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Abstract

This paper presents an investigation into the properties of the optimal communication span-
ning tree (OCST) problem. The OCST problem finds a spanning tree that connects all nodes
and satisfies their communication requirements for a minimum total cost. The paper compares
the properties of randomly created solutions to the best solutions that are found using an evo-
lutionary algorithm framework. The results show that on average the distance between the
optimal solution and the minimum spanning tree (MST) that is calculated according to the
distance weights is significantly smaller than the distance between a randomly created solution
and the MST. This means, optimal solutions for the OCST problem are biased towards the MST
defined on the distance weights alone. Consequently, the performance of optimization methods
for the OCST problem can be increased if the search is biased towards MST-like solutions.

1 Introduction

The optimal communication spanning tree (OCST) problem (Hu, 1974) finds a spanning tree that
connects all given nodes and satisfies their communication requirements for a minimum total cost.
The number and positions of the network nodes are given a priori and the cost of the network is
determined by the cost of the links. Like other constrained spanning tree problems, the OCST
problem is NP-hard (Garey & Johnson, 1979).

This paper presents an investigation into the properties of optimal solutions for OCST problems.
It examines the properties of existing OCST problem instances from the literature, as well as
analyzing OCST problems in general. We perform experiments using Euclidean and randomly
chosen distance weights. The results show that the distance between optimal solutions for the OCST
problem and the minimum spanning tree (MST) that can be calculated using the given distance
weights is smaller than the distance between a randomly created solution and the MST. Therefore,
optimal solutions for OCST problems are biased towards the MST. As a consequence, search
methods that consider this problem-specific knowledge are expected to show good performance for
the OCST problem.

The paper is structured as follows. In the following section we give a short description of the
OCST problem and examine existing problem instances from the literature. We analyze the prop-
erties of randomly created trees and compare them to the properties of the best known solutions.
Consequently, in section 3 we perform a statistical analysis of OCST problems in general. We
generate random problem instances and compare the properties of randomly created trees to the
properties of the optimal solutions. Section 3.3 discusses the impact of the results on the design
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Figure 1: A communication spanning tree on 15 nodes where the path connecting nodes 3 and 14
is emphasized.

of heuristic optimization methods especially evolutionary algorithms. In section 4 we present some
directions of future work. The paper ends with concluding remarks.

2 The Optimal Communication Spanning Tree Problem

In the following we define the OCST problem and analyze existing problem instances from the
literature.

2.1 Problem Description

The design of optimal communication and transportation networks which satisfy a given set of
requirements has been studied extensively in the literature. Many different variants, with or without
additional constraints have been examined, and either exact solutions or heuristics have been given
(Kershenbaum, 1993; Cahn, 1998). Relevant constrained minimum spanning tree problems are
for example the optimal communication spanning tree problem, the degree-constrained minimum
spanning tree problem, the minimum steiner tree problem, or the capacitated minimum spanning
tree problem.

For the optimal communication spanning tree (OCST) problem (Hu, 1974), a tree that connects
all given nodes and satisfies their communication requirements for a minimum total cost has to be
found. The number and positions of the network nodes are given a priori and the cost of the network
is determined by the cost of the links. A link’s flow is the sum of the communication demands
between all pairs of nodes communicating either directly, or indirectly, over the link. Figure 1
shows a communication spanning tree on 15 nodes and emphasizes the path connecting nodes 3
and 14. The cost for each link is not fixed a priori but depends on its length and capacity. A link’s
capacity must satisfy the flow over this link, which depends on the entire tree structure.

The OCST problem can be defined formally as follows. An undirected graph is denoted as
G = (V,E). n = |V| denotes the number of nodes and m = |E| denotes the number of edges of the
graph. There are communication or transportation demands between the n different nodes. The
demands are specified by an n x n demand matrix R = (r;;), where r;; is the amount of traffic
required between location v; and v;. An n x n distance matrix W = w;; determines the distance
weights associated with each pair of sites. A tree T' = (V, F) where F' C E and |F| = |[V| -1 is
called a spanning tree of G if it connects all the nodes. The weight w(T") of the spanning tree is the
weighted sum over all pairs of vertices of the cost of the path between the pair in 7T'. In general,

w(T) = Z [ (wig, big)

1,j€V

where B = b;; denotes the traffic flowing directly and indirectly between the nodes 7 and j. It is
calculated according to W and the structure of T'. T is the optimal communication spanning tree



if w(T) < w(T") for all other spanning trees 7”.

In many problem instances the cost of a link is calculated as the product of the distance weight
times the overall traffic running over the link. Therefore, f = w;;*b;;. The OCST problem becomes
the minimum spanning tree (MST) problem if f = w;;. Then, T is the minimum spanning tree if
w(T) < w(T") for all other spanning trees 7", where w(T') = 3, oy, wi;.

Cayley’s formula identified the number of spanning trees on n nodes as n" 2 (Cayley, 1889).
Furthermore, there are n different stars on a graph of n nodes. A distance d;; € {0,1,...,n — 2}
between two spanning trees T; and T} can be defined as

1 . .
dij - 5 Z ’lzlw - lzjwl
u,veV

It is 1if a link from u to v exists in 7; and 0 if it does not exist in 7;. The number of links that
two trees T; and T} have in common can be calculated as n — 1 — d;;.

Like other constrained spanning tree problems, the OCST problem is NP-hard (Garey & John-
son, 1979, p. 207). However, previous work has shown that the problem can be solved with
O(log?(|V]) if the distance matrix satisfies the triangle inequality (Peleg & Reshef, 1998). A large
number of evolutionary algorithms using different types of search operators and representations
have been proposed for solving the OCST problem (Davis, Orvosh, Cox, & Qiu, 1993; Berry,
Murtagh, & Sugden, 1994; Kim & Gen, 1999; Davis, Orvosh, Cox, & Qiu, 1993; Tang, Man, &
Ko, 1997; Sinclair, 1995; Berry, Murtagh, & Sugden, 1994; Kim & Gen, 1999; Li & Bouchebaba,
1999; Raidl & Julstrom, 2000; Gottlieb, Julstrom, Raidl, & Rothlauf, 2001; Julstrom, 2001; Chou,
Premkumar, & Chu, 2001; Rothlauf, Goldberg, & Heinzl, 2002).

2.2 Analysis of Existing Problem Instances

Test instances for the OCST problem have been proposed in the literature by Palmer (1994), Berry,
Murtagh, and McMahon (1995), Rothlauf, Goldberg, and Heinzl (2002), and Raidl (2001). In the
following we analyze the properties of these test instances.

Palmer described in his thesis OCST problems with 6 (palm6), 12 (palm12), 24 (palm24), 47,
and 98 nodes. The inter-node traffic demands are inversely proportional to the distances between
the nodes. The nodes correspond to cities in the United States and the distances between the nodes
are obtained from a tariff database. For the exact distance and requirement matrix for the 6, 12
and 24 node problem the reader is referred to Palmer (1994).

Berry, Murtagh, and McMahon presented three different instances of the OCST problem. A
six node (berry6) and two 35 node problems (berry35 and berry35u) have been proposed. For
berry35u the distance weights w;; = 1. It is known that the cost of the optimal solution for berry6
is 534 and for berry35 is 16 915. The distance matrix and the traffic demands can also be found
at http://www.cse.rmit.edu.au/"rdslw/research.html. Both the problems from Palmer and
Berry, Murtagh, and McMahon, have also been investigated by Li and Bouchebaba (1999).

Rothlauf (2002) presented four OCST problems that are derived from a real-world 26-node
problem from a company with locations all over Germany. For fulfilling the demands between
the nodes, different line types with only discrete capacities and costs are available. The costs for
installing a link consists of a fixed and length dependent share. Both depend on the capacity of the
link. The cost are based on the tariffs of the German Telecom from 1996. The distances between
the nodes (cities) are calculated using Euclidean distances. For an exact description on how the
cost of a link depends on its length and its capacity the reader is referred to Rothlauf (2002).

Finally, Raidl (2001) proposed several test instances ranging from 10 to 100 nodes. The distance
weights and the traffic demands have been generated randomly. They are uniformly distributed in



the interval [0,100]. The distance matrix and traffic demands can be obtained directly from the
author!.
In the test instances from Palmer, Berry et al., and Raidl, the weight w(T') of a tree is defined

as
w(T) = Z wij * bij,

1,jEV
where w;; is the distance weight between node ¢ and j and b;; is the sum of direct and indirect
traffic traversing the link between i and j. In the test instances from Rothlauf, there are discrete
link capacities available and the cost of a link w(F) is calculated according to a tariff database. A
detailed description of all test problems can be found at Rothlauf (2002), which is also available at
http://www.bwl.uni-mannheim.de/wifol/de/gea_book.htm.

In the following, we perform an investigation into specific properties of these test problems. The
goal is to gain additional information about the problems as well as about the optimal solutions.
To gain an idea about the properties of randomly generated solutions, we randomly generate 10 000
solutions (trees) for each test problem. As it is difficult to generate random trees in an unbiased
manner (Raidl & Julstrom, 2003), we encode the trees using the Priifer number representation
(Priifer, 1918). Generating random individuals by generating random Priifer numbers allows us
to create unbiased solutions. The Priifer number representation is a one-to-one mapping between
spanning trees on n nodes and strings of length n — 2 using an alphabet of cardinality n. The use of
this representation ensures that the probability of generating random trees is uniformly distributed
and no trees are favored.

Table 1 lists the properties of randomly created solutions. It shows the mean p and the standard
deviation o of the distance d,,srand between a randomly generated solution and the minimum
spanning tree. As described in the previous subsection, the MST is calculated using only the
distance weights w;;. For the problem instance berry35u we are not able to calculate dy,st rand, as
all distances are uniform (w;; = 1). Furthermore, we calculated the distances between a randomly
created solution and the n different stars, dgiqrpest- The minimum distance between a randomly
created solution and one of the n stars, measures the similarity of a randomly created solution
towards a star. Table 1 shows the mean p and standard deviation o of min(dstqr rana) that denotes
the minimal distance between a randomly generated solution and a star.

Consequently, we calculated for the optimal or best known solution of the considered test
problems the distance towards the MST, d;,st pest, and the minimum distance towards one of the
n stars, min(dsar pest). The results, including the cost of the optimal solution, are shown in Table
2. Comparing dy,stpest With dps rand T€veals that for all test instances dp,stpest < Amst,rand- This
means that for all test instances the best solution is much more similar to the MST in comparison
to a randomly generated solution. Therefore, the optimal solution is biased towards the MST.
Comparing min(dstar pest) and min(dsiar, rand) does not reveal any significant differences. Randomly
created solutions have about the same minimum distance towards a star in comparison to the
optimal solution. Therefore, the optimal solution is not significantly biased towards a star network.

3 Statistical Analysis of the OCST problem

In the previous section we have seen that the optimal (or best known) solutions to the considered test
problems are biased towards the MST. Consequently, the following section performs a more general,
statistical, analysis of OCST problems. We randomly generate a large number of different OCST
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problem dmst,rand min(dstar,rand)
instance  nodes 7 o W o

palmer6 6 3.36 091 | 2.04 0.61
palmer12 12 9.17 117 | 7.22 0.75
palmer24 24 21.05 1.30 | 1850  0.80

raidl10 10 720 1.10| 5.42 0.70
raidl20 20 17.07 1.27 | 14.69  0.77
berry6 6 3.51 083 | 2.03 0.61

berry35u 35 - - 29.19  0.83
berry35 35 32.06 1.3229.16 0.83
rothlauf2 15 12.08 1.08 | 9.99 0.772
rothlaufl
rothlauf3 16 13.07 1.24 | 10.89 0.80
rothlauf4

Table 1: Properties of randomly created solutions for the test instances

PrOblem dmst,best min(dstar,best) cost
palmer6 1 2 693 180
palmerl12 ) 7 3 428 509
palmer24 12 17 1 086 656
raidl10 3 4 53 674
raidl20 4 14 157 570
berry6 0 2 534
berry35u - 28 16 273
berry35 1 30 16 915
rothlauf2 4 8 58 619
rothlaufl 7 9 60 883
rothlauf3 6 9 28 451
rothlauf4 9 7 112 938

Table 2: Properties of the optimal solutions for the test instances.



problem instances and compare the properties of randomly generated solutions to the properties of
the best solution that is found using an evolutionary algorithm approach.

3.1 Randomly Generated Solutions for the OCST Problem

We created for each problem size 100 random problem instances. The demands r;; between two
nodes i and j are generated randomly and are uniformly distributed in the interval [0,100]. For
the distances w;; there are two possibilities:

e Random distance: The distances w;; are randomly generated and are uniformly distributed
in the interval [0, 100].

e Euclidean distance: The nodes are randomly placed on a 1000x1000 2-dimensional plane.
The distance w;; between nodes i and j is the Euclidean distance between the two nodes.

The weight w(T") of a tree is defined as

1,5€V

For each problem size n (number of nodes) 100 problem instances with randomly chosen positions
of the nodes, either random or Euclidean distances, and random demands are created. For each of
the 100 problem instance we generated 10 000 random solutions.

nodes 7 o W o
8 525 1.04 3.74 0.62
10 719 1.11  5.50 0.67
12 9.17 116 731 0.72
14 11.14 1.20 9.15 0.75
16 13.13 1.22 11.00 0.76
18 15.11 1.24 1288  0.77
20 17.10 1.263 14.78  0.77
22 19.09 1.27 16.69 0.77
24 21.09 129 18.60 0.80
26 23.06 130 20.44 0.80

dmst,rand ‘ mln(dstar,rand) ‘

Table 3: Properties of randomly created solutions for the OCST problem

Table 3 presents the mean p and standard deviation o of dyystrand and min(dser rand). As we
get the same results for using random distances and Euclidean distances we neglect the distances
used. distrand and min(dggy rangd) are defined as described in the previous section. It can be
seen that both the distance d,st rana of a randomly generated solution towards the MST and the
minimum distance min(dgqy ranag) towards a star, increase approximately linearly with the number
of nodes n.

3.2 Optimal Solutions for the OCST Problem

In the previous section we examined the properties of randomly created solutions for the OCST
problem. In the following section, we analyze the properties of the optimal solutions for randomly



generated test instances and compare their properties to randomly created solutions. The optimal
solutions are determined using an evolutionary algorithm framework.

As there are no exact optimization algorithms available that can solve even small instances of the
OCST problem in a reasonable time, we implemented an evolutionary algorithm (EA) framework
for determining the optimal solution. Although EAs are heuristic search methods that can not
guarantee that the optimal solution is really found, we design an EA framework such that we
can assume that the found solution is the optimal solution. To find the optimal solution for an
OCST problem we use a classical canonical GA (Goldberg, 1989) with crossover as the main search
operator and some background mutation.

We know from previous work (Harik, Canti-Paz, Goldberg, & Miller, 1997) that the probability
of GA failure a goes with O(exp(—N)), where N is the used population size for the GA. Therefore,
GA performance increases with increasing N. Consequently, we apply a GA n, times to an
OCST problem using a population size of Ny. Té’e“"t denotes the best solution of cost wqg that is
found during the n;z, runs. In a next round we double the population size and apply again a GA
Nter times with a population size of N1 = 2 * Nj. lee“"t denotes the best solution with cost w;
that can be found in the second round. We continue this iteration and double the population size
N; = 2N,;_1 until w; = w;_1. This means we stop if the cost of the best solution Tl-beSt found in
round ¢ equals the cost of the best solution Tibﬁt found in round 7 — 1.

We use a standard GA with traditional parameter settings. The GA uses one-point crossover
and tournament selection without replacement. The size of the tournament is three. The crossover
probability is set to peross = 0.7 and the mutation probability is set to p,..¢ = 0.02. To encode
trees we used the network random key representation proposed in Rothlauf, Goldberg, and Heinzl
(2002). We have chosen this representation as it ensures good EA performance and as is unbiased
that means all possible trees are represented uniformly and no trees are overrepresented by the
representation.

In our experiments we applied the EA framework for each problem size n to the same 100
problem instances that we already examined in subsection 3.1. In contrast to subsection 3.1 where
we characterized only randomly created solutions, we investigate in the following the properties
of the corresponding optimal solutions. For the EA framework we started with Ny = 100 and
set niter = 20. The computational effort for the experiments is high. For calculating the optimal
solutions of all 100 problem instances for a problem size of n = 26 using the proposed EA framework,
we spent some 100 hours of computing time on a P4 with 2000 MHz.

dmst,opt ‘ min(dstar,opt) ‘ Nz ‘ wW;
nodes 7 o I o 7 I o

8 2.00 1.03 312 0.86 200 874 382 173 423
10 3.15 139 437 093 200 1476160 281 993
12 439 134 587 1.03 200 2231256 330 089
14 5.63 147 743 128 200 3071787 418 605
16 721 158 915 130 202 4167 278 473 867
18 7.70 1.64 11.23 1.12 412 5171294 520 323
20 9.51 1.63 1276 1.19 466 6 556 061 728 244
22 1149 1.84 1399 1.51 1154 8131648 869 736
24 12.38 1.89 16.62 0.96 2584 9 868 842 820 129
26 15.11 210 1776 1.34 4673 11 615434 858 822

Table 4: Properties of the optimal solutions using Euclidean distances
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Figure 2: We show how d,s¢ rand and dipstope using random distances and Euclidean distances
depend on the problem size n. The error bars indicate the standard deviation. The distances
towards the MST increase linearly. As distopt < dmstrand, OPtimal solutions are biased towards
the MST.

dmst,opt ‘ min(dstar,opt) ‘ NZ ‘ wW;

nodes | u o I o I I o

8 0.80 0.77 345 0.74 200 47693 18 986
10 1.34 106 492 086 200 70311 23518
12 1.36 1.15 6.79 080 200 89 787 35 662
14 1.79 133 854 093 200 108 532 32 522
16 227 1.34 1041 0.82 400 136 097 36 606
18 2.68 1.56 12.03 1.00 800 157491 42 776
20 3.10 1.63 14.12 1.01 800 184 315 47 604
22 3.57 1.74 1571 0.83 857 205240 43 749
24 426 1.88 17.81 0.98 1508 234676 58 950
26 5.50 2.07 19.25 1.13 6250 265 768 58 088

Table 5: Properties of the optimal solutions using random distances

Table 4 and 5 present the properties of the best solutions that have been found for the 100
problem instances of each problem size n using the proposed EA framework. We distinguish between
Euclidean (Table 4) and random distances (Table 5). The tables show for different problem sizes n
the mean p and standard deviation o of the distance between the optimal solution and the MST,
dmst,opt, the minimum distance between the optimal solution and a star, min(ds¢ar,opt), and the cost
w; of the best solution Tib“t. Furthermore, they show the average population size IN; in the last
GA round .

The Tables reveal a significant difference for dystope between using Euclidean distances and
random distances. When using random distances, the optimal solutions are more similar to the
MST than when using Euclidean distances. Comparing the properties of the optimal solutions to
the properties of randomly created solutions listed in Table 3 reveals that d,st,opt << dimst,rand- This



means, the optimal solutions to OCST problems are strongly biased towards the MST. Focusing
on the minimum distances towards a star shows that there is a small bias towards stars especially
if we use Euclidean distances. However, the effect is only weak and can be neglected in comparison
to the strong bias towards the MST.

Figure 2 summarizes the results from Tables 3, 4, and 5 and plots d,st rands Amst,opt USING
random distances, and d,,s¢,0p¢ Using Euclidean distances over the problem size n. It can be seen
that all distances towards the MST increase linearly with n. Both, the optimal solutions for OCST
problems using Euclidean and random distances are strongly biased towards the MST.

3.3 Discussion

The insight that the optimal solutions to OCST problems are biased towards the MST can be
beneficially used for the design of optimization methods. Optimization methods can perform better
if they consider problem-specific knowledge. When using EAs for solving OCST problems, the
insight that the optimal solution is more similar to the MST than a randomly created solution
can be considered for the design of the search method. In the following we outline three possible
approaches that are relevant to the design of evolutionary approaches:

e Overrepresent solutions similar to the MST in the initial population.
e Design search operators that favor trees similar to the MST.
e Increase the fitness of solutions similar to the MST.

In the following we briefly discuss these three possibilities. When using redundant representa-
tions, the number of genotypes exceeds the number of phenotypes. We know that redundant
representations increase EA performance if solutions that are similar to the optimal solution are
overrepresented (Rothlauf & Goldberg, 2002). The link-and-node biased (LNB) representation
proposed by Palmer (1994) is a redundant representation that overrepresents solutions that are
similar to the MST (Gaube & Rothlauf, 2001). Consequently, when using this representation for
OCST problems, EA performance can be increased. It was shown in Rothlauf (2002) that EAs
using the LNB encoding outperform EAs using other representations. The LNB results in higher
EA performance in comparison to other problem representations as it is biased towards the MST.

Another possibility to increase EA performance for the OCST problem is to use genetic search
operators that favor MST-like trees. For example, Raidl and Julstrom (2003) proposed the edge
set representation that is a direct representation of trees for the degree constrained tree prob-
lem. Additional heuristics have been introduced for recombination and mutation operators that
prefer edges of lower cost. As a result the genetic operators favor solutions that are similar to
the MST. Therefore, EAs using such operators show higher performance in comparison to other
representation /operator combinations.

A final possibility to increase the performance of EA methods for the OCST problem is to bias
the fitness evaluation of trees. If individuals that are similar to the MST get an additional bonus
the population converges faster to solutions that are MST-like and the performance of EAs can be
increased. Currently, the authors are not aware of any example approaches based on this technique.

It is important to bear in mind that EAs that favor MST-like solutions are only beneficial if it
is known that the optimal solution is similar to the MST. This paper has shown that on average
OCST problem show this behavior. However, if there is no such problem-specific knowledge, it
makes no sense to use the proposed techniques.



4 Future Research

Based on this study some topics require further investigation.

In this work we analyzed the OCST problem and showed statistically that the optimal solution
is similar to the MST. An interesting direction of further research is to investigate if the optimal
solutions for other constrained tree optimization problems are also similar to the MST. Our belief is
that many other constraint tree problems will have similar properties. If this assumption is correct,
it would become possible to consider this problem-specific knowledge in heuristic search methods
and allow more efficient optimization methods for constrained graph problems to be designed.

In section 3.3 we discussed how the performance of EAs for the OCST problem can be in-
creased by using biased representations, operators, or fitness evaluation techniques. In Rothlauf
and Goldberg (2002) we developed a theoretical framework on how biased representations influence
EA performance. Using this framework quantitative predictions on the expected EA performance
become possible. Until now not much applicable theory exists on how biased operators or fitness
evaluation techniques influence EA performance. If models can be developed that give quantitative
predictions on EA performance, systematic design of high-quality operators and evaluation func-
tions that consider problem-specific knowledge would become possible. Finding proper operators
and evaluation functions would not be a matter of trial-and-error but could become a systematic
engineering task.

Peleg and Reshef (1998) presented a deterministic algorithm that constructs a minimum com-
munication spanning tree for 2-dimensional Euclidean trees in O(log?(|V])). No problem-specific
information about the structure of the optimal solution was used for this construction algorithm.
The idea is to develop faster construction algorithms for n-dimensional trees with Euclidean or
random distance weights using the knowledge that optimal solutions for the OCST problem are
similar to the MST.

5 Summary and Conclusions

This paper started with a short introduction into the optimal communication spanning tree (OCST)
problem. Various test instances from the literature are examined and the properties of randomly
created solutions are compared to the properties of the best known solutions. Then, a statistical
analysis on randomly generated OCST problem instances was performed. Again, the properties of
randomly created solutions were compared to the properties of the optimal solutions. The optimal
solutions were assumed to be the best solutions that could be found by an evolutionary algorithm
(EA) framework. Furthermore, the paper discussed how problem-specific knowledge about the
properties of optimal solutions can be considered for the design of representations, search operators,
and fitness evaluation methods in EAs. Finally, some directions of further research were presented.

This paper investigates the properties of the OCST problem. It shows that the distance between
a randomly created solution and the minimum spanning tree (MST) that is calculated according to
the distance weights is on average much higher than the distance between the optimal solution and
the MST. This means for the OCST problem that the optimal solution is biased towards the MST.
Consequently, the performance of optimization methods for OCST problems can be increased if
they are biased towards MST-like solutions.

The bias of the optimal solution towards the MST has been observed for all test instances
from the literature that have been investigated. To gain more general results a statistical analysis
of OCST problems using either Euclidean or random distance weights has been performed. The
results show a strong bias of the optimal solution towards the MST for both, Euclidean and random
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distance weights.

We strongly encourage users and researchers to consider the presented results for the design of
optimization methods for OCST problems. Using optimization methods that show a bias towards
MST-like solutions allows more efficient problem solving. Furthermore, we recommend examining
whether the optimal solutions for other constrained tree optimization problems are also biased
towards the MST. To consider problem-specific knowledge about the problem at hand would allow
increase in performance, reliability, and efficiency of the used optimization method.
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