Mining Unstructured Financial News to Forecast Intraday Stock Price Movements


Bacher, Simon


[img]
Vorschau
PDF
Master_Thesis_Simon_Bacher.pdf - Veröffentlichte Version

Download (866kB)

URL: https://ub-madoc.bib.uni-mannheim.de/33103
URN: urn:nbn:de:bsz:180-madoc-331035
Dokumenttyp: Abschlussarbeit , Master
Erscheinungsjahr: 2012
Ort der Veröffentlichung: Mannheim
Hochschule: Universität Mannheim
Gutachter: Stuckenschmidt, Heiner
Sprache der Veröffentlichung: Englisch
Einrichtung: Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Practical Computer Science II: Artificial Intelligence (Stuckenschmidt 2009-)
Fachgebiet: 004 Informatik
070 Nachrichtenmedien, Journalismus, Verlagswesen
Fachklassifikation: CCS: Data mining, Linguistic processing , Thesauruses , Information filtering , Large text archives , Decision support , Word processing , Natural language , Prototyping,
Normierte Schlagwörter (SWD): Text Mining , Fallstudie , Aktienkursprognose, Überwachtes Lernen , Support-Vektor-Maschine , Natürliche Sprache , Mensch-Maschine-Interaktion
Freie Schlagwörter (Englisch): Text mining , natural language processing , case study , stock price forecasting , supervised learning , SVM , support vector machine
Abstract: In this thesis, we develop a system that analyzes unstructured financial news using text classification in order to forecast stock price trends. We review similar systems to build on successful ideas and combine them with novel approaches. We discuss the different types of news that are potentially relevant to the stock prices and choose news sources for the system accordingly. To eliminate irrelevant news, we present suitable filtering approaches such as the implementation of a rule-based thesaurus. We develop an automatic labeling approach and compare it to a manual labeling approach. We evaluate the influence of different automatic labeling approaches on the prediction performance. In a data training phase, we introduce a set of features novel with respect to the price forecasting task. We compare different text mining techniques such as the feature vector dimensionality reduction and different classifiers. Finally, we investigate the influence of trading costs on potential profits and run a market simulation that is able to support or reject the practical profitability of the system.




Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.




Metadaten-Export


Zitation


+ Suche Autoren in

BASE: Bacher, Simon

Google Scholar: Bacher, Simon

+ Download-Statistik

Downloads im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen