resulting from
the first step. Those that are collected in the first step will be filtered out
by predicates like ’coasting beam=true’ , or other arithmetic inequalities
with physics formulas that make use of the Event attributes (algebraic
expressions joined by inequality symbols like >,<,>=, <=, . . .). This
way, a smaller subset of events is selected to feed the following steps.
Fig.8.5 shows the Event operator signature.

Event

pred {Event} → {Event}

Figure 8.5: Signature of PHEASANT Operators for the Event filtering

Selecting the Decay

Figure 8.6: Selection, Aggregation, Transformation, Transformation Re-
sult

For the third step, that is going to deal with the multivalued data
referenced by the Event objects, we need four more operators: Selection,
Aggregation, Transformation, and Transformation Result (see Fig.8.6 for
their symbols). At this step, the query deals with the input data of one
event at a time, dealing with the objects it is composed of. The resulting
sets of related objects, the decay, are handed over to the fourth query step.

From the perspective of the user, the Selection operator selects actual
particles detected during these events to be added to the decay that is
going to be the input of the Result step. The operator filters them ac-
cording to predicates that refer to special particles’ attributes, like having
′mass > 0.4′. In this step, the origin of the object flow starts at the
Selection operators that are leaves of the tree.

The Transformation and Aggregation operators work only on the re-
sults of Selection operators. Again, from the user’s perspective, Trans-
formation combines the results of two (or more) selections according to

8.2. SYNTAX 85

user-defined filter predicates. Usually, this results in the construction of
a particle higher up in the decay chain (added to the decay or decays of
the particular event). So the transformation operator creates new par-
ticle objects with the data from previous selections. These new objects
are represented with the Transformation Result operator, which we use a
symbol similar to the Selection operator, because both of them describe
the objects to be added to the decay. From the computational point of
view, this corresponds to a join of the input object streams, followed by
an aggregation that generates a new object element in the decay through
some special user-defined functions called vertexing (that compute the
attributes for the new particles).

An aggregation sums up information on particles per event, i.e. we
get one result for each event. It is a grouping of the decays by event
and a subsequent aggregation (using a user-defined aggregate function
like D+.max(mass)).

Now we need a way to connect the objects. For this, we use a simple
line with an arrow that describes the data flow from one operator to
another.

A)

B)

X Y

X Y

X Y

Figure 8.7: A) Comparison B) Minimal distance

Our language supports two more primitives to relate the result of Se-
lection operators: the Comparison and the Minimal Distance operators
(see Fig.8.7). Both of them relate the two different input streams and
apply a selection predicate.

The first one, the comparison operator, compares a particular attribute
value of some object from each decay (X) to those of the decay (Y) within

86 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

the same Event. In doing so, it filters out particles that do not satisfy
the condition of the comparison operator. It represents an algebraic join
under a condition predicate.

The second case is the Minimal Distance operator. In contrast to
the comparison operator, the minimum distance operator is directed. It
operates in two modes: mandatory (computationally a join) and non-
mandatory (left-outer join), which are symbolized by a solid and a broken
line, respectively. In both cases, the result is a pair of particles (X,Y).
The user can define a distance threshold for all particles in X that are
further away from Y to be filtered out. In this threshold, the user defines
the limits within which the result of the distance function is valid, and
the result is not filtered out. The first mode (mandatory) means that all
particles in A are matched to the nearest particle in B, and the pairs of
particles are returned. All particles in A which do not find a matching
partner in B are filtered out. The second mode (non-mandatory) is the
same as the first except that particles from A not finding a partner in B
are retained, i.e. these particles are paired with a empty value.

Finally, our running example of Fig.8.1 summarizes the description of
our language operators for this step. We begin on the right-hand side with
extracting all Π+ and Π− particles from the events of the third run. With

the help of a transformation operator (T1), we reconstruct K
0

particles.
Another transformation operator (T2) helps us to find D+ particles. One
condition operator was inserted which contains the condition expression
that guarantees that Π+ and Π− have the same mass. A minimal distance
operator is used to select the PV (primary vertex in physics jargon), that
is closer to the computed D+ particle. If none exists, the decay chain is
discarded. Finally, an aggregation operation filters out the particles with
the maximal energy level for each event.

For the analysis, it might be interesting to get objects that are refer-
enced by some particles, or vertexes, selected in the decay (e.g. Particle→
MCParticle). It is even possible that the selection of a given particle, or
vertex, is conditioned to the existence of the object it is referring to.

We will use: − , to mean that the particle, or vertex, is selected
and also the referenced object if this last one exists. The other possibility
is to use . . . , to mean that the particle, or vertex, will be selected if
and only if the corresponding referenced object exists.

The different operators’ signature can be consulted in Fig.8.8.

8.2. SYNTAX 87

Selection
head/path
pred {Event} → {Decay}

Transformation

head
pred {Decay} × · · · × {Decay} → {Decay}

Transformation Result
head
pred {Decay} → {Decay}

Aggregation

2
func
pred {Decay} → {Decay}

func is the aggregator function

Comparison
•pred {Decay} × {Decay} → {Decay}

Minimal distance

�funcpred {Decay} × {Decay} → {Decay}
func is the minimal distance function

Figure 8.8: Signature of PHEASANT Operators in the decay description
step.

Selecting the Result

1D 2D 3D # ⊥

Figure 8.9: Specification of the result set:1D, 2D, 3D, Value result and
operator omission

Last but not least, we have to describe how to visualize the result of
the query as the fourth step. We provide four different operators for the
description of the result (see Fig.8.9 for the notation, and Fig.8.10 for
the corresponding signatures): three operators to create one-, two-, and
three-dimensional histograms, and one operator to output numeric values.
These operators will basically apply a reduction on a certain user-specified

88 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

list of attributes over the decays that resulted from the previous step.
In case of the histograms they simply represent a resulting set of tuples

to which the framework should visually present its result in the shape of
a histogram. A grouping criteria, also user-defined, can be used.

In the case of the numeric value operator, a user-defined aggregation
function is specified to get a single result value. In case of absence of a
result operator(in this case, we will represent it textually by ⊥), the result
can be used to feed some other analysis frameworks, external to our own
one. In our running example, a 1D histogram is requested as output from
the query result with the list of attributes {D+.mass}.

Result 1D

1Dhead {Decay} → Histogram

Result 2D

2Dhead {Decay} → Histogram

Result 3D

3Dhead {Decay} → Histogram

Result Number

head {Decay} → Basic Type

Omission

⊥ {Decay} → {Decay}

Figure 8.10: Signature of PHEASANT’s Result Operators

8.2. SYNTAX 89

8.2.4 Grammar

λQCollection ::= R | ⊥
<< R >>::=

<< R >>−→ U

| << R >>−→ U

| << R >> −→ \ −→ R

<< U >> ::= << U >> ←− R

<< U>> ::= << U>> ←− R

U ::= U −→ U

λQEvent ::= |⊥
λQDecay ::= |⊥
Connectable ::= |
<< >> ::= ←− ←− << >>

::= ←− << >>

| ←− << >>

<< >> ::= << >> ←−
<< >> ::=

<< >> − Reference

| << >> . . . Reference

Connectable ::=

| Connectable �− << Connectable >>

| Connectable � . . . << Connectable >>

| Connectable −→ 2

<< Connectable >> << Connectable >> ::=

<< Connectable >>− − << Connectable >>

λQResult ::= 1D | 2D | 3D | # | ⊥

Figure 8.11: Context-sensitive graph grammar

In order to proceed with the definition of the syntax of our language,
we have to describe how symbols may be formed into valid phrases of the
language.

90 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

Comparing our diagrammatic language operators with graphs and edges,
we make use of a graph grammar to define our visual query language (see
Fig.8.11). This grammar is context-sensitive since it allows the usage of
terminals and non-terminals in the left-hand side, leading to left and right
graphs of a production to have an arbitrary number of nodes and edges.
The left-hand side represents part of the graph structure that is going to
be extended in the right-hand side.

This grammar notation, however being useful for the implementation of
the graphical parser, is not convenient for semantic description purposes.
The graph structure leads to complex algorithms to interpret them. This
way, we must describe the syntax notation making use of a BNF like
grammar, which is represented inherently by a tree structure, the Abstract
Syntax Tree (AST). This means that we have to describe the syntax at a
higher abstraction level. In practice, this implies to deal with the concept
of comparison operators that are the elements that close the DAGs. We
break the structure by decoupling them from the DAG, (which becomes
a tree). These comparisons (predicates) are going to be interpreted later
by the semantics mechanism.

8.2. SYNTAX 91

λ ::= aQCollectionb QEvent aQDecayb aQResultb

a QCollection b ::= ⊥
| R

| a CollR −→ CCOP b ←− CollR a

| a CollR
1−→ NCOP b 2←− CollR a

CCOP ::= U

| U

NCOP ::= \

a QEvent b ::=

a QDecay b ::= Comparisons Decay

| Comparisons a Decay −→ b

| a Decay � . . . © b

| a Decay �− © b

Comparisons ::= Comparison Comparisons

|⊥
Comparison ::= Connectable − − Connectable

Connectable ::= | a Decay b ::= SelObject | a Tree

a SelObject b ::=

| b . . . a

| b − a

a Tree b ::= SelObject

| a Vertex −→ b

a Vertex b ::= a(Tree −→) ∗ b

QResult ::= 1D | 2D | 3D | # | ⊥

Figure 8.12: PHEASANT’s BNF-like grammar

92 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

PHEASANT QL’s grammar consists of four parts < Σ, N, P, S >
where:

• Σ is the finite set of terminal symbols, the alphabet of the language,
that are assembled to make up the sentences of the language. We
decided to use the symbols of the language itself as terminals in
the grammar, so there is no problem to recognize the components
introduced in the last section.

• N is a finite set of nonterminal symbols or syntactic categories, each
of which represents some collection of subphrases of the sentences.
In our description, non-terminals have a grayish background, while
for the terminals the regular background is used.

• P are the production rules stated in Fig.8.12. They are represented
as LHS ::= RHS where productions with the same LHS (left hand
side) separate the different RHSs (right-hand sides) by |. Both left
and right sides are defined in terms of terminal symbols and nonter-
minals.

• S is the start symbol λ or null graph.

Let us give some extra explanatory notes. In our production rules, we
define a and b as connection points to the rest of the graph, and they are
used to keep the graph orientation after applying the rule (which means
that the data flow goes from a to b). Whenever the orientation is obvious,
we will not use these characters for readability purposes.

Associated with each operator is some additional data, like attribute
lists and condition lists. During query construction, when using the user
interface, this information is hidden most of the time. Therefore, we
describe this hidden data associated with each operator with the symbol
::∝ (see Fig.8.13).

Furthermore, we distinguish between two different collection types:
run collections and event collections. When no collection operators are
given in a query, it considers all available data. If a run collection op-
erator is given without an event, only data from the runs that match
the selected filter conditions specified in that operator will be considered.
We can further restrict this by additionally supplying a description of an
event collection operator. Then only a subset of the events of the chosen

8.2. SYNTAX 93

runs selected by the run collection operator will be taken into account.
When specifying an event collection operator without specifying any run
collection operator, we regard the relevant events from all runs.

When connecting collection operators via set operators, the grammar
differentiates between commutative operators, CCOP (∪, ∩), and non-
commutative operators, NCOP (\).

The language has been designed considering the need of the user to
extend the expressions, conditions and transformation functions with his
own ones (otherwise, it would be very restrictive). We will make use of
the terms UDF[68], which stands for set of user-defined functions, the
corresponding subsets are: UDSFs (user defined scalar functions with the
signature: F loat× · · · × F loat→ F loat); UDAFs (user-defined aggregate
functions with the signature: {F loat} → F loat), and UDTFs (user defined
transform functions Decay × · · · × Decay → Decay). Some expressions
and conditions are composed using UDSFs. Users can integrate their own
aggregation functions into the system (it currently provides a max- and
min-function UDAF) into an aggregation operator. To connect selection
objects via a transformation operator, the user can also supply his or her
own transformation function (usually a function to reconstruct vertices
UDTF).

R ::∝ CollectionName ConditionList

::∝ ConditionList
1D ::∝ Attribute
2D ::∝ Attribute Attribute
3D ::∝ Attribute Attribute Attribute
::∝ Attribute AggFunction

::∝ Attribute AggFunction

::∝ AttributeList ConditionList UDTF
::∝ AttributeList ConditionList
::∝ AttributeList ConditionList
� ::∝ expr Condition

Figure 8.13: Terminal definitions

94 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

AttributeList ::= Attribute ∗

Attribute ::= (Label, Type)
ConditionList ::= Condition ∗

Condition ::= expr CompOP expr

expr ::= expr ArithOp expr | Ar | UDSF (ArList)

ArList ::= Ar ∗

Ar ::= Constant | Attribute
Constant ::= IntegerConstant | RealConstant |
StringConstant

CompOP ::= > | < | >= | <= | = | <>
UDTF ::= StringConstant

UDSF ::= StringConstant

UDAF ::= StringConstant

ArithOP ::= +| − | ∗ |\
AggFunction ::= UDAF | Max | Min

IntegerConstant ::= [sign][digit]+

RealConstant ::= [sign][digit]∗.[digit]∗

StringConstant ::= ValueReference | MemberReference

ValueReference ::= letter [letter | digit]∗

MemberReference ::= letter [letter | digit]∗.[letter | digit]∗

Digit ::= 0|1|2|3|4|5|6|7|8|9
sign ::= +|−
letter ::= Lowercase | Uppercase

Lowercase ::= a|b|c|...|z
Uppercase ::= A|B|C|...|Z

Figure 8.14: Grammar of the textual elements of PHEASANT QL

8.3 Semantics

The next step after defining the abstract syntax is the definition of the
formal semantics. The normal approaches are:

• Translational Semantics - The semantics is given by defining a map-

8.3. SEMANTICS 95

ping to models of a simpler language, which is better understood.

• Operational Semantics - Expresses the semantics of a modelling tech-
nique by giving a mechanism that allows to determine the effect of
any model specified in the technique. An operational semantics for a
particular programming language describes how any particular valid
program in the language is interpreted as sequences of computational
steps. These sequences then are the meaning of the program.

• Denotational Semantics - The syntactic constructs of a language
are mapped onto constructs in another language with a well-defined
meaning. The target is a mathematical domain and not another
modelling technique.

• Axiomatic Semantics - Treats a model like a logical theory, does not
center on what the model means, but on what can be proven about
it.

In our case, we want to define our language by means of algebraic op-
erators that are very well understood and deeply studied in the field of
database research. This way, we want to take advantage of the accumu-
lated knowledge in this area. In consequence, we find it adequate to make
use of the translational semantics, by making a syntax-to-syntax mapping
of the language into the algebraic operators of the target object.

8.3.1 The Target Language - Intermediate Algebra

Operators

We have designed our language making use of a syntax mapping to the
algebra where the semantics is described here.

96 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

Type System

Before we start with the explanation of the algebraic operators, we intro-
duce the definitions and precise notations which are useful for a clear and
unambiguous interpretation of these operators.

Definition 1 (Basic types).
The primitive types are:

• F loat (floating point number)

• Bool (value “true” or “false”)

• Integer

• String (sequence of characters)

Definition 2 (Type constructor).
For the bulk type set, (unordered collection of elements of type τ), we

write: {τ}

Definition 3 (Type variable).
We define the notation for a type variable to be: τ1, ..., τn

Definition 4 (Tuple type constructor).
A tuple is a mapping from a set of attributes to values of a certain

type. We can define tuple types as [a1 : τ1, ..., an : τn] where for 1 ≤ i ≤ n:

• τi are types

• ai are attribute names

• ai 6= aj

The set of attributes defined for a tuple t is written as A(τ). All the tuples
of type τ have the same attributes A(τ).

Nested tuples are possible. A value of an attribute may be a set of
tuples.

In order to represent a tuple of type τ ′ that contains the same attributes
as τ = [a1 : τ1, ...an : τn] except for the attribute aj, 1 ≤ j ≤ n we use
τ/aj.

The concatenation of tuples and functions is denoted by ◦.

8.3. SEMANTICS 97

Definition 5 (Relation types).
A relation is a set of tuples which are all of the same type [a1 : τ1, ..., an :

τn], and we represent the type of the relation by {[a1 : τ1, ..., an : τn]}.

Definition 6 (Structural sub-typing).
Sub-typing is the notion of inclusion between types. It is represented

by A ≤ B, A is a subtype of B.
τ ≤ τ ′ ⇒ {τ} ≤ {τ ′}, meaning that if τ is a subtype of τ ′ then the set

type {τ} is subtype of {τ}′. Further: [a1 : τ1, ..., an : τn] ≤ [a1 : τ ′1, ..., ak :
τ ′k] if for all 0 ≤ k ≤ n:τ1 ≤ τ ′1

Definition 6 (Free variables).
F(e) is defined as the set of free variables of an expression e.

Definition 7 (Predicates).
For an expression pred possibly containing free variables, and a tuple

t, we denote by pred(τ) the result of evaluating pred where bindings of
free variables are taken from attribute bindings provided by τ . F(pred) ⊆
A(τ).

Definition 8 (Elements of a tuple).
If b is a tuple of type [a1 : τ1...an : τn] then the type of the attribute b.ai
is τi, with 0 < i ≤ n.

Definition 9 (Mapping function).

A function mapping a tuple to a new tuple, possibly of a different type,
is also denoted by the symbols head.

Definition 9 (Unique attribute names generator).
ζ : → String is a function that generates a unique string, different from
all others generated before. These strings are used as labels in some of
the algebraic operators defined in the following section.

Definition 10 (Type histogram).
We define the type histogram to be:

• τH1 = {[r1 : F loat]}

• τH2 = {[r1 : F loat, r2 : F loat]}

98 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

• τH3 = {[r1 : F loat, r2 : F loat, r3 : F loat]}

Sometimes we make use of the notation < a1, ..., an > , which means
A([a1 : τ1, ..., an : τn]).

Schema

For the examples used to explain our operators, we are going to make use
of the following schema:

• expcol =

{[id : Integer,

event : {Event},
eventsType : Integer,

responsible : string]}

• runcol =

{[id : Integer,

event : {Event},
start : Integer,

end : Integer,

sequence : Integer]}

• myprivatecol =

{[id : Integer,

event : {Event},
Date : String,

queryNumber : Integer]}

• Event =

[id : Integer,

bx : integer,

particle : {Particle},
vertex : {Vertex}]

8.3. SEMANTICS 99

• Particle : [id : Integer,

mass : F loat,

Px : F loat,

Py : F loat,

Pz : F loat,

Energy : F loat,

MCParticle : {MCParticle},
...]

• Vertex :

[id : Integer,

x : FLoat,

y : F loat,

z : F loat,

MCV ertex : {MCVertex},
outgoingParticle : Particle,

ingoingParticle : {Particle}]
• MCParticle : [id : Integer,

mass : F loat,

Px : F loat,

Py : F loat,

Pz : F loat,

Energy : F loat,

...]

• MCVertex :

[id : Integer,

x : FLoat,

y : F loat,

z : F loat,

...]

100 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

As stated before in chapter 3, some of the entity attributes might
change slightly from experiment to experiment.

Algebraic Operators

Having the type system defined in the previous section, we are now ready
to define our algebraic operators. In Fig.8.15, we give the type signa-
ture for each operator. The semantic of the operators is summarized in
Fig.8.16. Informally, we can define our operators as follows:

• selection σpred(X) - Selects all elements of X that satisfy the pred-
icate pred.

X id mass energy
1 1.5 4
2 1.8 5

[σmass>1.5(X)] id mass energy
2 1.8 5

• join X
=
predY - Joins the collection X and Y using the join predicate

pred.

X id mass energy
1 1.5 4
2 1.8 5
3 1.0 6

Y id mass energy
5 1.3 4
6 1.4 5

8.3. SEMANTICS 101

[X
=
pred Y] Tuple1 Tuple2

id mass energy id mass energy
1 1.5 4 5 1.3 4
1 1.5 4 6 1.4 5
2 1.8 5 5 1.3 4
2 1.8 5 6 1.4 5

Where pred = tuple1.mass > 1.0 and tuple2.mass > 1.0.

• unnest µpathpred(X) - returns the collection of all pairs (x,y) for each
x ∈ X and for each y ∈ x.path that satisfy the predicate pred(x,y)

X Event
id Particle

x y z ...
1 1 1 1 ...

2 2 2 ...
3 3 3 ...

2 2 2 2 ...
1 1 1 ...

[µ“Particle1:Event.Particle′′
true (X)] Event Particle1

id ... x y z ...
1 ... 1 1 1 ...
1 ... 2 2 2 ...
1 ... 3 3 3 ...
2 ... 2 2 2 ...
2 ... 1 1 1 ...

• reduce ∆
⊕/head
pred (X) - generalizes the relational projection operator,

collects the values head(x) for all x ∈ X that satisfy pred(x) using
the accumulator ⊕, which can be a set, (

⋃
), or an aggregate func-

tion like {max,min, sum, avg} .

X id mass energy
1 1.5 4
2 1.8 5

102 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

[∆
∪/<id>
true (X)] id

1
2

• outer-join X > pred Y - is the left outer join between X and Y using
the join predicate pred. If the range variable y of Y is empty or
there are no elements that can be joined with the range variable x
of X, then y becomes a null and the result is the pair < x, null >.

X id mass energy
1 1.5 4
2 1.8 5
3 1.0 6

Y id mass energy
5 1.3 4
6 1.4 5

[X > pred Y] Tuple1 Tuple2

id mass energy id mass energy
1 1.5 4 5 1.3 4
2 1.8 6 5 1.4 5
3 1.8 5

Where pred = “tuple1.energy = tuple2.energy
′′.

• outer-unnest =µpathpred - Similar to the unnest, but if x.path is empty
for x ∈ X or pred(x,y) is false for all y ∈ x.path, then the pair (x,
NULL) is given as output.

X Event
id Particle

x y z ...
1 1 1 1 ...

2 2 2 ...
3 3 3 ...

2 2 2 2 ...
1 1 1 ...

8.3. SEMANTICS 103

[=µ“Particle1:Event.Particle′′
“Event.Particle.x>2′′ (X)] Event Particle1

id ... x y z ...
1 ... 3 3 3 ...
2 ...

• nest Γ
⊕/head/group
pred (X) - Images of elements x and y of a given col-

lection X, (head(x) and head(y)), are grouped together in the same
group if their evaluation value of the group-by-function group is
equal, (group(x) = group(y)). After grouping, the accumulator ⊕,
where either ⊕ ∈ {Max,Min} or ⊕ ∈ {max,min, sum, count, ...},
will reduce each group. The next section will describe thoroughly
these aggregator functions.

The result of evaluating the accumulator function can be divided
into two groups:

For ⊕ ∈ {max,min, sum, count, ...}, in order to feed directly
the result operators. An example could be:

X Event Particle1 Particle2
id ... x y z ... x y z ...
1 ... 0 0 0 ... 1 1 1 ...
1 ... 1 1 1 ... 2 2 2 ...
1 ... 0 0 0 ... 3 3 3 ...
2 ... 0 0 0 ... 2 2 2 ...
2 ... 0 0 0 ... 1 1 1 ...

[Γ
max/[value:′′Particle1.x+Particle2.x′′]>/Event.id
true (X)] max

3
2

For ⊕ ∈ {Max,Min}. An example could be:

[Γ
Max/<vale,tuple>/Event.id
true (X)] Event Particle1 Particle2

id ... x y z ... x y z ...
1 ... 1 1 1 ... 2 2 2 ...
2 ... 0 0 0 ... 2 2 2 ...

104 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

Where < value, tuple >= [value :′′ Particle1.x+Particle2.x′′, tuple :
X].

• union= ∪(X, Y) - Returns all tuples that occur in either X and Y, if
A(τX) = A(τY), with τX and τY being type variables of respectively
X and Y.

• intersection = ∩(X, Y) - Returns all tuples that occur both in X
and in Y, if A(τX) = A(τY), with τX and τY being type variables of
respectively X and Y.

• difference= \(X, Y) - Returns all tuples that occur in X but do not
occur in Y, if A(τX) = A(τY), with τX and τY being type variables
of respectively X and Y.

8.3. SEMANTICS 105

Selection {τ} → {τ}
σpred pred : τ → Bool,F(pred) ≤ A(τ)

τ ≤ []

Join {τ1} × {τ2} → {[tuple1 : τ1, tuple2 : τ2]}?
pred pred : τ1, τ2 → Bool,F(pred) ≤ A(τ1) ∪A(τ2)

τi ≤ []

Unnesting {τ} → {τ ′}
µname:pathpred pred : τ, τ ′ → {Bool}

if τ = [a1 : τ1, ..., an : τn, path : τ0], 0 < n, τ0 ≤
τ ′ = [a1 : τ1, ..., an : τn] ◦ [name : τ0]
name = ζ()

Reduce if ⊕ = ∪: {τ1} → {τ2}

∆
⊕/head
pred if ⊕ = max,min, sum, ...: {τ1} → τ2

head : τ1 → τ2

pred : τ1 → Bool,F(pred) ≤ A(τ1) ∪A(τ2)

Outer-Join {τ1} × {τ2} → {[tuple1 : τ1, tuple2 : τ2]}@
pred pred : τ1, τ2 → Bool,F(pred) ≤ A(τ1) ∪A(τ2)

τi ≤ []

Outer-Unnest {τ} → {τ ′}
=µname:pathpred pred : τ, τ ′ → Bool

if τ = [a1 : τ1, ..., an : τn, path : τ0], 0 < n,¬(τ0 ≤ [])
τ ′ = [a1 : τ1, ..., an : τn] ◦ [name : τ0]
name = ζ()

nest if ⊕ ∈ {max,min, sum, avg...}
{τ} → {F loat}

Γ
⊕/head/group
pred head = λτ.[value : F loat]

if ⊕ ∈ {Max,Min}
{τ} → {τ}
head = λτ.[value : F loat, tuple : τ]

pred : τ → Bool,F(pred) ≤ A(τ)

Union

∪ {τ} × {τ} → {τ}
Intersection

∩ {τ} × {τ} → {τ}
Difference

\ {τ} × {τ} → {τ}

Figure 8.15: Type signature of our algebraic operators

106 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

Selection Selects qualifying tuples according to predicate pred:
σ σpred(e) := {t|t← e, pred(t)}

Join Connects all tuples in e1 to all in e2 and selects
tuples according to pred:?
e1 A pred e2 := {[tuple1 : t1, tuple2 : t2]|t1 ← e1, t2 ← e2, pred(t1, t2)}

Unnesting Selects a tuple and its nested attribute defined in path,
according to to predicate pred:

µ µname:pathpred (e) := {(t1, t2)|t1 ← e1, t2 ← path(t1), pred(t1, t2)}
Reduce Collects values defined in head(t), according to pred,

in the aggregator ⊕:

∆ ∆
⊕/head
pred (e) := ⊕{head(t)|t← e, pred(t)}

Outer-Join Same as Join, but returns the tuple [tuple11 : t, tuple2 : NULL]
if e2 is empty or there are no elements to join to t ∈ e1:@
e1 B pred e2 := {[tuple1 : t1, tuple2 : t2]|
t1 ← e1,
t2 ← if ∧ { ¬pred(t1, x) |x← e2}

then null
else {x|x← e2, pred(t1, x)}}

Outer-Unnest Same as Unnest, but returns the tuple t ◦ [name = NULL]
if t.path is empty:

=µ =µpathpred(e) := {(t1, t2)|
t1 ← e,
t2 ←

if ∧ {¬pred(t1, x)|x← path(t1)}
then null
else {x|x← path(e), pred(t1, x)}}

nest Γ
⊕/head/group
pred (X) := {⊕{head(w)}|w ← e, pred(w), v = group(w)}|

Γ v ← πgroup(X)}
πgroup(X) = {group(t)|t← X}, with duplicate elements removed.

Union returns the set of tuples that occur in both sets:
∪ ∪(e1, e2) := {x|x ∈ e1 ∨ x ∈ e2}

Intersection Returns the set of common tuples:
∩ ∩(e1, e2) := {x|x ∈ e1 ∧ x ∈ e2}

Difference Returns the set of tuples that return just in the first set:

\ \(e1, e2) := {x|x ∈ e1 ∧ ¬(x ∈ e2)}

Figure 8.16: Operators of the target algebra

8.3. SEMANTICS 107

Aggregation Functions

Each of the functions in the set aggfunc ∈ {max,min, sum, count, ...}
has the signature: aggfunc : {F loat} → F loat. The user is supposed to
write more user-defined aggregate functions if necessary, using the same
signature. The definition of the aggfuncs can be specified as follows:

• count(x) = +{1|e← x}

• sum(x) = +{e|e← x}

• max : {[value : F loat]} → F loat

• max(e) := {x|x← e : ∀y ∈ e,mx(x, y) = x.value}
where:

mx : F loat×F loat→ F loat

mx(a, b) =

{
a if a >= b
b else

• min : {[value : F loat}]→ F loat

• min(e) := {x|x← e : ∀y ∈ e,mn(x.value, y.value) = x.value}
where:

mn : F loat× F loat→ F loat

mn(a, b) =

{
a if a <= b
b else

An example of the usage of max is:

X id mass energy
1 1.5 4
2 1.8 5

∆
max/<X.id>
true (X) X.id

2
Certain PHEASANT operators like the Aggregator and Minimal dis-

tance need to define a special set of aggregate functions. Given a set

108 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

of tuples [value : F loat, tuple : τ], we need two operators to return
the tuple with maximum/minimum value. We define these functions as
agg ∈ {Max,Min}. Max is specified as follows:

• Mx : τ × τ → τ

• τ = [value : F loat, tuple : τ ′]

• Mx([value : f1, tuple : t1], [value : f2, tuple : t2]) :={
[value : f1, tuple : t1] if f1 >= f2

[value : f2, tuple : t2] else

• Max : {τ1} → τ2

• τ1 = [value : F loat, tuple : τ] and τ2 = τ

• Max(e) := {t1| < v1, t1 >← e, ∀ < v2, t2 >∈ e : Mx(< v1, t1 >,<
v2, t2 >) =< v1, t1 >}

For example:

X Event Particle1 Particle2
id ... x y z ... x y z ...
1 ... 0 0 0 ... 1 1 1 ...
1 ... 1 1 1 ... 2 2 2 ...
1 ... 0 0 0 ... 3 3 3 ...
2 ... 0 0 0 ... 2 2 2 ...
2 ... 0 0 0 ... 1 1 1 ...

Γ

(
Max/
<′′ Particle1.x+ Particle2.x′′,< X >> /
X.Event.id

true (X) value tuple
Event Particle1 Particle2
id ... x y z ... x y z ...

3 1 ... 1 1 1 ... 2 2 2 ...

2 2 ... 0 0 0 ... 2 2 2 ...

The opposite operation Min returns the corresponding tuple value that
pairs with the minimal value compared against the whole set. It is defined
in a similar way as Max:

8.3. SEMANTICS 109

• Mn : < F loat× τ >→< F loat× τ >

• Mn(< f1, t1 >,< f2, t2 >) :=

{
< f1, t1 > if f1 <= f2

< f2, t2 > else

• Min : {< F loat× tuple >} → tuple

• Min(e) := {t| < v1, t1 >← e, ∀ < v2, t2 >∈ e : Mn(< v1, t1 >,<
v2, t2 >) =< v1, t1 >}

We can now exercise a formal denotation of these algebraic operators
as it can be seen in Fig.8.16.

Operator Trees

Textual algebraic forms using the operators just described tend to be
better understood if we represent them as operator trees. This concept is
easy to grasp if we make use of the concept of a stream of tuples from the
leaves to the root of the tree.

As a helpful visual feature, we represent on the right side of the root
of the tree the A(τ), surrounded by <>, of the tuples that are resulting
from the data stream. On the right side of the Unnest operator and the
Collection, (leaf), we represent the new unnested attributes.

In the first case, the variable represent the new unnested attribute
extracted, containing its type. In the second case, the variable ranges over
the collection, meaning that the variable is of the type of the collection
instances.

A simple example can be visualized in Fig.8.17. At the leaf, we are
generating a stream of tuples of type [student : Student]. The Student
collection is being ranged by the variable student. The stream is accepted
by the Unnest operator that will output the stream of tuples of type
[student : Student, sup : Supervisor], meaning that in a tuple we match
each student with each of his supervisors. Finally, with the stream result-
ing from the Unnest operator, the Reduce operator accepts each tuple and
evaluates the expression [phd : stu.name, prof : sup.name], building the
set of tuples with the structure < phd, prof >.

We will make use of this visual concept in the following section to help
explaining the semantics of our language.

110 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

∆
∪/λ([stu,sup]).[phd:stu.name,prof :sup.name]
λ([stu,sup]).(true)

< phd, prof >

µ
sup:[stu.Supervisor]
λ([stu]).(true)

sup

Student

stu

Figure 8.17: Example of an algebraic form represented as a tree.

8.3. SEMANTICS 111

8.3.2 Language Description

As defined by the grammar, the user’s query is described by four main
components:

Query = QResult QDecay QEvent QCollection

We are going to detail the mapping for each component and its opera-
tors as well as the necessary symbols for the formalization. We structure
our explanation for each operator in the following way: first the conver-
sion rules, then an informal explanation followed by an example and a
depiction of the corresponding plan tree.

Mapping

Visual Syntax
Semantics (Algebra)

[[Query]]

Query Plan

Figure 8.18: Map operator - Translates the visual query into our algebra.

We define the map operator [[Q]] as the translation of the query Q (a
statement composed by abstract syntax notation operators) into the cor-
responding algebraic notation.

Definition 1 (PHEASANT QL mapping). A map operator [[q]] is a func-
tion that maps the query q specified in PHEASANT QL syntax into a
corresponding expression of the intermediate Algebra.

Definition 2 (PHEASANT QL sub-mapping). The map operator is a
composition of four sub-map operators.

• [[QCollection]]C , maps the PHEASANT collection visual query, QCollection,
into the corresponding Algebra.

112 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

• [[QEvent]]E, maps the PHEASANT Event filter visual query QEvent.
The resulting algebraic form depends on the result of [[QCollection]]C
evaluation.

• [[QDecay]]D, maps the PHEASANT Decay visual query QDecay. The
resulting algebraic form is dependent on the result of [[QEvent]]E eval-
uation.

• [[QResult]]R, maps the PHEASANT Result query QResult. The result-
ing algebraic form is dependent on the result of [[QDecay]]D evaluation.

A query in PHEASANT QL can be interpreted (as given by the gram-
mar) as four subqueries that correspond to the four major query steps:
Result, Decay, Event and Collection. This means that the first step of the
mapping operation will be described by the following rule:

[[Query]] = [[QResult QDecay QEvent QCollection]] =
= [[QResult]]R ([[QDecay]]D([[QEvent]]E([[QCollection]]C))) (Q1)

Figure 8.19: Translation rules from the AST to query Plan - Collection-
Event materialization

The sub-query [[QCollection]]C is a sub-plan of [[QEvent]]E which in turn is
a sub-query of [[QDecay]]D. Finally, [[QDecay]]D is a sub-plan of [[QResult]]R.

8.3. SEMANTICS 113

Symbol Definition
〈〈τ〉〉w Notation used when needed,

to make explicit the attributes of the tuples
w = A(τ)

[H | T] list with a head H and tail T
[H | ∅] list with one element
∅ empty list
⊥ empty or absence of operator
lattrib list of attributes, [a1 : τ1, ..., an : τn]
name label for the attribute, name = ζ()
collect Collection name
fdist() arithmetic distance calculation function
expr(τ) arithmetic expression where the

free variables ∈ A(τ) we may use the notation
expr(fdist) to mean that the expression

uses an fdist function
udtf function to generate a tuple

according to a pre-defined type structure
(useful) for the definition of the Transformer

operator

Figure 8.20: Used symbols

114 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

The Collection Operators

[[⊥]]C = Event (C0)

[[R
collect
pred]]C = 〈〈∆∪/λ(<c,evt>).<evt>

λ(<c,evt>).(true) (µevt:c.eventpred (collect))〉〉[evt] (C1)

[[X ∪ Y]]C = ∪([[X]]C , [[Y]]C) (C2)

[[X ∩ Y]]C = ∩([[X]]C , [[Y]]C) (C3)

[[X \ Y]]C = \([[X]]C , [[Y]]C) (C4)

Figure 8.21: Translation rules from the AST to query Plan Collection-
Event materialization

The first rule C0 says that in the case of any collection operator in the
description of the query, the considered collection source of events will be
the Event collection.

As it is explicit in the C1, the collection selection symbol can be
expressed by intermediate algebraic operators. The stream of tuples c
{[c : collect]}, where collect is the name of the collection of requested tu-
ples, and existing in the Collection Catalog. The unnest operator, in turn,
accepts the stream of tuples and constructs a stream {[c : collect, evt :
Event]}, connecting each collect with one of its events. The reduce op-
erator will evaluate the expression head λ(< c, evt >). < evt > for every
input element and constructs a set.

In order to make the manipulation of these collections more flexible
by means of set union(C2), intersection (C3) and difference (C4) we have
set mapping rules for these operators. Since the operators are the same
and the mapping is direct, we will refrain ourselves from explaining them
further.

We will now present an example that combines some of these operators
and their corresponding mapping into to the algebra.

A short example of a possible query mapping could be:

8.3. SEMANTICS 115

Example 1:

[[R
expCol
true \ (R

runCol
true ∩ R

myPrivateCol
true)]]C=

(C4) =\([[R
expCol
true]]C , ([[R

runCol
true ∩ R

myPrivateCol
true]]C))

(C2) =\([[R
expCol
true]]C , (∩([[R

runCol
true]]C , [[R

myPrivateCol
true]]C))

(C1) =\(〈〈∆∪/λ(<c,evt>).<evt>
λ(<c,evt>).(true) (µ

evt:[c.event]
(true) (expCol))〉〉[evt],

(∩(〈〈∆∪/λ(<c,evt>).<evt>
λ(<c,evt>).(true) (µ

evt:[c.event])
(true) (runCol))〉〉[evt],

〈〈∆∪/λ(<c,evt>).<evt>
λ(<c,evt>).(true) (µ

evt:[c.event])
(true) (

myPrivateCol))〉〉[evt]

We assume that expCol are collections with some special purposes defined
by the system experts, runCol are collections of events organized in runs
and finally myPrivate are the user’s personal collections of selected events
(likely during previous analysis phases). In this example, we want to
select the collection of events contained by expcol collection tuples, with
the exception of the set of events that are part of the intersection between
runCol collection tuples and myPrivate collection tuples.

116 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

\

< evt >

∆
∪/λ(c,evt).<evt>
λ(<c,evt>).(true)

µ
event:[c.event]
(true)

evt

expCol

c

∩

∆
∪/λ(<c,evt>).<evt>
λ(<c,evt>).(true)

µ
evt:[c.event]
(true)

evt

runCol

c

∆
∪/λ(<c,evt>).<evt>
λ(<c,evt>).(true)

µ
evt:[c.event]
(true)

evt

myPrivateCol

c

Figure 8.22: Mapping result of collection query example

8.3. SEMANTICS 117

The Event Specification Operator

[[⊥]]E = 〈〈[[QCollection]]C〉〉[evt] (E0)

[[pred]]E = 〈〈σλ(<evt>).(pred)([[QCollection]]C)〉〉[evt] (E1)

Figure 8.23: Mapping the Event specification operator

In case the Event specification operator is omitted, the result of this
operator will be the resulting set of the evaluation [[QCollection]]C .

We can explain the semantics for the rule E1 in the following man-
ner: The resulting set of tuples < evt > of the query plan mapped by
[[QCollection]]C are fed into the Selecion operator in order to discard the
the tuples that do not validate the predicate specified in pred. Basi-
cally, for each variable evt the σ operator constructs a stream of tuples
{< evt : Event >}, where each tuple satisfies the condition pred.

Let us assume we want to filter out all the events coming from the
query plan that is the result of the first mapping step ([[QCollection]]C),
with the filter predicate “evt.bx = 3”, where bx is an attribute of event.
We would make use of our mapping rules like in example 2. The result
can be better visualized in Fig.8.25.

Example 2:

[[′evt.bx=3′]]E =

(E1) = σλ(evt).(pred(′evt.bx=3′))([[QCollection]]C)

118 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

σλ(<evt>).(′evt.bx=3′)

< evt >

[[QCollection]]C

evt

Figure 8.24: Mapping result of an example of Event Specification

8.3. SEMANTICS 119

The Decay Specification Operators

[[⊥]]D = [[QEvent]]E (D0a)

[[∅]]D = ⊥ (D0b)

[[H|T]]D = ∆
∪/λ(<tuple1,tuple2>).([evt:tuple1.evt]◦(tuple1/evt)◦(tuple2/evt))
λ(<tuple1,tuple2>).(true) (

[[H]]D
=
tuple1.evt.id=tuple2.evt.id [[T]]D) (D1)

Figure 8.25: Translation rules for the selection operator

The mapping rules D0 presented in 8.25 exist especially to deal with
empty sets. If there is no Decay operator, the considered result set will be
the complete input set returned by [[QEvent]]E, using the query rule D0a.
Rule D0b deals with an empty list of operators.

The rule D1 is important to deal with the result of several isolated
decays drawn by the user. In fact, the semantics of different unconnected
decays is specified by this rule to be a stream of tuples resulting from the
join operation over the streams of their individual results.

120 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

The Selection Operator

[[©name:path
pred/lattrib]]D =

= 〈〈∆∪/λ(evt,name).<evt,name,lattrib>
λ(evt,name).(true) (

µname:evt.pathλ(<evt>).(pred)([[QEvent]]E))

〉〉[evt,name,lattrib] (D2)

Figure 8.26: Translation rules for the selection operator

This operator will be defined in the algebraic notation in the following
way: the input will be the set of events (evt) result of the query subplan
[[QEvent]]E and it will start with a generation of a stream {< evt >}.

Suppose, as in our example 3, that the user simply wants to retrieve
from the system all the particles with positive energy and existing mass.
It is required that the result stream has for each tuple the values of the
computation of the square root of the sum of the squared px, py and pz.
The result of the mapping of this query by using our just defined rules
would look like in Fig.8.27.

Example 3:

[[©myparticle:Particle
′Energy>0 and mass>0′/{p=sqrt(px2+py2+pz2),b=mass−0.1}]]D =

(D2) = 〈〈∆∪/λ(evt,myparticle).<evt,myparticle,p=sqrt(px2+py2+pz2),b=mass−0.1>
λ(evt,myparticle).(true) (

µ
myparticle:[evt.particle]
λ(evt,myparticle).(pred)([[QEvent]]E))〉〉[evt,name,p,b]

8.3. SEMANTICS 121

∆
∪/λ(evt,myparticle).<evt,myparticle,p=sqrt(px2+py2+pz2),b=mass−0.1>
λ(evt,myparticle).(true)

< evt,myparticle, p, b >

µ
myparticle:[evt.Particle]
λ(evt,myparticle).(pred(′Energy>0 and mass>0′))

myparticle

[[QEvent]]E

evt

Figure 8.27: Simple Selection example

122 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

Transformer

[[name:⊥
pred/lattrib → → [H|T]]]D =

〈〈∆∪/λ(w′).w′◦lattrib
λ(w′).(pred) ([[→[H|T]]]w

′
D)〉〉[w′,lattrib] (D3)

[[→[H|T]]]D =

〈〈∆∪/λ(<tuple1,tuple2>).([evt:tuple1.evt]◦(tuple1/evt)◦(tuple2/evt))
λ(<tuple1,tuple2>).(true) (

[[→ T]]tuple1

D

=
“tuple1.evt.id=tuple2.evt.id′′ [[H]]tuple2

D)
〉〉[evt,A(tuple1)/evt,A(tuple2)/evt] (D4)

[[name:udtf
pred/lattrib →[H|∅]]]D =

〈〈∆∪/λ(w).(w◦[name:udtf(w)]◦lattrib)
λ(w).pred ([[H]]wD)〉〉[A(w),name,A(lattrib)] (D5)

Figure 8.28: Translation rules from the Transformer operator

The mapping of the description of the transformation operation is de-
fined mainly by three translation rules. The first, D3, is responsible for
starting to map the chain that links the resulting tuples to the transformer
operator and the rest of the decay tuples. The first thing is to interpret
the type structure of the tuple that will be the result and leave the rest
of the mapping to the rules D4 and D5. This means that a reduction to
the result of the mapping of the pair composed by the transformer oper-
ator and the list of decayed particles is set. The rule D4 is responsible
for recursively mapping the operators in the several branches of the decay
into joins and D5 stops the recursion in the last element and maps the
transformer operator itself into a reduction.

In Example 4, we will transform a decay query. Here it is described by
two particles (one with positive mass and the other negative), that decay
from a vertex (myvertex) the values of which are computed by using the
transformation function Transform, if the sum of both masses is greater
than 0.5. The result of applying the transformation rules can be observed
in the query plan of Fig.8.29.

8.3. SEMANTICS 123

Example 4:

[[myvertex:⊥
true/{} → mytrans:Transform

′µ+.mass+µ−.mass>0.5′/{} →
{©µ+:Particle

′energy>0′/{},©
µ−:Particle
′energy<0′/{}}]]D =

(D3) = 〈〈∆∪/λ(w′).<w′>
pred(w′)(true)([[

mytrans:Transform
′µ+.mass+µ−.mass>0.5′/{} →

{©µ+:Particle
′energy>0′/{},©

µ−:Particle
′energy<0′/{}}]]w

′
D)

〉〉[w′]

(D4) = 〈〈∆∪/λ(w1 ,w2).<w1,w2>
pred(w1,w2)(true) (

〈〈∆[evt:tuple1.evt]◦(tuple1/evt)◦(tuple2/evt)
λ(<tuple1 ,tuple2>).true (

[[mytrans:Transform
′µ+.mass+µ−.mass>0.5′/{} →©

µ−:Particle
′energy<0′/{}]]

tuple1

D

A tuple1.evt.id=tuple2.evt.id[[©µ+:Particle
′energy>0′/{}]]

tuple2

D

)〉〉[evt,A(tuple1/evt),A(tuple2/evt)])

〉〉[w′=[evt,A(tuple1/evt),A(tuple2/evt)]]

(D5) = 〈〈∆∪/λ(w,mytrans,evt,µ+).<w,mytrans,evt,µ+>
pred(w,mytrans,evt,µ+)(true)

(〈〈
∆

[evt:tuple1.evt]◦(tuple1/evt)◦(tuple2/evt)
λ(<tuple1,tuple2>).true (

〈〈∆∪/λ(w).<w,mytrans=Transform>
λ(w).pred(′µ+.mass+µ−.mass>0.5′)([[©

µ−:Particle
′energy<0′/{}]]

w
D)〉〉tuple1=[A(w),mytrans]

A tuple1.evt.id=tuple2.evt.id[[©µ+:Particle
′energy>0′/{}]]

tuple2=[evt,µ+]
D

〉〉[evt,A(w/evt),mytrans,µ+])

〉〉[evt,A(w/evt),mytrans,µ+]

(D2) = 〈〈∆∪/λ(evt,µ− ,mytrans,evt,µ+).<evt,µ−,mytrans,evt,µ+>
pred(evt,µ− ,mytrans,evt,µ+)(true)

(〈〈
∆

[evt:tuple1.evt]◦(tuple1/evt)◦(tuple2/evt)
λ(<tuple1,tuple2>).true (

〈〈∆∪/λ(evt,µ− ,mytrans,evt,µ+).<evt,µ−,mytrans,evt,µ+,mytrans=Transform]>
λ(evt,µ− ,mytrans,evt,µ+).pred(′µ+.mass+µ−.mass>0.5′) (

〈〈∆∪/λ(evt,µ−).<evt,µ−>
λ(evt,µ−).(true)

(

µ
λ(evt).[µ−:evt.Particle]
λ(evt,µ−).(pred(′energy<0′))([[QEvent]]E))〉〉w=[evt,µ−])〉〉[evt,µ−,mytrans]

A tuple1.evt.id=tuple2.evt.id〈〈∆
∪/λ(evt,µ+).<evt,µ+>
λ(evt,µ+).(true)

(

µ
λ(evt).[µ+:evt.Particle]
λ(evt,µ+).(pred(′energy>0′))([[QEvent]]E))〉〉[evt,µ+]

〉〉[evt,µ−,mytrans,µ+])

〉〉[evt,µ−,mytrans,µ+]

124 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

∆
∪/λ(evt,µ− ,mytrans,µ+).<evt,µ−,mytrans,µ+>
pred(evt,µ−,mytrans,µ+)(true)

< evt, µ−,mytrans, µ+ >

∆
∪/λ(evt,µ− ,µ+).<evt,µ−,mytrans,µ+,mytrans=Transform>
λ(evt,µ− ,mytrans,µ+).pred(′µ+.mass+µ−.mass>0.5′)

∆
∪/λ(<tuple1,tuple2>).([evt:tuple1.evt]◦(tuple1/evt)◦(tuple2/evt))
λ(<tuple1,tuple2>).(true)

< evt, µ+, µ− >

A tuple1.evt.id=tuple2.evt.id

< tuple1, tuple2 >

∆
∪/λ(evt,µ−).<evt,µ−>
λ(evt,µ−).(true)

µ
λ(evt).[µ− :evt.Particle]
λ(evt,µ−).(pred(′energy<0′))

µ−

[[QEvent]]E

evt

∆
∪/λ(evt,µ+).<evt,µ+>
λ(evt,µ+).(true)

µ
λ(evt).[µ+:evt.Particle]
λ(evt,µ+).(pred(′energy>0′))

µ+

[[QEvent]]E

evt

Figure 8.29: Example of the mapping of the transformer operator

8.3. SEMANTICS 125

Reference Operator - Path Expressions

[[©name:path
pred/lattrib[H|T]]]pathD (Q) = [[[H|T]]]nameD ([[©]name:pathpred/lattrib]D(Q)) (D6)

[[[H|T]]]pathD (Q) = [[T]]pathD ([[H]]pathD Q) (D7)

[[•→ ©name:⊥
pred/lattrib[H|T]]]name

′
D (Q) =

[[H|T]]name[[•→ ©name:⊥
pred/lattrib]]

name′
D (Q) (D8)

[[•→ ©name:⊥
pred/lattrib]]

name′
D (Q) = µ

name:[name′.path])
pred (Q) (D9)

[[• ↪→©name:⊥
pred/lattrib[H|T]]]name

′
D (Q) =

[[H|T]]name[[• ↪→©name:⊥
pred/lattrib]]

name′
D (Q) (D10)

[[• ↪→©name:⊥
pred/lattrib]]

name′
D (Q) = =µ

name:[name′.path])
pred (Q) (D11)

Figure 8.30: Translation rules for the references operators

In Example 5, we show a mapping which uses both mandatory and
non-mandatory path expressions. We want to select all the particles with
mandatory path expressions to Vertex and a corresponding MonteCarlo
simulation particle. We also want to return the simulated MonteCarlo
Vertex if there is any reference to it as well. The mapping is somewhat
more dense than our other examples. The result is a sequence of unnesting
operations, which can be better visualized with the execution plan of 8.31.

Example 5:

[[©myparticle:Particle
true/{} (•→ ©primvertex:V ertex

true/{} ,

(©simparticle:MCParticle
true/{} (• ↪→©simprimvertex:MCV ertex

true/{})))]]D =

(D6) =[[⊥•→ (©primvertex:V ertex
true/{} , (©simparticle:MCParticle

true/{} • ↪→
©simprimvertex:MCV ertex
true/{}))]]myparticleD ([[©myparticle:Particle

true/{}]]D)

126 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

(D7) = [[(•→ ©simparticle:MCParticle
true/{} (• ↪→©simprimvertex:MCV ertex

true/{})]]myparticleD

([[©primvertex:V ertex
true/{}]]myparticleD ([[©myparticle:Particle

true/{}]]D)

(D7) = [[• ↪→©simvertex:MCV ertex
true/{}]]simparticle

([[• → ©simparticle:MCParticle
true/{}]]myparticle

([[•→ ©primvertex:V ertex
true/{}]]myparticleD

([[©myparticle:Particle
true/{}]]D)))

(D2) = [[• ↪→©simvertex:MCV ertex
true/{}]]simparticle

([[• → ©simparticle:MCParticle
true/{}]]myparticle

([[•→ ©primvertex:V ertex
true/{}]]myparticleD

(〈〈∆∪/λ(evt,myparticle).<evt,myparticle>
(true) (µ

myparticle:[evt.Particle]
(true) (

[[QEvent]]E))〉〉[evt,myparticle])))

(D9) = [[• ↪→©simvertex:MCV ertex
true/{}]]simparticle

([[• → ©simparticle:MCParticle
true/{}]]myparticle

(〈〈µprimvertex:[myparticle.V ertex]
(true)

(∆
∪/λ(evt,myparticle).<evt,myparticle>
(true) (µ

myparticle:[evt.Particle]
(true) (

[[QEvent]]E)))〉〉[evt,myparticle,primvertex]))

(D9) = [[• ↪→©simvertex:MCV ertex
true/{}]]simparticle

(〈〈µsimparticle:[myparticle.MCParticle]
(true)

(µ
primvertex:[myparticle.V ertex]
(true)

(∆
∪/λ(evt,myparticle).<evt,myparticle>
(true) (µ

myparticle:[evt.Particle]
(true) (

[[QEvent]]E))))〉〉[evt,myparticle,primvertex,simparticle])

(D11)

=〈〈=µsimprimvertex:[simparticle.MCV ertex]
(true) (

µ
simparticle:[myparticle.MCParticle]>
(true) (

µ
primvertex:[myparticle.V ertex]>
(true) (

∆
∪/λ(evt,myparticle).<evt,myparticle>
(true) (µ

myparticle:[evt.Particle]
(true) (

[[QEvent]]E)))))〉〉[evt,myparticle,primvertex,simparticle,simprimvertex]

8.3. SEMANTICS 127

=µ
simprimvertex:[simparticle.MCV ertex]
(true)

< evt,myparticle, primvertex, simparticle, simprimvertex >

µ
simparticle:[myparticle.MCParticle]
(true)

simparticle

µ
primvertex:[myparticle.V ertex]
(true)

primvertex

∆
∪/λ(evt,myparticle).<evt,myparticle>
(true)

< evt,myparticle >

µ
λmyparticle:[evt.Particle]
(true)

myparticle

[[QEvent]]E

evt

Figure 8.31: Example of the mapping of the reference operator

128 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

Aggregator

[[2
aggfunc(expr)
pred (Q)]]D =

〈〈Γaggfunc/λ(w).([value:expr(w)])/evt.id
λ(w).(pred) ([[Q]]D)〉〉[value:expr(w)] (D13)

aggfunc ∈ {max,min, avg}

[[2
agg(expr)
pred (Q)]]D =

〈〈Γagg/λ(w).([value:expr(w),tuple:w])/evt.id
λ(w).(pred) ([[Q]]D)〉〉[value:expr(w),tuple:w] (D14)

agg ∈ {Max,Min}

Figure 8.32: Translation rules for the aggregator operator.

A nest operator groups the tuples by evt. Each group will then be
reduced by the aggregator function Max or Min, and will produce as result
a set of tuples (of type {τ}), where each tuple is the maximum or minimum
expr value.

In order to show the usage of these rules we have Example 6. Here, we
have a selection of all the particles with positive energy, and we want to
group them by event and determine the one that has the maximum value
for the mass attribute with the restriction that it should be greater than
0.65. The result of the mapping can be better visualized in the execution
plan of Fig.8.33.

Example 6:

[[2
Max(myparticle.mass)
′myparticle.mass>0.65′(©myparticle:Particle

′Energy>0′/{})]]D =

(D14) = Γ
Max/λ(w).([value:myparticle.mass,tuple:w])/evt.id
λ(w).(′myparticle.mass>0.65′) (

2
Max(myparticle.mass)
′myparticle.mass>0.65′([[©myparticle:Particle

′Energy>0′/{}]]D))

(D2) =〈〈ΓMax/λ(w).([value:myparticle.mass,tuple:w])/evt.id
λ(w).(′myparticle.mass>0.65′) (

〈〈∆∪/λ(evt,myparticle).<evt,myparticle>
λ(evt,myparticle).(true) (

8.3. SEMANTICS 129

µ
λ(evt).[myparticle:evt.Particle]
λ(evt,myparticle).(pred(′Energy>0′))([[QEvent]]E))

〉〉[evt,myparticle])〉〉[w=[evt,myparticle]]

=〈〈
Γ
Max/[value:myparticle.mass,tuple:<evt,myparticle>]/evt.id
λ(evt,myparticle).(′myparticle.mass>0.65′) (

∆
∪/λ(evt,myparticle).<evt,myparticle>
λ(evt,myparticle).(true) (

µ
λ(evt).[myparticle:evt.Particle]
λ(evt,myparticle).(′Energy>0′)([[QEvent]]E)

)
〉〉[evt,myparticle]

Γ
Max/λ(evt,myparticle).[value:myparticle.mass,tuple:<evt,myparticle>]/evt.id)
λ(evt,myparticle).(′myparticle.mass>0.65′)

< evt,myparticle >

∆
∪/λ(evt,myparticle).<evt,myparticle>
λ(evt,myparticle).(true)

µ
λ(evt).[evt.Particle]
λ(evt,myparticle).(pred(′Energy>0′))

myparticle

[[QEvent]]E

evt

Figure 8.33: Result of a simple aggregator operator example

130 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

Minimal Distance

[[Q1�fdistexpr/agg → Q2]]D =

= 〈〈Γagg/<value=fdist,tuple=([evt:tuple1 .evt]◦(tuple1/evt)◦(tuple2/evt))>/[evt.id])
true (

∆
∪/λ(<tuple1,tuple2>).([evt:tuple1.evt]◦(tuple1/evt)◦(tuple2/evt))
λ(<tuple1,tuple2>).(true) (

[[Q2]]D
=

[tuple1.evt.id]=[tuple2.evt.id]∧expr(fdist) [[Q1]]D))
〉〉[evt,A(tuple1/evt),A(tuple2/evt)] (D15)

agg ∈ {Max,Min}

[[Q1�fdistexpr/agg ↪→ Q2]]D =

= 〈〈Γagg/<value=fdist,tuple=[evt:tuple1 .evt]◦(tuple1/evt)◦(tuple2/evt))>/[evt.id]))
true (

∆
∪/λ(<tuple1,tuple2>).([evt:tuple1.evt]◦(tuple1/evt)◦(tuple2/evt))
λ(<tuple1,tuple2>).(true) (

[[Q2]]D > [tuple1.evt.id]=[tuple2.evt.id]∧expr(fdist) [[Q1]]D))
〉〉[evt,A(tuple1/evt),A(tuple2/evt)] (D16)

agg ∈ {Max,Min}

Figure 8.34: Translation rules for the minimal distance operators.

Both rules D15,(mandatory), and D16, (non-mandatory), are very sim-
ilar. The difference between them is only the join operator. Tn the case
of the non-mandatory version we will use a left-outer join.

The join constructs a set of pairs of all tuples which result from the
query plan mapped from Q1 that are associated with the ones of the query
plan mapped fromQ2 through the validation of the logical expression expr.
In other words, for each event all resulting tuples tuple1 and tuple2 are
combined. In the case of the left-outer join of the non-mandatory case,
the result is a set of pairs that combines all values of tuple1 with all values
of tuple2, if their condition predicate is true. In the case that no tuple2

values exist (or are not valid) for every tuple1 a pair < tuple1, null > is
returned.

The nest operator groups the tuple input,[evt : tuple1.evt]◦(tuple1/evt)◦
(tuple2/evt) and their evaluated distance function, fdist, by the attribute
value [evt.id] of each tuple. Each group is reduced by the aggregator func-
tion, Max or Min, and the result is the first tuple found that verifies the

8.3. SEMANTICS 131

aggregation.
In our Example 7, we want to determine for the Particles and Vertexes

the pairs per event with the result of the minimal distance greater than
0.12 (the minimal function is defined by the expression fdist). As we have
used the non-mandatory version of the minimal distance operator in this
example, the resulting tuple pair can have empty Vertex elements. The
result of using our described rules is visualized in Fig.8.35.

Example 7:

fdist =
√

(w1.x− w2.x)2 + (w1.y − w2.y)2 + (w1.z − w2.z)2

[[©myparticle:Particle
λ(w1).true/{} �fdistfdist>0.12/Min ↪→©

myvertex:V ertex
λ(w).true/{}]]D =

(D16) = Γ
agg/<value=fdist,tuple=[evt:tuple1.evt]◦(tuple1/evt)◦(tuple2/evt))>/[evt.id]))
true (

[[©myparticle:Particle
λ(w1).true/{}]]D�fdistfdist>0.12/Min ↪→ [[©myvertex:V ertex

λ(w).true/{}]]D)

(D2) = 〈〈Γagg/<value=fdist,tuple=[evt:tuple1 .evt]◦(tuple1/evt)◦(tuple2/evt))>/[evt.id]))
true (

∆
∪/λ(evt,myparticle).<evt,myparticle>
λ(evt,myparticle).(true) (µ

myparticle:[evt.Particle]
λ(evt,myparticle).(true) ([[QEvent]]E))

〉〉[evt,myparticle]

�fdistfdist>0.12/Min ↪→
〈〈
∆
∪/λ(evt,myvertex).<evt,myvertex>
λ(evt,myvertex).(true) (µ

λ(evt).[evt.V ertex]
λ(evt,myvertex).(true)([[QEvent]]E))

〉〉[evt,myvertex]

)〉〉[evt,tuple1=myparticle,tuple2=myvertex]

=〈〈 Γ
Min/<value=fdist,tuple=[evt,myparticle,myvertex]>/[evt.id]
(true)

(∆
∪/[evt:tuple1.evt]◦(tuple1/evt)◦(tuple2/evt)
λ(<tuple1,tuple2>).(true) (

〈〈∆∪/<evt,myvertex>
λ(evt,myvertex).(true)

(

µ
λ(evt).[evt.V ertex]
λ(evt,myvertex).(true)([[QEvent]]E))〉〉[evt,myvertex]

B [tuple1.evt.id]=[tuple2.evt.id]∧fdist>0.12

〈〈∆∪/<evt,myparticle>λ(evt,myparticle).(true)(

µ
λ(evt).[evt.Particle]
λ(evt,myparticle).(true)([[QEvent]]E))〉〉[evt,myparticle]

))〉〉[evt,myparticle,myvertex]

132 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

Γ
Min/<value=fdist,tuple=[evt,myparticle,myvertex]>/[evt.id]
λ(evt,myvertex,myparticle).(true)

< evt,myparticle,myvertex >

∆
∪/[evt:tuple1.evt]◦(tuple1/evt)◦(tuple2/evt)
λ(<tuple1,tuple2>).(true)

< evt,myparticle,myvertex >

B [tuple1.evt.id]=[tuple2.evt.id]∧fdist>0.12

< tuple1, tuple2 >

∆
∪/λ(evt,myvertex).<evt,myvertex>
λ(evt,myvertex).(true)

myvertex

µ
λ(evt).[evt.V ertex]
λ(evt,myvertex).(true)

[[QEvent]]E

evt

∆
∪/λ(evt,myparticle).<evt,myparticle>
λ(evt,myparticle).(true)

myparticle

µ
λ(evt).[evt.Particle]
λ(evt,myparticle).(true)

[[QEvent]]E

evt

Figure 8.35: Result of the minimal distance example

8.3. SEMANTICS 133

Comparison

[[�pred(Q)]]D = 〈〈σλ(w).pred([[Q]]D)〉〉w (D17)

[[�pred1(�pred2(Q))]]D = [[�pred1 and pred2([[Q]]D)]]D (D18)

Figure 8.36: Translation rule of the comparison operator

By rule D17, the selection operator σ filters out the tuples resulting
from the rest of the query plan, generated by mapping the query Q. The
rule D18 is a simplification that composes a conjunctive single predicate
out of two.

A possible example of the usage of these rules can be like the one
described in example 8. It is required that the mass of the vertex should
be greater than the particle it decays from. The corresponding query plan
generated by using our rules can be visualized in Fig.8.38.

Example 8:
[[�′myvertex.mass>myparticle.mass′(Q)]]D =

(D17) 〈〈σλ(w).pred(w)(′myvertex.mass>myparticle.mass′)([[Q]]D)〉〉w

134 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

σλ(w).pred(w)(′myvertex.mass>myparticle.mass′)

< w >

[[Q]]D

w

Figure 8.37: Result of a comparison simple example

8.3. SEMANTICS 135

The Result Operators

[[⊥]]R = 〈〈[[QDecay]]D〉〉w (R0)

[[1D
lattrib]]R = ∆

H1D/λ(w).lattrib
λ(w).pred (〈〈[[QDecay]]D〉〉w) (R1)

[[2D
lattrib]]R = ∆

H2D/λ(w).lattrib
λ(w).pred (〈〈[[QDecay]]D〉〉w) (R2)

[[3D
lattrib]]R = ∆

H3D/λ(w).lattrib
λ(w).pred (〈〈[[QDecay]]D〉〉w) (R3)

[[# aggfunc
head]]R = ∆

aggfunc/λ(w).(head)
λ(w).(true) (〈〈[[QDecay]]D〉〉w) (R4)

aggfunc ∈ {max,min, sum, count, avg, ...}

Figure 8.38: Result set transformation rules.

The rule R0 states that in case of omission of result operators the result
set will be the collection retrieved by the evaluation of [[QDecay]]D. The
usefulness of this rule depends on the implementation of it, but could be
considered as a way to feed some other tools on top of PHEASANT meant
to manipulate the result in some different ways.

The aggregate functions to generate histograms can be defined as de-
scribed in Fig.8.39.

HiD, i ∈ {1, 2, 3}: {τ} → τHi

Figure 8.39: Signature of the histogram aggregate functions

In Fig.8.40, we exemplify the mapping of the value result operator. In
this case, the user is interested in summing up all the energy values in
the tuples that result from the algebra mapped by: [[QDecay]]D. Basically,
this will represent a reduction on the tuple stream, with the aggregation
function Sum.

136 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

Example 9:

[[# Sum
′myparticle.energy′]]R =

R4 ∆
Sum/λ(w).([r:myparticle.energy])
λ(w).(true) (〈〈[[QDecay]]D〉〉w)

∆
Sum/λ(w).([r:myparticle.energy])
λ(w).(true)

[[QDecay]]D

< w >

Figure 8.40: Transformation result of a result operator using the aggrega-
tion function Sum.

8.4. SUMMARY 137

8.4 Summary

In this section, we have described the design approach for the HEP analysis
query language.

A carefully selected alphabet notation was introduced. It aims to deal
with the domain-specific concepts at all the stages of the query patterns.
This is part of our global strategy to approach the optimization of the
HEP analysis process.

We described the syntax of PHEASANT QL. We started with the
grammar of the abstract syntax graph, which is more close to the vi-
sual language parsing requirements, and proceeded to a more abstract ap-
proach, although more easy to deal, which was the syntax tree grammar.
Together with those definitions, rules to describe valid or false sentences
in our language were set.

Finally, the semantics of the language were defined by making use
of the translational semantics mapping. Syntax-to-syntax mapping from
PHEASANT QL into an algebra was used.

Further optimization at this phase can be done either by proposing
an alternative language and/or addition of new operators, or by tighten-
ing controlling the translation to the algebraic notation by adding more
semantic rules.

138 CHAPTER 8. QUERY LANGUAGE - PHEASANT QL

Chapter 9

Prototype Framework -
PHEASANT

In this chapter, we present the architecture of the framework of our im-
plemented prototype.

We start with a general overview of this framework in Section 9.1. Af-
terwards, the several query transformation modules are detailed: First,
we describe the user interface in section 9.2; then, in section 9.3, we ex-
plain the plan generator; and finally, in section 9.4, we present the code
generator.

9.1 General Overview

It is not the purpose of this thesis to discuss a full-fledged implementation,
but to present a proposed architecture of a feasible prototype. Therefore,
we describe the architectural design and implementation in a very compact
way.

In order to jump into the description of the three main modules, we
start by introducing the reader to the general design. In this overview
section, we first give a system engineering perspective of the framework,
remembering the roles and use cases from the requirements. Then, we
give an insight into the architectural design and, finally, we explain the
technology used for implementing PHEASANT.

139

140 CHAPTER 9. PROTOTYPE FRAMEWORK - PHEASANT

9.1.1 Roles and Use Cases

As reasoned in Chapter 7, inspired by the Domain Modeling approach we
proposed to tackle the problem in HEP analysis by specifying a framework
that supports different modeling levels [7] (see Fig.7.1). We reserve to
ourselves the role of meta-meta-modelers. This means that we have set
the data meta-meta model the framework has to deal with. The instances
of this meta-meta model (see 9.1) are defined by the meta-modeler.

1

*

* 1* *

Collection Catalog

<<Collection>>

contains

Particle

Meta−Meta−Model

Meta−Model

Model

Event <<Physics Objects>>

Vertex

MC_VertexMC_Particle

EventRun

Figure 9.1: Model levels. The domain experts will deal with the meta-
modeling of physics objects.

In this case, we assign the responsibility of meta-modeling to the team
of developers in a specific experiment. The framework copes with the
description of the specificities of the schema that have some variations in
different experiments.

The physicist, who takes the role of the query modeler, is immediately
aware of the changes in the instances of the meta-meta-model just by using
the visual operators when modeling his query.

9.1. GENERAL OVERVIEW 141

As shown in Fig.9.2, we have defined four main system actors. The
final user interacts with the system by editing the query statement and
requests it to be run.

The domain expert is responsible for defining the data schema, the
user-defined functions and constants for the specific experiment.

The query storage base is the main repository for the queries and their
results. It is responsible for dealing with the query history for each user
and analysis. It can be seen as the repository of the meta-information
concerning the query itself (dealing, for instance, with details like query
graph, query result, version of the query, dates, author, time spent run-
ning, etc.).

Finally, the Physics Storage base is the experiment’s specific storage
framework that deals with the data to be analyzed.

In the first implementation of our prototype, we have concentrated on
the dark grey use cases of Fig.9.2, leaving the rest for future work.

9.1.2 Architecture

The system was designed to cope with several query transformation phases
required to deliver a target query source code that should be compiled and
run against a specific physics storage base.

We have devised three main modules, as seen in Fig.9.3: user interface,
plan generator and code generator. Each of these modules is described
more deeply in the next sections.

The user interface deals with the user’s query edition and interactively
notifies the user of incorrect syntax. Internally, a Concrete Components
Graph is maintained and simultaneously mapped, using the observers pat-
tern, to a corresponding Abstract Syntax Graph, as described in the last
chapter. We describe this module in more detail in Section 9.2.

The Plan Generator starts by interpreting the Abstract Syntax Graph
and transforming it into an Abstract Syntax Tree (AST). Then, it runs
an algorithm that walks down the AST and generates the corresponding
algebraic query plan (QP). Details are described in Section 9.3.

Finally, the query Code Generator looks at the algebraic query plan,
optimizes it at the algebraic logical level and generates the physical op-
erators. In the sequence of that, a new algorithm generates the required
source code to be compiled and run against the storage base. This module

142 CHAPTER 9. PROTOTYPE FRAMEWORK - PHEASANT

Figure 9.2: Use cases - the use cases in dark grey are covered by the
prototype implementation.

is strictly bound to the specific target framework. The query code gener-
ator is implemented as a plug-in to our PHEASANT framework specific
to BEE (see Appendix B). Other plug-ins can be added to deal with dif-
ferent target physics frameworks without necessarily imposing changes to
the rest of the query generation modules. The Code Generator module is
described in Section 9.4.

9.1. GENERAL OVERVIEW 143

Query

QP

Target Code

User Interface

Plan Generator

Code Generator

ASG

Figure 9.3: General structure

9.1.3 Technology Used for the Implementation

In order to test our hypothesis, we delivered a first prototype implemented
in the TCL/TK scripting language on a Unix platform. We use extra
packages for dealing with graphs, trees and visual widgets. The advantage
of a scripting language like TCL/TK over other structured languages is the
fast implementation due to the simplicity of the language itself and their
visual manipulation packages. It allows also easy portability, which implies
that we can use the same product on other platforms. In our case, the only
changes will take place at the code generator plug-ins. Nevertheless, the
unstructured nature of the language makes it difficult to produce elegant
and clean code. The larger it gets, the more difficult it is to maintain.
Therefore, we suggest that the next phase of the engineering life cycle
delivers a product using a structured language like C++ or Java.

144 CHAPTER 9. PROTOTYPE FRAMEWORK - PHEASANT

9.2 User Interface - The Visual Editor

This section explains the architecture of the visual editor, which provides
the user with an environment for editing visual queries. This software deals
with the concrete components and the concrete syntax graph, delivering
the corresponding ASG into the next architectural layers.

First, we justify the general design decisions taken, based on related
work done in Human-Computer Interface (HCI) and Visual Languages
(VL). Then we describe the different modules required for our solution:
Graphical User Interface (GUI) and Abstract Syntax Graph (ASG) gen-
erator. We conclude this section by discussing some proposals for future
work.

9.2.1 Related Work and Design Decisions

A good introduction to the implementation of Visual Language editors can
be found in [44]. There are several different ways to implement them. One
option are so-called free hand editors, in which users can draw whatever
they want on a virtual canvas and produce a graphical bitmap as output.
This entails image processing and pattern recognition to understand the
programmer’s intentions by identifying the graphical objects and their
relationships. (With text scanned from paper, the problem would be the
same.) This editor is the most flexible solution, but, on the other hand,
it is very difficult to interpret the input of the user.

As HEP analysis implies a clear symbology and query pattern, we do
not allow this flexibility, but provide a predefined set of graphical ob-
jects that can be used. Instead of allowing the specification of text,lines,
rectangles, or circles which are then scanned and parsed into graphical
objects, we go further than that and we allow the user to specify already
the graphical objects/symbols of the query language. The meaning of the
pictorial elements is either already known or easy to learn, so we apply an
incremental parsing approach where the query elements are easily parsed
while being built. An internal spatial relation graph is generated.

At this stage, editors can be classified as:

• Syntax-free - They are merely used to enter visual queries, without
any syntax concerned.

9.2. USER INTERFACE - THE VISUAL EDITOR 145

• Syntax-directed - They only allow the user to enter syntactically
correct queries.

• Syntax-assisted - They prompt the users to write syntactically cor-
rect queries.

Syntax-free editors were not under consideration because we need to
syntactically validate the query construction. We could leave the respon-
sibility to a syntax checker module that feeds the syntax problems back
to the editor after the query construction. But the problem of this ap-
proach is that because of all the syntax errors returned back, the user has
to memorize the syntax if he wants to have a less time-consuming query
production phase. We want the user to realize when he is producing an
invalid query sentence.

Having declined the first option, we are left either with a syntax-
directed or a syntax-assisted editor.

Syntax-directed editors enforce correct user inputs. Inputs that conflict
with the given syntax are immediately rejected. These editors are fine
for situations where we do not have to deal with intermediate syntactic
states. It is much more complex to implement these editors if intermediate
states occur that are syntactically incorrect but potentially correct. If, for
instance, the Transformer operator in PHEASANT is left alone, we can say
that the question is incorrect. However, it is potentially correct because
we can connect this operator to the selection operators and the result
particle operator. In our opinion, these editors are not the right approach
for PHEASANT, as users are going to have the same problems as with the
existing textual interfaces, only on a graphical level. As a consequence,
we have decided to implement a syntax-assisted editor, although knowing
that it is harder to develop than a syntax-directed one, as it is more
interactive. This means that it helps the user to arrive at a correctly
formed syntax by giving hints. Incorrect constellations of objects are not
rejected outright but are highlighted to indicate problems with the query.
Fig.9.6 shows the query from Fig.8.1 in the layout of our editor. Note the
pop-up menu in the lower right corner of the figure. This is used to input
the before-mentioned attribute and condition lists.

When dealing with languages that imply the use of the keyboard for
the input of text (for labeling, the specification of strings, or mathemat-
ical equations) and using the mouse to draw the graphics, this implies

146 CHAPTER 9. PROTOTYPE FRAMEWORK - PHEASANT

that the programmer is constantly distracted. Together with that, the
repeated movement of the mouse pointer between the “palette” to select
the graphical elements and the virtual canvas can cause user complaints.
Because of these two reasons, we implement pop-up menus on the drawing
site.

Abstract Syntax ModelConcrete Components Spatial Relationship Graph

Concrete−>SRG SRG−>AMS

Figure 9.4: Transformation from CSG to ASG

We must identify two levels of syntax: Concrete and Abstract Syntax.
The concrete syntax must include every detail concerning visual as-

pects of the language, whereas the abstract syntax can safely ignore all
aspects that are not needed within the semantics definition. This means
that the abstract syntax abstracts concrete symbols and geometric details,
like size and position of objects.

In parallel to the textual language parsing, the visual language has a
sequence of steps that involves a three-stage process:

• Scanning or lexical analysis - Some intermediate data structure
is necessary to represent the pictorial structure of the diagram. The
physical layout is then scanned to produce a spatial relationships
graph (SRG), indicating the components of the diagram and their
relationships. It contains all graphical objects, but instead of con-
taining all individual properties, it represents the higher-level spatial
relations which hold between its objects.

• Parsing or syntax analysis - The SRG is mapped to an abstract
syntax graph (ASG) to reflect the internal (logical) structure of the
diagram according to its visual language. Nodes and edges in this
graph should correspond to language constructs, but do not deter-
mine what these constructs look like.

9.2. USER INTERFACE - THE VISUAL EDITOR 147

• Generation or semantic analysis - This phase implies the inter-
pretation of the logical structures according to the rules for semantic
description of the language and the corresponding generation of a
target code and/or error report. We will concentrate on this topic
in the following sections.

9.2.2 The Architecture of the Visual Editor

SRG

Manager

GUI

Manager

ASG

Rule
Manager

Schema
Manager

Visual Editor
Module

User Input

Abstract Syntax Graph Output

Figure 9.5: Components of the Visual Editor

The Visual Editor of our implemented prototype consists of five main
components: GUI, Spatial Relationship Graph (SRG) manager, Abstract
Syntax Graph manager, Rule manager and Schema manager.

148 CHAPTER 9. PROTOTYPE FRAMEWORK - PHEASANT

GUI

Figure 9.6: PHEASANT query layout

GUI is a typical vector graphics editor, as it can be seen on Fig.9.6. It
notifies the SRG manager every time a concrete component is inserted or
modified in order to update both the SRG and the ASG. These packages
verify the corresponding syntax. In order to provide feedback to the user,
they return the status through the message window or by using colors to
indicate the incomplete state of the query sentence drawn so far.

Some of the visual elements have a second level of detail through the
use of pop-up menus. With them, the user is able to specify condition
predicates or extend the list of attributes represented by the element, or
even select the inherent type (for example Particle or Vertex).

The layout is composed by a typical menu bar with pull-down options;
a toolbar, where it is possible to select the several query components; a
canvas, where the query is edited; and a status bar with a corresponding

9.2. USER INTERFACE - THE VISUAL EDITOR 149

message box.

SRG manager

Spatial Relationship Graph manager is a graph of geometric objects like
described in Fig.9.7. It simply deals with insertions, updates and removals
from the graph, leaving all the syntax interpretation for the ASG manager
to which it communicates the changes.

ASG manager

This is a graph manager that deals with the syntax graph generation
derived from the graph grammar described in Chapter 8. This manager is
responsible for calling the rule manager and the schema manager to verify
the syntactical validity of the sentence.

It is possible to implement a type-safe or a non-type-safe data model.
Our framework was designed to support the first one. This way, it is able
to check and reject queries that will generate run-time errors due to type
inconsistencies.

Rule manager

Although very primitive in our first prototype implementation, this man-
ager collects a set of grammar rules (based on our graph grammar specified
in Chapter 8) to deal syntactically with the components. This manager is
also fed by a script during the initialization phase, that provides a list of
arithmetic constants and user defined functions (UDFs) that are consid-
ered to be valid.

In order to check the well-formedness of the text strings where the
user describes the query predicates (or conditions attributes) and the new
attributes description for each visual component, a special parser was
implemented. It has to deal with arithmetic inequality expressions that
understand the constants and user-defined functions.

Schema manager

To support the slight variations in the data schema of each different ex-
periment framework, this module accepts the schema description (in the

150 CHAPTER 9. PROTOTYPE FRAMEWORK - PHEASANT

Color

Label

Size

Position

Status

Geometric

Ellipse

Container

Circle

Rectangle

Picture

histogram

1D

2D

3D

Set Symbols

Union

Intersection

Difference

LineMiddle circle

Arrow

SimpleBroken
with diamond

with diamond

with circle

with circle
Broken

Objects
Geometric

Figure 9.7: Meta-description of the concrete symbols

shape of a graph). The schema objects must obey to the base structure
presented in Fig.9.1.

9.2. USER INTERFACE - THE VISUAL EDITOR 151

InsertingNodes#

Node : Run X AttList X Type
AttList =< {id BIGINT} {flag BIGINT}... >
Type = Container

Node : Event X AttList X Type
AttList =< {id BIGINT} {exp SMALLINT} {flagBIGINT} · · · >
Type = Event

Node : Particle X Attlist X Type
AttList =< {xf DOUBLE} {yf DOUBLE} · · · >
Type = Physics Objects
. . .

#InsertingArcs

Arc : Run contains Event
Arc : Event contains Particle
Arc : Event contains V ertex
Arc : Particle refers V ertex using vertex
Arc : V ertex refers Particle using ingoing
Arc : V ertex refers Particle using outgoing
. . .

Figure 9.8: Specifying the schema in PHEASANT

9.2.3 Future Work

This language editor meets many of the requirements for effective graph-
ical user interfaces. Human Computer Interaction here takes the main
role in increasing the usability. Our first prototype can and should be im-
proved on both the output of the visual language and data visualization
by taking what this research area has to offer.

152 CHAPTER 9. PROTOTYPE FRAMEWORK - PHEASANT

For instance, it is very well known that providing copying protocols
to produce duplicate fragments like cut-&-paste mechanisms reduces the
time spent to reproduce similar query fragments. A typical example would
be when the user specifies the list of predicates of a selection object and
does not want to input them again in another similar selection object part
of the decay being specified. Another interesting idea would be to support
a list of template queries, where the user would get a skeleton of a query
that he could fill in and/or expand.

9.3 The Generation of a Logical Query Plan

In this section, we describe how we have implemented the transformation
of the Abstract Syntax Graph (ASG) into a valid logical query plan. The
ASG provided by the User Interface tool will be first translated using an
intermediate step into an Abstract Syntax Tree (AST), and then into a
logical query plan.

Abstract Syntax Graph Abstract Syntax Tree Logical Query Plan

ASG−>AST AST−>LPT

Figure 9.9: Generation of a logical query plan

The process of generating a Logical Plan Tree (LPT) from the query
represented in the ASG internal structure derived from the GUI applica-
tion, described in the previous chapter, is split into two major steps. In
the first one, the possibly cyclic graph is transformed into a tree, which
is easier to deal with. In fact, the algorithms to interpret the graph get
very complex and error-prone. In contrast, handling trees is much simpler.
Our second step deals with the translation of the tree into the correspond-
ing algebraic operators, as predicted in the semantics description of our
language PHEASANT QL.

9.3. THE GENERATION OF A LOGICAL QUERY PLAN 153

9.3.1 AST Generator

We now introduce intermediate transformation steps applied directly to
the Abstract Syntax Graph (ASG). At the moment, the ASG has the form
of a DAG. After re-writing it, we will have translated it into an Abstract
Syntax Tree (AST).

First, we present our first naive approach, as described in [9], present-
ing its drawbacks, then we present an improved approach.

Rewriting the Visual Query with the Naive approach

The intersection and union operators - At the first step of the query
- the collection selection, when more than two containers are linked by
the intersection operator - it is necessary to unfold the graph structure in
order to be able to run the semantic rules for intersection that just deal
with two operators. The rule is visually explained in Fig.9.10.

a c

b

d

a

b

d

c

A) B)

Unfolding from A) to B) the QCollection graph with intersections or unions (represented by a circle)

with more then two operators.

Figure 9.10: Unfolding the QCollection

Comparison operators - As described before, the Comparison is a
binary operator that is linked with non-directed edges to Selection oper-
ators. This operator necessarily closes the DAG, which is more easy to
deal with if we break it up into a tree.

154 CHAPTER 9. PROTOTYPE FRAMEWORK - PHEASANT

While dealing with this operator, the break-up rule depends on whether
both selection objects have to be dependent on each other or not. In the
first case, we operate the decomposition by using the transformation rules
depicted in Fig.9.11 on the left and middle side. If they are dependent,
we use the transformation depicted on the right side.

As stated by the rule on the left of Fig.9.11, the closed DAG is broken
into a tree-like structure by making a copy Y’ of the Y selection object
and connecting it as input to the Comparison operator.

X Y

X Y

Y’

A)

B)

X
A)

B)

Y

X

Y’

Y

X’

Y

Z

X

Y

Z

X

A)

B)

Y’ Z’

in the three situations A) is transformed into B):

Left side: Rewrite rule of the Compare operator with objects part of the same decay tree.

Middle: Rule for rewriting the compare operator between selection objects of different decay chain trees.

Right side: describes the rewriting rule for the compare operator when a ”collision” occurs.

Figure 9.11: Naive rewriting of the comparison operators

When comparison operations are used between selection objects that
are not part of the same direct decay tree (have non-dependency), we copy
both selection objects, and two operator nodes are inserted accordingly,
as it is depicted in Fig.9.11 (middle transformation).

In case of ”collision”, which means that the same selection object is
being used by two or more different comparison operators, it should be
decomposed one by one (see Fig.9.11, right transformation). The criteria
for the order of nesting is set in the implementation phase.

Sample rewriting - A complete example of the rules defined in this
section can be found in Figure 9.12, which is a rewrite of our first example
in Figure 8.1 and also uses an object reference from the particle Pi+ to

9.3. THE GENERATION OF A LOGICAL QUERY PLAN 155

its Monte Carlo counterpart.

1D

Pi+

run3

Pi run3

Pi+
Pi+

run3

Pi
−

K0

D+

T1

T2

A1

PV

mcPi

−

Figure 9.12: The D+ decay example rewritten with a naive approach

Rewriting the Visual Query with a Non-defactorization approach

run3

Pi+

Pi+

1D
Event

Pi−

K0

D+

T1

T2

A1

PV

Moving to the closest common parental node

Figure 9.13: Rewriting the graph into a tree by restructuring the compar-
ison nodes

156 CHAPTER 9. PROTOTYPE FRAMEWORK - PHEASANT

The naive splitting approach is satisfactory for the collection queries,
but as far as the decay description queries are concerned, this approach
has the problem of causing an exponential query plan explosion. The
de-factorization produces redundancy in the semantics mapping, which is
more difficult to deal with for optimization purposes. The resulting query
plan, after the translation of the semantic translational rules, would be
extremely inefficient. The natural visual factorization of the user is being
wasted this way.

In accordance with the semantics description of the language in the
last chapter, we can observe that comparison operators represent purely a
selection predicate. Abstracting the syntax as proposed by our BNF like
grammar, although being designed for formal purposes, still helps us in
the implementation phase.

In fact, if we remove these comparison operators from their place and
add their predicate to a conjunctive list to be applied to the root node,
the meaning will keep the same. This is another form of de-factorization.
The price to pay in this case is that when translating the semantics we will
get a query execution plan with late selections. As a result, longer object
streams are used in main memory, data are kept unnecessarily data, and
computational resources are wasted with unnecessary data manipulations.

In consequence of this line of thought, we can do even better than
that. We want to keep the factorization. If we set a rule that moves the
predicate to the closest parental connection node in the tree, it is more
efficient since the comparison always implies a join of two branches in the
query tree (see Fig.9.13).

9.3.2 Logical Query Plan Generator

Based on the description of our mapping generator, we were able to derive
a recursive algorithm that reads the query tree.

This algorithm descends from the query tree root and walks down its
branches until it reaches the leaves and transforms the syntax tree into a
corresponding algebraic query plan.

The following pseudo-code roughly represents the algorithm for map-
ping the decay tree (for simplicity reasons, we omit the part that translates
the collections):

9.3. THE GENERATION OF A LOGICAL QUERY PLAN 157

MapDecay
Input: Node in the AST as node
Output: Query plan sub-Tree

switch node :

case ©
if (deriveType(©) =−→)

childs = getChilds(−→)
tree = {}
foreach child in childs

mapchild = MapDecay(child)
if (tree = {}) tree = mapchild
else tree = setT ree(

=
, {tree,mapchild})

setT ree(∆, childs)
return setT ree(∆, tree)

if (deriveType(©) = • −→)

childs = getChilds(−→)
if (mandatory(deriveType(©)) = True)

tree = setT ree(∆, setT ree(µ,QEvent))
foreach child in childs
tree = setT ree(µ, tree)

else
tree = setT ree(∆, setT ree(=µ,QEvent))
foreach child in childs
tree = setT ree(=µ, tree)

return tree

if (deriveType(©) = � −→)
if (mandatory(deriveType(©)) = True)

return setT ree(Γ,
setT ree(

=
,MapDecay(©),MapDecay(getChild(©))))

else
return setT ree(Γ,
setT ree(> ,MapDecay(©),MapDecay(getChild(©))))

else if (deriveType(©) = {})
return setT ree(∆, setT ree(µ,QEvent))

158 CHAPTER 9. PROTOTYPE FRAMEWORK - PHEASANT

MapDecay (cont.)

case ROOT
childs = getChilds(ROOT)
tree = {}
foreach child in childs
mapchild = MapDecay(child)
if (tree = {}) tree = mapchild
else tree = setT ree(

=
, {tree,mapchild})

setT ree(∆, childs)
return setT ree(∆, tree)

case
return setT ree(∆, setT ree(Γ),MapDecay(getChild(node))

case �
parent = NewNode(σ)
child = MapDecay(getChild(node))
return setT ree(parent, children)

As said before, this approach was used for a prototype implementation.
Therefore, we believe there is still plenty of room for improvement in
this phase. Deriving more elegant or improved algorithms is the possible
evolution of this work.

9.4 Code Generation

In this section, we briefly describe how we have implemented the genera-
tion of code starting with a logical query plan and then optimizing it and
generating the physical query plan that is finally mapped into the target
code.

9.4. CODE GENERATION 159

Optimized Plan Tree Target Source CodeLogical Query Plan

OPT−>TSCLPT−>OPT

Figure 9.14: Source code generation

9.4.1 Query Plan Optimization

In this phase, the initial logical query plan tree is re-written into an equiva-
lent, but more efficient expression using transformation rules. This means
that it will be optimized into a new algebraic query plan and then mapped
into a corresponding physical execution plan that uses physical operators.
We have left out the logical optimization from our prototype, since this is
an active research area that is beyond the scope of our thesis. It should,
nevertheless, be considered in the next phase of the implementation. A
good introduction to the topic can be found in [59].

Usually, in other database engines, to generate the physical query plan,
there should be an optimizer to decide on the mapping: which selection
method to use, which join method, and where to materialize or pipeline.
In our case we have skipped the optimization and have mapped the query
plan tree directly to physical operators. This gives room for future im-
provements that will have strong impact on the performance (but are not
relevant for the purposes of this thesis).

9.4.2 Target Code Generation

For each of the algebraic operators we have built a corresponding physical
operator, but in the future we need to add more operators to broaden the
possibilities for physical optimization. Furthermore, as a typical charac-
teristic of a domain language, rather than interpreting our query plan, we
compile the plans into an executable code.

In order to implement this phase, we have been inspired by the elegant
approach of Fegaras in the LDB database system [51, 49]. He makes use of

160 CHAPTER 9. PROTOTYPE FRAMEWORK - PHEASANT

a stream-based execution engine (also called pipelining or iterator-based
processing) in a purely functional fashion. As described in his paper, this
technique borrows concepts from the area of lazy functional languages
avoiding to use threads to implement the pipelining.

The concept is simple to grasp. A Stream is an entity that contains
a stream of tuples. It operates with the main services: Open, Close and
Next. It can be of the type materialized, when stored into second storage,
or suspended, while kept in memory.

The operator algorithms return a tuple as soon as it is constructed. In
order to retrieve all the tuples, the algorithm is called several times.

The pipelining is then guaranteed by a structure of an embedded func-
tion, which is named suspended stream, that for each time it is invoked
without arguments, it calls the algorithm to construct the tuple. The fol-
lowing pseudo-code, generated when running a map algorithm that walks
down the physical plan tree, makes this strategy evident:

9.4. CODE GENERATION 161

Example of query code

#############
Query Predicates
#############
Bool pred1(tuple t)
{ if(Some defined predicate)

return new bool(true);
else
return new bool(false); }

Bool pred2(tuple t)
{...}

Bool pred3(tuple t1, tuple t2)
{...}

#############
Query Functions
#############
tuple function1()
{return table scan(((Stream∗) stream[0]), &pred; }

tuple function2()
{return table scan(((Stream∗) stream[1]), &pred2); }

tuple function3()
{return Nested Loop((∗Stream) query[1], (∗Stream) query[2], pred3); }

#############
Query Streams
#############
query[1] = (void∗)suspended stream(&function1);
query[2] = (void∗)suspended stream(&function2);
query[3] = (void∗)suspended stream(&function3);

162 CHAPTER 9. PROTOTYPE FRAMEWORK - PHEASANT

A complete description of the library of physical operator algorithms
that we have implemented based on Fegaras’ work is described in Ap-
pendix B. The signature of these algorithms is defined in Fig.9.15. As
we can see there, the implementations are a simplification of the algebraic
operators. In fact, the Nest algorithm is prepared to group-by the tuples
by event identifiers and they already include the evaluation of the Reduc-
tion operator usually associated with it in our query pattern (as described
in Chapter 8).

table− scan : Stream X Predicate −→ Tuple

Union : Stream X Stream −→ Tuple
Intersection : Stream X Stream −→ Tuple
Difference : Stream X Stream −→ Tuple

Unnest : Stream X Path XPredicateXOuter −→ Tuple
Nested Loop : Stream X Stream X Predicate X Outer −→ Tuple
Nest : Stream X Head XAggregateFunction −→ Tuple

Figure 9.15: Physical operators: Signature of the Table-scan

Interfacing with the Storage Engine

The experiment’s framework developers are responsible for the design of
the storage engine. The function of this layer is to deal with persistent
data and their transfer between main and secondary memory. We will
abstract from the way HEP storage engines do buffer management and
how they deal with some indexing to retrieve the data.

In order to be able to couple our operator’s Streams with the BEE (see
Appendix B) storage engine, we have designed a “quick and dirty” solution
which is to use an API on top of BEE and maintain an Event buffer with
the FIFO (First In First Out) rule. The idea is then to make use of a
hybrid solution of similar concepts to Eager and Lazy pointer swizzling

9.4. CODE GENERATION 163

Stream

<evt,unnested object>

Unnest

3

5

6

1

...

Unnest

BEE API

<1444>
<1440>
<1435>
<evt>

Stream Event

evt

collection

...

Event Blob

getEventBlob(id)

Event

getNextCollection()
Stream Collection

<collection>

infNextEvent(id))

event

getunnested(event,object,position)

object

2

4

7

getEvent(id,position)

Event Buffer

getUnnested(collection,event,position)

Event

Collection

Event Blob

getNextCollection()

collection

Figure 9.16: Interacting with the storage engine

[1]. This means that before unnesting an object contained by an event
for the first time, the stream evokes a method to load the specific event
object from disk into main memory. All the persistent pointers this object
contains in the shape of OIDs (referencing particles, vertexes, and others)
are transformed (swizzled) immediately into main memory pointers. At
the same time, the referenced objects are all copied into the Event buffer.
The way data is clustered makes this phase very easy, since all the related
objects of the event are usually stored together as a blob not only in BEE,
but also in several other analysis frameworks.

The rest of the data, like the Collections or the Events, are dealt with
by lazy swizzling, meaning that no pointer is swizzled unnecessarily, only

164 CHAPTER 9. PROTOTYPE FRAMEWORK - PHEASANT

upon request.
In order to better understand our API’s function, let us follow an

example like the one described in Fig.9.16. It starts with the stream of
collection objects that is called by the unnest operator. This activates
the method getNextCollection() in our API(1), which, in turn, calls the
getNextCollection (2) method on the BEE side. This is going to retrieve
from the class extent collection (materialized in second storage) the next
collection object which is then returned to the stream.

The unnest operator (3) will now request (getUnnested) for the next
Event object contained in the currently selected collection object. This is
achieved by giving the collection ID and the position in the set of Events.
The API will retrieve (4) the event from the Event class extent from the
BEE framework (which is indexed by the collection ID to which this Event
belongs).

The stream of Events will inform the API (5) that the Event is re-
quested every time its method Next is called. This way, the API verifies
whether it already exists in the event buffer. If this is not the case, the
API calls the getEventBlob (6) that requests the corresponding Event blob
from the BEE framework. It should be stored on secondary storage and
possibly indexed by the event ID (if the framework developers designed
it correspondingly). The objects are eagerly swizzled and are ready in
memory to be accessed by an unnest operator in (7) or by the rest of the
pipelined branches of the query plan.

9.5. SUMMARY 165

9.5 Summary

In this chapter, we focused on giving a top-down view of the several ar-
chitectural modules required for our prototype framework.

• Visual Editor - Deals with the interface to the user and generates
an ASG as the input to the following module. HCI considerations
were taken into account while designing the first PHEASANT pro-
totype. We have presented our reasoning and decisions that took
previous research in this area into account. At this level, optimiza-
tion can be reached by exploring user interface techniques with a
strong feedback from the users. It is an evolving process, like any
HCI software engineering project. Therefore, we suggest more itera-
tions in the software engineering life-cycle for further developments
in this area.

• Plan Generator - responsible for transforming the Abstract Syntax
Graph into an execution plan. We have presented several algorithms
as solutions. First, we have introduced a naive approach, and then
an improved version. As future work, we expect to derive better
algorithms.

• Code Generator - We detailed the transformation of the query
plan into a valid source code that can be compiled and run against
the physics storage base.

166 CHAPTER 9. PROTOTYPE FRAMEWORK - PHEASANT

Part IV

Evaluation of the Research

167

Chapter 10

Evaluation

In previous chapters, we have detailed the new methodology proposed by
this thesis for improving the user’s performance at the analysis phase.
It is necessary to evaluate the usability of the proposed DSVQL. In this
chapter, we are going to describe how we have structured our assessment
to do so.

To support our claims that with our methods we manage to improve
the efficiency, reduce the error rate and have a steep learning curve, we
have to perform a complete and unbiased evaluation of our language, com-
paring it to a real-life programming analysis framework. During the de-
velopment of our prototype, two frameworks developed by the Hera-B
collaboration were considered: ARTE [4] and BEE [55]. The first option
had multiple portability problems and lacked technical support like a doc-
umentation, which forced us to adopt the second one. BEE makes use of
C++ as a query language.

Next, we present how we have systematized the evaluation process to
provide quantitative and qualitative information on the usability of our
language.

In section 10.1, we discuss the concepts and the related work on inter-
face evaluation that has deeply influenced ours. In section 10.2, we present
the formal definition of usability according to ISO 9241-11. Section 10.3 is
dedicated to detail the tasks we have programmed to lead the experiment
to its end. In session 10.4, we present our interpretation of the results
obtained in the assessment and, finally, our conclusions.

169

170 CHAPTER 10. EVALUATION

10.1 Related Work

An interesting work on human factors in the evaluation of query languages
can be found in [82]. A survey in recent visual query experiences is con-
tained in [24]. A complete evaluation of a comparison between a visual
query language named Kaleidoquery and OQL can be found in [74]. We
have made use of these papers as major guidelines to our experiment.

10.1.1 Human Factors

Together with physical and perceptual activities, visual query languages
involve cognitive activities like learning, understanding and remembering.
Experimenters in human factors have developed a list of tasks to capture
particular aspects. In [82], the authors propose the following list:

• Query writing - users are given a question stated in natural language
and have to write a query in the given query language.

• Query reading - users are given a query written in the query language
and asked to write a translation into a natural language.

• Query interpretation - users are given a query in the query language
and a printed database with the data filled in. They are asked to
find the result of the query.

• Question comprehension - users are given a question in a natural
language and a printed database and are asked to find the data
asked for.

• Memorization - users are asked to memorize and reproduce a database.

• Problem solving - users are given a problem and a database and are
asked to generate questions in English that would solve the problem.
The questions should be answerable with the database.

To evaluate these tasks, we can use different kinds of tests:

• Final exams - Test how easily a query language can be learned.
These exams take place at the end of teaching the language under
evaluation.

10.2. A DEFINITION OF USABILITY 171

• Immediate comprehension - Help identify why particular learning
problems occur. They are given during teaching, immediately after
some function has been taught, to determine whether the partici-
pants can use the function, given that they know it is the one to
use.

• Reviews - Help identify why particular learning problems occur.
They are given during teaching and cover functions taught up to
that time. The participants are required to know which function to
use.

• Productivity - Tests of the query language use by “skilled” users.
They test how well the language can be used after some predeter-
mined level of learning has been attained.

• Retention - Tests how easy a query language is to remember: how
well it can be used by people who have been away from it for a
period of time.

• Re-learning - Tests how easy a query language is to relearn by users
who have been away from it for a period of time and have forgotten
some of it.

Testing different tasks in the language usage is interesting, but to per-
form an exhaustive evaluation of them would be very expensive. Therefore,
we concentrate on the critical activities. In the case of Pheasant’s evalu-
ation, we are interested in the task of query writing and problem solving.
This is justified by the fact that the main function of our language is to
provide the users with a tool that speeds up code generation. We want
to know how easily it is to learn and use. Therefore, we will restrict our
evaluation to the first three tests.

10.2 A Definition of Usability

As specified by ISO 9241-111, usability is:

1ISO economic requirements for office work with visual display terminals (VDTs),
guidance on usability 1998

172 CHAPTER 10. EVALUATION

“The extent to which a product can be used by specified users to
achieve specified goals with effectiveness, efficiency and satisfaction in a
specified context of use”.

Measuring effectiveness means to determine the accuracy and com-
pletion when performing queries.

Efficiency measurement is related to the level of effectiveness achieved
at the expense of various resources, such as mental and physical effort,
time, financial cost, etc. Efficiency is more commonly measured in terms
of time spent to complete a query.

When measuring satisfaction in use it means freedom from incon-
veniences and positive attitude towards the use of the product. How
comfortable does the user feel while using the system?

10.3 The Evaluation

Subject recruitment

Task Preparation

Pilot Session

Training Session

Evaluation Session
per language

per group

Exam

Analysis of results

Final Questionnaire

Figure 10.1: The evaluation process steps

10.3. THE EVALUATION 173

As already mentioned, our goal is to assert the usability by evaluating
the error rate, user satisfaction, and time to write a query.

The steps of the evaluation process are summarized in Fig.10.1. The
whole process starts with the Participant Recruitment, where the users
are analyzed and grouped into clear categories. This way,the variables
concerning the user profile that will lead to different results for different
groups are controlled. This step is followed by the Task Preparation.
The aim here is to organize the evaluation by determining which tasks
have to be done and which tests are elaborated in order to provide the
proper results. This will generate the information required to be analyzed
afterwards. The next step is the Pilot Session, which is meant to simulate
the exam and test that the material for the training and the evaluation
procedures is well organized. The main advantage of this rehearsal is to
check that the time constraints and other possible external variables like
proper equipment are controlled and do not interfere with the results.

Once everything is tested, we proceed to the assertion, which we called
Evaluation Session, for each group and language being compared. First,
the Training Session will introduce a language. At this stage, the Im-
mediate Comprehension and Review tests will already take place while
introducing the features of the language.

The final exams of learning, in the Exam Session, will involve query
writing activities. This session implies observation and recording of the
participants’ activities like completion times and error rates and a ques-
tionnaire. The goal is to determine the easiness of learning.

After each group has been evaluated in the different languages, the
participants are asked for a debriefing in the form of a questionnaire. The
goal is to obtain the user’s perspective of the comparison between the
languages.

From [24] we are advised that in order to evaluate unbiasedly, the users
should test the same environment and as realistically as possible.

10.3.1 Recruitment of Participants

According to the context of HEP experiments we devise three types of per-
sons involved: informed programmers (Inf-P), uninformed programmers
(non-I-P) and non-programmers (non-P). Programmers are those familiar
with computers and regular users of programming languages (C, C++,
Java or Fortran). This group can be subdivided in informed (if they have

174 CHAPTER 10. EVALUATION

already programmed with the present analysis framework) or uninformed
(if they have not). Non-programmers are familiar with computers and
operating systems, but have little experience in programming languages
and have not used any form of physics database interface before2.

We suggest the usage of two different groups of programmers because
the informed ones may introduce a bias on the learning phase of the com-
pared query methodologies. This assumption is taken into account even
if informed programmers and non-programmers are the majority of the
population in the Hera-B experiment (although this proportion is not
necessarily the same in other experiments).

In order to place every participant in the proper group, they were all
interviewed and their previous experience was analyzed, avoiding this way
the bias of a self-evaluation.

We will now detail the steps taken for the comparison of both Pheasant
and BEE/C++ framework.

10.3.2 Task Preparation

Johnson[63] suggests that six individuals per subset of the population is
the minimum required for a controlled experiment. Of course it is sensible
to take a larger number, but the costs should be kept to a minimum. The
task of gathering three groups of six persons in a HEP research lab is
already nontrivial. All the participants should have a degree in physics or
be near its completion at least, and they should be skilled in experimental
analysis. A basic knowledge of programming concepts is mandatory, since
this subject is taught in the first years of the physics courses.

Introducing one query system to the whole group of participants and
only afterwards the other query system can lead to the situation of know-
ing the first system to influence the results on evaluating the other. In
order to reduce this bias in the results we have to split the group in two.
This way, we reduce the influence of the first language while presenting
the second. Mixing the three groups might lead to new variables in the

2Usually, these are found among students newly introduced to the environment
like summer students or students starting their thesis. It is also common to find senior
physicists with very little experience in programming languages and the new generation
of analysis frameworks. A possible description of the system actors and their role in
High Energy Physics can be found in [66].

10.3. THE EVALUATION 175

evaluation that are hard to track. Therefore, we have to organize at least
six sessions, with each group taking part in two sessions.

The features we want to have evaluated are:

• Query steps in Pheasant vs the object-oriented coding

• Expressing a decay

• Specification of filtering conditions

• Vertexing and the usage of user-defined functions

• Aggregation

• Path expressions (navigational queries)

• Expressing the result set

• The expressiveness of user-defined functions

10.3.3 Pilot Session

Our evaluation technique was tested with two individuals (two physics
experts) in order to verify it and to test the teaching materials and ques-
tionnaires. This also helped to avoid (or to reduce the risk) that the
evaluation had to be redone from scratch because of unforeseen problems.

10.3.4 Training Session

Obviously, due to the complexity and the time constraints, we cannot
teach the complete C++ query language plus the interface of the analysis
frameworks’ libraries. We have to focus on presenting examples (6 exam-
ples), and on the corresponding explanation of the code that represents
each of the features to be evaluated. The individuals should try the fea-
tures by designing a similar query. The last query should make use of all
the features taught in the session.

Murray[74] suggests that the participants should give themselves a
mark for their feeling of correctness of their trial. This introduces them to
the system of auto-marking. Besides, it helps the trainer to infer if there
are difficulties experienced and an extra explanation is required. This
session should take the time required for each group to understand the six
examples.

176 CHAPTER 10. EVALUATION

10.3.5 Evaluation Session

a) Evaluation Queries
In this phase, we evaluate the participants’ performance in query writ-

ing. Every participant has four queries in English to be rewritten in the
previously learned language. The subject makes a self-assessment of his re-
ply rating his feeling of the correctness of the answer. The rates are totally
correct (TC), almost correct (AC), totally incorrect (TI), not attempted
(NA). The conditions are equal for every individual in the experiment.
For each of the queries, we measure the time taken to reply them.

b) Questionnaires

After each session, the participants are asked to judge the intuitiveness,
suitability and effectiveness of the query language. The goal is to evaluate:

• Overall reactions - to obtain an overall reaction to one of the query
languages through queries.

• Query language constructs - with the participants rating how easily
specific aspects of the query language are to use.

After the tests are completed, the participants are asked to compare
the two query languages. It is rated which query language they prefer,
and to what extent.

• Query language comparisons - the participants are asked to compare
specific aspects of both query languages and rate the preferences they
have.

• Participants’ comments - allows the participants to comment freely
on the query language.

Since with the evaluation questionnaire we can only identify problems
but not infer how to solve them, we ask the participants to contribute cre-
ative comments. Sometimes improvements are obvious and the comments
can be fruitful. Therefore, after the evaluation session the participants are
asked to write down informal comments and suggestions for improving the
language.

10.4. RESULTS 177

10.4 Results

In this section, we summarize the relevant results of our evaluation tests.
First, we deal with effectiveness by having a look at the test results with
regard to the errors produced by the user while interacting with both eval-
uated approaches. Then, we will describe the results related to efficiency,
which are mainly concerned with time measurements. Finally, we will
describe the results concerning the user satisfaction.

Unfortunately, due to the fact that the Hera-B experiment was over
before our assertion, we did not manage to gather the expected number
of scientists for our assertion (two Non-P, one Non-I-P and two Inf-P). A
greater number of subjects would mean a higher certainty on the conclu-
sions and a lower error rate. Nevertheless, it is still a strong indicator.

In order to reduce the variables that could influence the results, the
queries were explained orally by an expert. This reduces the required in-
terpretation time (which has a significant impact, especially in the first
group, since it is less experienced). Code re-usage was not allowed, al-
though they could use all the necessary documentation and especially the
notes from the training session.

10.4.1 Effectiveness - Errors

Analogous to Reisner’s [82] proposal, we grade the queries by:

5 Correct
4 Minor data error, will not retrieve the complete result.

(e.g some results missing)
3 Minor language error, e.g. misspelling and punctuation
2 Error of substance; valid queries that produce wrong answer
1 Error of form, invalid query
0 Not attempted

As it can be observed in the histograms of Figs.10.2 and in more detail
in Fig.10.4, while using C++ as a query language, the error rate was
tremendous. We must state that the user did not have any sort of feedback
from the system execution in order to spot the mistake and correct it before
it came to the hands of the evaluator. In his daily life, the user tries to
execute the algorithm and watches the result data after the execution.

178 CHAPTER 10. EVALUATION

Figure 10.2: Effectiveness C++/BEE: Huge error rate.

Then, in a cyclic way, he corrects himself and runs the query against the
storage base. As we have claimed in chapter 4, this is one of the main
reasons why the query generation in the physics analysis phase is so time-
consuming.

In Fig.10.3 and Fig.10.4, we can also observe that different groups of
users get different results. As expected, their quality is directly propor-
tional to the user’s experience. Some of the most complex queries were
not even tried due to the fact that they were too difficult for users un-
experienced in C++, which had just 2 hours of training (obviously not
enough).

As far as the Pheasant Query language is concerned, the results are
much more promising. As the query mechanisms are much simpler and
controlled, we do not observe invalid queries, and only a few wrong answers
(which can be explained by some inexperience of the users in doing analysis
itself).

Generally, the results show that the user did not have to essentially
change the way he thinks about the query generation, which means that

10.4. RESULTS 179

Figure 10.3: Effectiveness Pheasant: Huge correct rate.

we have reached the goal of introducing a query language closer to the
physicist’s conceptual level of analysis.

180 CHAPTER 10. EVALUATION

BEE/C++ N-P N-I-P Inf-P
Correct
Minor data error 12.5
Minor language error 20 50
Essentially correct 0 20 62.5
Wrong answer 37.5 20 25
Invalid 25 20 12.5
Not attempted 37.5 20
Totally incorrect 100 60 37.5

Figure 10.4: Error analysis in BEE framework (percent values)

Pheasant N-P N-I-P Inf-P
Correct 87.5 80 87.5
Minor data error
Minor language error 20 12.5
Essentially correct 87.5 100 100
Wrong answer 12.5
Invalid
Not attempted
Totally incorrect 12.5 0 0

Figure 10.5: Error analysis in Pheasant (percent values)

Pheasant/ BEE Non-P Non-I-P Inf-P Mean
Structuring the query 5/1 5/1 4/4 4.7/2
Different data schema feature 3.5/1 3/1 3.5/3 3.3/1.7
Expressing a decay 5/1 5/2 4.5/2 4.8/1.7
Expressing filter conditions 5/1 5/2 5/4.5 5/2.5
Expressing and using vertexing 5/1 5/2 5/4 5/2.3
Expressing and using UDFs 4.5/1 3/3 3.5/5 3.7/3
Path expressions 5/3.5 5/2 3/5 4.3/3.5
Expressing the result set 5/1 5/ 2 5/3.5 5/2.2
Mean 4.8/1.3 4.5/1.9 4.2/3.9

Figure 10.6: Language constructs analysis: Subject evaluation. Scale from
1(worst) to 5(best)

10.4. RESULTS 181

10.4.2 Efficiency - Resulting Times

Figure 10.7: Efficiency of C++/BEE vs. Pheasant: Less training time
required.

From our time analysis (Figs.10.7, 10.7 and detailed in Fig.10.9), it
becomes clear that more time has to be spent learning and using C++
and BEE than with Pheasant. This can be justified by the complexity
of C++ and the BEE library. At the same time, the test participant
had less confidence in the quality of his/her query (see also Fig.10.10 and
Fig.10.9). This subjective impression is confirmed, as we have seen, by
the huge error rate when using BEE, Figs.10.4 and 10.5.

In Fig.10.6 we have given an excerpt of a list of features needed in HEP
analysis. The test participants were supposed to rate how they were sat-
isfied with the realization of each feature in the corresponding framework.
Our goal was to identify potential weaknesses of each framework.

182 CHAPTER 10. EVALUATION

Figure 10.8: Efficiency C++/BEE vs. Pheasant: Much less time to com-
plete the task.

10.4.3 User Satisfaction

The enthusiasm towards the language was significant. The several com-
ments focused more on implementation issues to improve interactivity and
did not criticize the language itself. This is a typical situation in user in-
terfaces when dealing with prototypes. It is explained by the fact that
the prototype needs to evolve into the next engineering life cycle phase
to result in a properly engineered software product. Only this way the
product is able to provide a real analysis environment and the user can
compare it in his daily life with the other alternative solutions.

Although the system experts (a minority in a typical HEP experiment
analysis) recognize that the solution is a more comfortable approach for
analysis, they still worry that the query tool might be less expressive. In
order to confirm or reduce these fears, we propose to carry out further
tests of Productivity, as described in 10.2.

Some of the most relevant comments are listed in the following:

• “Pheasant should reuse my previous queries, with C++ I just re-

10.5. SUMMARY 183

Non-P C++ BEE Pheasant

Training time (hours:minutes) 2:15 1:05

Mean total exam time (hours:minutes) > 2 : 00 1:35

Mean confidence/query (5 very/0 not) 1 3,5

Non-I-P C++ BEE Pheasant

Training time (hours:minutes) 1:20 1:15

Mean total exam time (hours:minutes) > 2 : 00 0 : 40

Mean confidence/query (5 very/0 not) 2 4

Inf-P C++ BEE Pheasant

Training time (hours:minutes) 0:20 1:35

Mean total exam time (hours:minutes) 2 : 00 0 : 35

Mean confidence/query (5 very/0 not) 3.5 4,5

Figure 10.9: Time analysis - The result times were rounded to multiples
of 5 minute units.

edit”

• “The user interface could be similar to a Wizard of a Microsoft
product”

• “I think the tests should be done with full execution environment”

• “Is there a way to script my query? I have the feeling sometimes
it would speed up...With complex repetitive things the mouse tires
me.”

From these comments we can infer, for instance, that a query reuse
mechanism should be provided in a final implementation solution. Also, a
query history mechanism where the user can browse on past queries and
respective solutions, is an extra feature which might have a great impact
on user satisfaction.

10.5 Summary

In this chapter, we have detailed the procedure to validate our initial
usability claims.

184 CHAPTER 10. EVALUATION

Figure 10.10: Effectiveness C++/BEE vs. Pheasant: More confidence
from the user.

Let us now summarize our evaluation. In terms of Effectiveness,
Pheasant provides the user with a tool that is more accurate and complete
than the other solutions. When looking at Efficiency the present running
approaches, we have a clear evidence that less time is used to achieve the
same goal. Generally, the Satisfaction in use was higher with Pheasant.
The only exception to this were expert users, who feel very familiar with
their day-to-day tool and request further tests on the expressive power of
the language by trying it out in different experiment contexts (leading it
to its extremes).

Chapter 11

Conclusions

In this section we rest the case. First we will give a quick summary and
conclusions of the thesis. Then we state what were our major contributions
and we end with suggestions for future work.

11.1 Thesis Summary

This thesis had the main goal of presenting a solution for improving the
user productivity in HEP analysis/data-mining phase. In order to do that,
we have started by carefully understanding the context and the traditional
procedure of the physicist while analyzing the data. This implied gath-
ering widely dispersed information, justified by the fact that no serious
studies have been done so far, and by the fact that any documentation
concerning this phase is typically scarce and inconclusive.

Two key concepts from other research areas were taken into account
when proposing the solution. From a survey in the area of Visual Query
Systems (VQL), we concluded that hybrid VQLs were the ones that suited
best our requirements. From the area of Domain Engineering, we derived
a procedure to design and develop our language that was suited to this
specific domain where the general purpose approach is traditionally prob-
lematic.

By combining these two concepts, we have proposed to approach our
problem by developing a declarative Domain Specific Visual Query Lan-
guage for HEP analysis.

With our language, which we named PHEASANT QL, we introduce

185

186 CHAPTER 11. CONCLUSIONS

an abstraction level in the system. As a consequence, the user is no longer
responsible for the performance, and the computer scientist is able to
optimize it without interfering with the user activities.

The work did not stop here. Proposing a DSVQL necessarily entailed
proving that it was a feasible and usable approach.

From the point of view of feasibility, we have proposed a notation that
uses objects from the conceptual model, not from the logical model (as it is
usual in other languages). We have formally defined the language notation
by mapping it to our defined algebra (based on relational algebra). The
next step was the implementation of a prototype that is able to deal with
this language and to generate the queries in a target language that will
run against the physicist’s database when compiled and executed. The
architecture of this system and some design options were described in this
thesis.

The final step was to prove that our approach improves productivity. In
Human Computer Interfaces, this is known as evaluation of the language’s
usability. In order to do that, we have organized a complete evaluation
session and determined efficiency, effectiveness and satisfaction in use. The
evaluation corroborates our hypothesis.

As future work, we propose to use our framework to improve the effi-
ciency of the system by deriving better algorithms (in order to be faster
and to use less bandwidth and memory).

11.2 Contributions from This Thesis

The problem is very well-known in the area. To our knowledge, before
this thesis was written there was no real attempt to tackle the problem
in such a global and methodical manner. Therefore, during our thesis ar-
gumentation, we believe to have introduced tools to solve a long-standing
question: How to improve performance in the analysis phase?

As a major contribution for both computer science and High Energy
Physics Computing, we have opened up a new application area, a domain-
specific visual query language for HEP, and thoroughly explored it. This
can also be interpreted as a practical application of computer science tools
to solve a problem in High Energy Physics.

Instead of adopting a bottom-up approach for designing the solution,
where tuning and hacking legacy systems would be the only way to pro-

11.3. SUGGESTIONS FOR FUTURE WORK 187

PHEASANT Database

Soft.Eng.

Visual
Languages

HCI

Linguistics

Languages
Query

Figure 11.1: Research areas

ceed, we decided for a top-down design. With our approach, we have
provided the HEP community with the concept of a unifying framework.
This framework combines several areas of knowledge in computer science
research (see Fig. 11.1): physics computing, databases, human centric
interfaces, linguistics, software engineering (with domain-specific model-
ing), and the intersecting areas of query languages and visual languages.
The main design strategy was to propose a way to raise abstraction, mod-
ularizing the analysis frameworks, designing a new language as a flexible
query tool, and introducing possibilities for optimization. Thus, we have
designed an ambitious framework by using a new software engineering
methodology[8], and we have validated most of the ideas through the im-
plementation of a prototype.

11.3 Suggestions for Future Work

In our opinion, our work can and should be extended and evolved. Given
the methodology and the different phases in the query processing that
were introduced by the proposed framework, we have established the foun-
dations and opened the doors to the next phase, i.e. to study, explore
and derive better or superior algorithms at the different stages. We have
already proposed several directions in the thesis, in the different topics
approached, as future research. We then summarize these proposals:

188 CHAPTER 11. CONCLUSIONS

• Language Design

At the level of the query language design, which is always an
interesting subject, the potentials for optimization are promising.
Starting with the language notation, passing by the definition of
semantic rules that optimize before translating into the algebraic
notation, and finally the syntax translation itself. For instance, se-
mantic errors can be already filtered out, releasing the burden of
the query plan optimizer to do it. This entails moving from a sim-
ple syntax translational approach to a more operational approach,
exposing the semantic content to a more clever virtual machine for
semantics optimization.

• Framework Design and Implementation

At the framework level, there is also a huge potential for opti-
mization. More work can be done at the user interface level (human
interfaces area), introducing more techniques like undo-redo, query
history mechanism, etc. We can also proceed with the algebraic
optimization and invest on deriving new physical operators together
with the physical plan optimization. Finally, we can invest on evalu-
ating the storage engines performance and design when integrated to
Pheasant. Eventually, given the query pattern that we have already
studied, it will help us on determine the best approach.

Part V

Bibliography

189

Bibliography

[1] G. M. A. Kemper. Object-Oriented Database Management: Appli-
cations in engineering and computer science. Prentice Hall Interna-
tional Editions, Englewood Cliffs, New Jersey, 1994.

[2] R. Agrawal, N. Gehani, and J. Srinivasan. Odeview: The graphical
interface to ode. Proc. ACM SIGMOD conf., May 1990.

[3] A. Alashqur, S. Su, and H. Lam. Oql - a query language for manipu-
lating object-oriented databases. Proc. 15th VLDB Conf. Amsterdam,
pages 434–442, 1989.

[4] H. Albrecht. The computing model for hera-b. Proc. CHEP’97,
Berlin, edited by DESY Hamburg, 1997.

[5] H. Albrecht and et al. Argus: A universal detector at doris ii. NIM,
pages A275:1–48, 1989.

[6] V. Amaral, A. Amorim, and et.al. Operational experience running the
herab-b database system. In H. Chen, editor, Proceedings of CHEP
2001, International Conference on Computing in High Energy and
Nuclear Physics, Beijing, P. R. China, pages 396–397. Science Press,
September 2001.

[7] V. Amaral, S. Helmer, and G. Moerkotte. Designing and implement-
ing a new abstraction layer to optimize the hep analysis process.
IEEE Conf. Record of Nuclear Science Symposium NSS, Portland,
OR, USA, pages N26–104, October 2003.

[8] V. Amaral, S. Helmer, and G. Moerkotte. A domain specific visual
query language for the high energy physics environment. In J.-P.

191

192 BIBLIOGRAPHY

Tolvanen, J. Gray, and M. Rossi, editors, 3rd Workshop on Domain-
Specific Modeling, An OOPSLA 2003 Workshop, Anaheim, CA, USA,
pages 9–16. Jyväskylä University Printing House, Finland, October
2003.

[9] V. Amaral, S. Helmer, and G. Moerkotte. Pheasant: A physicist’s
easy analysis tool. Technical Report of the University of Mannheim:
8/03, 2003.

[10] V. Amaral, S. Helmer, and G. Moerkotte. A visual query language
for hep analysis. IEEE Conf. Record of Nuclear Science Symposium
NSS, Portland, OR, USA, pages N26–105, October 2003.

[11] V. Amaral, S. Helmer, and G. Moerkotte. Pheasant: A physicist’s
easy analysis tool. In J. Carbonell and J. Siekmann, editors, LNAI
Lecture Notes in Artificial Inteligence, pages 3055:229–242. Springer
Verlag, June 2004.

[12] V. Amaral, G. Moerkotte, A. Amorim, and S. Helmer. Studies for op-
timization of data analysis queries for hep using hera-b commissioning
data. In H. Chen, editor, Proceedings of CHEP 2001, International
Conference on Computing in High Energy and Nuclear Physics, Bei-
jing, P. R. China, pages 154–155. Science Press, September 2001.

[13] A. Amorim, V. Amaral, and et. al. The hera-b database management
for detector configuration, calibration, alignment, slow control and
data classification. In I. P. Mirco Mazzucato, editor, Proceeding of
CHEP 2000, international conference on Computing in High Energy
and Nuclear Physics, 7-11 February, Padova-Italy, pages 469–472.
Imprimenda, Padova, Italy, February 2000.

[14] A. Amorim, V. Amaral, and et. al. The hera-b database services for
detector configuration, calibration, alignment, slow control and data
classification. Elsevier Science, Computer Physics Communications,
140(15):172–178, October 2001.

[15] I. Analog Devices. Adsp-2106x sharcTM . User’s Manual, 1997.

[16] I. Androustsopoulos, G. Ritchie, and P. Thanisch. Natural language
interfaces to databases - an introduction. Journal of Natural Language
Engineering, Mars 1995.

BIBLIOGRAPHY 193

[17] M. Angelaccio, T. Catarci, and G. Santucci. qbd∗: A graphical query
language with recursion. IEEE Transactions on Software Engineer-
ing, 16:1150–1163, 1990.

[18] M. aude, A. Portier, and C. Trépied. A survey of query languages for
geographic information systems. Proc. 3rd International Workshop
on Interfaces to Databases, July 1996.

[19] T. Bapty, S. Neema, J. Scott, J. Sztipanovits, and S. Asaad. Model-
integrated tools for the design of dynamically reconfigurable systems.
VLSI Design, 10(3):281–306, 2000.

[20] B. Belieres and C. Trepied. New metaphors for a visual query lan-
guage. 7th International Workshop on Database and Expert Systems,
1996.

[21] R. Brun. Zebra - reference manual - rz random access package. Pro-
gram Library Q100, CERN.

[22] D. Bryce and R. Hull. Snap: A graphics-based schema manager.
Proc. IEEE Data Eng. Conf., 1986.

[23] M. Carey, L. Haas, V. Maganty, and J. Williams. Pesto: An inte-
grated query/browser for object databases. Proc. ACM conf. VLDB,
1996.

[24] T. Catarci. What happened when database researchers met usability.
Information Systems, 3(25):177–212, October 2000.

[25] T. Catarci, M. Costabile, S. Levialdi, and C. Batini. Visual query
systems for databases: A survey. Journal of Visual Languages and
Computing, 8:2:215–260, April 1997.

[26] N. Chang and K. Fu. Query-by-pictorial example. IEEE, Tran. on
Software Eng., 6(6):519–524, 1980.

[27] E. F. Codd A Data Base Sublanguage Founded on the Relational
Calculus. Proceedings of 1971 ACM SIGFIDET Workshop on Data
Description, Access and Control, 1972.

[28] Collaboration. CMS(Compact Muon Solenoid). http: // cmsinfo.

cern. ch .

194 BIBLIOGRAPHY

[29] Collaboration. εz. http: // www-zeus. desy. de/ ~odeppe/ ez/ ez.
html .

[30] Collaboration. JAS:. http: // jas. freehep. org/ .

[31] Collaboration. LHC:. http: // public. web. cern. ch/ public/

about/ future/ whatisLHC/ whatisLHC. html .

[32] Collaboration. LHCb:. http: // lhcb-public. web. cern. ch .

[33] Collaboration. PAW. http: // www. cern. ch/ paw/ , 1988.

[34] Collaboration. Atlas high-level trigger data acquisition and controls.
Technical Design Report http: // atlasexperiment. org/ , ATLAS
TDR CERN/LHCC(016), June 2003.

[35] Collaboration. Hera-B, design report. DESY-PRC 95/01,URL:http:
// www-hera-b. desy. de , January 1995.

[36] M. Consens and A. Mendelzon. Hy+: A hygraph-based query
language and visualization system. SIGMOD,Washington,DC,USA,
93(5).

[37] M. Consens and A. Mendelzon. Expressing structural hypertex
queries in graphlog. Proceedings of the 2nd ACM Hypertext Con-
ference, pages 269–292, 1989.

[38] J. Coplien, D. Hoffman, and D. Weiss. Commonality and variabil-
ity in software engineering. IEEE Software, pages 37–45, Novem-
ber/December 1998.

[39] P. Cox and T. Smedley. Experiences with visual programming lan-
guages for end-users and specific domains. In J.-P. Tolvanen, J. Gray,
and M. Rossi, editors, Proc. 1st. OOPSLA Workshop on Domain-
Specific Visual Languages, Tampa Bay FL, pages 87–96. Jyväskylä
University Printing House, October 2001.

[40] I. Cruz. Doodle: A visual language for object-oriented databases.
Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 71–
80, June 1992.

BIBLIOGRAPHY 195

[41] I. Cruz, A. Mendelzon, and P. Wood. G+: Recursive queries with-
out recursion. Proceedings of the 2nd Int. Conf. on Expert Database
Systems, pages 355–368, 1988.

[42] B. Czejdo and R. Elmasri. A graphical data manipulation language
for an extended entity-relationship model. IEEE Computer journal,
23:26–36, 1990.

[43] E. M. D. Malon. Critical database technologies for high energy
physics. Proc. of the 23rd VLDB Conference Athens, Greece, 1997.

[44] R. Davies. A metatool for visual language. Master Thesis, October
1997.

[45] Y. Dennebouy, M. Anderson, A. Auddino, Y. Dupont, E. Fontana,
M. Gentile, and S. Spaccapietra. Super: visual interfaces for object +
relationship data models. Journal of visual languages and computing,
1(6):27–52, 1995.

[46] J. et al. Farming in hera-b. Proc. of the DAQ 2000 workshop at the
IEEE NPSS conference, Lyon, October 2000.

[47] J. et al. Pc farms for triggering and online reconstruction at hera-b.
Proc. of the CHEP 2001 conference, Beijing, China, September 2001.

[48] S. K. et. al. Improving the performance of high-energy physics anal-
ysis through bitmap indices. Proc. 11th International Conference
on Database and Expert Systems Applications DEXA 2000, London,
Greenwich,UK, 2000.

[49] L. Fegaras. Ldb database:. http: // lambda. uta. edu/ lambda-DB.
html .

[50] L. Fegaras. Voodoo: A visual object-oriented database language for
odmg oql. Proc. ECOOP Workshop on Object-Oriented Databases,
pages 61–72, 1999.

[51] L. Fegaras and D. Maier. Optimizing object queries using an effective
calculus. ACM Transactions on Database systems, 25(4):457–516,
December 2000.

196 BIBLIOGRAPHY

[52] D. Fogg. Lessons from ’living in a database’ graphical query interface.
Proc. ACM SIGMOD Int. Conf. management of Data, pages 100–106,
June 1984.

[53] A. Franzke. Querying graph structures with g2ql. Fachbericht Infor-
matik 10/96, Universitt Koblenz-Landau, 1996.

[54] F.Sánchez. Digital signal processor software for the hera-b second
level trigger. Proc. CHEP 98 conference, CHICAGO, September
1998.

[55] T. Glebe. Clue - the bee event model library. HERA-B Note 01-138,
Software 01-019, 2001.

[56] T. Glebe. Pattern - high level tools for data analysis. Internal report
HERA-B Note 02-002, Software 02-002, DESY, 2002.

[57] K. Goldman, P. Kanellakis, S. Goldman, and S. Zdonik. Isis: Interface
for semantic information system. Proc. ACMSIGMOD Int. Conf.
Management of Data, pages 328–342, May 1985.

[58] M. Gyssens, J. Paredaens, J. Bussche, and D. Gucht. A graph-
orientedd object database model. POODS, pages 417–424, 1990.

[59] J. W. Hector Garcia-Molina, Jeffrey Ullman. Database System Im-
plementation. Prentice Hall, 2000.

[60] S. Herot. Spatial management of data. ACM Trans. Database Sys-
tems, 5:493–514, December 1980.

[61] H.Perkins and Donald. Introduction to High Energy Physics.
Addison-Wesley Publishing Company, Reading, Massachusetts, 1982.

[62] Y. Ionnadis. Advanced user interfaces for database systems. SIGMOD
RECORD, 21(1), March 1992.

[63] P. Johnson. Human Computer Interaction. McGraw-Hill, London,
1992.

[64] T. Joseph and A. Cardenas. Picquery: A high level query language for
pictorial database management. IEEE Trans. Software Eng., 14:630–
638, May 1988.

BIBLIOGRAPHY 197

[65] R. King. A database management system based on an object model.
Expert Database Systems, pages 443–467, 1986.

[66] B. Knuteson. Quaero: Motivation, summary, status. Proc. CHEP
2003, UC San Diego, USA, 2003.

[67] M. Kuntz and R. Melchert. Pasta-3’s graphical query language: direct
manipulation, cooperative queries, full expressive power. Proc. 15th
VLDB Conf., August 1989.

[68] B. M. M. Jaedicke. User-defined table operators: Enhancing extensi-
bility for ordbms. 25th VLDB Conference, Edinburg, Scotland, 1999.

[69] N. Macdonald and M.Stonebraker. Cupid: A user friendly graphics
query language. Proc. ACM pacific, pages 127–131, 1975.

[70] D. Maier, J. Stein, A. Otis, and A. Purdy. Development of an object
oriented dbms. Report no. CS/E-86-005, Oregon Graduate Center,
1986.

[71] C. Manoj. Towards an odmg-compliant visual object query language.
Proc. of the 23rd VLDB Conference Athens, Greece, 1997.

[72] L. Mohan and R. Kashyap. A visual query language for graphical
interaction with schema-intensive databases. IEEE Transactions on
Knowledge and Data Engineering, 5(5), October 1993.

[73] A. Motro, A. D’Atri, and L. Tarantino. The design of kiview: An
object-oriented browser’. Proc. 2nd Int’l. Conf. on Expert Database
Sys., April 1988.

[74] N. Murray, N. Paton, and C. Goble. Kaleidoquery: A visual query
language for object databases. Int. working Conference in Advanced
Visual interfaces, May 1998.

[75] OMG, (Object Management Group, Inc.) Meta Object Facility
(MOF) Specification Version 1.4 (April 2002),http: // www. omg.
org .

[76] A. Papantonakis and P. King. Syntax and semantics of gql, a graph-
ical query language. Journal of Visual Languages and Computing,
6:3–25, 1995.

198 BIBLIOGRAPHY

[77] J. Paredaens, P. Peelman, and L. Tanca. G-whiz, a visual interface
for the functional model with recursion. Proc. 11th Int. Conference
on Very Large Databases,Stockolm, pages 209–218, 1985.

[78] J. Paredaens, P. Peelman, and L. Tanca. G-log: A graph-based query
language. IEEE Transactions on Knowledge and Data Engineering,
3(7):436–453, 1995.

[79] A. Portier. Grasp: A graphical system for statistical databases.
In CIGALES: un langage graphicque d’interrogation de Systémes
d’Information Géographiques, Ph.d Thesis. University of Paris, 1992.

[80] E. Powabbas and M. Rafenelli. A pictorical query language for query-
ing geographic databases using positional and olap operators. Sigmod
Record, 31(2):22–27, June 2002.

[81] F. Rademakers and R. Brun. Root: An object-oriented data analysis
framework. Proc. AIHENP’96 Workshop, Nucl.Inst. Meth. in Phys.
Res. A 389 (1997),Lausanne . See also http: // root. cern. ch ,
pages 81–86, September 1996.

[82] P. Reisner. Query languages. In M. Helander, editor, Handbook of
Human-Computer interaction, volume 420, pages 257–280. Elsevier
Science publishers B. V., North-Holland, 1988.

[83] S. Ross. Introduction to probability and statistics for engineers and
scientists. Wiley series in probability and mathematical statistics,
John Wiley and Sons, 1987.

[84] B. Schneiderman. Visual user interfaces for information exploration.
Proc. of the 54th Annual Meeting of the American Society for Infor-
mation Science,Medford. NJ. Learned Information Inc., pages 379–
384, 1991.

[85] T. Shih, Y. Tsai, J. Hung, and D. Jiang. A case tool supports the soft-
ware life cycle of participator dependent multimedia presentations.
ICMS, pages 200–203, 1998.

[86] D. Shipman. The functional data model and the data language
daplex. ACM Transactions on Database Systems, 6(1):140–173,
March 1981.

[87] A. Shoshani, L. Bernardo, H. Nordberg, D. Rotem, and A. Sim. Mul-
tidimensional indexing and query coordination for tertiary storage
management. IEEE, 11th International Conference on Scientific and
Statistical Database Management, Cleveland, Ohio, page 214, July
28-30 1999.

[88] F. Staes, L. Tarantino, and A. Tiems. A graphical query language
for object oriented databases. Proc. IEEE Workshop on Visual Lan-
guages,Kobe,Japan, pages 205–210, 1991.

[89] S. Thibault. Domain-specific languages: Conception, implementation
and application. Phd. Thesis, October 1998.

[90] K. Vadaparty, Y. Aslandogan, and G. Ozsoyoglu. Towards a unified
visual database access. ACM SIGMOD, pages 357–366, 1993.

[91] A. van Deursen, P. Klint, and J. Visser. Domainspecific lan-
guages. Tech. Report SEN-R0032,http: // www. cwi. nl/ arie,
paulk,jvisser/ , November 2000.

[92] K. Wittenburg. Early-style parsing for relational grammars. Proc.
IEEE Workshop Visual Languages, pages 192–199, 1992.

[93] H. Wong and I. Kuo. Guide: A graphical user interface for database
exploration. Proc. 8th VLDBD Conf., pages 22–32, 1982.

[94] M. Zloof. Query by example. IBM Systems Journal, 4:324–343, De-
cember 1977.

Glossary

Abstraction - supression of irrelevant details.

AOD - Physics analysis object data, information used in final analysis.

ASG - Abstract Syntax Graph.

AST - Abstract Syntax Tree.

CERN - European Laboratory for Particle Physics, Geneva, Switzerland.

DESY - In Hamburg / Germany.

Detector data - Data that describes and qualifies the detecting appara-
tus, and are used to interpret the event data (structure, geome-
try, calibration, alignment, environmental parameters). Statistical
data - resulting data from processing a set of events (histograms,
n-tuples).

DSP - Digital Signal Processor.

DSVL - Domain Specific Visual Language.

DSVQL - Domain Specific Visual Query Language.

ESD - Event summary data. Information required for detayled analysis
and high level reconstruction.

Event data - Data obtained from particle collisions, and their subsequent
refinements (raw data, reconstructed data, analysis data, etc...).

GPL - General Purpose Language.

GUI - Graphical User Interface.

201

HEP - High Energy Physics.

HERA-B - Experiment in DESY.

IDL - Interface Definition Language.

LEP - Large Electron Positron collider.

LHC - Large Hadron Collider.

Meta-Data - That describes other data, like the statistics and event cat-
alog (example Run).

Model - formal specification of a function,structure and/or behaviour of
a system.

Monte Carlo Simulation - Random generation of values for certain vari-
ables according to a model. Used when there is the requirement
to automatically analyze the effect of varying inputs on outputs
of the modeled system. This simulation technique was named for
Monte Carlo, Monaco, where the primary attractions are casinos
containing games of chance such as roulette wheels, dice, and slot
machines, that exhibit random behavior. This statistics technique
is very often used for the generation of simulated physics data. It
follows a complex model to simulate all the particles that cross the
detector, their interactions between them and with the detector, in
order to simulate the data that comes out of the detector (hits).

n-tuple - The flat (or table) model that consists of a single, two-dimensional
array of data elements, where all members of a given column are
assumed to be similar values, and all members of a row are assumed
to be related to one another.

NASA - National Aeronautics and Space Administration.

ODL - Object Description Language.

Particle Accelerator - uses electric/magnetic fields to propel charged par-
ticles to great energies. Quadrupole magnets are used to focus the
particles into a beam and prevent their mutual electrostatic repul-
sion from causing them to spread out.

Particle Collider - the purpose of an accelerator is to generate high energy
particles for interaction with matter. This entails provoking a col-
lision using usually a fixed target. The other way is to make these
particles collide with particles accelerated in oposite directions.

Platform - general term to unify technological and engineering details
that are irrelevant to the fundamental functionality of a software
component.

QL - Query Language.

RAW - Real raw data. data read directly from the detector and eventually
processed on-line. Defined as being WORM data (write once read
many),must be securely stored and never modified.

RTTI - Run Time Type Identification.

Run - Meta-data information for the Event data that is being collected,
such as the parameters of the experiment, e.g. the setup of the
detectors, the time span during which data acquisition took place
and general quality issues.

SIM - Simulated raw data.

SLAC - Stanford Linear Accelerator Center.

TAG - Event tag data, summaries the main feature of an Event in order
to be used for fast event selection.

TESLA - The Superconducting Electron-Positron Linear Collider with an
Integrated X-Ray Laser Laboratory. To be built in the future.

VL - Visual Language.

VME - VERSAmodule Eurocard. Systems for mission-critical and real-
time applications.

Index

accelerator, 10
analysis frameworks, 17

object-oriented, 23
future trends, 24
historic perspective, 17
hybrid, 21
unstructured, 18
visualization tools, 23

BEE, 169
bunches, 7, 11

CERN, 9

Data
acquisition, 10
Analysis, 10
analysis system, 17
Reconstruction, 10

detector, 9
commissioning, 10
data acquisition, 10
design and assemble, 10

domain specific
engineering, 66
in HEP, 68
languages, 64
modeling, 63

DSVQL, 74

editors
syntax assisted, 145

syntax directed, 145
syntax free, 144

event, 8

filter triggers, 12

generation
Abstract syntax tree, 153

naive approach, 153
non-defactorization approach,

155
Algebraic optimization, 159
code, 158, 159
interfacing with storage engine,

162
Logical query plan, 152, 156
Physical operators optimiza-

tion, 159
pipelining, 159
stream based execution engine,

159
generation or semantic analysis,

147

HEP, 7
experiment life-phases, 10
off-line system, 10, 14
on-line system, 10, 12

HERA, 11
HERA-B, 9
High Energy Physics, 7

204

interaction rate, 11
intermediate algebraic operators,

95

Monte Carlo, 30
Simulation, 30
truth, 30

n-tuple, 20

off-line systems, 14
on-line system, 12

parsing or syntax analysis, 146
particle detector, 11
particles collision, 11
PHEASANT

interface
ASG manager, 149
GUI, 148
Rule manager, 149
Schema manager, 149
Text parser, 149
Type Checking, 149

prototype
implementation, 143
use cases, 141

SRG manager, 149
system actors, 140

domain expert, 140
final user, 140
physics storage base, 140
query storage base, 140

use cases, 140
Pheasant

prototype
architecture, 139

PHEASANT QL
graph grammar, 89

semantics description, 111
BNF like grammar, 91
symbolic notation, 81

physics
analysis systems, 17
calibration and alignment, 15
constants, 14
data reconstruction, 14
environment data, 15
event data, 16
period data, 16
raw data, 14

physics analysis
high level, 28
low level, 27
query patterns, 32

query language
semantics, 94
definition, 79
syntax, 80

concrete vs. abstract, 80
query languages

artificial, 49
graphical, 53
hybrid, 57
metaphor-based, 56
natural, 48
non-textual, 50
tabular, 51

form-based, 52
skeleton-based, 52

textual, 48
query systems, 45

taxonomy, 46

ROOT, 205
run, 8

scanning or lexical analysis, 146
segment, 9

track, 9
trigger

first level, 12
fourth level, 14
second level, 13
third level, 14

triggers, 8

usability, 171
effectiveness, 172
efficiency, 172
satisfaction in use, 172

Part VI

Appendix

207

Appendix A

The BEE framework

BEE is a layer(wrapper) on top of ROOT[81] that introduces the schema of
the analysis data of the Hera-B experiment. ROOT, by its turn, is meant
to deal with large amounts of event data. It’s primary goal is to support
the Particle Physics analysis, under the assumption that physicists doing
analysis, are mostly concerned with the manipulation of the computed
results in histograms and n-tuples.

The framework integrates several functionalities:

• CINT C/C++ Interpreter 1 - It allows the interactive ROOT
command line with the C/C++ scripting language. Large scripts
can be compiled and dynamically linked, making the extension of
the framework very easy.

• The ROOT Dictionary - Functions, global variables and classes
are stored in its memory resident dictionary. This dictionary is much
more extensive than the RTTI2 facility as proposed in the C++ stan-
dard. The dictionary is generated by the CINT Dictionary Gener-
ator using the C++ header files without requiring ODL3 or IDL
4.

• Automatic Document Generation - Using the dictionary and
the comments stated in the source files ROOT can automatically

1by Masaharu Goto of Hewlett Packard Japan
2Run Time Type Identification
3Object Description Language
4Interface Definition Language

209

generate a source code documentation both in HTML and PostScript
format.

• GUI Classes and Object Browser - Embedded in the ROOT
system is an extensive set of GUI classes. The GUI classes provide
a full OO-GUI framework as opposed to a simple wrapper around a
GUI such as Motif. All GUI classes are fully scriptable and accessible
via the interpreter,(which makes it very easy to do fast prototyping
of widgets layout). A very complete library of histogramming with
fitting methods was included and is the main point of attraction to
physicists and mathematicians since this scientists are able to get
advanced statistical analysis (multi dimensional histogramming, fit-
ting and minimization algorithms) together with visualization tools.
The facility of being able to deal with histograms and n-tuples as
persistent objects in the ROOT database files format is another im-
portant feature.

• ROOT object I/O System and Class/Schema evolution -
The framework was developed to include general purpose language’s
functionality such as distribution and object persistency. Despite
the fact that ROOT is not a DBMS, the persistency mechanism is
being tuned to match physics’ data storage retrieval and analysis
requirements.

• Distributed system - Using the PROOF (Parallel ROOT Facility)
extension, large databases can be analyzed in parallel on Massively
Parallel Processing (MPP) and Symmetric Multiprocessing (SMP)
systems or loosely coupled workstation/PC clusters.

• ROOT and ODBC - This library is a set of classes that provides
an interface to ODBC. It is implemented as ROOT wrappers of
libodbc++. As usual with this packages it allows: establishing a
connection from ROOT session to any database for which an ODBC
driver is available; send SQL statements and process the results.

Appendix B

Physical operators’ algorithms

B.1 Stream Class

Stream

Attributes:
kept tuple
last path
found tuple

Methods:
Open
Close
Next tuple
memorize found tuple
forget found tuple
memorize last path for unnest
forget last path
memorize kept tuple
forget kept tuple
is stream opened?
is stream closed?

211

B.2 Table-scan/Selection

Table-Scan/Selection
Input: Stream s, Predicate pred
Output: Tuple

get next tuple from stream s
while(tuple exists)
{
if(predicate is true)
return tuple
get next tuple from stream s
};
return No Tuple

B.3 Table-scan/Selection

Reduce
Input: Stream s, Predicate pred, Head head
Output: Tuple

get next tuple from stream s
while(tuple exists)
{
if(predicate is true)
return head(tuple)
get next tuple from stream s
};
return No Tuple

B.4 Operators for sets

Union
Input: Stream sx, Stream sy
Output: Tuple

if (sx is closed)
return next tuple from sy stream

get next tuple x from stream sx
if (tuple x exists)

return tuple x
close stream sx
return next tuple from sy

Intersection
Input: Stream sx, Stream sy
Output: Tuple

get next tuple x from sx
if (tuple x exists)

open sy
get next tuple y from sy
while (evt id of x is different from evt id of y)

get next tuple y from sy
close stream sy
if (tuple y exists) return tuple x

return No Tuple

Difference
Input: Stream sx, Stream sy
Output: Tuple

get next tuple x from sx
if (tuple x exists)

open sy
get next tuple y from sy
while (evt id of x is different from evt id of y)

get next tuple y from sy
close stream sy
if (tuple y does not exist) return tuple x

return No Tuple

B.5 Operator for Unnesting

Unnest
Input: Stream s, Predicate pred, Bool outer, Path path
Output: Tuple

get next tuple x from s
while (tuple x exists)
{

tuple y= next path of x
s memorizes last path
while (tuple y exists)

tuple z= y appended to x
if (predicate of z is true)

s memorizes x
s memorizes it was found a tuple
return z

tuple y= next path of x
we have reached the end of inner part
if (outer is true and s does not remember found tuple)

s keeps memory of x
s forgets memory of x
s forgets if it was found a tuple
s forgets last path
get next tuple x from s
if (tuple x exists)
if (outer is true and s kept memory of old x)

s memorizes tuple x
set tuple result= kept appended by <>
s forgets kept tuple
return result tuple

else if (outer is true and s kept memory of old x)
reached the end of the outer stream
return the kept old x appended with <>

}
return No Tuple

B.6 Operators for Join

Nested Loop
Input: Stream sx and sy, Predicate pred, Boolean outer
Output: Tuple

get next tuple x from sx
while (tuple x exists)
{

get next tuple y from sy
while (tupple y exists)
{
if (predicate is true)

sx memorizes x for next tuple
return tuple < x, y >

get next tuple y from sy
}
we have reached end of inner stream
if (outer is true and it does not remember x)

outer was not joined
keep x as left

sx forgets x
get next tuple x from sx
if (tuple x exists)
open again sy
else if (outer is true and exists left)

we have reached the end of outer stream
return < left, null >;

}
return No Tuple

B.7 Operators for Nest

Nest
Input: Stream s, Predicate pred, Head Function head,

Aggregate Function agg
Output: Tuple

Assumes that all the tuples with the same evt id are consecutive
head function inputs tuple and returns < value > or < value, tuple >

get next tuple x from stream s
s forgets any tuple it might remember
while(tuple exists)
{

tuple result tuple initiates with No Tuple
tuple y=x
get evt.id to keepid from x
if (exists evt.id)
while (exists tuple y and evt.id of y=keepid)

result tuple=agg(head(y),result tuple)
get next tuple y from s

else get nest tuple y from stream s
if (predicate of result tuple is true)

s memorizes y
return result tuple

tuple x = y
}
return No Tuple

