

 A Taxonomy of Metamodel Hierarchies

Ralf Gitzel, Tobias Hildenbrand
Department of Information Systems
University of Mannheim, Schloss

D-68131 Mannheim, Germany
Tel.: +49 621 181 1642

email: gitzel@wifo3.uni-mannheim.de, hildenbrand@uni.mannheim.de

A Taxonomy of Metamodel Hierarchies
Ralf Gitzel

University of Mannheim
Department of Information Systems III

L5,5 D-68131 Mannheim
+49(0)621 181 1645

gitzel@wifo3.uni-mannheim.de

Tobias Hildenbrand
University of Mannheim

Department of Information Systems I
L5,6 D-68131 Mannheim

+49(0)621 181 1670

hildenbrand@uni-mannheim.de

ABSTRACT
In the context of software engineering and model-driven
development in particular, metamodeling gains more and more
importance. So far, no classifying study of theoretical
metamodeling concepts and hierarchy design options has been
conducted in order to establish a comprehensive set of interrelated
design variables, i.e. a coherent design space. A well-designed
metamodeling hierarchy is essential to avoid problems not easily
noticeable, like ambiguous classification and the replication of
concepts. This study aims at exploring the theoretical foundation
and providing a taxonomy or a design space for constructing
tailor-made metamodel hierarchies for specific problems areas and
domains.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
computer-aided software engineering, object-oriented design
methods, software libraries.

General Terms
Documentation, Design, Standardization, Languages, Theory.

Keywords
METAMODELING, METAMODEL HIERARCHIES, MODEL-
DRIVEN DEVELOPMENT, SOFTWARE ENGINEERING,
CASE, DOMAIN-DRIVEN DEVELOPMENT, ONTOLOGIES.

1. INTRODUCTION
Briefly speaking, metamodels are models which describe other
models. Since this paper analyses variants of metamodeling,
alternative definition techniques, such as graph grammars (cf.
[13]), are not considered and therefore, the claim that every model
has a metamodel, even if it is in many cases implicit (cf. Albin
[1]), can be accepted as true within the scope of our analysis.
Metamodeling today is conventionally used for three major
purposes: generic language definition –as in the case of MOF and
the UML, domain-specific modeling, and model interchange. In
contrast to mere language definition, domain-specific modeling
languages (DSL) can be provided in order to facilitate the software
engineering process for domain-specific applications (cf. [20]).
Model interchange between different tools on the other hand, is a
classical application of metamodeling in the field of computer-
aided software engineering. In this context metamodels serve as
“data exchange formats” for models describing their syntax.
Examples for metamodel interchange standards comprise the
CASE Data Interchange Format (CDIF, cf. [10]) and XML

Metadata Interchange (XMI, see [26]) which is developed in
accordance with the MOF by the OMG.

A well-designed metamodeling hierarchy is essential to avoid
many typical problems, such as ambiguous classification and the
replication of concepts. This study aims at exploring the
theoretical foundation in terms of terminology and providing a
taxonomy of options for designing tailor-made metamodel
hierarchies for specific problems areas and domains. These options
and their impact on the quality of the hierarchy are measured
against a group of carefully selected criteria, creating a design
space for metamodel hierarchies. A design space in the context of
software engineering is defined by Herbleb and Mockus (2003) as
“the set of all possible assignments of the set of variables
representing the engineering decisions that have to be made” [20].
So far, no such design space exists for metamodel hierarchies and
hopefully this paper will facilitate the design of good metamodel
hierarchies in the future.

To achieve all this, we will initially shed light on some major
criteria for evaluating different metamodel architectures in terms
of design choices (see section 2). In section 3 we will apply these
criteria on a set of design options in order to build a taxonomy of
metamodel hierarchies consisting of various design parameters and
classification schemes. Hierarchy designs will be evaluated
according to various interrelated design choices and problem
domains. The conclusion in section 3.5 recapitulates our findings
and outlines the context of our study in terms of ongoing and
future research activities and projects.

Due to its limited scope, this paper assumes a basic knowledge
about metamodelling such as described in various papers and
tutorials (cf. Atkinson [8], Atkinson and Kühne [7], or Völter
[31]) and does not further elaborate on these concepts.

2. CRITERIA FOR EVALUATING
METAMODELING HIERARCHIES
Following the OMG’s basic ideas of multilevel metamodeling [27]
we use the following definition of a metamodel hierarchy as
foundation for our research:

A metamodel hierarchy is a tree of models connected by instance-
of relationships. The term model layer or model level describes all
(meta-)models with the same distance to the root metamodel in a
metamodel hierarchy. Each level is given a unique name, often
containing a number.

In order to evaluate design choices and thus possible architectures
for metamodeling hierarchies according to certain quality criteria
typical goals of metamodel hierarchy designers need to be
identified. In this respect we mainly focus on the general

applicability of a hierarchy and its ease of use at all levels of
abstraction due to complexity and maintainability considerations.

After having established the relevant goals it is now possible to
derive quality criteria for evaluating different design choices and
“vectors” (architectures) in the design space examined. The list of
criteria in this study includes:

1. Complexity,

2. Consistency,

3. Expressional Strength,

4. Extensibility, and

5. Robustness to Change.

Metamodel hierarchy complexity and consistency are largely
affected by one core problem of metamodel hierarchies, namely
replication of concepts, an issue first identified by Atkinson and
Kühne who provide the following definition:

If a modeling element from any layer in a metamodel hierarchy is
reproduced on a lower layer, the hierarchy contains a replication
of concepts [7].

This should be avoided for two reasons. First of all, with
additional elements, the model size is increased unnecessarily,
making it harder to understand. Second, inconsistencies might be
introduced, if the replicated concepts are accidentally implemented
slightly different in each case (cf. Atkinson and Kühne [7]).

In the same context ambiguous classification was spotted as
another critical challenge of multilevel metamodeling which also
has a negative impact on the consistency criterion. Atkinson and
Kühne provide the following definition:

A metamodel hierarchy is called ambiguously classified or as
suffering from ambiguous classification, if there exists an
instance which has more than one type. [7]

Given that Seidewitz states that “a single modeling language might
have more than one metamodel, with each expressed in a different
modeling language” [29], it seems that all hierarchies
automatically suffer from this problem Obviously, each instance in
the model must have a type in each of the metamodels and,
therefore, it is ambiguously defined according to the definition
provided above. On the other hand, the definition of ambiguous
classification might be interpreted as referring to several types per
metamodel, seeing the types in other metamodels as part of
alternative model hierarchies. For the discussion in this paper, the
latter point of view is adopted.

A third property indicating the quality of a metamodel hierarchy is
its expressional strength. Although it appears to be at odds with
model complexity, this is not necessarily the case, as we will see.
Great expressional strength is required in order to allow the
modeling of a wide range of domains and the presentation of
information at different levels of abstraction.

Eventually, the degree of extensibility of a metamodel hierarchy
also influences its applicability to a wide range of problem
domains, i.e. the ability to add new modeling elements for
unforeseen circumstances. A criterion closely related to
extensibility is robustness to change, which reflects how much
impact a genuine change as opposed to a mere extension has on the
existing instances of the hierarchy. However, since extensibility is

generally easier to achieve than robustness to arbitrary changes,
the two criteria are examined separately.

3. DESIGN OPTIONS FOR OBJECT-
ORIENTED METAMODEL HIERARCHIES
Based on the quality criteria established in the section 2, the
following sections try to establish a comprehensive and coherent
system of variables and design options for constructing suitable
metamodel hierarchies for diverse domains.

3.1 Linear vs. Non-Linear Hierarchies
One of the fundamental decisions in metamodeling is whether to
use a traditional linear metamodel hierarchy or a more advanced
non-linear metamodel hierarchy. Many of the other decisions such
as the number of layers or the nature of the top level depend on
this choice.

According to Atkinson and Kühne ([3], [4]), two different kinds of
instance-of relationships can be distinguished – linguistic and
ontological ones. Linguistic instance-of relationships describe
language definition type constructs, e.g., facts like “Person is an
instance of Class” or “Painter is an instance of Object“.
Ontological instance-of relationships on the other hand describe
domain specific facts, e.g., Painter is a logical instance of Artist.
While Atkinson and Kühne have coined another pair of terms, i.e.,
physical and logical, which they use alternatively. The
linguistic/ontological terminology will be used exclusively in this
section, for reasons which will be discussed later. [5]. The idea to
distinguish between different types of instance-of relationships has
also been proposed by other authors, e.g. Bézivin and Lemesle [9]
or Geisler et al. [14].

After having identified this dichotomy, the question arises how
two different instance-of relationships can be combined in one
coherent metamodel hierarchy. In a naïve approach (as shown in
Figure 1), the elements in the highest layers of a model hierarchy
would connect to their instances via linguistic relationships,
defining a modeling language while the lower layers define the
ontological relationships within the domain. This is in effect a
linear hierarchy [5].

Figure 1 - Naïve Linear Hierarchy

To allow such an intuitively correct hierarchy, the instantiation
semantics have to be carefully chosen. For example, the standard
MOF instantiation semantics (cf. [27]) will not allow any further
instantiation of Painter, as its metaclass is not Class or
Association and there are no rules provided on how to instantiate
model elements whose type is Artist.

Besides the solution already outlined in Gitzel and Schader [15], a
preferable approach is to introduce orthogonality into the model
layers, effectively creating a nonlinear framework [5]. Figure 2
recalls the example given above, this time using a nonlinear
framework.

Figure 2 - Orthogonal Metamodel Hierarchy

The hierarchy is now non-linear or orthogonal, respectively, since
the layers are no longer arranged vertically but instead the
ontological layers (i.e. layers connected by ontological
instantiation) are nested horizontally within the linguistic layers
L1 and L2 which are connected by linguistic instantiation.

The most important difference to the linear approach in Figure 1 is
that the instance-of relationships between ontological and those
between linguistic layers now differ significantly. Whereas
linguistic instance-of relationships are a concept well-known from
MOF, an ontological instance-of relationship is established by an
explicit association with that name. The instantiation semantics
associated with instance-of can be defined suitably by constraints
in L2. One potential problem with this approach is ambiguous
classification, first identified by Atkinson and Kühne [7].

This problem is a rather subtle one and depends largely on the
interpretation of the model hierarchy. If a clean separation of the
physical and logical models exists, the linguistic classes can
simply be omitted, adopting a purely ontological view on a model.
With the linguistic metamodel adopting the role of a description
language for the ontological hierarchy, there is no longer any
ambiguity as can be easily seen in the figure.

However, in our opinion, unlike in the solutions presented in the
literature so far (cp. Atkinson and Kühne [5] [4], as well as Riehle
et al. [28] and Álvarez et al. [2]), there is more than one
dichtonomy to consider in this context. For this reason, we
precisely distinguish between the two concepts of physical vs.
logical modeling and the division between linguistic and
ontological modeling.

A physical metamodel is a metamodel which is described in the
form of program code and data structures. Its instances are
described by a program state but can be used to generate code for a
physical metamodel corresponding to the instance or to serialize it
in some form. On the other hand, a logical metamodel is an
instance of a physical metamodel which describes a metamodel in
the form of a program state. Its instances are also described by a
program state using elements of the same physical metamodel (e.g.
in the context of MOF and the Java Metadata Interface (JMI)
implementation [12]).

The other important aspect is to distinguish between different
purposes for instantiation, i.e. either to define the syntax of a
language or to describe ontological relationships, although it might

be argued that ontological metamodeling is a subset of linguistic
metamodeling, defining a DSL. Therefore the following definition
is applied in the context of our studies: linguistic metamodeling
uses a metamodel to describe a language syntax without a concrete
real-world mapping, whereas ontological metamodeling uses
metamodels to describe domain specific hierarchies. This
differentiation enables us to better describe the relationship
between the different axes of metamodeling.

The decision between a linear or non-linear metamodel hierarchy
depends on the situation. In terms of model complexity, two cases
need to be distinguished: small hierarchies with few layers and
larger hierarchies with several, equally frequented layers. As an
example of this distinction, the UML would be considered a small
hierarchy, since only 2 of its layers are really relevant for typical
usage profiles. Due to a certain overhead from the linguistic
metamodel non-linear hierarchies will account for a significantly
higher model complexity than linear ones for small hierarchies.
Larger hierarchies, on the other hand, tend to become inflated by
replicated concepts over several layers. Regarding the
expressional strength of those two basic architectures, it is hard
as well to provide a general proposition. Since non-linear
frameworks are more suitable for ontological hierarchies spanning
multiple layers, it might be argued that the expressional strength of
the non-linear approaches is higher when disregarding the impact
other design choices. Generally speaking, the consistency of non-
linear hierarchies will be higher, because each ontological layer
will use the same linguistic elements. As with UML and its
profiling mechanism, linear approaches offer a great degree of
extensibility, which also applies for non-linear ones allowing easy
editing at any level.

3.2 Layer Design Options
After having scrutinized the fundamental design option of linear
and non-linear architectures, the following sections examine
metamodeling variants dealing with more specialized questions
concerning the design of modeling layers.

3.2.1 Number of Metamodel Layers
The choice regarding the number of layers in a metamodel
hierarchy is, according to Bézivin and Lemesle, “a classical
problem [..] in meta-modeling” [9]. Most approaches use four
layers in a fashion similar to MOF and CDIF. This classical 4-
layered hierarchy is usually sufficient for the conventional
applications of metamodeling and for this reason is often accepted
without question.

Using fewer layers is in many cases possible, whereas more layers
require a non-linear metamodel hierarchy, as the conventional
infrastructures such as MOF do not support more than 4 layers
despite claims to the contrary (cf. [27]). Since the suitability of a
specific number of model layers depend largely on the application
it is used for, especially in the context of software engineering and
MDD, a detailed analysis of different numbers of model layers is
an obligatory first step.

To a certain degree, the number of modeling layers influences the
complexity of a metamodel hierarchy with each layer added,
especially in the case of linear hierarchies. A replication of concept
might thus generate a negative impact on the hierarchy’s
consistency. Considering ontological hierarchies, a higher number
of layers can increase the expressional strength, and if the number

of layers can be kept flexible, an improved degree of extensibility
will result.

3.2.2 Explicit or Implicit Real World Level
According to the definition provided in section 2, models are a
representation of systems in the real world. Therefore a mapping
between model elements and elements in the real world exists at
least implicitly (cf. [20]).

Opinions on how this real world mapping should be represented in
the context metamodeling are divergent. Atkinson and Kühne
advocate the real world elements to be located on the M0 level (cf.
[4]). The benefits of such an explicit real world level, however,
are not immediately obvious, especially as it excludes a direct
mapping of the metaelements to real world concepts. Therefore, if
a solid definition of the language semantics exists, there is little
need for any additional mappings to real world elements which
results in an implicit real world level.

On the other hand, it might be argued that such a mapping is part
of the semantics definition and therefore has no role in a
metamodel. Harel and Rumpe criticize the fact that many
researchers are unaware of the fact that a metamodel is a pure
syntax definition (cf. [19], [20]) and the explicit real world level
might be one manifestation of this misconception.

With regard to the quality criteria, this design choice has little
influence on the overall architecture. No definite proposition can
be given, whether the consistency of the hierarchy is improved by
an explicit real world level, whereas complexity is definitively
increased. Since the real world mapping occurs at a single layer
only, the overall expressional strength of the metalayers remains
unchanged. Being also effectively irrelevant for extensibility and
robustness to change in general, it is our impression that the
inclusion of a real world level is of little value added in most
metamodel hierarchies, even though it is discussed in literature.

3.2.3 Axiomatic or Recursive Top Level
In a strict metamodel hierarchy all layers are defined by the
metamodel situated in the next higher level with the exception of
the highest layer which of course has no metamodel above it. The
top-most layer can either be recursively defined, i.e. self-
describing, or modeled as an axiomatic layer. MOF [27] and
CDIF [10] are examples for recursive top-levels. Also, Riehle et al
[28] give an example for a logical recursive metamodel. Some
researchers though, such as Seidewitz [29] or Geisler et al. [14],
are opposed to the recursive top-level concept.

The main advantage of a recursive top level is that the model
hierarchy is self-defining (cf. MOF [27]). Harel and Rumpe
consider this solution to be “elegant” and useful “from a pragmatic
point of view” ([19], pg. 17), as users are probably already
familiar with the language by the time they look at the metamodel.
However, they also point out that the recursive metamodel is not
self-sufficient and must be supplemented with alternative
definitions.

The potential problems of a recursive top level described in the
literature are somewhat hard to grasp. While recursive definitions
also exist in other areas such as mathematics and are well-accepted
there, they are difficult to understand as information is “coming
from thin air” ([8], also see [19]). Figure 3 gives a small MOF-
derived example for this problem. All elements in the MOF

metamodel (i.e. the middle layer in the figure) which are
instantiated are themselves instances of Class. Thus they differ
only in their attributes and the associations and it is unclear how
the different types of elements can be distinguished based on the
recursive definition alone. This impression of incompleteness is
caused by the fact that the instantiation semantics, which are not
semantics at all but rather part of the syntax (similarly to the
“context conditions” mentioned by Harel and Rumpe [20]), are not
visible in the model. Nevertheless, these definitions exist and are
part of the metamodel and therefore the “thin air” theory is not true
and one of the main perceived drawbacks of recursive top level
layers is void.

Figure 3 - Insufficient Recursive Definition

Seidewitz also criticizes recursive (or in his terms “reflexive”)
metamodels (cf. [29], [30]) which is mostly due to the fact that the
recursion has to be resolved by duplicating the metamodel. In our
opinion, this view sums up to the statement that without a proven
valid base metamodel, the validity of all other models with regard
to their immediate higher level metamodel is of questionable value.
However, to us it is unclear why such a resolution of the recursion
should be required.

An axiomatic top level metamodel uses another language to
describe the top level metamodel. The most simple example is
specifying the metamodel in natural language or some formal
language. For example, the simplified metamodel in the previous
example would require about a page of natural language
explanations.

With all these problems of recursive definitions, an axiomatic top
level definition appears to be an attractive alternative. Therefore,
Geisler et al. propose the use of a formal metalanguage to avoid
“self-referencing problems” ([14]). In the context of non-linear
metamodel hierarchies (see section 3.1) the highest ontological
layer can easily be seen as axiomatic with the linguistic metamodel
taking the part of the metalanguage. On the other hand, Atkinson
[8] finds this top level design problematic because its elements
cannot be treated as objects. Albin even indirectly denies the
possible existence of axiomatic metamodels by saying that “every
model has a metamodel that describes it, although the metamodel
may be implicit.” ([1], chapter 11). Indeed it is questionable, why
scenarios where the metalanguage (e.g. natural language) used to
avoid the recursive definition was recursively defined itself should
be preferable to a recursive top-level model.

The vast number and variety of statements made on this
fundamental design option in literature is complicating the
evaluation in terms of discrete quality criteria. For example, while
some see a recursive definition as a tool for reducing complexity,
there is also a strong opposition to this thesis. This dichotomy
might result from the fact that a recursive definition can only be
considered self-sufficient if implemented correctly, which is a
complex task in its own right – as it is the case for consistency.
Expressional strength, extensibility, and robustness to change, in
our opinion, are fundamentally unaffected by the top level design.

Despite good arguments for recursive definitions the most
prominent real world examples tend to have a recursive top level
(cp. MOF and CDIF). In our opinion, in a linear hierarchy, a
recursive metamodel, augmented with natural language
clarifications, is preferable to a purely axiomatic approach.
However, it is even better to have a recursive metamodel and its
explanations offered as an alternative to an existing formal
definition, as is proposed by Harel and Rumpe [19]. In a non-
linear hierarchy, the highest ontological layer can be considered
axiomatic as it is defined in terms of the linguistic metamodel
which is beyond the scope of the ontological aspects.

3.3 Variants of Instantiation Semantics
Having studied the many possible layering concepts, the rules
interconnecting those layers, i.e., the semantics for instantiating an
element on a lower level, need to be reconsidered in more detail.

3.3.1 Strictness Definition
Strictness is a concept that provides order to the model layers in a
metamodel hierarchy. It is often used implicitly in architectures
such as MOF where it is an integral aspect. Atkinson and Kühne
state in their definition of strictness that model elements should
generally only have relationships within their own layers and not
between layers, with the exception of the (possibly implicit)
instance-of relationship, which represents the connection between
the different layers. Another restriction introduced by their
definition is that an element in a model layer can only instantiate
elements of its immediate parent layer. They provide the following
formal definition:

In an n-level modeling architecture, M0, M1, ..., Mn-1, every element

of an Mm-level model must be an instance-of exactly one element

of an Mm+1-level model, for all 0≤ m < n-1, and any relationship

other than the instance-of relationship between two elements X
and Y implies that level(X) = level(Y) [5]

On the other hand, a relaxation of strictness can be used to avoid
replication of concepts. Figure 4 shows an example metamodel
hierarchy with 3 layers (cp. [15] p. 65). The top layer, called
ontology layer, describes a business ontology which is based on a
“Convergent Architecture” architectural model proposed by
Hubert [23].

Figure 4 - A Scenario With Relaxed Strictness

In the figure a replication is avoided by allowing the instance-of
relationship to skip a layer (relaxation of strictness). For an in-
depth examination of this specific problem please refer to Gitzel
and Merz [15].

Since a rigid strictness definition can lead to a replication of
concepts, it can thus negatively affect both the complexity and the
consistency of a model hierarchy (see above, cf. also [15]). Even
though relaxed strictness stems replication, it might increase the
degree of “perceived complexity”. However, no strictness will
have a negative impact on hierarchies due to interpretation
intricacy and circular dependencies. A relaxation of strictness is
deemed to improve extensibility by decoupling the metalayer to
be extended from its directly adjacent layers. Besides merely
theoretical advantages this might be particularly useful in the
context of ontological hierarchies (cf. Figure 1). In many cases,
robustness to change will be unaffected by the degree of
strictness, since most changes to an upper layer diffuse transiently
down the hierarchy anyway, a conclussion which was also
substantiated by our personal experiences.

3.3.2 Shallow vs. Deep Instantiation
The possibility of choosing different instantiation semantics has
already been hinted at in the previous discussion. Before this
subject is addressed in the following section though, the concepts
of deep and shallow instantiation should be introduced as a
decision in this regard which impacts the design of the
instantiation semantics as a whole.

A metamodel hierarchy supports deep instantiation, if it is
possible for a class to make statements about its instances and their
instances in turn transitively. If a class, on the other hand, can only
affect its direct subclass, the system only supports shallow
instantiation. The boundaries between the two design variants are
sometimes blurred, though.

In a linear metamodel hierarchy, shallow instantiation can lead
to several problems. All core modeling concepts, for instance, have
to be defined in the top layer m leading to a replication of concepts
if layers other than m-1 are using those elements. In a non-linear
setup, layer-spanning linguistic concepts can be defined as part of
the physical metamodel, negating the disadvantages described (cp.
section 3.1).

Deep instantiation offers the advantage that concepts can be
defined at a relatively high level to hold true for all sub layers
without having to replicate this information on every layer.
Atkinson and Kühne [5] [7] propose the concept of potency for

attributes as an implementation of deep instantiation which is
illustrated in Figure 5. The potency P of an attribute A is an integer
value which denotes the influence on instances of the class C
which contains the attribute. This value is decremented after the
instantiation of C and transferred to the instance.

If an attribute (or field as it is called in [7]) is defined as being
dual, it can also be assigned values if the potency is still more than
zero, e.g. “Name” in the very right column of Figure 5.

+Name (2)

X1

+Name (1)

Y1

-Name (0) = "Gitzel"

Z1

M3

M2

M1

+IsAbstract (1)
+Name (2)

X2

+IsAbstract (0) = false
+Name (1)

Y2

-Name (0) = "Gitzel"

Z2

Example of
Potency

Different
Potencies

+IsAbstract (1)
+Name (2)

X3

+IsAbstract (0) = false
+Name (1) = "PhD Student"

Y3

-Name (0) = "Gitzel"

Z3

Dual
Attributes

Figure 5 - Potency of Attributes

An interesting scenario occurs when combining potency with a
relaxation of strictness (see section 3.3.1). The question arising is
whether potency should be reduced by one for each instantiation
or by one for each layer boundary crossed. Another question to
answer when implementing a potency-based hierarchy is whether
type, multiplicity, and name of the attribute should be
immutably tied to those defined by its topmost definition or not.

While deep instantiation in the form of potency works and has a
certain elegance, it implicitly restricts the number of layers and is
not necessarily needed for a metamodel hierarchy. In combination
with a relaxed strictness definition, the same modeling power is
achieved without the need to implement a new mechanism which
can hardly be realized using existing metamodeling APIs anyhow.
On the other hand, if potency is an existing concept in a modeling
language, it is easier to use than this alternative.

With regard to the quality criteria applied in this study, the
instantiation depth design decision seems to generally point in
favor of the deep option, which is a useful tool to reduce
complexity and improve consistency by providing a single point
of definition. Thus, the metalayers’ ability to influence other layers
beyond their immediate instances also increases the expressional
strength of the hierarchy.

3.3.3 Other Aspects of Instantiation Semantics
Besides the aspects of strictness and shallowness, instantiation
semantics, covers all the rules by which a type influences the
make-up of its instances and which can take all kinds of form,
letting them elude classification. One central question is whether
uniform instantiation semantics should apply between all layers or
whether each instantiation step should be able to have its own
instantiation semantics (layer-dependent).

The uniform approach seems to make more sense, since the model
hierarchy is easier to understand keeping the set of rules to a
minimum. This approach enables the arbitrary addition of new
model layers without the need to specify new instantiation

semantics and thus potentially reduces replication of concepts.
However, such an instantiation semantics is not implemented in
the existing linear metamodel hierarchies which use layer-
dependent instantiation semantics instead, non-linear solutions,
on the other hand, can easily apply the same instantiation rules to
all layers. Atkinson provides an example of a layer-independent
instantiation semantics, where the instance of an association can
also be an association with all the implied semantics and syntax,
and the instances of (meta)classes can also be (meta)classes (cp.
[8]).

Considering the evaluation of different metamodel hierarchies, this
design option has a great impact on the quality of the overall
architecture. Since type-instance relationships form an integral
part of any hierarchy, a non-uniform instantiation semantics as
well as a poorly designed uniform one, can negatively influence
both complexity and consistency due to replication issues and
possible confusion. A decision for a non-uniform instantiation
semantics offers more potential for extensibility, but from our
experience, there are rarely cases where an extension of the
instantiation semantics is desirable and the cost of the increased
complexity is too high to be offset by the meager benefits.

3.4 Linguistic Model Element Definitions
The linguistic model elements defined for a metamodel hierarchy
heavily influence its nature. In a linear hierarchy, these elements
are normally defined in the topmost layer, e.g. using one of the
established standards such as MOF, whereas a non-linear
framework generally has to provide more linguistic elements, such
as Class, Object, or MetaClass allowing the modeling of
the ontological hierarchy.

Among the proposed solutions presented here, is a naïve approach
described and criticized by Atkinson and Kühne [5], which has
one class for each layer. The drawback of this approach is that the
number of layers will be fixed by the number of model elements
defined as in the case of MOF (cp. section 3.2.1). On the other end
of the scale is a solution also offered by those authors which has
only a single class, ModelElement containing a level attribute that
identifies the corresponding level the element is found on,
effectively making it a Class, Object, or MetaClass [5]. A
third variant, again proposed by Atkinson, consists of the model
elements (Meta)Class, Clabject, and Object. A
Clabject here is both an instance and a type. Thus it has both
links and associations, attributes and attribute values [8]. A model
hierarchy based on these elements also implies an axiomatic top
level (see section 3.2.3).

The solution we propose is located somewhere in between the first
two. There are three classes, Class, MetaClass, and
ModelLayer where each element is associated with a
ModelLayer by containment. This approach allows the
relatively easy introduction of new model layers at the bottom or
in between, without having to change all elements’ layer attribute
and the inclusion of information about the layers which can be
used to check the compliance to domain-specific constraints.
Effectively, a MetaClass has all the properties of a Clabject
but does not need to be the instance of some type, merging the two
concepts. Our simplification reduces the number of model
elements without reducing the power or quality of the model.

Further issues concerning linguistic model elements include, for
instance, whether to model methods or operations (cp. [8] and

[14]) as well as static and dynamic relationships interconnecting
the other model elements. According to Atkinson [8], an
Association is called a dynamic relationship, because it can be
instantiated. A Link, which cannot be instantiated, is called a
static relationship, even though this terminology is usually only
applied to those links which do not occur in the lowest model
layer, e.g. generalization and aggregation (containment)
relationships.

Overall, the number of possible elements is probably infinite;
however, it is feasible to identify several elements such as Classes,
Metaclasses, or Associations which form a solid backbone of a
linguistic metamodel. Due to the many options, it is important to
provide a clear definition of the elements semantics and behavioral
constraints as well as choose them wisely with regard to the
intended application, e.g. code generation in software engineering.

Due to the multitude of options available in this context, it is again
difficult to make a general statement concerning the evaluation by
criteria. The complexity is influenced both by the number of
elements and their particular design. As an example, the
introduction of links can help reduce the complexity of a hierarchy
for the user (e.g. generalizations), whereas the complexity of the
underlying implementation increases. Conversely, a limited
number of elements might reduce the expressional strength of the
metalayers by subsuming several instances in shared metaclasses
which in turn convey less information about the instances. The
consistency of a hierarchy is also strongly interrelated with the
choice of linguistic model elements, e.g. overlapping
responsibilities can easily lead to inconsitencies. In general, the
most expensive changes to a metamodel hierarchy are those made
to its linguistic elements. This conclusion can be ascribed to the
fact that those elements mostly reside on the higher level or, in
case of a non-linear architecture, directly affect all ontological
layers. If linguistic metaelements covering a wide range of
ontological instances can be identified, they account for a certain
degree of robustness to change, since changes to the ontological
model layers are unlikely to require a modification at the linguistic
level. Similarly, an intelligent choice of elements positively
influences the extensibility.

3.5 Summary of Findings
As we have mentioned in the beginning, we have analyzed the
available options for metamodel hierarchies from the viewpoint of
the goals of general applicability and ease of use at all levels of
abstraction. Based on this goal, we identified the criteria of
complexity, consistency, expressional strength, extensibility, and
robustness to change. Since the emphasis between these criteria
will probably vary for individual projects and since not all of the
design option described can be limited to a finite number of
choices, it is not possible to make a general recommendation here.
However, tendencies can be identified, especially when looking at
those design options which are limited to a finite number of
choices or whose possible values can at least be grouped into
categories. Table 1 shows the tangible design options for
metamodel hierarchies in an overview, assigning each of the
possible choices a rating where applicable.

There are several findings that can be noted. First of all, the real
world level discussion seems to be largely pointless, at least in the
light of our criteria and thus, an explicit real-world level is not
worth the effort. The discussion whether an axiomatic or recursive
top-level model is the better choice, on the other hand, cannot be
solved, because the interpretation on its impact depends largely on
one’s standpoint. Thus, we refrain from a recommendation in this
context.

Another interesting fact is that there are quite a few values where
the contribution towards a specific criterion depends on the right
circumstances. For example, a wide range of linguistic model
elements can lead to less complex models, however, without effort,
a very complex but wide-ranged metamodel can be designed, for
example, by adding useless elements.

However, there are some choices where a clear statement can be
made as they are suitable for most situations. For example, a non-
linear hierarchy is required to allow choices such as relaxed
strictness or deep instantiation to be realized. Besides, non-
linearity, there are some other choices, where a general (but not
universal) recommendation can be offered. For instance, relaxed
strictness is a preferable choice when possible, avoiding many of
the problems caused by traditional strictness. Also, the linguistic
model, if carefully designed, can provide a number of
improvements in nearly all categories. On the other hand, a layer-
dependent instantiation semantics should be avoided at all costs,
increasing the complexity to an unacceptable degree, unless there
are but a few layers.

4. CONCLUSION
The preceding examination of fundamental metamodel hierarchy
design options, their advantages and drawbacks, as well as their
interrelatedness outlined the complex decision process when
constructing those hierarchies for different problem areas within
the domain of software engineering in particular.

A robust set of definitions has been created from the myriad of
conflicting opinions on the subject matter. Options available to the
designer of a metamodel hierarchy have been analyzed and
evaluated by a set of criteria described in section 2. Using these
definitions and the taxonomy for metamodels, the benefits of
metamodeling for MDD can be exploited more deliberately in
future research endeavors.

In the context of an upcoming dissertation on at the University of
Mannheim, metamodeling as an enabling technology for domain-
specific code generation is evaluated using the example of web
applications for e-business purposes. Part of this work is the
Ontological Metamodel Extension for Generative Architectures
(OMEGA, cf. working paper [16]), a metamodel hierarchy based
on an early version of the design space described here. As future
work, it is planned to use the design space for a metamodel
hierarchy in the context of an ongoing research project, called
CollaBaWue, which deals with collaborative, component-based
software development within the semantic domain of financial
service providers (see [11] and [20]).

Impact of Design Options
on the Quality
of a Metamodel Hierarchy

C
om

pl
ex

ity

C
on

si
st

en
cy

&

 P
re

ci
si

on

E
xp

re
ss

io
na

l
St

re
ng

th

E
xt

en
si

bi
lit

y

R
ob

us
tn

es
s

to
 C

ha
ng

e

Linearity

Linear - 0 0 + 0

Non-Linear + ++ + + 0

Number of Layers

Less than 4 Layers 0 0 0 0 0

4 Layers (cf. MOF) (-) (-) 0 0 0

More than 4 Layers (-) (-) + (+) -

Real World Level Explicitness

Explicit - (+) 0 0 0

Implicit 0 0 0 0 0

Top Level Definition

Axiomatic +/- +/- 0 0 0

Recursive +/- +/- 0 0 0

Strictness Definition

Strict - - 0 0 0

Relaxed (-) 0 0 + 0

None + -- -- + 0

Instantiation Depth

Deep ++ ++ 0 0 0

Shallow - - 0 0 0

Instantiation Semantics

Uniform (+) (+) 0 - -

Layer-dependent -- - 0 + +

Scope of Linguistic Model

Wide (+) (-) 0 (+) (+)

Medium (+) 0 0 (+) (+)

Narrow (-) 0 (-) (+) (+)

Legend:
-- to ++ (more or less pos./neg. influence, with -- being unacceptable), 0 (no influence on
this criterion) +/- (depending on standpoint), (_) (under certain circumstances)

Table 1 - The Design Options and Their Impact on a Hierarchy's quality

5. REFERENCES
[1] Albin, S. (2003): The Art of Software Architecture: Design Methods and Techniques, John Wiley & Sons, March 2003.

[2] Álvarez, J., Evans, A., and Sammut, P. (2001): Mapping between Levels in the Metamodel Architecture. In: Gogolla, M. and Kobryn,
C. (Editors): UML 2001, Lecture Notes in Computer Science 2185, Springer, New York, 34-46, 2001.

[3] Atkinson, C. and Kühne, T. (2003): Calling a Spade a Spade in the MDA Infrastructure, In: Proceedings of the Metamodeling for
MDA First International Workshop, York, UK, November 2003, 9-12.

[4] Atkinson, C. and Kühne, T. (2003): Model-Driven Development: A Metamodeling Foundation. In: IEEE Software, September/October
2003 (Vol. 20, No. 5), IEEE, 36-41.

[5] Atkinson, C. and Kühne, T. (2002): Rearchitecting the UML Infrastructure. In: ACM Transactions on Modeling and Computer
Simulation, Vol. 12, No. 4, October 2002, 290-321.

[6] Atkinson, C. and Kühne, T. (2002): The Role of Metamodeling in MDA. International Workshop in Software Model Engineering (in
conjunction with UML ’02), Dresden, Germany, October 2002.
http://www.metamodel.com/wisme-2002/

[7] Atkinson, C. and Kühne, T. (2001): The Essence of Multilevel Metamodeling. In: Gogolla, M. and Kobryn, C. (Editors): UML 2001,
Lecture Notes in Computer Science 2185, Springer, New York, 19-33.

[8] Atkinson, C. (1997): Meta-Modeling for Distributed Object Environments, In: Proceedings of the 1st International Enterprise
Distributed Object Computing Conference (EDOC’97), IEEE Computer Society 1997, 90-101.

[9] Bézivin, J. and Lemesle, R. (1998): Ontology-Based Layered Semantics for Precise OA&D Modeling. In: Lecture Notes in Computer
Science 1357, Springer 1998, 151-154.

[10] CDIF Technical Committee (1994): CDIF – CASE Data Interchange Format, Extract of Interim Standard, EIA/IS-107, Electronic
Industries Association, January 1994.

[11] COLLABAWUE project homepage. http://www.collabawue.de/

[12] Dirckze , R (Spec. Lead) (2002): Java™ Metadata Interface(JMI) Specification - JSR 040, Version 1.0 Final Specification. Java
Community Process, June 2002. http://jcp.org/aboutJava/communityprocess/final/jsr040/

[13] Ehrig, H. (1979): Introduction to the Algebraic Theory of Graph Grammars Proc. Int’l Workshop Graph-Grammars and Their
Application to Computer Science and Biology, V. Claus, H. Ehrig, and G. Rozenberg, eds., LNCS 73, Springer-Verlag, 1979.

[14] Geisler, R., Klar, M., and Pons, C. (1998): Dimensions and Dichotomy in Metamodeling, In: 3rd BCS-FACS Northern Formal Methods
Workshop, Ilkley, UK. 14th-15th September 1998.

[15] Gitzel, R. and Merz, M. (2004), How a Relaxation of the Strictness Definition Can Benefit MDD Approaches With Meta Model
Hierarchies, In: Proceedings of the 8th World Multi-Conference on Systemics, Cybernetics and Informatics (SCI2004) , 19-21 July,
2004, Orlando, USA, International Institute of Informatics and Systemics (IIIS), 62-67. http://www.bwl.uni-
mannheim.de/Schader/_files/
gitzel-Strictness.pdf

[16] Gitzel, R. and Korthaus, A. (2004): The Role of Metamodeling in Model-Driven Development, In: Proceedings of the 8th World Multi-
Conference on Systemics, Cybernetics and Informatics (SCI2004) , 19-21 July, 2004, Orlando, USA, International Institute of
Informatics and Systemics (IIIS).
http://www.bwl.uni-mannheim.de/Schader/_files/
gitzel-MetaMDD.pdf

[17] Gitzel, R., Ott, I., and Schader, M. (2004), Ontological Metamodel Extension for Generative Architectures (OMEGA), Working Paper,
University of Mannheim, Department of Information Systems III, June, 2004. http://www.bwl.uni-mannheim.de/Schader/_files/
gitzel-omega.pdf

[18] Gitzel, R. and Schader, M. (2003): Generation of XML-based Web Applications Using Metamodels. In: Proceedings of the 7th
IASTED International Conference on Internet And Multimedia Systems And Applications (IMSA'03), 13.-15. August, 2003, Honolulu,
USA.
http://www.bwl.uni-mannheim.de/Schader/_files/
gitzel-XMLPaper.pdf

[19] Harel, D. and Rumpe, B. (2000): Modeling Languages: Syntax, Semantics, and All That Stuff – Part I: The Basic Stuff. The Weizmann
Institute of Science, Rehovot, Israel, MCS00-16.
http://www4.in.tum.de/~rumpe/ps/Modeling-Languages.pdf

[20] Harel, D. and Rumpe, B. (2004): Meaningful Modeling; What’s the Semantics of “Semantics”?, In: IEEE Computer, October 2004
(Vol. 37, No. 10), IEEE, 64-72.

[21] Herbsleb, J.D. and Mockus, A.: Formulation and Preliminary Test of an Empirical Theory of Coordination in Software Engineering. In:
Proceedings of the 9th Eurooean Software Engineering Conference held jointly with the 11th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ACM Press, 2003, 138-147

[22] Hildenbrand, T. and Korthaus, A. (2004): A Model-Driven Approach to Business Software Engineering, In: Proceedings of the 8th
World Multi-Conference on Systemics, Cybernetics and Informatics (SCI 2004), Volume IV Information Systems, Technologies and
Applications, Orlando, Florida, USA, July 18-21, 2004, 74-79.
ftp://ftp.wifo.uni-mannheim.de/pub/PEOPLE/korthaus/
HildenbrandKorthaus-SCI2004.pdf

[23] Hubert, R. (2002): Convergent Architecture – Building Model-Driven J2EE Systems with UML, John Wiley & Sons, 2002.

[24] Muller, P.-A., Studer, P., and Bézivin, J. (2003): Platform Independent Web Application Modeling. In: P. Stevens et al. (Eds.): UML
2003, LNCS 2863, Springer, 220–233.

[25] Odell, J. (1994): Power Types. In: Journal of Object Oriented Programming, May, 1994

[26] OMG (2003): XML Metadata Interchange (XMI) Specification Version 2.0 formal/03-05-02. OMG, May 2003,
http://www.omg.org/docs/formal/03-05-02.pdf

[27] OMG (2002): Meta Object Facility (MOF) Specification, Version 1.4. OMG, April 2002.
http://www.omg.org/cgi-bin/doc?formal/2002-04-03

[28] Riehle, D., Fraleigh, S., Bucka-Lassen, D., and Omorogbe, N.: The Architecture of a UML Virtual Machine. In: Proceedings of the
2001 Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA’01), ACM Press, 2001.

[29] Seidewitz, E. (2003): What Models Mean. In: IEEE Software, September/October 2003 (Vol. 20, No. 5), IEEE, 26-32.

[30] Seidewitz, E. (2003): What Do Models Mean? OMG Document ad/03-03-31, OMG, March 2003, http://www.omg.org/docs/ad/03-03-
31.pdf

[31] Völter, M. (2000): Metamodellierung, http://www.voelter.de/services/mdsd.html

