Understanding the message of images with knowledge base traversals


Weiland, Lydia ; Hulpus, Ioana ; Ponzetto, Simone Paolo ; Dietz, Laura



DOI: https://doi.org/10.1145/2970398.2970414
URL: https://scholar.google.com/citations?view_op=view_...
Weitere URL: http://www.bibsonomy.org/bibtex/d704a2e510a0497db6...
Dokumenttyp: Konferenzveröffentlichung
Erscheinungsjahr: 2016
Buchtitel: Proceedings of the 2016 ACM on International Conference on the Theory of Information Retrieval, ICTIR 2016, Newark, DE, USA, September 13-16, 2016
Seitenbereich: 199-208
Veranstaltungstitel: ICTIR'16
Veranstaltungsort: Newark, DE
Veranstaltungsdatum: 13.-16.09.2016
Herausgeber: Carterette, Ben
Ort der Veröffentlichung: New York, NY
Verlag: ACM
ISBN: 978-1-4503-4497-5
Sprache der Veröffentlichung: Englisch
Einrichtung: Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Information Systems III: Enterprise Data Analysis (Ponzetto 2016-)
Fachgebiet: 004 Informatik
Abstract: The message of news articles is often supported by the pointed use of iconic images. These images together with their captions encourage emotional involvement of the reader. Current algorithms for understanding the semantics of news articles focus on its text, often ignoring the image. On the other side, works that target the semantics of images, mostly focus on recognizing and enumerating the objects that appear in the image. In this work, we explore the problem from another perspective: Can we devise algorithms to understand the message encoded by images and their captions? To answer this question, we study how well algorithms can describe an image-caption pair in terms of Wikipedia entities, thereby casting the problem as an entity-ranking task with an image-caption pair as query. Our proposed algorithm brings together aspects of entity linking, subgraph selection, entity clustering, relatedness measures, and learning-to-rank. In our experiments, we focus on media-iconic image-caption pairs which often reflect complex subjects such as sustainable energy and endangered species. Our test collection includes a gold standard of over 300 image-caption pairs about topics at different levels of abstraction. We show that with a MAP of 0.69, the best results are obtained when aggregating content-based and graph-based features in a Wikipedia-derived knowledge base.




Dieser Eintrag ist Teil der Universitätsbibliographie.




Metadaten-Export


Zitation


+ Suche Autoren in

+ Aufruf-Statistik

Aufrufe im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen