Unsupervised recognition of interleaved activities of daily living through ontological and probabilistic reasoning


Riboni, Daniele ; Sztyler, Timo ; Civitarese, Gabriele ; Stuckenschmidt, Heiner



DOI: https://doi.org/10.1145/2971648.2971691
URL: http://ubicomp.org/ubicomp2016/program/online-proc...
Weitere URL: http://publications.wim.uni-mannheim.de/informatik...
Dokumenttyp: Konferenzveröffentlichung
Erscheinungsjahr: 2016
Buchtitel: UbiComp '16 : proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing : Sep. 12-16, co-located with the International Symposium on Wearable Computers (ISWC) 2016
Seitenbereich: 1-12
Veranstaltungstitel: UbiComp/ISWC 2016
Veranstaltungsort: Heidelberg, Germany
Veranstaltungsdatum: 12.-16.09.2016
Herausgeber: Lukowicz, Paul
Ort der Veröffentlichung: New York, NY
Verlag: ACM
ISBN: 978-1-4503-4461-6
Sprache der Veröffentlichung: Englisch
Einrichtung: Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Practical Computer Science II: Artificial Intelligence (Stuckenschmidt 2009-)
Fachgebiet: 004 Informatik
Abstract: Recognition of activities of daily living (ADLs) is an enabling technology for several ubiquitous computing applications. In this field, most activity recognition systems rely on supervised learning methods to extract activity models from labeled datasets. An inherent problem of that approach consists in the acquisition of comprehensive activity datasets, which is expensive and may violate individuals’ privacy. The problem is particularly challenging when focusing on complex ADLs, which are characterized by large intra- and inter-personal variability of execution. In this paper, we propose an unsupervised method to recognize complex ADLs exploiting the semantics of activities, context data, and sensing devices. Through ontological reasoning, we derive semantic correlations among activities and sensor events. By matching observed sensor events with semantic correlations, a statistical reasoner formulates initial hypotheses about the occurred activities. Those hypotheses are refined through probabilistic reasoning, exploiting semantic constraints derived from the ontology. Extensive experiments with real-world datasets show that the accuracy of our unsupervised method is comparable to the one of state of the art supervised approaches.




Dieser Eintrag ist Teil der Universitätsbibliographie.




Metadaten-Export


Zitation


+ Suche Autoren in

+ Aufruf-Statistik

Aufrufe im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen