Correlation-based Refinement of Rules with Numerical Attributes
Melo, André
;
Theobald, Martin
;
Völker, Johanna
URL:
|
http://www.aaai.org/ocs/index.php/FLAIRS/FLAIRS14/...
|
Dokumenttyp:
|
Konferenzveröffentlichung
|
Erscheinungsjahr:
|
2014
|
Buchtitel:
|
Proceedings of the twenty-seventh International Conference of the Florida Artificial Intelligence Research Society (FLAIRS) : May 21 - 23, 2014 Pensacola Beach, Florida, USA
|
Seitenbereich:
|
345-350
|
Veranstaltungsdatum:
|
21.05.2014
|
Herausgeber:
|
Eberle, William
|
Ort der Veröffentlichung:
|
Palo Alto, Calif.
|
Verlag:
|
AAAI Press
|
ISBN:
|
978-1-57735-658-5
|
Sprache der Veröffentlichung:
|
Englisch
|
Einrichtung:
|
Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Practical Computer Science II: Artificial Intelligence (Stuckenschmidt 2009-)
|
Fachgebiet:
|
004 Informatik
|
Abstract:
|
Learning rules is a common way of extracting useful information
from knowledge or data bases. Many of such data sets
contain numerical attributes. However, approaches like ILP
or association rule mining are optimized for data with categorical values, and considering numerical attributes is expensive. In this paper, we present an extension to top-down
ILP algorithms such as FOIL, which enables an efficient discovery
of rules from data with both numerical and categorical
attributes. Our approach comprises a preprocessing phase
for computing the correlations between numerical and categorical attributes, as well as an extension to the ILP refinement step, which enables us to detect interesting candidate rules and to suggest refinements with relevant attribute combinations. We report on experiments with U.S. Census data, Freebase and DBpedia, and show that our approach helps to efficiently discover rules with numerical intervals.
|
| Dieser Eintrag ist Teil der Universitätsbibliographie. |
Suche Autoren in
Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail
Actions (login required)
|
Eintrag anzeigen |
|
|