
REIHE INFORMATIK
TR-05-002

Robust Character Recognition
in Low-Resolution Images and Videos

Stephan Kopf, Thomas Haenselmann, Wolfgang Effelsberg
University of Mannheim

– Fakultät für Mathematik und Informatik –
Praktische Informatik IV

A5, 6
D-68159 Mannheim, Germany

Robust Character Recognition
in Low-Resolution Images and Videos

Stephan Kopf, Thomas Haenselmann, Wolfgang Effelsberg
Dept. of Computer Science IV, University of Mannheim, Germany

{kopf,haenselmann,effelsberg}@informatik.uni-mannheim.de

ABSTRACT
Although OCR techniques work very reliably for high-resolution
documents, the recognition of superimposed text in low-resolution
images or videos with a complex background is still a challenge.
Three major parts characterize our system for recognition of su-
perimposed text in images and videos: localization of text regions,
segmentation (binarization) of characters, and recognition.

We use standard approaches to locate text regions and focus in this
paper on the last two steps. Many approaches (e.g., projection pro-
files, k-mean clustering) do not work very well for separating char-
acters with very small font sizes. We apply in a vertical direction
a shortest-path algorithm to separate the characters in a text line.
The recognition of characters is based on the curvature scale space
(CSS) approach which smoothes the contour of a character with a
Gaussian kernel and tracks its inflection points. A major drawback
of the CSS method is its poor representation of convex segments:
Convex objects cannot be represented at all due to missing inflec-
tion points. We have extended the CSS approach to generate feature
points for concave and convex segments of a contour. This generic
approach is not only applicable to text characters but to arbitrary
objects as well.

In the experimental results, we compare our approach against a
pattern matching algorithm, two classification algorithms based on
contour analysis, and a commercial OCR system. The overall recog-
nition results are good enough even for the indexing of low resolu-
tion images and videos.

1. INTRODUCTION
Many efforts have been made in recent years to recognize text
in images and videos. Even though the recognition of scanned
text documents works very reliably, the recognition of text in low-
resolution photos and videos with complex backgrounds is still a
challenge.

Text in images or videos can be divided into two classes, scene
text – like street signs or writing on shirts – or superimposed text.
Superimposed text provides additional information that is usually
not available in the image or – in the case of videos – in the audio
track. Both scene text and superimposed text are rich in semantics,
and thus a generally applicable and reliable OCR could be very
useful for the indexing and searching of large collections of images
or videos.

Several specialized OCR applications are already available as com-
mercial products, such as the recognition of high-resolution scanned
text documents, recognition systems for license plates or hand-

written characters. These specialized applications are generally not
applicable for videos or images. Major difficulties to recognize text
in videos are caused by:

• the low image resolution. Often, the downscaling of images
aliases text and background pixels.

• high compression rates of the images that blur the borders of
characters and merge adjacent characters,

• complex and textured background so that a reliable distinc-
tion between characters and background is not possible, and

• unknown text fonts and text sizes.

We have implemented a text recognition system that performs the
detection of text regions, the segmentation of text, and the recog-
nition of characters in images and videos. We compare our new
approach against a simple pattern matching algorithm, two classi-
fication algorithms based on contour analysis (zoning and contour
profiles), and a commercial OCR system.

The remainder of this paper is organized as follows: Section 2 de-
scribes related work in the area of text segmentation and recog-
nition. Section 3 gives a short overview of the text recognition
application. The following sections describe the automatic recog-
nition of text regions (Section 4), the segmentation of characters
(Section 5) and the recognition (Section 6). We then present exper-
imental results in Section 7 and conclude with Section 8.

2. RELATED WORK
Text segmentation approaches can be classified into two major cat-
egories based either on texture or connected component analysis.
The first category applies filters to identify significant edges, cor-
ners or pixels with a high contrast. A major disadvantage of this
approach is the large number of false characters pixels in images
with a complex background. Alternative approaches identify and
aggregate regions of similar colors and select text pixels by apply-
ing heuristics to the regions.

Hua et al. [8, 9] apply a texture-based approach to identify candi-
dates for text regions and analyze the position of significant corners
in an image. Corners that are close to each other are merged, and
edge filters verify the detected text regions. To improve the results
for videos they propose a combination of four methods that ag-
gregate specific information of text regions in consecutive frames.
Only those text frames are selected that have a high quality, e.g.,
the contrast in the neighborhood of text regions should be very low.

ASCII text

preprocessing

digital
video

still
image

video

images

detection of text regions

segmentation of characters

classification of characters

Figure 1: Overview of the recognition process

Lienhart et al. have implemented algorithms in both categories. A
rule-based approach [13] analyzes regions and verifies the contrast,
color and size of candidate text regions. In a second approach a
multilayer feed-forward network is used at different scales to detect
text pixels [14]. Li et al. [12] use a neural network that is trained
with wavelet-based features to identify text regions. They propose
a tracking mechanism based on a text motion model and multi-
resolution analysis.

Many techniques have been proposed to recognize segmented char-
acters based on grayscale images, binary images, contours or skele-
tons. Approaches like the Karhunen-Loeve transform, zoning, fourier
descriptors or contour profiles require good segmentation results or
at least an exact estimation of the bounding box of a character. Sev-
eral surveys and comparisons of standard recognition techniques
have been published [4, 7, 15, 22].

Several systems were proposed that extract text information from
news videos. Xi et al. [24] use edge maps and morphological filters
to identify text regions. Sato et al. [20] improve the image quality of
video frames by means of sub-pixel interpolation and multi-frame
integration. Four specialized character recognition filters identify
text pixels. The exact boundaries of characters are specified with
projection profiles.

The detection of text regions in the textfinder [23] system is based
on texture analysis and a K-means clustering algorithm. The char-
acters are detected by analysis of strokes (significant edges) that
are aggregated to regions. Other more specialized methods have
been proposed, such as the recognition and automatic translation
of street signs and company names [6, 25] or the recognition of
vehicle license plates [3].

Most text recognition systems assume simple backgrounds, so that
the separation of the character works quite well. On the other hand,
the background in real-world images and videos can be very com-
plex. We present a new approach that works much more reliably for

summarized absolute
horizontal derivatives

Figure 2: Horizontal projection profile

low-resolution text. Furthermore, most systems did not implement
a recognition component but send the segmented binary images to
commercially available OCR systems. The fonts in videos and im-
ages are usually quite different from fonts in printed documents,
and the recognition rates of these systems drop significantly with
unknown fonts.

3. SYSTEM OVERVIEW
We use a three-step approach to recognize characters in images
resp. frames of videos (see Figure 1). In case of videos, a pre-
processing step improves the quality of the video frame. Frames
are aggregated and only one frame in each shot (or group of frames
in case of moving text) is processed by the recognition system. The
video preprocessing and detection of text regions is based on well-
known techniques. We briefly introduce the main concept of these
steps in Section 4.

The recognition system analyzes the image and identifies text re-
gions first. The segmentation step then locates the position of sepa-
rators that segregate characters, and creates a binary image charac-
terizing text and non-text pixels. The last step analyzes the contours
of the segmented characters and classifies them.

4. PREPROCESSING AND RECOGNITION
OF TEXT REGIONS

In the preprocessing step, we use sub-pixel interpolation and pro-
jection profiles on video frames as presented in [20] and get an
inaccurate estimation of the position of text regions. A camera
model with six degrees of freedom to describe the motion of text
regions (horizontal, vertical, rotation and zoom) is applied. To cal-
culate the camera parameters we identify corners in the text region
that are tracked in consecutive frames. Correlations are established
between these corners in successive frames. In order to estimate
the motion of the text region reliably we apply a robust regression
method. Details of the estimation of precise motion parameters
have been published in [5].

The standard deviation of the pixels in the temporal direction of
the aligned text regions gives an indication to a text or background
region: Low values indicate text pixels or static background pixels.
A median filter is applied in the temporal direction to define the
color of these pixels. In the case of large standard deviation values
(background pixels), a pixel at the image position is selected that
maximizes its distance to already selected pixels.

We assume that each text line contains at least several characters.
To locate a text region in an image we use the techniques presented
by Sato and Smith [19, 21]: The idea is to identify regions with
high contrast and sharp edges. A 3x3 horizontal filter with binary
thresholding is applied to the image, and connected text blocks are
identified. If this region suffices certain constrains like minimum
size or fill factor, the bounding box of this region is classified as
text region.

(a) (b)

Figure 3: Top: Character separators based on cheapest paths. Bottom: Vertical projection profile with (a) missed separators and (b)
split characters.

In images with complex backgrounds the bounding box may in-
clude more than one text line. Based on the approach presented
by Lienhart et al. [14], the next step locates the borders of the text
lines by analyzing horizontal projection profiles (see Figure 2). The
profile is generated by summarizing the absolute horizontal deriva-
tives. High values (> 2µ) indicate the position of a text line, low
values (< µ) background regions. µ is defined as average value of
the horizontal profile. The top and bottom of a text line is identi-
fied as the peak of a horizontal projection profile that was generated
with derivatives in the vertical direction. Figure 13 displays an ex-
ample of the detected bounding boxes in an image with a complex
background.

5. SEGMENTATION OF CHARACTERS
The segmentation step is very essential in our approach, because
classification techniques based on contour analysis fail without a
reliable segmentation. Each pixel in each text region is classified as
text or background pixel. The distinction is not trivial because the
luminance and chrominance values of text pixels of one character
can vary significantly. We propose a three-step approach: First, we
locate separators for individual characters. Next, we estimate the
dominant text colors based on histograms. Finally we classify text
and background pixels by applying a region-growing algorithm.

5.1 Character separators
We use linear interpolation as presented in [20] to scale the text
region by a factor four and thus improve the segmentation results.
The separation of characters does not work very well with verti-
cal projection profiles that summarize edge values for each column
(see bottom of Figure 3). Many characters are split and separators
are missed.

Usually, the contrast between text pixels and background pixels is
high, whereas the average difference between adjacent background
pixels is much lower. We take advantage of this fact and search a
path from the top to the bottom of the text region. Different starting
positions in the top row are selected, and the paths with the lowest
costs are stored. The costs of a path are defined as the summarized

pixel differences between adjacent path pixels. The path with the
minimum cost which we call cheapest path rarely crosses character
pixels and defines a good separator for characters.

We use the Dijkstra shortest-path algorithm for graphs to identify
the separators. Each pixel is defined as a node that is connected to
three neighbor pixels (left, right, down). The costs of travel from
one node to another are defined as the absolute luminance differ-
ences between these two pixels. We start at different positions in
the top row and calculate the path from each position to the bottom
row. Results of the minimum paths (cheapest paths) are depicted in
the top of Figure 3. A major advantage of this approach is the fact
that no threshold is required to locate the separators of characters.

The computational effort is very high if the cheapest path is calcu-
lated for all pixels. We use the following algorithm for optimiza-
tion:

1. Estimate the minimum width W of a character based on the
height of the text region.

2. Initialize every W
2

pixel as a candidate start pixel in the top
row of the text region (Figure 4 (a)).

3. Calculate the cheapest path for start pixels at the left and right
border of the text region (Figure 4 (b)). Both start pixels are
labeled path pixels.

4. Select a start pixel in the center of two path pixels (Figure 4
(c)). Its cheapest path is calculated and it is relabeled as path
pixel.

5. If two cheapest paths end at the same position, all start pix-
els between these two paths are marked as path pixels. In
Figure 4 the paths of (c) and (d) end at the same position.
Therefore, the start pixels at the position (e) are relabeled.

6. If another start pixel is available, continue with 4).

(b)(b) (d) (e) (c)
(a)

Figure 4: Optimization of the cheapest path algorithm

5.2 Estimation of text colors
We assume that text and background colors are significantly differ-
ent. Two regions are defined: the approximated text region from
Section 3 and an adjacent background region. Histograms based
on eight-bit YUV images (four luminance bits, two bits for each
chrominance component) are compared to estimate the dominant
text color. Bins in the histogram of the text region that are larger
than the corresponding bin in the adjacent region are defined as text
color.

The text color is only a very rough approximation of the text pixels
since due to significant variance in color and luminance a reliable
segmentation based on color values alone is not possible. A binary
image that was generated from the histogram analysis is depicted
in Figure 5.

5.3 Selection of text pixels
The third step analyzes each block between two separators and clas-
sifies the pixel as text or background. We use a region-growing
algorithm to initialize the regions based on the 8-bit YUV image.
The following algorithm classifies pixels as text or background:

1. A region can be classified as text region, background region,
or undefined region. All regions are initialized as undefined.

2. If the color of a region coincides with an estimated text color
it is classified as text.

3. Undefined regions that adjoin the top or bottom border of the
block are set to background regions.

4. The distance Di,j between each undefined region i and de-
fined (text or background) region j is calculated:

Di,j = |Ci − Cj | + |Gi − Gj |. (1)

Each region is classified by its color Ci and its center of grav-
ity Gi.

5. The minimum of Di,j is selected. Region i is classified as
text or background (depending on region j).

6. If another undefined region is available, continue with 4.

Figure 5: Rough segmentation of text pixels based on dominant
text colors in histograms

An example of this algorithm after initialization of the regions (step
3) and segmentation (step 6) is depicted in Figure 6. The high com-
pression rates in images and videos smooth and blur the edges of
characters. The combination of color and spatial information in the
distance measure D increases the quality of the segmentation.

Additionally, we have tested other algorithms that separate text and
background pixels. A major disadvantage of the K-means algo-
rithm is the fixed number of cluster centers. Many pixels are at-
tached to the wrong cluster if only two cluster centers are used. To
get good segmentation results the number of cluster centers must
be adapted to the complexity and colors of the background.

6. CLASSIFICATION OF CHARACTERS
We analyze the contour of a character and derive features for classi-
fication. The features are based on the curvature scale space (CSS)
technique that is presented in the following section. A major draw-
back of the standard CSS approach is its poor representation of the
convex segments of a contour. We propose an approach to solve
this problem.

6.1 Standard CSS Technique
The curvature scale space (CSS) technique [16, 17] is based on
the idea of curve evolution. A CSS image provides a multi-scale
representation of the curvature zero crossings of a closed planar
contour. Consider a closed planar curve Γ(u),

Γ(u) = {(x(u), y(u))|u ∈ [0, 1]}, (2)

with the normalized arc length parameter u. The curve is smoothed
by a one-dimensional Gaussian kernel g(u, σ) of width σ. The
deformation of the closed planar curve is represented by

Γ(u, σ) = {(X(u, σ), Y (u, σ))|u ∈ [0, 1]}, (3)

where X(u, σ) and Y (u, σ) denote the components x(u) and y(u)
after convolution with g(u, σ).

The curvature κ(u, σ) of an evolved curve can be computed using
the derivatives Xu(u, σ), Xuu(u, σ), Yu(u, σ), and Yuu(u, σ):

κ(u, σ) =
Xu(u, σ) · Yuu(u, σ) − Xuu(u, σ) · Yu(u, σ)

(Xu(u, σ)2 + Yu(u, σ)2)3/2
. (4)

A CSS image I(u, σ) is defined by

I(u, σ) = {(u, σ)|κ(u, σ) = 0}. (5)

The CSS image shows the zero crossings with respect to their po-
sitions on the contour and the width of the Gaussian kernel (or the
number of iterations). An example of smoothed contours and the
CSS image is depicted in Figure 7.

During the deformation process, zero crossings merge as the tran-
sitions between contour segments of different curvature are equal-

Figure 6: Top left: Initialization of text (black), background
(white), and undefined regions (gray). Top right: Segmented
characters. Bottom: Final segmentation of a text line.

ized. Consequently, after a certain number of iterations, inflection
points cease to exist, and the shape of the closed curve becomes
convex. Significant contour properties that are visible during a
large number of iterations result in high peaks in the CSS image.
However, areas with rapidly changing curvatures caused by noise
produce only small local maxima.

In many cases, the peaks in the CSS image provide a robust and
compact representation of a contour. We use a fixed number of
samples to describe the contour of a character and get a CSS im-
age that is invariant to scaling of the contour. Hence, no special
consideration of the font size is required for the recognition pro-
cess. A rotation of the character in the image plane corresponds to
shifting the CSS image left or right. We limit the rotation of the
characters to approximately +/- 20 degrees. A slight rotation en-
ables the recognition of italic characters, even if they are not stored
in a database for comparison.

6.2 Extended CSS Features
Certain contours that differ significantly in their visual appearance
nevertheless have similar CSS images. One reason is that deep and
shallow concavities on a contour may result in peaks of the same
height in the CSS image. Abbasi [1] and Richter [18] presented
approaches to avoid these ambiguities.

A major drawback is still the inadequate representation of convex
segments on the contour. A CSS image represents the position of
the inflection points, so concave segments on the contour are re-
quired. Contours of characters without concave segments (e.g., the
”I” and ”O”) cannot be distinguished.

We apply the standard CSS approach first to get characteristic fea-
ture vectors that classify concave parts of the contour very well.
The general idea is now to create a second contour that will provide
additional features for the convex segments of the original contour.
The original contour is mapped to a new contour with an inverted
curvature. Strong convex segments of the original contour become
concave segments of the mapped contour. Significant curvatures in
the original contour are still significant in the mapped contour [11].

To create a mapped contour, we enclose the contour of the char-
acter by a circle of radius R and identify the point P of the circle
closest to each contour pixel. The contour pixels are mirrored on
the tangent of the circle in P . Two mapped contours are depicted
in Figure 8. Segments of the contour that have a strong convex
curvature are mapped to concave segments. The strength of the

iteration

1

2
3

21 3 arc
length

Figure 7: Original character and smoothed contours with in-
flection points after 5, 20, 100, 250, 500, 1000 and 1150 itera-
tions. The corresponding CSS image is depicted on the right
side. Three major concave segments are labeled.

curvature of the mapped contour depends on the radius R of the
circle and on the curvature of the original contour. If a convex cur-
vature is stronger than the curvature of the circle, the segment in
the mapped contour will be concave.

The calculation of the mapped contour is quite fast. Each con-
tour pixel at position u of the closed planar curve (x(u), y(u)) is
mapped to a curve (x′(u), y′(u)). The center of the circle (Mx, My)
with radius R is calculated as average position of contour pixels
(Mx = 1

N

PN
u=1 x(u), My = 1

N

PN
u=1 y(u)).

Dx(u),y(u) =
p

(Mx − x(u))2 + (My − y(u))2 (6)

x
′(u) = (x(u) − Mx) ·

2 · R − Dx(u),y(u)

Dx(u),y(u)

+ Mx (7)

y
′(u) = (y(u) − My) ·

2 · R − Dx(u),y(u)

Dx(u),y(u)
+ My (8)

Dx(u),y(u) specifies the distance between the center of the circle
and the current contour pixel. If the positions of a contour pixel
and the center of the circle are the same, a mapping is not possible.
In this case, the contour pixel is interpolated from adjacent contour
pixels of the mapped contour.

In principle, the mirroring of contours is not limited to enclosing
circles. Although other shapes could be used as well, some dif-
ficulties would arise. Angular shapes like rectangles would cre-
ate discontinuous contours. Ellipses have the disadvantage that the
point P (where the contour pixel is mirrored) is not always unique.
E.g., in the case of ellipses that are parallel to the X- and Y-axis,
the mirroring is undefined for all points on these axes.

We apply the standard CSS approach to the mapped contour. To in-
dicate the classification of convex segments in the original contour
we represent this new CSS image with negative values. In Figure 9
extended CSS images for the characters ”I”,”O”,”K” and ”X” are
depicted. Positive values represent the original CSS images, neg-
ative values the CSS images of the mapped contours. The convex
characters ”I” and ”O” cannot be classified with the standard CSS
approach, but the dual CSS representations differ significantly. On
the other hand, the convex segments of the characters ”K” and ”X”
are very similar and generate comparable (negative) CSS peaks.
We get twice the number of feature points (peaks in the CSS im-
age) for each contour with our extended CSS approach.

(x’,y’)
P

(x,y)

M

M
(x,y)

P

(x’,y’)

Figure 8: The contours of two characters (gray color) are ”mir-
rored” at the circle.

6.3 CSS Matching
The matching of an unknown character is done in the following
steps. The contour of the character is sampled with a fixed pre-
defined number of samples. The CSS image is calculated, and
peaks are extracted. It is sufficient to extract the significant maxima
(above a certain noise level). The position on the contour and the
value (iteration or Gaussian kernel width) are stored for each peak.
For instance, assuming a noise level of five iterations in the exam-
ple depicted in Figure 7, only three data pairs have to be stored.

These peaks characterize convex regions. The sampled contour pix-
els are transformed to the mapped (dual) contour, and a second
CSS image is created. Up to ten feature vectors are stored for each
CSS image (original and mapped). The mapped feature vectors are
stored as negative values. An unknown character is matched by
comparing the feature vectors (CSS peaks) to those of the charac-
ters that are stored in a database.

The general idea of the matching algorithm is to compare the peaks
in the CSS images based on the height and position of the arc. This
is done by first determining the best position to compare the peaks.
It might be necessary to slightly rotate one of the CSS images to
best align the peaks. As mentioned before, shifting the CSS image
left or right corresponds to a rotation of the original object in the
image. Each character is stored only once in the database, and the
horizontal moves compensate small rotations of italic character.

A matching peak is determined for each peak in the CSS image of
the unknown character. If a matching peak is found, the Euclidean
distance of the height and position of each peak is calculated and
added to the difference between the CSS images. Otherwise, the
height of the peak in the first image is multiplied by a penalty fac-
tor and is added to the total difference. It is not possible to match
negative and positive CSS peaks (the concave segments in the orig-
inal and mapped contour).

If no adequate rotation can be found (+/- 20 degrees) or if the high-
est maxima in the CSS images do not match within a given toler-
ance range, a matching is not possible. If this is the case, the two
objects are significantly different. This rejection helps to improve
the overall results because noise or incorrectly segmented charac-
ters are rejected in the matching step. Details of the matching algo-
rithm of CSS images are published in [18].

Figure 9: Four examples of extended CSS images are depicted.
Positive values represent the original CSS images, negative val-
ues the dual images.

7. EXPERIMENTAL RESULTS
We have implemented the extended CSS algorithm, a simple pat-
tern matching, a zoning algorithm based on contours, and a match-
ing based on contour profiles. Additionally, we compare our new
approach against a commercial OCR system that is part of a scan-
ner software.

The pattern matching approach compares two segmented charac-
ters (binary images) and counts the number of pixel differences
in these binary images. The segmented binary images are used
as query images. The height and width of the query character is
scaled to the default size (nx × ny pixels) of each character in the
database. The distance Dq,i of two characters is defined as:

Dq,j =
1

nx · ny
·

nx
X

x=1,

ny
X

y=1,

0 if Qx,y = Jx,y

1 else . (9)

Q is the query image and J is one selected image from the database.
Distance D is the normalized number of different pixels.

The second distance measure applies a zoning algorithm [10, 22]
based on contour pixels. The idea is to superimpose a n × m grid
on the character. The number of edge pixels in each block is used as
feature vector. Improvements of this algorithm classify the orien-
tation (horizontal, vertical and two diagonal directions) of line seg-
ments of neighboring contour pixels. We have selected the zoning
technique because the commercial OCR system CALERA [2] used
this approach and reported good recognition results with severely
degraded characters.

We have implemented a third distance measure that is based on
contour profiles [10, 22]. To calculate a horizontal profile we select
the outermost (lowest and highest) pixel of the contour in each po-
sition. An example of a horizontal profile is depicted in Figure 10.
The contour is rotated by 90 degrees to calculate the vertical profile.
The values of the four profiles are used as feature vector.

7.1 Perfectly segmented characters
We compare the matching results of the different techniques. Slight
modifications of characters such as a different font size or a small

position position

contour
profile

contour
profile

Figure 10: Horizontal contour profile.

rotation of a character should have no significant impact on the
matching results. Even characters of different fonts should be com-
parable.

We have selected binary images of four different fonts (Arial, Times,
Gothic, and the European license plate font). 52 characters of each
font (26 characters for the European license plate font) are stored
in the database. Each character has a font size of 36.

Figure 11 depicts sample characters of different fonts. All ap-
proaches works quite well with the European license plate font that
was specially designed for easy recognition (compare the differ-
ences of characters like ”E” and ”F”, or ”I” and ”J”). Characters
of other fonts are much more similar, like the character ”n” that is
very close to ”m”. Convex characters (e.g., ”D” and ”I”) cannot
be distinguished with the standard CSS approach. Some characters
(e.g., ”V” and ”U”) are quite similar for the extended CSS method
as well.

A good algorithm should even be robust when characters of differ-
ent fonts are compared. We take a character of one font and identify
the three best matches in the other fonts. Table 1 lists the percent-
ages of correct matches for the best match, the two best matches
and the three best matches. Only one match is counted if more than
one character is correct.

Best match One of two One of three
is correct best matches best matches

is correct is correct
Pattern matching 72.1 % 81.2 % 88.4 %
Zoning 63.2 % 69,5 % 74.1 %
Contour profiles 69.3 % 84.2 % 88.7 %
Standard CSS 69.8 % 83.5 % 88.1 %
Extended CSS 77.3 % 90.8 % 93.7 %

Table 1: Recognition rates between different fonts

We have also compared the recognition rates for characters of dif-
ferent sizes. The recognition rate drops significantly for characters
with a height of eight pixels or less (the actual matching is per-
formed on the images that are scaled by a factor of four). Large
characters do not increase the recognition rate.

(a) (b) (c) (d) (e)

Figure 11: Two examples of the license plate font (a)(b) illus-
trate the large minimum distance value of the pattern match-
ing. The distance is very low in other fonts (c). The standard
CSS approach cannot characterize convex characters (d). Even
some characters (e) are very similar in the extended CSS ap-
proach.

7.2 Artificially deteriorated characters
We have also investigated the effect of segmentation errors on the
matching results. For each character several noisy variations of
this character were generated. Up to twenty pixels on the con-
tour were randomly selected and modified. A local dilatation or
erosion operation with a radius of three is applied to these pixel
positions. Some examples of heavily deteriorated characters are
depicted in Figure 12. The recognition rates drop to 67.4 percent
(pattern matching), 62.2 percent (zoning), 66.0 percent (contour
profiles), 63.9 percent (CSS), and 71.2 percent (extended CSS).
The CSS approaches are no longer applicable if a contour is in-
coherent. This is the case for the characters ”D”, ”w” and ”x” in
Figure 12.

7.3 Recognition in images and videos
In the second part of our experimental results we have analyzed the
recognition results for images and videos. We match the segmented
characters against all characters stored in the database. Twenty
images with complex backgrounds and ten video segments from
different genres with a total length of 19 minutes were matched
against the database.

We define precision and recall for the localization of text lines:

precision =
number of correctly retrieved text lines

total number of retrieved text lines (10)

recall =
number of correctly retrieved text lines

actual number of text lines (11)

Nearly no text line was missed (recall > 97 percent), but in im-
ages with a complex background, many background regions were
classified as text regions (precision ≈ 63 percent). Post-processing
steps (like the analysis of the dominant text color or the minimum
height of characters) improved the precision to approximately 91
percent without deteriorating the recall. The position of the upper
and lower border of the text regions was always correct. Several
characters were missed at the left and right border of the text re-
gions if the first or last word was very short (6 percent of the char-
acters).

A reliable segmentation is much more challenging. We define that
a character is correctly segmented if it is not split or merged with
other characters. Two characters often merge if text and back-
ground colors are similar. We have analyzed the quality of the

Figure 12: Example of deteriorated characters

segmentation of characters by comparing projection profiles and
the optimum path approach as explained in Section 5.1. The results
in Table 2 indicate that the optimum path algorithm is much more
reliable (errors rates drop from 17,4 to 9,2 percent).

To calculate the recognition rate of the different approaches we
manually built two groups of characters: correctly segmented char-
acters and merged or split characters. The recognition rates of all
approaches are very poor for characters in the second group (less
than 8 percent and good matches seem to be random). Therefore,
we analyze the correctly segmented characters separately. Table 3
lists the recognition results for images and video sequences. The
results are significantly better in videos due to the additional pre-
processing step.

Optimum path Projection profile
characters split 3.8 % 9.9 %
characters merged 5.4 % 7.5 %
total error rate 9.2 % 17.4 %

Table 2: Reliability of segmentation based on optimum path
and projection profiles

The commercial OCR system could not recognize any characters in
the original images. Therefore, we have computed the segmented
binary images and manually removed merged or split characters in
the images. An accurate comparison of the recognition rates is not
possible due to the dictionary lookup in the commercial system.
The quality of the segmentation is higher in video sequences, but
the commercial OCR systems cannot benefit that much. We assume
that the fonts in videos and text documents are very different and a
dictionary lookup is less efficient with typical words in videos. The
recognition rates drop significantly if only a few pixels change in
the segmented image. E.g., only nine characters (50 percent) could
be recognized in the text line in Figure 6 (bottom).

Images Video sequences
Number of characters 2986 1211

(after preprocessing)
Pattern matching 69.1 % 77.7 %
Zoning 64.2 % 69.7 %
Contour profiles 71.2 % 82.0 %
Standard CSS 66.9 % 78.8 %
Extended CSS 75.6 % 88.1 %
Commercial OCR 75.2 % 76.7 %
and dictionary lookup
Localisation 96.6 % 97.1 %
of text lines
Segmentation based 90.8 % 91.0 %
on cheapest paths
Overall recognition 66.3 % 77.8 %
rate with extended
CSS approach

Table 3: Overview of the recognition results of correctly seg-
mented characters

Figure 13 depicts the major recognition steps in an image with a
complex background. The image includes characters with differ-
ent fonts and sizes. The analysis of an image or video segment
takes several seconds on a Pentium III processor with 1.8 GHz. Es-
pecially the median filter that smoothes the pixels in consecutive
video frames, the estimation of the optimum path for each text line,
and the evolution of the contour with the Gaussian kernel are com-
plex operations.

We intentionally left out the last step in a typical OCR process:
the matching of the recognized characters with a dictionary. It is a
different subject and goes beyond the scope of this paper.

8. CONCLUSION AND OUTLOOK
We have presented an approach to automatically detect, segment
and recognize text in low-resolution images and videos. The results
of the segmentation can be significantly improved if the separators
of characters are located with our cheapest path approach. Our ex-
tension of the CSS method classifies concave and convex segments
of a contour and proves to be very powerful for the recognition of
characters. As future work, we plan to evaluate the recognition re-
sults of the extended CSS method for deformable non-text objects.
We have performed experiments and got some promising results
for the recognition of postures and gestures of people.

Figure 13: Original image (top), automatically detected text regions (center) and segmented text (bottom)

9. REFERENCES
[1] S. Abbasi, F. Mokhtarian, and J. Kittler. Enhancing

CSS-based shape retrieval for objects with shallow
concavities. In Image and Vision Computing, volume 18(3),
pages 199–211, 2000.

[2] M. Bokser. Omnidocument technologies. In Proceedings of
the IEEE, volume 80(7), pages 1066–1078, July 1992.

[3] Y. Cui and Q. Huang. Extracting characters of license plates
from video sequences. In Machine Vision and Applications,
volume 10, pages 308–320, April 1998.

[4] D. G. Elliman and I. T. Lancaster. A review of segmentation
and contextual analysis techniques for text recognition. In
Pattern Recognition, volume 23 (3-4), pages 337 – 346,
March 1990.

[5] D. Farin, T. Haenselmann, S. Kopf, G. Kühne, and
W. Effelsberg. Segmentation and classification of moving
video objects. In B. Furht and O. Marques, editors,
Handbook of Video Databases: Design and Applications,
volume 8 of Internet and Communications Series, pages
561–591. CRC Press, Boca Raton, FL, USA, September
2003.

[6] J. Gao and J. Yang. An adaptive algorithm for text detection
from natural scenes. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
volume 2, pages 84–89, December 2001.

[7] V. K. Govindan and A. P. Shivaprasad. Character recognition
- a review. In Pattern Recognition, volume 23 (7), pages 671
– 683, July 1990.

[8] X.-S. Hua, X.-R. Chen, L. Wenyin, and H.-J. Zhang.
Automatic location of text in video frames. In Intl. Workshop
on Multimedia Information Retrieval (MIR), 2001.

[9] X.-S. Hua, P. Yin, and H.-J. Zhang. Efficient video text
recognition using multiple frame integration. In
International Conference on Image Processing (ICIP), 2002.

[10] F. Kimura and M. Shridhar. Handwritten numerical
recognition based on multiple algorithms. In Pattern
Recognition, volume 24 (10), pages 969–983, 1991.

[11] S. Kopf, T. Haenselmann, and W. Effelsberg. Shape-based
posture and gesture recognition in videos. In Electronic
Imaging, volume 5682, pages 114–124. IS&T, SPIE, January
2005.

[12] H. Li, D. Doermann, and O. Kia. Automatic text detection
and tracking in digital videos. In IEEE Transactions on
Image Processing, volume 9, pages 147–156, January 2000.

[13] R. Lienhart and W. Effelsberg. Automatic text segmentation
and text recognition for video indexing. In ACM/Springer
Multimedia Systems, volume 8, pages 69–81. ACM Press,
Jan. 2000.

[14] R. Lienhart and A. Wernicke. Localizing and segmenting text
in images and videos. In IEEE Transactions on Circuits and

Systems for Video Technology, volume 12, pages 256–258,
April 2002.

[15] J. Mantas. An overview of character recognition
methodologies. In Pattern Recognition, volume 19, pages
425–430, 1986.

[16] F. Mokhtarian. Silhouette-based isolated object recognition
through curvature scale space. In IEEE Transactions on
Pattern Analysis and Machine Intelligence, volume 17(5),
pages 539–544, 1995.

[17] F. Mokhtarian, S. Abbasi, and J. Kittler. Robust and efficient
shape indexing through curvature scale space. In British
Machine Vision Conference, 1996.

[18] S. Richter, G. Kühne, and O. Schuster. Contour-based
classification of video objects. In Proceedings of IS&T/SPIE
conference on Storage and Retrieval for Media Databases,
volume 4315, pages 608–618, January 2001.

[19] T. Sato, T. Kanade, E. K. Hughes, and M. A. Smith. Video
OCR for digital news archives. In IEEE International
Workshop on Content-Based Access of Image and Video
Databases (CAIVD), pages 52–60, 1998.

[20] T. Sato, T. Kanade, E. K. Hughes, M. A. Smith, and S. Satoh.
Video OCR: Indexing digital news libraries by recognition of
superimposed captions. In ACM/Springer Multimedia
Systems, volume 7, pages 385 – 395. ACM Press, 1999.

[21] M. Smith and T. Kanade. Video skimming and
characterization through the combination of image and
language understanding. In IEEE Intl. Workshop on
Content-Based Access of Image and Video Databases, pages
61 – 70, January 1998.

[22] Ø. Trier, A. Jain, and T. Taxt. Feature extraction methods for
character recognition - a survey. In Pattern Recognition,
volume 29 (4), pages 641–662, 1996.

[23] V.Wu, R.Manmatha, and E.M.Riseman. TextFinder: An
automatic system to detect and recognize text in images. In
IEEE Transactions on Pattern Analysis and Machine
Intelligence, volume 21, pages 1224–1229, Nov. 1999.

[24] J. Xi, X.-S. Hua, X.-R. Chen, L. Wenyin, and H.-J. Zhang. A
video text detection and recognition system. In Proceedings
of IEEE International Conference on Multimedia and Expo
(ICME), pages 873–876, 2001.

[25] J. Yang, X. Chen, J. Zhang, Y. Zhang, and A. Waibel.
Automatic detection and translation of text from natural
scenes. In IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), volume 2, pages
2101–2104, May 2002.

