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Non-technical summary

In this paper, we investigate the determinants of ratification of ILO conventions
in a sample of 80 developing countries over the period from 1975 to 1995. Since
ratifying ILO standards may raise labour costs, we expect that countries’
economic conditions are crucially important in determining ratification
behaviour. On the other hand, the interests of domestic political actors also have
to be taken into account. Finally, pressure from foreign actors, including
pressure from other international organisations, may be mobilised to speed up
the ratification process.

A hazard rate model is introduced to explain the duration up to
ratification. Pooling over the 29 conventions adopted during the observation
period, we obtain a large dataset with three dimensions: country, convention,
and time. An important issue in any cross-country study is to control for
unobserved heterogeneity. Under certain assumption, the random effects model
provides a consistent estimator. In our data, we are faced with a multi-level
structure of unobserved effects. While time effects are estimated by a trend
variable, we allow for both country-specific and convention-specific time-
constant random effects. These effects are non-nested and assumed to operate
independently from one another.

Since estimation by classical methods proved to be infeasible, we follow
the Bayesian paradigm and use Markov Chain Monte Carlo (MCMC) methods.
The Gibbs sampler is used to draw samples from the simulated posterior density
of the model. Posterior means derived from this procedure confirm most of the
results from an earlier study (Boockmann, 2001). In particular, GDP per capita
and previous ratification of similar conventions raises the ratification
probability. As opposed to the earlier study, democracy also influences
ratification positively. The results suggest that external pressure is nonexistent in
the ratification decision. Finally, the results confirm that it is very important to
control for unobserved heterogeneity in this framework.
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Abstract

We use a multivariate hazard model for the analysis of data on the
timing of ratifications of different ILO conventions by developing coun-
tries. The model accounts for two random effects, one at the country
level and the other at the convention level. After investigating iden-
tification, we use a semi-parametric Bayesian approach based on the
partial likelihood for the inference. Our findings confirm the results
of preceding studies that ratification depends both on economic and
political factors. Furthermore, the results yield insights on the impact
of unobserved heterogeneity across member states and conventions on
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1 Introduction

In duration models, one rarely observes all determinants leading to an event.
In this paper, we develop an approach for modelling unobserved heterogene-
ity for the case where each cross-sectional unit (individual) faces a fixed
number of different risks. Both individuals and risks are assumed to have
unobserved characteristics. As an application, we consider the ratification
of ILO conventions by ILO member states (see Boockmann, 2001). There
are 184 conventions in many different subject areas which member states
are free to ratify. It seems reasonable to assume that there are differences
in the frequency of ratification produced both by country-specific as well as
convention-specific unobserved effects.

Typically, two approaches have been used: fixed effects and random effects
(sometime referred to as frailty effects in the survival literature). The ad-
vantage of the fixed effects approach is that it is easy to implement and that
it does not require assumptions on the unobserved heterogeneity. A general
way to deal with fixed effects is stratified partial likelihood as discussed in
Kalbfleisch and Prentice (1980), Yamaguchi (1986) and Ridder and Tunah
(1999). Observations are assumed to be grouped, and each group is called a
stratum. Partial likelihood is widely used in duration analysis, because it is a
semi-parametric approach which avoids the specification of a functional form
for the baseline hazard, and thus the problems linked to a potential misspec-
ification. Ridder and Tunali discuss the merits of fixed and random effects
in their application to child mortality rates. They also propose a Hausman
test for fixed effects (stratified estimation) versus random effects (unstrati-
fied). As explained in Therneau and Grambsch (2000), the disadvantages of
stratified partial likelihood are that the magnitude of the frailties cannot be
estimated directly and the precision of the estimates decreases in presence of
a large number of strata. Boockmann (2001) restricts attention to a country
fixed effect, and applies Ridder and Tunali’s (1999) estimator. However, the
Hausman test did not reject the unstratified model for the sample of develop-
ing countries (for industrial countries, the unstratified model was rejected).
This information is important, because it provides some justification for the
choice of a random effects approach for the dataset of developing countries
used in this paper.



Random effects permit us to go deeper in the analysis of unobserved het-
erogeneity, by estimating the parameters of the frailty distribution and the
importance of the group effect. The disadvantages of this approach are that
we need to suppose a distribution for the frailties and that they are generally
assumed to be independent of the covariates. Guo and Rodriguez (1992)
consider the proportional hazard model with one frailty term and, assuming
a piecewise constant baseline hazard, focus on efficient parametric estimation
of observed covariate and frailty effect parameters. If we suspect that depen-
dence among observations is due to more than one frailty, one way to proceed
is to specify a model with several random effects. The case of two frailties
is presented in the survey of Liang et al. (1995). They can be nested, as in
Gustafson (1997), Sastry (1997) or Milcent (2003) where several individuals
share a common frailty. Following Louis (1982), Guo and Rodriguez (1992)
used an accelerated Expectation-Maximization algorithm (Dempster, Laird,
and Rubin, 1977). Sastry (1997) extends this approach to the case of a Cox
model with two nested random effects. Bolstad and Manda (2001) propose
a Bayesian approach to estimate Sastry’s (1997) model.

Djurdjevic (2000) extends the approach of Guo and Rodriguez (1992) to
the partial likelihood framework, relaxing the assumption of a piecewise con-
stant baseline hazard. Horny (2001) generalizes this work to a Cox model
with two nested random effects estimated through partial likelihood, extend-
ing also Sastry (1997). Using the same dataset as Boockmann (2001) and
the EM algorithm both Djurdjevic (2000) and Horny (2001) meet serious
convergence problems. They conclude that the EM algorithm, while working
satisfactorily on simulated data, is not well suited for this dataset of ILO
conventions.’

Considering a logistic regression, Rodriguez and Goldman (2001) compare
the maximum likelihood, marginal quasi likelihood, penalized quasi likeli-
hood and Bayesian approaches using clustered data. Except for maximum
likelihood and Bayesian estimators, the results underestimate the importance
of both fixed and random effects. Although bias can be removed by boos-
trapping, the procedure proved to be computationally more intensive than
Markov chain Monte Carlo estimation and sometimes failed to converge.

The main contribution of this paper is to apply a semi-parametric Bayesian
approach, based on partial likelihood, to a Cox model with two non-nested
random effects. Furthermore, we show that the model is identified if each

Lancaster (1990) explains why such problems can occur when the likelihood is bounded
and when the variance of the random effect tends to zero. But here the problem goes in
the opposite direction: the variance becomes large enough to create numerical problems.
Bolstad and Manda (2001) trace these difficulties to inaccurate rounding off in case of high
variance.



realization of the random effects is shared by at least two observations. To
achieve this result, we do not need to assume that the frailties are independent
of the covariates or that they have a finite mean. In line with Boockmann
(2001), we use a reduced form approach in order to analyse the observed
and unobserved determinants affecting the duration between adoption and
ratification of a convention.

Following the conclusions of Boockmann (2001), we consider two types of
effects: country effects, and convention effects. The presence of the latter
type of effects stems from the fact that some conventions may be more eas-
ily ratified than others. For instance, conventions allow countries different
degrees of flexibility or differ in complexity. As a consequence, clustering oc-
curs in two different ways and we are investigating the degree of association
among observations from both sides.

To estimate the model, we use the approach described by Kalbfleisch
(1978) which allows to use the partial likelihood approach in the Bayesian
paradigm. After the full specification of the model, we estimate the param-
eters using Gibbs sampling (introduced in the seminal paper of Gelfand and
Smith, 1990).

This paper is organized in 5 sections. Section 2 describes the data. Sec-
tion 3 presents the Cox model with two random effects (see Sastry, 1997)
and two special cases: the Cox model with one random effect (see, for exam-
ple, Lancaster, 1979) and the Cox model without random effect, thereafter
referred as the standard Cox model (see Cox, 1972). We also discuss the
identification of the model with two frailties in our setting. In Section 4, we
discuss the choice of the prior distributions, the implementation of the partial
likelihood, and estimation using Gibbs sampling. The results are presented
in Section 5.

2 Data

The survival data analyzed in this study come from a database described
in Boockmann (2001). The spells were collected using flow sampling over
the period 1975-1995. Durations are defined in the original database as the
number of days between the adoption of a convention and its ratification by
a particular country. Due to computational limitations, we set up the data
as if they were recorded every 15 days.

Our data comprises 80 ILO member states, none of them industrialized
(no OECD members), and we call them ‘developing countries’ for simplicity.
It covers 29 conventions and a total of 228 ratifications. Considering spells
ended by a ratification, the mean length of a spell is 8 years, but durations



differ widely: nearly 20% of ratifications occur within 3 years after adoption
while 20% of all spells last over 13 years. The values of the explanatory
variables are unlikely to remain constant over such spells. We expect the
probability of ratification to be influenced by the changes of the covariates
as time passes, and as a consequence, the data were set up to account for
time varying covariates. Table 1 summarises the distribution of the number
of ratifications per country. Three member states have ratified more than a

Table 1: Number of ratifications for developing countries

Number of ratifications Number of countries

More than 12 3
9-10 3

7-8 1

5-6 10

3-4 17

1-2 20

0 26

228 80

dozen conventions (Brazil, Mexico and Uruguay) and 6 countries more than
8, while 26 members did not ratify any.

As regards conventions, some of them are ratified by a large number of
countries. For instance, conventions numbered 144 and 159 in the ILO clas-
sification have been ratified 38 and 25 times, respectively. On the other side,
conventions 143 and 157 have been ratified by only 6 countries and 1 country,
respectively. We estimated the survival function for each convention using
the Kaplan-Meier non-parametric estimator, and performed a log rank test
to assess their equality. Based on the null hypothesis of no difference, we
concluded that the cumulative probabilities of ratification are significantly
different.? Interpreting this result as evidence of heterogeneity across con-
ventions, we consider two types of random effects: a country-specific effect
and a convention effect.

The explanatory variables may take different values depending on country
and time. They capture influences on ratification behaviour often discussed
in the political economy literature (for further elaboration and for exact data
sources, see Boockmann, 2001). They fall into three categories: variables
relating to the economic and administrative costs and benefits of ratification,

2The value of the test statistic was over 1000 and critical values are 39.38 at the 5%
level and 48.28 at the 1% level.



to domestic political circumstances, and to external pressure for ratification.

In the first group, the level of GDP (measured in constant US-$) and
the ratio of exports to GDP are used. Workers from richer countries may
have a higher demand for labour standards, which increases the likelihood
of ratification. By contrast, greater openness may make ratification more
difficult since countries are more concerned about their international com-
petitiveness. To allow for a non-monotonic impact on the hazard, GDP
enters both linearly and quadratically. In previous estimations, higher-order
polynomial terms were never found to be significant. The next two variables
in this group are indicators. The first one specifies whether or not the con-
vention under consideration is an explicit update of an existing convention
(information was taken from the wording of the convention). The second one
indicates whether or not a member state has ratified in the past a conven-
tion for which the convention under consideration is an explicit update. We
expect that previous ratifications make current ratification less costly. More-
over, non-ratification of a previous convention, given that it exists, makes
ratification less likely as compared to the case where no previous convention
exists. The last variable in this category is total population, used as a proxy
for per-capita administrative costs of ratification.

The second group of explanatory variables is composed of indicators for
internal political circumstances favouring ratification. The first one, taken
from Alvarez et al. (1996) and updated by Boockmann (2001), is a dummy
for democracies. A second indicator, derived from various internet resources,
equals one if there is a left wing parliamentarian majority. Two further
variables refer to the vote of the national delegates (representing government
and employers) at the adoption of the convention at the International Labour
Conference. They are set as one if the delgate voted against the convention
or abstained. The vote of the unions’ delegate is not taken into account,
because it is in favour of adoption for nearly 99% of the observations.

Variables capturing external pressure derive their justification from the
fact that, despite the voluntary character of ratification, some countries may
be influenced in their ratification decision by other countries or by interna-
tional organizations such as the World Bank or the IMF. The higher the
dependence on these organizations or on other countries, the higher the ex-
ternal pressure that can potentially by applied. The amount of development
aid received each year by a country is the first explanatory variable of this
group. We also consider IMF lending and World Bank credits. Exports
towards industrialized democracies stand for countries’ vulnerability with re-
spect to trade sanctions. The reason is that trade sanctions would most likely



be applied by industrialized countries and not by other developing countries.?

As pressure is less likely if the country is an oil exporter, we include an indi-
cator for OPEC members and interact it with exports towards industrialized
democracies. All variables are measured in per cent of GDP. To deal with
a potential endogeneity problem, we use a three year moving average lagged
one period for these variables. We also create a set of indicators to take ac-
count of differences between the subjects of conventions. Readers interested
in more details on the choice of these variables or their expected effect on the
hazard function are referred to this Boockmann (2001), who also presents
descriptive statistics including Kaplan-Meier estimations.

3 Mixed Proportional Hazard Models

In the following, we consider three different nested models belonging to the
Mixed Proportional Hazard family (hereafter referred as MPH models, see
Van den Berg, 2001, for a survey), which can deal with time varying covari-
ates. We will first introduce the Cox model with two random effects, and
deduce the other two models,the Cox model with one random effect and the
standard Cox model, by imposing restrictions. As a random effect repre-
sents a source of clustering between the observations, the Cox model with
two frailties takes account of unobserved heterogeneity in the finest manner
among the models we consider while the standard Cox model does not deal
with it at all.

Before going into the details, it is useful to discuss the indexing and the
concept of time used here. Let i=1,..., I denote the country index, and
j=1,...,J; the convention index.* We denote by t;; the time between the
adoption of the convention j during the International Labour Conference
and its ratification by country i. That is, t;; does not denote calendar time
but duration from the start of the ratification spell.

Van den Berg (2001) provides a complete discussion of the MPH model and
its properties. In this general framework, the hazard function is supposed to
be the product of three terms: a term of unobserved heterogeneity, a function
of the observed explanatory variables (possibly time varying) and a function
of time common to all individuals. The idea underlying the use of random

3 Industrialized democracies are: Australia, Austria, Belgium, Canada, Denmark, Fin-
land, France, Germany, Greece, Iceland, Ireland, Italy, Japan, Luxembourg, Netherlands,
New-Zealand, Norway, Portugal, Spain, Sweden, Switzerland, UK and the USA.

4Due to the sampling scheme, the relevant conventions differ from one country to the
other. A complete notation would require introducing a function j; indexing the conven-
tions relevant for coutry i as j; (1),...,7; (J;). Still, the simplified notation introduced
above should not lead to any confusion.



effects is that data are clustered in some way (for instance because they share
the same genetic factors, or the same environmental characteristics), and a
realization of a random effect is common to all observations in the same
cluster. The MPH model allows us to represent unobserved heterogeneity in
several ways.

We begin with the model where the unobserved heterogeneity term is
modelled as the product of two random effects. There is no hierarchy in the
clustering here. We assume the two effects to be independent. In our case,
this may be justified with respect to the universality of ILO standards. At
least officially, there are no ILO conventions intended for certain regions in
particular. Observed durations are assumed independent conditional on the
covariates and both frailty terms, and the hazard can be expressed as:

Nij(tig|ig, &0, 05) = Gy Ao(tig) exp [B'zi;(ti5)] (1)

where &; denote a country effect, ¢); a convention effect, \o(¢;;) the baseline
hazard which depends only on the time elapsed since the adoption of the con-
vention under study, and [ is a parameter vector common to all observations.
The hazard function can also be written:

)\ij (tij|xij7 Vi, wj) = )\0@@') exp [ﬂ/l‘i]‘ (tz]> + V; + U)j] s (2)

where v; denote the log country effect and w; the log convention effect. Due
to the universality of ILO standards, we assume the two effects to be uncor-
related. At least officially, there are no ILO conventions intended for certain
regions in particular.

As regards identification, Elbers and Ridder (1982) show that identifi-
cation of the MPH model in a single spell setting requires independence
between covariates and random effect, as well as a finite mean for the latter.
Honoré (1993) proves that both assumptions can be relaxed in a multivari-
ate setting if the realization of the random effect is shared among at least
two observations. In our setting, we show in Appendix A that the model is
identified without assuming E(A) < oo, where A = &;,1;, or that A and z;;
are independent. The underlying idea is that each random effect can be held
constant depending on whether the model is formulated for a given country
or a given convention. We can thus switch between these two viewpoints
and use Honoré’s (1993) approach. In fact, the result is obtained without
covariates and letting the part of the hazard not depending of the unobserved
heterogeneity vary for each observation, that is, a much more general setting
than the one considered in this application. As pointed out by Van den Berg
(2001), covariates, and especially time varying ones, ease identification in
duration analysis. Therefore, once identification is achieved without them,
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we do not need to impose more structure on the model if we want to consider
time varying covariates later on.

By constraining this model, we obtain the Cox model with one random ef-
fect (used for example by Clayton, 1978, 1991, Guo and Rodriguez, 1992, and
many others). If we set one random effect to 1 in equation (1), the remaining
level of unobserved heterogeneity can be used to represent alternatively the
convention effect or the country effect. As the clustering at the country level
is finer than at the convention level, we choose to use the unique random
effect as a country frailty:

Nij (tij| iz, vi) = No(tiy) exp [B'wi(ti;) + vi] - (3)

The standard Cox model (Cox, 1972) can be deduced by assuming that
both random effects are set to 1. It assumes that conditional on the ob-
served vector of covariates, the ¢;; are independent, hence not allowing for
unobserved heterogeneity. The hazard function is:

Aij(tijlzis) = Mo(ti) exp [B'wij(ti;)] - (4)

As the Cox model with one random effect and the standard Cox model are
submodels of the one with two frailties, they are also identified.

A commonly used approach to estimate the Cox model and its refinements
is the partial likelihood approach.® This semi-parametric approach does not
require the specification of a functional form for the baseline hazard, avoiding
therefore all problems linked to misspecification of the latter. To proceed,
we have to define the risk set as the set of spells still not completed at the
instant juste before ¢;;, denoted by R;;. Convention j ratified by country :
at time ¢;; contributes to the partial likelihood through:

exp [3'w(ti;) + v + wj]

Lij(tij|vi, wy, B) = :
olfigleis g, ) > (kpyers; &P [z (tiy) + ve + w]

()

Note that the baseline hazard cancels out, but the random effects do not, as
long as they take at least two different values in R;;. The partial likelihood of
nested models can be deduced from equation (5) by ignoring absent effects.
The whole partial likelihood is obtained by taking the product of L;;(3) over
7 and J.

Equation (5) is conditional on unobserved heterogeneity terms, and we
proceed by making assumptions on their distribution. A wide choice is avail-
able for §; and v;: gamma distribution, inverse-gaussian, log-normal, positive
stable (see respectively Clayton, 1991, Milcent, 2001, Gustafson, 1997, and

5See Lancaster (1990) for a detailed discussion.



Hougaard, 2000, for example). We assume that the log-frailties v; and w;
follow a Gaussian distribution, as McGilchrist (1993), Sargent (1998), Yau
(2001), Ripatti and Palmgren (2000), Vaida and Xu (2000) and many oth-
ers. Our choice is motivated by two reasons. First, we have no reason to
think that the log-frailties induce positive or negative deviations on the haz-
ard. Thus, we assume a symmetric distribution. Furthermore, the choice of
a Gaussian distribution matches the view that unobserved heterogeneity is
here due to a large number of unobserved country and convention specific
covariates. We suppose that {v;}/_, and {wj}‘j];l are independent and:%

v ~ N(O,TQ), w; ~ N (0, 042). (6)

We make the zero mean assumption so that the effects represent deviation
from the mean. A possible extension would be to assume variances specific
to each country or convention.

The partial likelihood approach can easily be extended to deal with cen-
sored observations, assuming that censoring is non-informative (see Lan-
caster, 1990). The risk set at time ¢;; now also contains spells censored
at or after ¢;;,. Censored spells, which are nearly 90% of the sample, con-
tribute only to the partial likelihood through their presence in the risk sets
and thus in the denominator of equation (5).

4 Bayesian Inference

The parameters of the models presented are estimated using a Bayesian ap-
proach. We first need to combine the information carried by the data with
prior beliefs, to proceed afterward to the estimation using MCMC methods.
In this section, we explain the choice of the priors, the form of the posterior,
and the estimation procedure using Gibbs sampling.

4.1 Prior and Posterior Distributions

The first stage of the inference is based on the partial likelihood, justified
from the Bayesian viewpoint by Kalbfleisch (1978) and we recall briefly
his approach in appendix (B). Basing his analysis on counting processes,
Kalbfleisch showed that considering the baseline hazard values as following
a gamma distribution with adequate parameters leads to a posterior den-
sity which is proportional to the partial likelihood. The direct calculation

6We also tried to estimate a model with gamma, distributions for the frailties but did
not obtain convergence. This confirms the problem met by Djurdjevic (2000) and by
Horny (2001) with the EM algorithm for the same model.
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of the partial likelihood through the specification of the hazard function is
equivalent to writing a counting process with a baseline hazard distributed
according a gamma prior. This approach is based on a limit argument in
which both parameters of the gamma prior tend to zero. Therefore we as-
sume in our application that the baseline hazard follows a gamma prior with
both parameters equal to 0.001.” This assumption implies an expectation
equal to 1 and a variance equal to 1000, which does not restrict the hazard
because the term exp|3'z;,(tix) + v; + w,| is not constrained.

The counting process-based formulation of the model assumes that time
is continuous, in the sense that two ratifications cannot occur simultane-
ously. We have only a few tied observations in the sample, handled with the
approximation of Breslow (1972).

The second stage of the Bayesian approach is to assign prior densities to
the parameters of the model. In our study, we used only proper but uninfor-
mative priors, to make computation easier. For the regression coefficients we
specify independent priors to simplify computation. Alternatively, one could
think of a multivariate normal distribution as prior but it would induce much
more complexity in the model, given that we would have to specify a covari-
ance matrix for 22 parameters. We assign each of them a normal univariate
distribution with 0 mean and variance equal to 10°.

The last stage concerns the choice of priors for the parameters of the un-
observed heterogeneity distribution. The precisions of both log-frailties (i.e.
772 and a?) are assumed to follow a gamma distribution with expectation
one and variance equal to 10®. The gamma distribution is a conjugate prior
for the precision of the Gaussian distribution (see for example Gouriéroux
and Monfort, 1990, pp. 381-382) and we choose it to speed up computation.

Denote by M the number of observed explanatory variables. The posterior
marginal density of the Cox model with two frailties is:

&

I £(5) 7)1 (7).

m=1
(7)
On the basis of this posterior, we can deduce the special cases when we
consider the Cox model with one frailty and the standard Cox model. We
just need to omit unobserved heterogeneity distribution and to be careful
when taking products.

I I
T(3, a, Tlti;) o 1:[1 _ 1Lij(tij|viuwjaﬁ)f(wj|a) Qf(%h’)

"We refer here to the parameterization (o, \) leading to an expectation equal to a/A
and a variance equal to a/)\2.
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4.2 Parameter Estimation

An analytical solution for the posterior distribution is not easily available.
However, this distribution can be approximated using Markov Chain Monte
Carlo (MCMC) methods, especially Gibbs sampling. Reviews on MCMC
methods include Robert (1996), Neal (1997) and Robert and Casella (1999).

Gibbs sampling is implemented in the WinBUGS software and can be
summarily described as follows.® Suppose we consider a vector X, composed
of n (n > 1) random variables. The algorithm samples each z; from its
conditional distribution f;(z;|{x;};«), given the current values of z;, for
1t = 1...n. The sequence x; obtained by repeating the procedure is a Markov
chain. Once convergence is achieved, the Gibbs sampler produces a sample
close to one sampled directly from the posterior distribution, from which the
expectations of quantities of interest can be estimated.

The regression coefficients 3 are simulated from their conditional distribu-
tion using the Acceptation-Rejection sampling (ARS) (see Gilks and Wild,
1992, or Robert and Casella, 1999, for detailed discussion on this sampler).
The variances 72 and o? are simulated directly from an inverse gamma den-
sity.

5 Results

In this section, we present the results for the three models. Two chains with
different initial values were run for each model. Previous runs indicated that
convergence for the variances is slower than for #. Thus we initially set
the regression coefficient to 0 for both chains and chose different the values
for the variances: 72 and o were set to 1 for the first chain and to 50 for
the second chain. 11000 iterations were run for the standard Cox model,
12000 for the model with a country frailty and 35000 for the model with
two frailties. Using the convergence diagnostic tool of Gelman and Rubin
(1992) and quantile plots, we concluded that 5000 iterations were necessary
for the burn-in period for the first two models, and 10000 for the third one.
Estimation was performed with a 2.5 Ghz Pentium and it took one month
for the standard Cox model, two months for the Cox model with one frailty,
and 3 months for the Cox model with two frailties.® All posterior summary

8WinBUGS is freely available at http://www.mrc-bsu.cam.ac.uk/bugs/. See Spiegel-
halter et al. (2000) for the manual and examples.

90ther studies (see for example Brooks and Morgan, 2004), and also our own experi-
ments, show that WinBUGS is very slow when dealing with large datasets. For the simpler
models, faster software is available and we also performed estimation using R 1.9.1. This
required less than 3 seconds for the Cox model and less than 5 seconds for the model with

12



statistics are based on iterations of the two chains after the burn-in step.
Table 2 shows the estimates of the unobserved heterogeneity distribution
parameters.

Table 2: Estimates of the standard-errors of the log-frailties distributions

Type of heterogeneity Parameter Mean 2.5% 97.5%

Simple: country effect T 0.49 0.42 0.57
Twofold: country effect T 0.49 0.42 0.57
convention effect « 0.85 0.66 1.12

Considering the confidence interval at the 5% level, we remark that the
country effect is not influenced by the inclusion of the convention effect.
This last one is significantly more important than the country effect, which
means that observations are more strongly correlated among conventions
than among countries.

Table 3 shows the posterior means and confidence intervals at the 5% level
for the 3 parameters for the three models. Considering cost variables, we see
that the second and third models show many more significant parameters
than the first one. In particular, the dummy variable indicating ratifica-
tion of a previous convention is significantly positive as expected, while non-
ratification influences the hazard negatively as compared to the case where
the present convention does not update a previous one. This hints to the
presence of dynamics in the ratification process. The models with frailties
indicates a non-monotonic impact of the real GDP per capita.'® Comparing
with Boockmann (2001), we remark that we have the same significant cost
variables in both studies.!!

Turning to internal pressure variables, none of them is significant in the
specification without frailty terms. Considering two frailties greatly alters
this conclusion. The democracy indicator has a significant positive impact.
This result is plausible because individuals whose working conditions are
improved by ILO conventions, such as farmers and industrial workers, are
more likely to be politically represented in a democracy than in authoritarian

one frailty. We present the corresponding results in appendix C. Still, we are not aware of
any alternative for the model with two frailties.

0For both, the profile is an inverted U with a maximum at a GDP per capita of about
$6000, so that the relationship is essentially increasing and concave (the mean GDP per
capita in the sample is $2280).

HResults for the Cox model differ between the two studies because Boockmann (2001)
included a time trend. We omit it here because simulated samples for this variable were
highly autocorrelated and this dramatically slowed down convergence.
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Table 3: Estimates of the J parameters

Variable Standard Cox Cox: one frailty Cox: two frailties

Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5%

Cost

Real GDP per capita® 2.01 -0.76 4.92 4.00 1.49 6.71 3.81 1.12 6.64

Real GDP per capita, -2.24  -5.46 0.77 -3.32 -6.25 -0.69 -3.19 -0.33 -6.29

squared

No explicit update 0.53 -0.05 1.15 0.98 0.45 1.58 1.39 0.88 1.95

Own past ratification 1.50 0.77 2.23  1.37 0.64 210 1.62 0.91 2.34

if explicit update

Population® -0.06 -0.14 0.03 -0.01 -0.09 0.08 -0.02 -0.11 0.07

Internal pressure

Democracy 0.12 -0.18 0.43 0.36 0.06 0.67 0.34 0.04 0.64

Left majority -0.39 -1.04 0.19 -0.72 -1.37 -0.14 -0.69 -0.10 -1.33

Vote against convention:

Government -0.15  -0.59 0.33 -0.18 -0.62 0.28 -0.22 -0.66 0.24

Employers -0.15  -0.56 028 025 -0.14 0.68 0.38 0.01 0.79

External pressure

Development aid® -0.06 -0.11 -0.03 -7.43 -11.69 -3.55 -7.65 -3.81 -11.85

Worldbank loans® -4.20 -763 -0.82 255 -0.59 571 200 -1.11 4.97

IMF credits® 6.23 2.03 10.10 3.61 -0.24 729 396 -0.09 7.62

Exports® -0.76  -3.64 145 -0.78 -3.54 112 -0.79 -3.76 1.21

Exports into industrialized -0.07 -6.37 6.29 0.22 -6.20 6.61 -0.18 -7.43 6.96

countries®

Exports into industrialized -0.55 -6.13 5.28 -1.10 -7.14 5.00 -0.77 -7.51 6.07

countries (non oil exporting

countries)®

Non oil exporting country 0.19 -0.91 1.30 0.26 -0.87 1.50 0.25 -1.04 1.65

Penalized log-likelihood -1728 -1630 -1536

Subject of convention Yes Yes No

Number of spells 2349 2349 2349

Number of ratifications 228 228 228

Note: Bold entries are significant at the 5% level. a. 1985 international prices, in $10 000. b. hundred milions.

c. percent of GDP. The other variables are indicators, and convention subject indicators are included for the

first two models.

regimes. Surprisingly, the left majority indicator has a negative coefficient.
This is probably due to the fact that the left-right distinction is often inade-
quate to capture the domestic politics of developing countries. Government
voting has no effect on ratification. By contrast, a negative vote of the em-
ployer delegate increases the probability of ratification. These conventions
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may be those that formulate the most advanced labor standards. Therefore,
trade unions may mobilise most political power for the ratification of these
conventions (note that the corresponding variable for worker delegate had to
be omitted, as discussed above). By contrast, Boockmann (2001) finds no
significant parameter when controlling for unobserved heterogeneity.

Development aid has a negative influence on the hazard, in particular
if unobserved heterogeneity is controlled for. An explanation may be that
countries receiving large amount of aid also have to cope with temporary
economic problems not accounted for by the other variables. As in Boock-
mann’s study, World Bank loans seem to discourage ratification in the first
model, but the effect becomes insignificant in the models with frailties. IMF
credits are also insignificant in these models. Finally, there is no impact of
potential exposure to trade sanctions measured as exports into industrialised
countries. In sum, these results suggest that external pressure is nonexistent
in the ratification decision.

We computed penalized log-likelihoods (equal to the log-likelihood minus
half the number of parameter of the model times the log of the number of
observations) in order to compare the models on the basis of the Bayesian
Information Criterium (BIC, Schwarz, 1978). The BIC has been designed
to find the most probable model given the data, and it takes account of
Occam’s razor, i.e. the more parsimonious model is chosen when two models
fit the data comparably well. Wasserman (2000) reports that under mild
regularity conditions, the BIC approximates the log Bayes factor. If one sets
the prior odds of each model to be equal, the Bayes factor is the posterior
odds ratio of one model versus the other one. The BIC, obtained by taking
the differentiating penalized log-likelihood, is equal to 98 when comparing the
standard Cox model to the model with one frailty, and 94 when comparing
the model with two frailties to the one with one frailty.'? The Bayes factor
between the last two models is thus exp(94), giving strong evidence in favour
of the model with two random effects. This result was not obvious ex ante,
because the model with two frailties does not use the convention subject
information used in the other two models.

6 Conclusion

Our study uses a Bayesian approach to estimate MPH models with different
specifications of unobserved heterogeneity, the most detailed one using two

2The formula is: BIC;; = InL; — InL; + %5% Inn, where i and j are the models

indexes, L the likelihood, d the number of parameters of the model and n the size of the
sample.
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random effects. Rather than assuming a parametric form for the baseline
hazard, we use Cox’s partial likelihood semi-parametric approach to avoid
misspecification problems. This approach has been justified from a Bayesian
viewpoint by Kalbfleisch (1978). After having established the identification
of the models, we estimated them using Gibbs sampling. In order to sim-
ulate from posterior marginal densities, we also use other simulation-based
computational algorithms such as the acceptation-rejection sampling.

Switching from the frequentist paradigm to a Bayesian approach does not
seem to influence estimation results a lot, because the findings confirm results
from previous studies on ILO ratification behaviour, especially Boockmann
(2001). Our results confirm that it is important to control for the country
under study. Some unobserved explanatory country-specific variables seem
to have a large influence on the ratification behaviour. The results also show
the presence of an even larger amount of heterogeneity among conventions.
Some of them are very consensual among member states of the ILO or do
not induce important economic or political costs. Other conventions can be
less easily ratified because they are more ambitious and imply too important
costs.
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A Identification: proof

The proof is similar to the proof of the first theorem in Honoré (1993). Con-
sider the case of two conventions submitted to country ¢. The model is:

i (ta |, 1) = &br Ao (ta), (A1)
Nia(tial&i, o) = &itha Aoa(tia). (A.2)

The joint survivor function for country i is:

Si(ti, tio|th1, ) = /feXP [=&ith1 Ao (tin) — &itba Moo (tin)| dHe (&) (A.3)

= Eg [¢1 /\O,l(til) + 1o )\0,2 (ti2)] J

where L, is the Laplace transform for &. Notice that S;(t;1, ti2|¢1,12) is
observable by taking a large number of observations for a population homo-
geneous with respect to 1; and v, (even if they are unknown, the way the
population is clustered is known). By differentiating (A.3) over ¢;; and ¢;
and taking the ratio, we obtain:

