Volume rendering is a key technique in scientific visualization that lends itself to significant exploitable parallelism. The high computational demands of real-time volume rendering and continued technological advances in the area of VLSI give impetus to the development of special-purpose volume rendering architectures. This paper presents and characterizes three recently developed volume rendering engines which are based on the ray-casting method. A taxonomy of the algorithmic variants of ray-casting and details of each ray-casting architecture are discussed. The paper then compares the machine features and provides an outlook on future developments in the area of volume rendering hardware.
Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.