Image labeling and grouping by minimizing linear functionals over cones


Schellewald, Christian ; Keuchel, Jens ; Schnörr, Christoph


[img]
Preview
PDF
2001_01.pdf - Published

Download (913kB)

URL: http://ub-madoc.bib.uni-mannheim.de/1849
URN: urn:nbn:de:bsz:180-madoc-18498
Document Type: Working paper
Year of publication: 2001
The title of a journal, publication series: None
Publication language: English
Institution: School of Business Informatics and Mathematics > Sonstige - Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik
MADOC publication series: Veröffentlichungen der Fakultät für Mathematik und Informatik > Institut für Informatik > Technical Reports
Subject: 004 Computer science, internet
Classification: MSC: 68U99 68T10 68T45 ,
Subject headings (SWD): Mustererkennung , Maschinelles Sehen
Abstract: We consider energy minimization problems related to image labeling, partitioning, and grouping, which typically show up at mid-level stages of computer vision systems. A common feature of these problems is their intrinsic combinatorial complexity from an optimization pointof-view. Rather than trying to compute the global minimum - a goal we consider as elusive in these cases - we wish to design optimization approaches which exhibit two relevant properties: First, in each application a solution with guaranteed degree of suboptimality can be computed. Secondly, the computations are based on clearly defined algorithms which do not comprise any (hidden) tuning parameters. In this paper, we focus on the second property and introduce a novel and general optimization technique to the field of computer vision which amounts to compute a sub optimal solution by just solving a convex optimization problem. As representative examples, we consider two binary quadratic energy functionals related to image labeling and perceptual grouping. Both problems can be considered as instances of a general quadratic functional in binary variables, which is embedded into a higher-dimensional space such that sub optimal solutions can be computed as minima of linear functionals over cones in that space (semidefinite programs). Extensive numerical results reveal that, on the average, sub optimal solutions can be computed which yield a gap below 5% with respect to the global optimum in case where this is known.
Additional information:




Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.




Metadata export


Citation


+ Search Authors in

+ Download Statistics

Downloads per month over past year

View more statistics



You have found an error? Please let us know about your desired correction here: E-Mail


Actions (login required)

Show item Show item