Exploiting frameNet for content-based book recommendation


De Clercq, Orphée ; Schuhmacher, Michael ; Ponzetto, Simone Paolo ; Hoste, Veronique



URL: http://ceur-ws.org/Vol-1245/cbrecsys2014-paper03.p...
Weitere URL: http://ceur-ws.org/Vol-1245/cbrecsys2014-proceedin...
Dokumenttyp: Konferenzveröffentlichung
Erscheinungsjahr: 2014
Buchtitel: CBRecSys 2014 New Trends in Content-based Recommender Systems : Proceedings of the 1st Workshop on New Trends in Content-based Recommender Systems co-located with the 8th ACM Conference on Recommender Systems (RecSys 2014)
Titel einer Zeitschrift oder einer Reihe: CEUR Workshop Proceedings
Band/Volume: 1245
Seitenbereich: 14-21
Veranstaltungstitel:
Veranstaltungsort: Foster City, Silicon Valley, Calif.
Veranstaltungsdatum: October 6, 2014
Herausgeber: Bogers, Toine
Ort der Veröffentlichung: Aachen, Germany
Verlag: RWTH Aachen
ISSN: 1613-0073
Sprache der Veröffentlichung: Englisch
Einrichtung: Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Semantic Web (Juniorprofessur) (Ponzetto 2013-2015)
Fachgebiet: 004 Informatik
Abstract: Adding semantic knowledge to a content-based recommender helps to better understand the items and user representations. Most recent research has focused on examining the added value of adding semantic features based on structured web data, in particular Linked Open Data (LOD). In this paper, we focus in contrast on semantic feature construction from text, by incorporating features based on semantic frames into a book recommendation classifier. To this purpose we leverage the semantic frames based on parsing the plots of the items under consideration with a state-of-the-art semantic parser. By investigating this type of semantic information, we show that these frames are also able to represent information about a particular book, but without the need of having explicitly structured data describing the books available. We reveal that exploiting frame information outperforms a basic bag-of-words approach and that especially the words relating to those frames are beneficial for classification. In a final step we compare and combine our system with the LOD features from a system leveraging DBpedia as knowledge resource. We show that both approaches yield similar results and reveal that combining semantic information from these two different sources might even be beneficial.




Dieser Eintrag ist Teil der Universitätsbibliographie.




Metadaten-Export


Zitation


+ Suche Autoren in

+ Aufruf-Statistik

Aufrufe im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen