treatment effects , unobserved heterogeneity , overidentification test , instrumental variables , generated regressors , wild bootstrap , teenage pregnancies , network analysis , stochastic block model , latent position model , centrality
Abstract:
My dissertation investigates commonly used testing and estimation procedures and extends
these by taking into account more heterogeneity. In chapter 2, me and my co-author Andreas
Dzemski provide a new overidentification test that allows for essential heterogeneity. In chapter
3, I prove weak consistency up to a measure preserving transformation for maximum-likelihood
estimation of unobserved latent positions in a Euclidean space just based on observable information
of the agent's linking behavior. In chapter 4, I propose a new measure of centrality
which exploits the latent space structure and identifies agents who connect clusters.
Dieser Eintrag ist Teil der Universitätsbibliographie.
Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.