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Abstract 

Much of the empirical success of Rank-Dependent Expected Utility Theory and Cumulative 

Prospect Theory is due to the fact that they allow for nonlinearity towards both outcomes 

(through the utility function) and probabilities (through the probability weighting function). 

Since risk attitude is jointly determined by the shapes of the two functions, it would be instruc-

tive to measure how the degree of risk aversion incorporated in the utility function empirically 

covaries with its counterpart from the probability weighting function. We conduct a large-scale 

simulation to assess whether an elicitation procedure based on the trade-off method, which es-

sentially equals that used in recent empirical studies, allows to reliably measure the quantity of 

interest. We find a strong systematic distortion of measurement, which points at the limitations 

of the presently available elicitation techniques. 
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Introduction 

The classical normative model for decision under risk is Expected Utility (EU) theory developed 

by von Neumann and Morgenstern (1944, 1947). The famous contribution by Allais (1953) and 

numerous experimental studies thereafter (for recent surveys, see e.g. Starmer 2000 and Wu et al. 

2004), however, challenged the descriptive validity of EU. As a response, descriptive theories of 

choice were proposed that could account for many of the systematic deviations from EU. Among 

the most influential of these are Rank-Dependent Expected Utility (RDEU) theory (Quiggin 

1982, Yaari 1987) and Cumulative Prospect Theory (CPT) (Tversky and Kahneman 1992, Cha-

teauneuf and Wakker 1999). 

Contrary to EU, RDEU and CPT are able to model that most decision makers do not treat 

probabilities linearly. Probability distortion enters into the respective evaluation functional in the 

form of the probability weighting function. Together with its counterpart for decision under un-

certainty (Schmeidler 1989), Wakker (2004) considers “this development the main step forward 

for decision under incomplete information of the last decades”. Under EU, the only subjective 

component of the evaluation functional is attitude towards outcomes, captured by the utility 

function. Under RDEU and CPT, the probability weighting function constitutes another subjec-

tive component that reflects individual attitude towards probabilities, also called probabilistic 

risk attitude (Wakker 1994). 

Theoretical studies, particularly in the framework of RDEU, often involve joint condi-

tions on the utility function and the probability weighting function, for instance in characterizing 

risk aversion. Empirical studies that estimate (components of) the RDEU / CPT evaluation func-

tional at an individual level usually report summary statistics of the parameters in question (e.g., 
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Tversky and Kahneman 1992) or display the distribution of parameter estimates, separately for 

each parameter (e.g., Abdellaoui 2000). The issue of interrelation between the different compo-

nents of the RDEU / CPT evaluation functional has not received much attention yet. This is in 

contrast to the issue’s practical relevance. As will be shown in detail later, the sheer variation of 

the degree of interrelation between components of preference functionals can alter the risk be-

havior of decision makers, holding all other relevant characteristics constant 

More specifically, we are interested in the interrelation between the curvature of the util-

ity function and the elevation of the probability weighting function. This naturally leads to the 

topic of a suitable methodology allowing for an unbiased assessment of the quantity of interest. 

We therefore adopt a preference elicitation procedure based on the trade-off method (Wakker 

and Deneffe 1996), which is both theoretically appealing (Wakker and Deneffe 1996, p. 1145f.) 

and has been used in several recent empirical studies (e.g., Abdellaoui 2000, Bleichrodt and 

Pinto 2000, Etchart-Vincent 2004). We will investigate through an extensive simulation study 

whether this methodology is able to produce unbiased estimates of the degree of interrelation in 

the presence of decision error.1 

Simulation presents itself as a suitable methodology because it permits to fix the quantity 

of interest, generate “quasi-experimental” data, obtain the measure of the quantity of interest and 

finally contrast the latter value with the true value. 

The paper is structured as follows. Section 1 briefly introduces the decision-theoretical 

framework. Section 2 first offers additional motivation for our primary research objective and 

then presents an overview of the related literature. Section 3 covers all details of the specification 

of the simulation, including a description of the two-stage elicitation procedure. The results of 

the simulation are given in Section 4. Section 5 summarizes and discusses our findings. 
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1. Decision-Theoretical Framework 

Let X be a set of monetary outcomes. Outcomes are expressed as changes with respect to 

the status quo, i.e. gains or losses. In decision under risk, the objects of choice are probability 

distributions over X called prospects. In the present paper, we restrict attention to binary pros-

pects (x1, p; x2) yielding a monetary outcome x1 with probability p and a monetary outcome x2 

with probability 1 – p. A prospect that involves both a gain and a loss outcome is called mixed. 

Other prospects are called non-mixed. 

If the prospect (x1, p; x2) is evaluated according to RDEU, we assume without loss of 

generality that it is (re-) arranged in the direction of decreasing preference, i.e. x1 ≥ x2. The 

RDEU value is then given by 

)()( 2211 xuxu ⋅+⋅ ππ  (1.) 

where π1 and π2 are decision weights depending on the ranking of outcomes and u(.) is a strictly 

increasing utility function from X to ℜ. The decision weights π1 and π2 are defined by 

)p(wπ1 =   and   , (2.) )p(wπ −= 12

where w(.) is a probability weighting function, i.e. a strictly increasing function from [0, 1] to 

[0, 1] satisfying w(0) = 0 and w(1) = 1. In the absence of probability distortion, i.e. w(p) = p for 

all p ∈ (0, 1), RDEU reduces to EU. 

Under CPT, the utility function satisfies u(0) = 0 and decision weights are determined 

through two probability weighting functions: w +(.) for gains and w –(.) for losses. The CPT value 

of the prospect (x1, p; x2) is still given by Equation (1). If it involves only gains [losses] with x1 ≥ 

x2 ≥ 0 [x1 ≤ x2 ≤ 0], w(.) is replaced by w +(.) [w –(.)] in the decision weights π1 and π2 defined by 
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Equations (2). For mixed prospects with x1 > 0 > x2, decision weights are defined by π1 = w +(p) 

and π2 = w –(1 – p). If the utility function satisfies u(0) = 0 and the duality condition w –(p) = 1 – 

w +(1 – p) holds for all p ∈ (0, 1), CPT and RDEU coincide. 

2. Motivation and Related Literature 

2.1. Motivation 

In EU theory, an individual’s attitude towards risk is fully captured by the curvature of 

the utility function. As pointed out before, RDEU and CPT are generalizations of EU that allow 

for distortions of probabilities as reflected by the probability weighting function in the represen-

tation of the preference relation. As a consequence, an individual’s preference over risky alterna-

tives is determined jointly by the utility function and the probability weighting function. Wakker 

(1994, p. 6) states that “[t]he popularity of RD[E]U is probably explained because it is the first 

well-developed and axiomatized theory to permit a separate attitude towards marginal utility and 

probabilistic risk”. 

The separation of risk attitude into two components proves to be fruitful in empirical re-

search. Some real-world economic phenomena like the purchase of full insurance coverage in the 

presence of positive marginal loading can hardly be accommodated under EU, but are readily 

explained in an RDEU framework (Mossin 1968, Segal and Spivak 1990). Moreover, numerous 

experimental studies suggest that RDEU / CPT are descriptively superior to EU (see e.g. Wu et 

al. 2004 for an overview). 

To further motivate the primary research issue underlying the present paper, we offer a 

simple example illustrating the impact of different forms of the utility function and the probabil-
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ity weighting function on the evaluation of risky alternatives under RDEU / CPT. For notational 

simplicity, we restrict ourselves to the RDEU case. Consider the prospect l = (100, 0.5; 0). As-

sume that decision maker A has EU preferences with utility function u1(x) = x1/2 or, equivalently, 

RDEU preferences with probability weighting function w0(p) = p and utility function u1(x) = x1/2. 

It is easily verified that her certainty equivalent for prospect l amounts to CEA(l) = 25. Alterna-

tively, assume that decision maker B has RDEU preferences with probability weighting function 

w1(p) = p2 and utility function u0(x) = x. Analogous computations yield CEB(l) = 25. Her cer-

tainty equivalent is therefore smaller than the expected value of the prospect. This is noteworthy 

because her utility function is linear, which under EU corresponds with risk neutrality and im-

plies equality between the certainty equivalent and the expected value of the prospect. 

The result is due to the shape of her probability weighting function which reflects “prob-

abilistic risk aversion”. It can be seen that w1(p) < p for all p ∈ (0, 1). This inequality implies that 

the preferred outcome of a binary prospect receives a decision weight smaller than its objective 

probability. In RDEU, a relative dislike of risky prospects can be modeled either through the 

utility function or the probability weighting function. 

Let (wi, uj) denote a decision maker with probability weighting function wi(.) and utility 

function uj(.), where i, j ∈ {0, 1}. The missing permutations are (w0, u0), corresponding to an 

expected value maximizer with CE(l) = 50, and (w1, u1), representing a highly risk averse person 

with CE(l) = 6.25. 

We have now prepared the ground for illustrating the economic relevance of our primary 

research question. Assume a population of RDEU decision makers of size N, among which N/2 

have utility function u0(.) [u1(.)] and likewise N/2 have probability weighting function w0(.) 

[w1(.)].2 Given the parametric families u(x) = xα, α > 0, and w(p) = pβ, β > 0, this information 
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amounts to the marginal probability distributions over the preference parameters α and β respec-

tively. This information is compatible with quite different scenarios: Each of the combinations 

(w0, u0), (w0, u1), (w1, u0), and (w1, u1) might be equally likely, N/2 of the decision makers might 

be characterized by (w0, u0) and (w1, u1) respectively, etc. The distinction between such scenarios 

is economically meaningful. In the framework of the simple example above, think of deriving the 

supply schedule of risky claims if each of the N decision makers is endowed with one unit of 

prospect l. As individual willingness-to-accept is given by the respective certainty equivalent 

computed above, it can be seen that the resulting supply schedule depends upon the proportion of 

the four (wi, uj)-combinations. Put more generally, our interest is in the empirical covariation 

between risk attitude as captured by the curvature of the utility function and risk attitude as im-

plied by the shape of the probability weighting function. 

2.2. Related Theoretical Literature 

The interrelation between utility function and probability weighting function is of considerable 

importance also from a theoretical point of view, in particular for characterizing risk aversion 

under the various theories of risky decision making. A decision maker is called risk averse if she 

prefers the sure receipt of the expected value of a non-degenerate lottery over the lottery itself. It 

is well known that under EU this condition is equivalent to concavity of the utility function. With 

the advent of more general preference models, a distinction between different forms of risk aver-

sion has proved useful. In this framework, a decision maker with the above property is called 

weakly risk averse. In contrast, a decision maker is called strongly risk averse if she dislikes 

mean-preserving spreads, i.e. – loosely spoken – shifts of probability mass from the center of the 

distribution of outcomes to its tails holding the expected value constant (Rothschild and Stiglitz 

1970). Under EU, this property corresponds to concavity of the utility function. Thus both weak 
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and strong risk aversion lead to the same characterization of the utility function under EU. Under 

the more general preference models, this conclusion is no longer true. 

Chew et al. (1987) study the general RDEU model, imposing only a number of “techni-

cal” conditions, above all a differentiability requirement. They show that strong risk aversion is 

satisfied if and only if the utility function is concave and the probability weighting function is 

convex. Schmidt and Zank (2002) investigate whether this result carries over to CPT. If only 

gain [loss] prospects are considered, Schmidt and Zank obtain the same conditions for strong risk 

aversion as Chew et al. (1987), i.e. concavity of the utility function in the gain [loss] domain and 

convexity of the probability weighting function for gains [losses].3 Interestingly, if mixed pros-

pects are considered, strong risk aversion does not imply concavity of the utility function over 

the whole domain. More specifically, non-concavity at the status quo is permitted. 

Contrary to the case of EU, weak risk aversion and strong risk aversion lead to different 

characterizations of the components of the preference functional. If concavity of the utility func-

tion is assumed, a sufficient condition for weak risk aversion is w(p) ≤ p for all p ∈ (0, 1) (see 

e.g. Segal 1987), which is termed “pessimism” in Quiggin (1993). Chateauneuf and Cohen 

(1994) extend this analysis by dispensing with the requirement of a concave utility function. 

They demonstrate that weak risk aversion and a convex utility function can coexist, provided that 

the probability weighting function is “sufficiently pessimistic”. As Quiggin (1993, p. 79) re-

marks, this requirement cannot be met by some families of utility functions, notably the power 

family largely employed in the literature. 
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2.3. Related Empirical Literature 

The interrelation between elements of preference functionals in individual decision mak-

ing has also been the object of study in empirical research. While we are not aware of any study 

sharing the focus of the present paper, several are directed at related topics and are therefore 

relevant for us with view to both methodology and results. We shall briefly review these below. 

Anderhub et al. (2001) conducted an experiment to assess the interaction between sub-

jects’ attitude towards risk and their time preference, which jointly govern for instance an indi-

vidual’s optimal choice in an intertemporal consumption allocation problem under conditions of 

risk. In their experiment, participants had to state their valuations for three risky alternatives that 

differed in the date at which the (risky) payment was due. From these three valuations, Anderhub 

et al. derive measures of the discount factor and of the degree of risk aversion. They find a sig-

nificant negative correlation between the degree of risk aversion and the discount factor, i.e. 

more risk averse subjects tend to discount future utility more heavily. 

Anderhub et al. (2001, p. 246) point out a caveat concerning their methodology, however, 

in which the relevant measures are not derived from a formal theory of choice. They argue that a 

more rigorous approach might consist of adopting some parametric family of utility functions, 

estimating the respective parameter at an individual level and using these estimates in computing 

correlations instead. As will be shown in detail in Section 3, the approach investigated in the 

present paper is exactly in this vein. 

Cohen et al. (1985) present a large-sample study designed to characterize individual deci-

sion making under risk and under uncertainty. They obtained participants’ certainty equivalents 

for ten different binary prospects, comprising four prospects with objective probabilities and one 

with unknown (Ellsberg (1961)-type) probabilities, for both gain and loss consequences. This 
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set-up is comparable to a factorial design in which two factors with two “levels” each (known vs. 

unknown probabilities, gains vs. losses) yield four distinct conditions. 

One of the issues of the research agenda of Cohen et al. is to find out whether subjects’ 

behavior is related across these four conditions. Remarkably, this does not seem to be the case. 

Neither are certainty equivalents nor is ambiguity attitude4 significantly correlated across do-

mains. Moreover, Cohen et al. conclude that risk attitude and ambiguity attitude are not related in 

an economically meaningful way, for both gain and loss domains. In interpreting these results, it 

should be kept in mind that what enters into the calculation of correlation coefficients are cer-

tainty equivalents or differences thereof, in a sense “raw data”. Possibly due to the early stage of 

the development of formal descriptive theories for behavior under risk and uncertainty, Cohen et 

al. did not make the attempt to fit a model to their data and reconsider the issue of correlation 

from this perspective. 

Finally, a paper which only marginally touches on the issue of interrelation between pref-

erence parameters, but which extensively covers the issue of individual estimation of utility func-

tion and probability weighting function in an RDEU / CPT framework, is Gonzalez and Wu 

(1999). In order to be able to reliably assess preferences at an individual level, Gonzalez and Wu 

employed what they call “a traditional psychophysical paradigm” (relatively few subjects, many 

trials per subject). They obtained participants’ certainty equivalents for 165 different gain pros-

pects. Based on these data, they employ both non-parametric and parametric techniques to esti-

mate the utility function and the probability weighting function, individually for each subject. 

Among other things, Gonzalez and Wu find convergence between the two different tech-

niques and demonstrate that heterogeneity in preferences necessitates choice of a functional form 

for the probability weighting function that allows for an independent variation of elevation and 
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curvature. Gonzalez and Wu state that “[t]hese properties [i.e., elevation and curvature] were 

observed to be somewhat independent across the 10 participants” (p. 159), which might be inter-

preted as a non-formal statement concerning the interrelation between the preference parameters 

in question. The authors also offer a psychological interpretation of elevation and curvature of 

the probability weighting function as attractiveness and discriminability respectively. In the dis-

cussion section of their paper, Gonzalez and Wu hypothesize that these concepts can also vary 

intrapersonally in decision making under uncertainty, i.e. differ for different sources of uncer-

tainty. They argue that “even though discriminability and attractiveness are logically independent 

…, in the real world the two concepts most likely covary across contexts” (p. 161). 

The above citation can serve as point of departure for the present investigation. Though 

we are interested in interpersonal instead of intrapersonal comparison and our main focus is on 

the interrelation between curvature of the utility function and elevation of the probability weight-

ing function instead of the interrelation between elevation and curvature of the probability 

weighting function, the idea is essentially the same: How do particular components of a prefer-

ence functional covary “in the real world”? 

3. Specification of the Simulation 

3.1. Design of the Experiment 

Our approach for assessing the components of the RDEU / CPT preference functional 

will be a two-step procedure. The first step, which is based on the trade-off method (Wakker and 

Deneffe 1996), elicits the utility function by determining a standard sequence of outcomes, i.e. a 

sequence of outcomes equally spaced in utility units. In the second step, the probability weight-

ing function is elicited using the utility values obtained in the first step as inputs. Our experimen-
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tal design approximates to the one chosen by Abdellaoui (2000) and Bleichrodt and Pinto (2000), 

as will be explained in detail below. 

Elicitation of the utility function. A standard sequence of (gain) outcomes is obtained as 

follows. Let 0 ≤ r < R < x0 denote three fixed outcomes and p ∈ (0, 1) a fixed probability.5 As a 

first step, the outcome x1 is determined such that the decision maker is indifferent between the 

prospects (x0, p; R) and (x1, p; r). As a second step, the decision maker is called to state the out-

come x2 such that indifference between the prospects (x1, p; R) and (x2, p; r) holds. Assuming 

that CPT is an adequate descriptive theory of choice, the combination of the equations resulting 

from the above two indifference statements implies the equality of u(x2) – u(x1) and u(x1) – u(x0). 

The next steps follow the general principle that once outcome xi has been elicited, out-

come xi+1 leading to indifference between (xi, p; R) and (xi+1, p; r) has to be determined. The 

elicitation procedure results in an increasing sequence of outcomes x0, x1, ..., xn
6 such that 

u(xi+1) – u(xi) = u(xi) – u(xi–1), i = 1, …, n – 1. (3.) 

Given the uniqueness property of the utility function, we choose the convenient normalization 

u(x0) = 0 and u(xn) = 1. 

Viewed in isolation, Equation (4) evokes a strength of preference interpretation. It should 

be observed, however, that “the elicited utilities have been derived solely from “ordinal” indif-

ferences and are not susceptible to the methodological criticisms of approaches that take strength 

of preference as a directly observable primitive” (Wakker and Deneffe 1996, p. 1147). 

Elicitation of the probability weighting function. The determination of the probability 

weighting function (for the gain domain), which builds upon the standard sequence of (gain) 

outcomes x0, x1, …, xn, proceeds as follows. For each of the interior elements of the standard 

 13



sequence xj, j = 1, …, n – 1, the decision maker is asked to state the probability pj such that she 

finds the prospect (xn, pj; 0) and the certain receipt of xj equally attractive. Under CPT and the 

above normalization convention for u(.), this indifference statement translates into: 

w(pj) = u(xj) = j/n, j = 1, …, n – 1. (4.) 

We will refer to p1, p2, …, pn–1 as the standard sequence of probabilities. 

Our methodology to estimate the probability weighting function coincides with that in 

Abdellaoui (2000). An alternative approach consists of asking the decision maker to state the 

certainty equivalent for the prospect (xn, qk; 0), for a set of probabilities {qk}. The adjustment of 

an outcome of an incomplete prospect such that indifference to a fully specified prospect holds 

constitutes the commonality between the latter approach and the methodology used by 

Bleichrodt and Pinto (2000). They thereby share the slight disadvantage that the utility value of 

the outcome stated by the participant – given the normal case that the stated outcome is not an 

element of the standard sequence of outcomes – is not immediately available but needs to be 

computed otherwise, for example by linear interpolation or parametric fitting. A potential advan-

tage of the method as suggested by Bleichrodt and Pinto (2000), p. 1489, plays no role in the 

present framework, which induced us to adopt the approach of Abdellaoui (2000). 

3.2. Generation of Hypothetical Preference Statements 

The white noise model in general. Whereas it is widely accepted that RDEU and above 

all CPT are descriptively superior to EU, it must be recognized that regularly even the general-

ized theories do not exactly fit to a subject’s choice behavior. The common way to deal with this 

problem is to assume that subjects make their decisions with error.7 Three different specifications 

of the error component have received most attention: the white noise model (Hey and Orme 
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1994), the constant error probability model (Harless and Camerer 1994), and the random prefer-

ence model (Loomes and Sugden 1995), see Loomes et al. (2002) for details. Our simulations 

will be based on the white noise model for two reasons. First, it has received favorable results in 

empirical assessment (Carbone 1997). Second, it satisfies the criterion of parsimony by introduc-

ing only one additional parameter. 

If the stochastic component is taken into account, a subject’s actual evaluation of a pros-

pect l, henceforth denoted by V(l), is given by the equation V(l) = Vcore(l) + εl, where Vcore(l) 

denotes the evaluation of the prospect according to the core theory (sometimes also paraphrased 

as “true” evaluation) and εl denotes the associated error term. In the present paper, the core the-

ory is CPT, i.e. Vcore(l) = CPT(l). The error term is assumed to have an expected value of zero 

and a variance of σε
2. If more than one prospect is evaluated, the respective error terms are as-

sumed to be independently distributed. Additional details about the distributional assumption for 

εl will be spelled out below. 

In other simulation studies of decision making under risk, the hypothetical subject either 

faces a series of pairwise choice situations or is asked to rank a given set of prospects according 

to her preference (Carbone and Hey 1994). Our experimental design differs in that the hypotheti-

cal subject’s task consists of adjusting a value (outcome or probability) of an incomplete pros-

pects so as to render it equally preferable to a fully specified prospect.8 To incorporate the sto-

chastic element, we let the evaluation of the fully specified prospect be disturbed by the error 

term εl. 

Applying the white noise model. Applied to the utility function tasks, the outcome value 

provided by the subject in the i-th step (i = 1, …, n) of the elicitation process is therefore given 

by: 
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ux l1i1
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We have now prepared ground for the presentation of the distributional assumption for εl. One 

natural assumption to make is that εl is normally distributed, εl ∼ N(0, σε
2). The implied un-

boundedness of the support of εl would, however, lead to serious problems. First, it could not be 

ensured that the argument of u-1(.) in Equation (6) belongs to the domain of the inverse function 

at all. Second, it could not be ensured that the preference statements obey first-order stochastic 

dominance (FOSD). FOSD is generally regarded as a fundamental rationality criterion which, 

moreover, is rarely violated in practice (Carbone and Hey 1995, Carbone 1997, Loomes and 

Sugden 1998, Levy and Levy 2001) – at least if the relation is not particularly intransparent 

(Birnbaum and Navarrete 1998). 

In a utility function task, FOSD is satisfied if and only if xi > xi–1, which is equivalent to 

the following restriction on the error term εl: 

))r(u)R(u())p(w1(εl −⋅−−> . (6.) 

To incorporate this restriction, we resort to the truncated normal distribution. To preserve the 

property of zero expected value of εl, we eventually assume that εl follows a doubly truncated 

normal distribution – derived from the normal distribution presented above – with lower [upper] 

truncation point tu
– = – (1 – w(p)) ⋅ (u(R) – u(r)) [tu

+ = (1 – w(p)) ⋅ (u(R) – u(r))]. 

The probability weighting function tasks are treated analogously. The probability value 

provided by the subject in the j-th step (j = 1, …, n – 1) of the elicitation process is therefore 

given by: 
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FOSD is satisfied if and only if 0 < pj < 1, which is equivalent to the following restriction on the 

error term εl: 

)x(u)x(uε))x(u)x(u( jnlj −<<−− 0 . (8.) 

Consequently, we assume that εl follows a doubly truncated normal distribution with lower [up-

per] truncation point tw
– = – min{u(xj) – u(x0); u(xn) – u(xj)} [tw

+ = min{u(xj) – u(x0); u(xn) – 

u(xj)}]. 

One distinction between the utility function tasks and the probability weighting function 

tasks deserves special mention. Whereas imposing satisfaction of the requirement of FOSD for 

each of the utility function tasks is sufficient to guarantee that the standard sequence of outcomes 

x0, x1, …, xn is increasing, the analogous claim for the standard sequence of probabilities p1, p2, 

…, pn–1 cannot be established. This is due to the fact that the elicitation of p1, p2, …, pn–1 is not 

“chained”, i.e. pj does not enter into the assessment of pj+1. The requirement of p1 < p2 < … < pn–

1 could easily be incorporated into the present framework by strengthening Inequality (9). We 

refrain from doing so because empirical evidence suggests that violations of the requirement of 

FOSD “across decision situations” are not comparably infrequent as those “within decision situa-

tions” (see the results in Gonzalez and Wu 1999, p. 145). 

3.3. Specification of the Parameters 

Choice of parametric families. The core theory in the present paper is CPT. As all deci-

sion situations involve gain prospects, we only need to specify the utility function over the gain 
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domain and the probability weighting function (for gains). We use parametric families com-

monly found in the literature. For the utility function, we choose the power family 

0x,x)x(u α ≥= , (9.) 

where α > 0 can be interpreted as an anti-index of risk aversion (as captured by the utility func-

tion). For the probability weighting function, we choose the linear-in-log-odds family 

γγ

γ

)p1(pδ
pδ)p(w
−+⋅

⋅
=  (10.) 

previously applied by for instance Goldstein and Einhorn (1987), Lattimore et al. (1992), Gon-

zalez and Wu (1999) and Abdellaoui et al. (2005). This parametric family is especially suited for 

our purposes because it permits an independent variation of and thus distinction between eleva-

tion and curvature. The parameter δ > 0 mainly controls elevation, the parameter γ > 0 mainly 

controls curvature. 

Curvature reflects the sensitivity of the decision maker with respect to changes in prob-

ability inside the interval (0, 1). Elevation can roughly be defined as the average level of trans-

formed probabilities. Under a highly elevated probability weighting function, decision weights of 

the more favorable outcomes tend to exceed the corresponding objective probabilities and vice 

versa, which establishes the link between the degree of elevation and the concept of probabilistic 

risk aversion. By virtue of this relationship, δ can be interpreted as an anti-index of risk aversion 

(as captured by the probability weighting function). 

Incorporating the correlation structure. Heterogeneity of preferences can be intro-

duced by letting the parameter values vary across participants. To operationalize heterogeneity of 

preferences in the simulation framework, (multivariate) distributions are specified from which 
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the (vectors of) preference parameters are drawn, individually for each hypothetical subject. Our 

focus being on the manifestation of risk aversion in the form of either the curvature of the utility 

function or the elevation of the probability weighting function, we vary the interrelation between 

the parameter α of u(.) and the parameter δ of w(.). Three special cases are considered: ρα,δ = +1, 

stochastic independence between α and δ, and ρα,δ = -1.9 The parameter γ of w(.) is taken to be 

independently distributed from α and δ throughout. 

To complete the description, the marginal distributions of the three preference parameters 

have to be specified. Carbone and Hey (1994) adequately argue that the choice of parameters in 

any Monte Carlo study is rather arbitrary. In an attempt to reduce arbitrariness as much as possi-

ble, our specification draws upon the empirical results obtained by Abdellaoui (2000). The mar-

ginal distributions are calibrated such that their respective median value coincides with the corre-

sponding parameter estimate for median data in Abdellaoui (2000) (p. 1506 for u(.), Table 9 on 

p. 1509 for w(.)) and their respective variance is of approximately equal size as the dispersion 

inherent in the distribution of individual parameter estimates in Abdellaoui (2000) (Figure 6 on 

p. 1511). Two different families of distribution functions – uniform and triangular – are em-

ployed, primarily as a robustness check. Combined with the three different assumptions about 

the correlation structure, we arrive at six different scenarios summarized in Table 1 below. 

[Insert Table 1 about here] 

Setting the variance of the error term. It has already been pointed out that the variance 

of the error term is crucially important, yet at the same time difficult to determine in an empiri-

cally meaningful way. To deal with this problem, the simulations are conducted for a wide range 

of values for σε
2.10 This is not to be understood as meaning that we regard all values considered 

subsequently as empirically plausible but rather that we seek to cover the “true” value of the 
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variance with a high degree of confidence. The magnitude of the error variance is the principal 

determinant of the degree of precision with which the preference parameters can be estimated. A 

measure of the degree of precision in dependence of σε
2 will be presented in Subsection 4.2, 

thereby linking the magnitude of σε
2 to a quantity which is accessible to interpretation more eas-

ily. 

It is important to observe that σε is expressed in units of utility. The utility function, how-

ever, is unique up to positive affine transformation, which implies that the magnitude of σε must 

be viewed against the background of the normalization adopted for u(.). For this reason, a 

straightforward comparison of the magnitude of σε with other simulation studies like Carbone 

and Hey (1994) or Carbone (1997) is not feasible. 

4. Results 

The present section is structured as follows. First, we briefly describe how the parameters 

of the preference functional are estimated from the preference statements of the hypothetical 

subjects. We then study the impact of the magnitude of σε
2 on the precision of the estimation. 

Subsequently, we turn to our main question, which is whether the correlation coefficient between 

estimates of preference parameters permits to assess its population counterpart in a distortion-

free way. In this analysis, we distinguish between different sizes of the population of hypotheti-

cal subjects. We assume both N = 41, which exactly equals the number of participants in Abdel-

laoui et al. (2005) and should be fairly typical of related experimental investigations, and N = 

2000, which is less a plausible sample size than the attempt to study the limit behavior of the 

procedure. Besides the number of hypothetical subjects, we distinguish between the different 

scenarios under which the preference parameters are determined as summarized in Table 1. 
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4.1. Estimation 

Consistent with the two-step procedure of the experimental set-up, the parameter of the 

utility function is estimated separately from the parameters of the probability weighting function. 

The estimation of the utility function parameter is based upon a hypothetical subject’s standard 

sequence of outcomes x0, x1, ..., xn. Under the chosen normalization u(x0) = 0 and u(xn) = 1, it 

follows that u(xi) = i/n, i = 1, …, n – 1. As u(.) belongs to the power family, the normalization 

leads to the following expression: 

0x,
xx
xx

)x(u α
0

α
n

α
0

α

≥
−

−
=  . (11.) 

The parameter α is estimated by nonlinear least squares regression with the outcome values xi as 

independent variable and their associated utility values i/n as dependent variable. Clearly, the 

parameter estimate α̂  is invariant with respect to changes of the normalization of the utility func-

tion. 

The estimation of the parameters of the probability weighting function is based upon a hypo-

thetical subject’s standard sequence of probabilities p1, p2, …, pn–1. As shown in Subsection 3.1, 

its elements satisfy w(pj) = u(xj) = j/n. The parameters δ and γ of the linear-in-log-odds function 

are estimated by nonlinear least squares regression with the probabilities pj as independent vari-

able and their respective decision weights j/n as dependent variable. It is noteworthy that the pa-

rameter estimate α̂  does not enter into the estimation of the probability weighting function. 

4.2. Precision 

The magnitude of σε
2 is essential to the precision of the estimation. To highlight this fact, 

consider first the limiting case σε
2 = 0. Three (appropriately selected) choice tasks would suffice 
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to determine the three parameters of the preference functional without any estimation error, i.e. 

αα̂ =  and likewise for δ̂ and γ̂ . In the opposite case, σε
2 → ∞, a subject’s actual evaluation of a 

prospect is almost exclusively governed by the error term, which in turn means that the informa-

tional content of a subject’s preference statements with respect to inferences about the underly-

ing preference functional vanishes. 

The main purpose of this subsection is to establish a connection between the magnitude 

of σε
2 and a measure of the precision of the estimation. In anticipation of the results to be dis-

played below, we also seek to demonstrate that we have covered a sufficiently wide range of 

possible values for σε
2. 

The measure of precision of the estimation is operationalized as the mean absolute value 

of the difference between the true parameter value and the corresponding estimate, i.e. αα̂ −  

and likewise for δ̂ and γ̂ , where the mean is taken over all hypothetical subjects belonging to 

Scenario I. The results are displayed in Table 2. The respective figures for the other scenarios are 

highly similar and are omitted for lack of space. 

[Insert Table 2 about here] 

Firstly, Table 2 reflects the rather obvious fact that the (measure of) precision of the esti-

mation deteriorates upon increasing the magnitude of σε. The mean absolute deviation of the 

(individual) parameter estimate α̂  from its respective true value α, for example, increases mono-

tonically from zero (σε = 0) to 0.211 (σε = 10). Due to the widespread use of the power family in 

utility measurement, the absolute level of the measure of precision for α̂  probably lends itself to 

interpretation most readily. In our view, the figures in Table 2 indicate that the range of possible 
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σε values has been chosen sufficiently wide to embrace the large majority of potential decision 

makers. 

In addition, it can be seen that the increase in the deviation measure induced by a given 

increase in the magnitude of σε becomes smaller for higher values of σε. In interpreting this fact, 

however, it should be kept in mind that σε does not equal the standard deviation of the error term 

owing to the truncation of its distribution (see Footnote 9). For given truncation points, the stan-

dard deviation of εl increases in σε, yet at a slower rate than σε itself. Although in the present 

framework the situation is further complicated by the fact that the truncation points for εl may 

differ across choice situations (see Subsection 3.2), the latter relationship is able to explain the 

above property of the deviation measure. 

Finally, we focus on the two parameters of the probability weighting function. It is inter-

esting to note that the deviation measure is smaller for the parameter γ than for the parameter δ 

throughout. This result suggests that inferences about the curvature of the probability weighting 

function can be made with higher precision as compared to its elevation. One possible objection 

to this conclusion is that the marginal distribution functions from which the true parameter val-

ues are determined differ. To rule out this explanation, additional simulations (not reported in 

detail in the present paper) were conducted. They show that the above finding remains valid 

when the marginal distribution of γ is equated with that of δ or vice versa. 

4.3. Correlation: Standard Sample Size 

We now turn to our main question, which is whether the correlation coefficient between 

estimates of preference parameters permits to assess its population counterpart in a distortion-

free way. This question is first analyzed assuming that the size of the population of hypothetical 
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subjects amounts to N = 41. To limit the dependence of the results to be obtained on the particu-

lar set of error terms generated, forty independent runs (of 41 hypothetical subjects each) were 

conducted. Unless otherwise noted, the following figures represent mean values of the respective 

quantities, where the mean is taken over the forty runs. 

Under Scenario I, all three correlation coefficients computed on the basis of the true pa-

rameter values are close to zero due to the assumption of stochastic independence:  = -

0.012,  = 0.001, and  = -0.022.11 These figures can also be extracted from Table 3, 

second column (σε = 0), as the absence of estimation error – i.e. 

)δ,α(ρ

)γ,α(ρ )γ,δ(ρ

αα̂ =  and likewise for δ̂ and γ̂  

– permits to assess the correlation between the parameters in the underlying population without 

error – i.e. )δ̂,α̂(ρ  =  and likewise for )δ,α(ρ )γ̂,α̂(ρ  and )γ̂,δ̂(ρ . The last-mentioned relation-

ship should be kept in mind when interpreting subsequent tables. 

[Insert Table 3 about here] 

For σε > 0, the (mean) correlation coefficient between estimates of preference parameters 

steadily departs from the correlation coefficient between the parameters in the underlying popu-

lation. This effect is particularly pronounced for )δ̂,α̂(ρ  with )δ̂,α̂(ρ  = -0.420 for σε = 10. 

Whereas the parameters α and δ are virtually uncorrelated in the underlying population, )δ̂,α̂(ρ  

misleadingly suggests a strong negative relationship between the parameters, which would mean 

that a higher degree of risk aversion incorporated in the utility function tends to be associated 

with a lower degree of risk aversion incorporated in the probability weighting function and vice 

versa. 

[Insert Figure 1 about here] 

 24



The downward distortion is also found if the data are analyzed at the disaggregated level. 

Figure 1 comprises two scatterplots in which )δ̂,α̂(ρ  is plotted against , exemplarily for 

σε = 3 (Figure 1 left) and σε = 10 (Figure 1 right), where each point corresponds to one of the 40 

runs. As expected,  is distributed quite evenly around the zero line, which stands in sharp 

contrast to 

)δ,α(ρ

)δ,α(ρ

)δ̂,α̂(ρ . The inequality )δ̂,α̂(ρ  <  holds for 39 (σε = 3) and 40 (σ)δ,α(ρ ε = 10) out 

of the 40 cases respectively. Summing up, the simulation results strongly favor the conclusion 

that the method under study is not capable of assessing the correlation coefficient between pref-

erence parameters in the underlying population in a distortion-free way. 

To complete the picture, we consider two more special cases in Scenarios II and III: per-

fect positive and perfect negative correlation between α and δ. Given the boundedness of the 

correlation coefficient and the fact that the two scenarios just represent the two boundary points, 

it immediately follows that the correlation coefficient between estimates of preference parame-

ters cannot be an unbiased estimator in the presence of decision error. The purpose of the simula-

tions rather lies in a quantification of the degree of bias, particularly in order to enable a com-

parison across scenarios. 

[Insert Tables 4 and 5 about here] 

The results are displayed in Table 4 (  = 1) and Table 5 (  = -1). As ex-

pected, 

)δ,α(ρ )δ,α(ρ

)δ̂,α̂(ρ  steadily departs from the respective boundary point of the range of possible cor-

relation coefficient values under both scenarios. In Scenario II [III], )δ̂,α̂(ρ  decreases [in-

creases] monotonically from 1 [-1] until it equals 0.192 [-0.796] for σε = 10. It is interesting to 

note, however, that the margin by which )δ̂,α̂(ρ  deviates from the respective boundary point is 
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markedly larger for  = 1 than for  = -1. This result is similar in spirit to the 

downward bias documented for the case of stochastic independence. 

)δ,α(ρ )δ,α(ρ

Finally, we treat the question of whether the results presented above prove to be stable 

with respect to changes of the distribution from which the true vector of preference parameters is 

drawn. In Scenarios IV-VI, the uniform distribution is replaced with the symmetric triangular 

distribution. It should be noted that the support of the marginal distributions has been extended to 

keep variance constant. 

The results are displayed in Tables 6-8, which have been relegated to the Appendix. From 

an overall perspective, they are remarkably similar to their counterparts in Tables 3-5. In the sto-

chastic independence case (Scenario IV), )δ̂,α̂(ρ  is strongly biased downward with )δ̂,α̂(ρ  = -

0.441 for σε = 10. At the disaggregated level, the inequality )δ̂,α̂(ρ  <  holds for 39 (σε = 

3) and 40 (σε = 10) out of the 40 cases respectively. Under Scenario V [VI], 

)δ,α(ρ

)δ̂,α̂(ρ  decreases 

[increases] monotonically from 1 [-1] until it amounts to 0.168 [-0.820] for σε = 10, which means 

that the deviation from the respective boundary point exhibits the same asymmetry already en-

countered in the comparison between Scenarios II and III. The main findings are therefore not 

affected by the change in the distributional assumption. 

4.4. Correlation: Large Sample Size 

The results reported in the previous subsection provide strong evidence against the appli-

cability of the procedure under study to measure correlation between preference parameters in a 

distortion-free way. As our interest in the topic was sparked by the work of Abdellaoui et al. 

(2005), we set N = 41 in an attempt to produce results tailored to our empirical point of depar-

ture. Not surprisingly, given this sample size, analyses at the disaggregated level reveal a sub-
 26



stantial degree of variation of results across simulation runs, as evident from Figure 1. The pre-

sent subsection is therefore devoted to investigating the large-sample behavior of the procedure 

under study. We set N = 2000 for the (single) simulation run. 

[Insert Tables 9-11 about here] 

The results for Scenarios I-III are presented in Tables 9-11. For the sake of clarity, it 

should be stressed that the data underlying the present results were generated independently of 

the standard sample size data analyzed in Subsection 4.3. Nonetheless, the results are highly 

similar. The “limit” behavior of the procedure under study is thus virtually indistinguishable 

from the “mean” behavior under traditional sample sizes, provided that the mean is taken over a 

sufficiently large number of independent simulation runs. Given the proximity of the results, the 

conclusions drawn in the previous subsection are further confirmed. We refrain from restating 

them here to avoid repetitions. The same reasoning applies to Scenarios IV-VI. For reasons of 

completeness, we include the respective results as Tables 12-14 in the Appendix. 

5. Discussion and Conclusion 

The primary research objective of the present paper was to investigate the issue of interre-

lation / covariation between different components of the RDEU / CPT preference functional. 

Prior to obtaining insights in this direction, the suitability of the envisaged measure of covaria-

tion had to be verified, which induced us to conduct an extensive simulation study. The simula-

tion results are unequivocal. In the presence of decision error, the proposed procedure does not 

allow to measure the quantities of interest in a distortion-free way. With the obvious exception of 

the lower end of the range of possible correlation coefficient values, we find a strong downward 

distortion. 

 27



In the course of our investigation, it has become apparent that decision error plays a cen-

tral role. Stochastic preference models take explicit account of decision error by adding a sto-

chastic component to a deterministic core theory. Whereas the choice of RDEU / CPT as the core 

theory seems easy to justify on the basis of its popularity and descriptive success, the debate 

about how to suitably incorporate randomness is not settled yet. 

We opted for the white noise error model in view of its parsimony and its favorable em-

pirical results. It must be mentioned, however, that even this error model is not free from criti-

cism, for instance for its problems to predict the very low frequency of violations of FOSD 

commonly observed (Loomes and Sugden 1998). Furthermore, it is by no means clear that the 

white noise model is necessarily descriptively superior to its contenders, especially the random 

preference model (Loomes and Sugden 1995, Carbone 1997). More recently, Loomes et al. 

(2002) proposed hybrid error models obtained by adding a tremble à la Harless and Camerer 

(1994) to either the white noise model or random preference model. 

Even if attention is restricted to the white noise error model, generalizations of our ap-

proach are conceivable. In our simulation, the error term εl is assumed to be homoscedastic, i.e. 

the variance of εl is assumed to be constant (across subjects and choice tasks).12 Hey (1995) and 

Buschena and Zilberman (2000) show that allowing for heteroscedasticity can lead to a signifi-

cant improvement in the quality of fit to experimental data. Our choice of a homoscedastic error 

term can be defended on at least two grounds. First, the heteroscedastic formulation that emerges 

as the best in Hey (1995) involves time taken to answer a particular choice question, which obvi-

ously has no analogue in a simulation framework. Second, Buschena and Zilberman (2000) find 

that the benefits from introducing a heteroscedastic specification are significantly reduced under 

a non-EU core theory like RDEU (as compared to EU). 
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Taken together, the issue of how to suitably model decision behavior for simulation pur-

poses may be controversial. With regard to the research question addressed in the present paper 

via the simulation methodology, however, this controversy probably is of secondary importance. 

Although we have considered a multiplicity of different constellations of simulation parameters, 

the results are remarkably uniform. A further expansion of the scope of the simulation, such as 

incorporating the aspects of decision behavior discussed above, can therefore be expected to lead 

to a low incremental gain in insight only. 

From a methodological point of view, we hope to have advanced simulation as a useful 

technique for tackling selected problems in decision research. The simulation methodology has 

been applied for instance by Bleichrodt and Pinto (2000) to study the impact of decision error on 

their experimental results, by Carbone and Hey (1994) to study the distinguishability between 

different preference functionals under risk, and by Jia et al. (1998) to study the influence of dif-

ferent attribute weighting schemes on the quality of decisions in a multiattribute decision setting. 

One possibly fruitful application of the simulation program developed for the present paper 

might consist of assessing the performance of alternative utility elicitation methods in the pres-

ence of decision error. 

From a conceptual point of view, the results of the simulations are somewhat dissatisfac-

tory. While we are confident to have provided a thorough examination of the suitability of the 

proposed method, the findings refuting its suitability necessarily leave open the more fundamen-

tal underlying research question: How do particular components of the RDEU / CPT preference 

functional covary “in the real world”? We continue to consider this a worthwhile topic and thus 

hope that future research will shed light on it. 
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Appendix 

 

[Insert Tables 6-8 about here] 

 

[Insert Tables 12-14 about here] 

 

 30



Notes 

1       Our interest in this research question stems from additional computations on the basis of 

the data in Abdellaoui et al. (2005). There we find a highly pronounced correlation 

(across subjects) between the estimate of the utility function parameter and the estimate 

of the parameter governing elevation of the probability weighting function. 

2 It is widely acknowledged that there are significant interpersonal differences in risk pref-

erences (e.g., Tversky and Kahneman 1992, Gonzalez and Wu 1999). 

3 Schmidt and Zank (2002) do not directly utilize the result obtained by Chew et al. (1987) 

as their assumptions imposed on the preference functional differ. 

4 Ambiguity attitude is defined as “the difference between … behavior with respect to risk 

and … behavior with respect to uncertainty” (Cohen et al. 1985, Remark 2 on p. 217). 

5 In the simulation, we set r = 0, R = 50, x0 = 100, and p = 0.5. 

6 In the simulation, we set n = 6 like in Abdellaoui (2000), Bleichrodt and Pinto (2000) and 

Abdellaoui et al. (2005). 

7 A more detailed exposition, including a discussion of alternative explanations, can be 

found in Hey (1999). 

8 Carbone and Hey (1994), p. 241, argue that “indifference question data … are usually 

rejected by economists on motivational grounds”. Notwithstanding objections to the 

“matching”-methodology (Bostic et al. 1990), it is worth observing that indifference data 

can also be obtained through a series of choice questions (like in Abdellaoui et al. 2005), 

which should invalidate the above argument. 
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9 It should be noted that stochastic independence between α and δ constitutes a property of 

the multivariate distribution from which the vectors of preference parameters for individ-

ual subjects are drawn. When ρα,δ is computed for particular population of hypothetical 

subjects, it usually does not equal zero exactly. 

10 One caveat about notation is in order. As explained before, the error term εl is assumed to 

follow a doubly truncated normal distribution with symmetric truncation points. In the 

following, σε
2 will denote the variance of the normal distribution from which the trun-

cated normal distribution is derived. The variance of the truncated normal distribution is 

smaller than σε
2 for all finite truncation points; for details see Johnson et al. (1994). 

11 The correlation coefficients do not equal zero exactly for reasons explained in Footnote 8. 

12 Strictly speaking, the error term in our simulation does not satisfy homoscedasticity ex-

actly. Due to differences in the truncation point (see Subsection 3.2) across choice tasks, 

the variances of the respective error terms are not exactly equal. 
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Tables 

 

Table 1: Simulation scenarios 

Scenario 
number 

Marginal distribu-
tion of α 

Marginal distribu-
tion of δ 

Marginal distribu-
tion of γ 

Correlation struc-
ture 

I uniform 
(0.33, 1.45) 

uniform 
(0.19, 1.11) 

uniform 
(0.17, 1.03) 

α, δ, γ mutually 
independent 

II uniform 
(0.33, 1.45) 

uniform 
(0.19, 1.11) 

uniform 
(0.17, 1.03) 

ρα,δ = +1; 
γ independent 

III uniform 
(0.33, 1.45) 

uniform 
(0.19, 1.11) 

uniform 
(0.17, 1.03) 

ρα,δ = -1; 
γ independent 

IV triangular 
(0.10, 0.89, 1.68) 

triangular 
(0.00, 0.65, 1.30) 

triangular 
(0.00, 0.60, 1.20) 

α, δ, γ mutually 
independent 

V triangular 
(0.10, 0.89, 1.68) 

triangular 
(0.00, 0.65, 1.30) 

triangular 
(0.00, 0.60, 1.20) 

ρα,δ = +1; 
γ independent 

VI triangular 
(0.10, 0.89, 1.68) 

triangular 
(0.00, 0.65, 1.30) 

triangular 
(0.00, 0.60, 1.20) 

ρα,δ = -1; 
γ independent 

 

 

Table 2: Precision of the estimation 

 σε = 0 σε = 1 σε = 2 σε = 3 σε = 4 σε = 6 σε = 8 σε = 10

mean of αα̂ −  0.000 0.039 0.074 0.102 0.125 0.161 0.188 0.211 

mean of δδ̂ −  0.000 0.043 0.076 0.099 0.117 0.142 0.158 0.172 

mean of γγ̂ −  0.000 0.023 0.042 0.056 0.067 0.084 0.098 0.111 
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Table 3: Correlation coefficients between parameter estimates (Scenario I, N = 41) 

 σε = 0 σε = 1 σε = 2 σε = 3 σε = 4 σε = 6 σε = 8 σε = 10

)δ̂,α̂(ρ  -0.012 -0.080 -0.202 -0.275 -0.318 -0.371 -0.401 -0.420

)γ̂,α̂(ρ  0.001 0.008 0.033 0.053 0.066 0.093 0.116 0.127 

)γ̂,δ̂(ρ  -0.022 -0.041 -0.060 -0.075 -0.093 -0.107 -0.132 -0.142

Note: )δ̂,α̂(ρ  =  for σε = 0 (and likewise for  and )δ,α(ρ )γ̂,α̂(ρ )γ̂,δ̂(ρ ). 

 

Table 4: Correlation coefficients between parameter estimates (Scenario II, N = 41) 

 σε = 0 σε = 1 σε = 2 σε = 3 σε = 4 σε = 6 σε = 8 σε = 10

)δ̂,α̂(ρ  1 0.966 0.859 0.731 0.616 0.435 0.299 0.192 

)γ̂,α̂(ρ  0.001 0.002 0.015 0.029 0.041 0.052 0.058 0.064 

)γ̂,δ̂(ρ  0.001 -0.018 -0.043 -0.063 -0.082 -0.100 -0.105 -0.099

Note: )δ̂,α̂(ρ  =  for σε = 0 (and likewise for  and )δ,α(ρ )γ̂,α̂(ρ )γ̂,δ̂(ρ ). 

 

Table 5: Correlation coefficients between parameter estimates (Scenario III, N = 41) 

 σε = 0 σε = 1 σε = 2 σε = 3 σε = 4 σε = 6 σε = 8 σε = 10

)δ̂,α̂(ρ  -1 -0.962 -0.923 -0.886 -0.858 -0.824 -0.809 -0.796

)γ̂,α̂(ρ  0.001 0.013 0.046 0.070 0.088 0.124 0.151 0.173 

)γ̂,δ̂(ρ  -0.001 -0.015 -0.047 -0.064 -0.079 -0.107 -0.145 -0.163

Note: )δ̂,α̂(ρ  =  for σε = 0 (and likewise for  and )δ,α(ρ )γ̂,α̂(ρ )γ̂,δ̂(ρ ). 
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Table 6: Correlation coefficients between parameter estimates (Scenario IV, N = 41) 

 σε = 0 σε = 1 σε = 2 σε = 3 σε = 4 σε = 6 σε = 8 σε = 10

)δ̂,α̂(ρ  0.014 -0.062 -0.165 -0.237 -0.291 -0.370 -0.414 -0.441

)γ̂,α̂(ρ  0.012 0.036 0.057 0.071 0.085 0.104 0.125 0.134 

)γ̂,δ̂(ρ  -0.024 -0.053 -0.068 -0.086 -0.106 -0.125 -0.138 -0.145

Note: )δ̂,α̂(ρ  =  for σε = 0 (and likewise for  and )δ,α(ρ )γ̂,α̂(ρ )γ̂,δ̂(ρ ). 

 

Table 7: Correlation coefficients between parameter estimates (Scenario V, N = 41) 

 σε = 0 σε = 1 σε = 2 σε = 3 σε = 4 σε = 6 σε = 8 σε = 10

)δ̂,α̂(ρ  1 0.967 0.874 0.754 0.628 0.430 0.278 0.168 

)γ̂,α̂(ρ  0.012 0.024 0.036 0.039 0.039 0.047 0.054 0.056 

)γ̂,δ̂(ρ  0.012 0.006 -0.006 -0.027 -0.047 -0.063 -0.077 -0.080

Note: )δ̂,α̂(ρ  =  for σε = 0 (and likewise for  and )δ,α(ρ )γ̂,α̂(ρ )γ̂,δ̂(ρ ). 

 

Table 8: Correlation coefficients between parameter estimates (Scenario VI, N = 41) 

 σε = 0 σε = 1 σε = 2 σε = 3 σε = 4 σε = 6 σε = 8 σε = 10

)δ̂,α̂(ρ  -1 -0.957 -0.928 -0.907 -0.889 -0.862 -0.839 -0.820

)γ̂,α̂(ρ  0.012 0.044 0.066 0.094 0.113 0.145 0.162 0.165 

)γ̂,δ̂(ρ  -0.012 -0.039 -0.071 -0.098 -0.122 -0.157 -0.173 -0.181

Note: )δ̂,α̂(ρ  =  for σε = 0 (and likewise for  and )δ,α(ρ )γ̂,α̂(ρ )γ̂,δ̂(ρ ). 
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Table 9: Correlation coefficients between parameter estimates (Scenario I, N = 2000) 

 σε = 0 σε = 1 σε = 2 σε = 3 σε = 4 σε = 6 σε = 8 σε = 10

)δ̂,α̂(ρ  0.012 -0.068 -0.175 -0.247 -0.293 -0.335 -0.373 -0.378

)γ̂,α̂(ρ  -0.005 0.003 0.025 0.048 0.057 0.082 0.111 0.122 

)γ̂,δ̂(ρ  -0.030 -0.044 -0.062 -0.086 -0.067 -0.067 -0.128 -0.118

Note: )δ̂,α̂(ρ  =  for σε = 0 (and likewise for  and )δ,α(ρ )γ̂,α̂(ρ )γ̂,δ̂(ρ ). 

 

Table 10: Correlation coefficients between parameter estimates (Scenario II, N = 2000) 

 σε = 0 σε = 1 σε = 2 σε = 3 σε = 4 σε = 6 σε = 8 σε = 10

)δ̂,α̂(ρ  1 0.968 0.872 0.753 0.639 0.445 0.298 0.186 

)γ̂,α̂(ρ  -0.005 -0.004 0.006 0.017 0.025 0.032 0.039 0.051 

)γ̂,δ̂(ρ  -0.005 -0.021 -0.039 -0.055 -0.067 -0.081 -0.086 -0.095

Note: )δ̂,α̂(ρ  =  for σε = 0 (and likewise for  and )δ,α(ρ )γ̂,α̂(ρ )γ̂,δ̂(ρ ). 

 

Table 11: Correlation coefficients between parameter estimates (Scenario III, N = 2000) 

 σε = 0 σε = 1 σε = 2 σε = 3 σε = 4 σε = 6 σε = 8 σε = 10

)δ̂,α̂(ρ  -1 -0.962 -0.927 -0.905 -0.871 -0.811 -0.788 -0.750

)γ̂,α̂(ρ  -0.005 0.004 0.036 0.082 0.094 0.125 0.154 0.116 

)γ̂,δ̂(ρ  0.005 0.002 -0.027 -0.065 -0.065 -0.085 -0.145 -0.135

Note: )δ̂,α̂(ρ  =  for σε = 0 (and likewise for  and )δ,α(ρ )γ̂,α̂(ρ )γ̂,δ̂(ρ ). 
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Table 12: Correlation coefficients between parameter estimates (Scenario IV, N = 2000) 

 σε = 0 σε = 1 σε = 2 σε = 3 σε = 4 σε = 6 σε = 8 σε = 10

)δ̂,α̂(ρ  0.026 -0.041 -0.136 -0.219 -0.278 -0.344 -0.374 -0.409

)γ̂,α̂(ρ  -0.003 0.005 0.025 0.037 0.050 0.065 0.073 0.094 

)γ̂,δ̂(ρ  -0.023 -0.038 -0.067 -0.090 -0.112 -0.073 -0.085 -0.157

Note: )δ̂,α̂(ρ  =  for σε = 0 (and likewise for  and )δ,α(ρ )γ̂,α̂(ρ )γ̂,δ̂(ρ ). 

 

Table 13: Correlation coefficients between parameter estimates (Scenario V, N = 2000) 

 σε = 0 σε = 1 σε = 2 σε = 3 σε = 4 σε = 6 σε = 8 σε = 10

)δ̂,α̂(ρ  1 0.968 0.878 0.760 0.643 0.437 0.276 0.154 

)γ̂,α̂(ρ  -0.003 0.001 0.008 0.011 0.011 0.011 0.024 0.033 

)γ̂,δ̂(ρ  -0.003 -0.007 -0.016 -0.028 -0.039 -0.059 -0.068 -0.065

Note: )δ̂,α̂(ρ  =  for σε = 0 (and likewise for  and )δ,α(ρ )γ̂,α̂(ρ )γ̂,δ̂(ρ ). 

 

Table 14: Correlation coefficients between parameter estimates (Scenario VI, N = 2000) 

 σε = 0 σε = 1 σε = 2 σε = 3 σε = 4 σε = 6 σε = 8 σε = 10

)δ̂,α̂(ρ  -1 -0.948 -0.927 -0.860 -0.878 -0.813 -0.752 -0.729

)γ̂,α̂(ρ  -0.003 0.016 0.039 0.061 0.082 0.099 0.109 0.121 

)γ̂,δ̂(ρ  0.003 -0.014 -0.025 -0.015 -0.046 -0.049 -0.054 -0.067

Note: )δ̂,α̂(ρ  =  for σε = 0 (and likewise for  and )δ,α(ρ )γ̂,α̂(ρ )γ̂,δ̂(ρ ). 
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Figures 

 

Figure 1: Scatterplot )δ̂,α̂(ρ  vs.  for σε = 3 (left) and σε = 10 (right) )δ,α(ρ
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