08Si(tir, tiolthr, 1) /Otiy  W2Xo 2(ti2) L ,g [1 00,1 (ti1) + V2o (Lin)]
0S;(tir, tia|thr, o) /Ot Y Ao (tan)L ,g (1M1 (ti1) + Y2l 2(tio)]
~ P2roa(tiz)
)
(t;

(A.4)

wl>\0 1(ta

Let us denote by k the quantity 1/Xg1(ti0). Taking the ratio of the value of
(A.4) at (t0,ti2) to the value at (¢,¢;2), we obtain:

Uodop(tio) [ Yarop(tiz) — Aoalt)
1/11)\0,1(251'0)/ 1o (2) - X1 (tio) = kXoa(t). (A.5)

By integrating over time, we have kAg1(t) + ¢1, where ¢; is obtained by the
initial condition Ag;(0) = 0. Then, Ag;(¢|X;) is identified. Similarly, one
can prove that Ag2(¢|X;) is identified by taking the ratio of (A.4) at (¢;1,%,0)
over its value at (¢;1,t). As ¢ and ¢, are fixed, the survivor S;(t;1, tia|1)1, 12)
depends only on time in a known way. We can thus trace out L, by letting
(t1,t2) vary over [0, 00[* and H is identified.

Reverse now the viewpoint and consider the case of convention j submitted
to two differents countries, indexed by 1 and 2. The model is:

A1(t15161,05) = &5 Ao (tay), (A.6)
A2,j(t1562, ¥5) = E2v5 Ao2(tay).- (A7)

The model is exactly the preceding one where £ and 1) have been reverted.
We have thus the identification of H,.
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B Implementing the partial likelihood

We recall here the justification of the partial likelihood in a Bayesian setting
described in Kalbfleisch (1978). Let us denote by d;; an indicator equal
to one if a ratification is observed at time t;;. Assume that ¢;; follows a
Poisson distribution with parameter \;;(t;;|xi;, &, v;). The contribution to
the likelihood of convention j ratified by country ¢ at time ¢;; is:

LPoss0n (5,085, 905) = Nij(tijl iz, &, 005)° exp | — Z Mt (tij|Trr, e, r)
(k,1)ER;;
(A.8)
This last equation is exactly the likelihood of a duration model with hazard
Nij(tijlxiz, &, 10;). Assume that the baseline hazard has a gamma prior with
parameters a and b and integrate it out:

HH&% €xXp ﬁxz]( ’L])]/ )\U( i eXp - Z >\kl tzjymkl7§k>¢l)

i=1 j=1 (k,l)ER;;
Ao(tig) " exp [=bAo(ti;)] dAo (i)
I J o
= [T 1] &) exp [82i(t:;)] / Ao(ti;)* exp [ — No(ti) (0+
i=1 j=1 0

by exp [B'wi;(ti;)] )] dXo(tij)

(k,l)ER;;
I J;
] §j exp [B'w5(ti5)]
XX a -+
11;[131;[1 (b +> (k1)ER:; by exp [B'ay;(t za)])

(A.9)

And we obtain the partial likelihood (5) by letting a,b — 0, that is assuming
the baseline hazard follows a gamma non-informative prior.

C Results obtained by maximum partial likeli-
hood and by penalized partial likelihood
The following table displays estimation results obtained by maximum partial

likelihood for the standard Cox model and by penalised partial likelihood,
as described in Therneau and Grambsch (2000), for the Cox model with one
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gamma frailty. They have been obtained using the software R 1.9.1, and the

package ‘survival’ is required for penalised likelihood.!?

Table 4: Estimates of the § parameters

Variable Standard Cox  Cox: one frailty

Coef. S.d  Coef. S.d

Cost

Real GDP per capita® 3.91 1.40  2.80 1.52

Real GDP per capita, squared -3.18 1.50 -2.24 1.64

No explicit update 0.95 0.28 0.96 0.28

Own past ratification 1.39 0.36 1.41 0.36

if explicit update

Exports® -0.21 1.42  0.22 1.13

Population® 0.00 0.04 -0.04 0.05

Internal pressure

Democracy 0.38 0.15 0.25 0.16

Left majority -0.68 0.31 -0.58 0.32

Vote against convention:

Government -0.20 0.24 -0.16 0.24

Employers 0.24 0.21  0.23 0.21

External pressure

Development aid® -7.21 2.06 -8.57 2.25

Worldbank loans® 2.55 1.54 3.15 1.60

IMF credits® 3.78 1.93  3.93 2.02

Exports into industrialized -0.77 3.73 -2.48 4.02

countries®

Exports into industrialized -0.72 3.46  0.54 3.92

countries (non oil exporting countries)®

Non oil exporting country 0.13 0.67 -0.04 0.77

Note: Bold entries are significant at the 5% level. a. 1985 international prices, in $10 000.
b. hundred milions. c. percent of GDP. The other variables are indicators, and convention

subject indicators are included.

13R is a free software available at http://www.r-project.org/.
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