Online personalization of cross-subjects based activity recognition models on wearable devices
Sztyler, Timo
;
Stuckenschmidt, Heiner
DOI:
|
https://doi.org/10.1109/PERCOM.2017.7917864
|
URL:
|
http://ieeexplore.ieee.org/document/7917864/
|
Weitere URL:
|
http://publications.wim.uni-mannheim.de/informatik...
|
Dokumenttyp:
|
Konferenzveröffentlichung
|
Erscheinungsjahr:
|
2017
|
Buchtitel:
|
PerCom 2017 : The Fifteenth Annual IEEE International Conference on Pervasive Computing and Communications : March 13-17, 2017, Big Island, HI, USA
|
Seitenbereich:
|
180-189
|
Veranstaltungstitel:
|
IEEE International Conference on Pervasive Computing and Communications 2017 (PerCom)
|
Veranstaltungsort:
|
Kona, Big Island, HI
|
Veranstaltungsdatum:
|
13.-17.03.2017
|
Herausgeber:
|
Marchiori, Alan
|
Ort der Veröffentlichung:
|
Piscataway, NJ
|
Verlag:
|
IEEE Computer Society
|
ISBN:
|
978-1-5090-4328-6 , 978-1-5090-4327-9
|
ISSN:
|
2474-249X
|
Sprache der Veröffentlichung:
|
Englisch
|
Einrichtung:
|
Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Practical Computer Science II: Artificial Intelligence (Stuckenschmidt 2009-)
|
Fachgebiet:
|
004 Informatik
|
Abstract:
|
Human activity recognition using wearable devices is an active area of research in pervasive computing. In our work, we address the problem of reducing the effort for training and adapting activity recognition approaches to a specific person. We focus on the problem of cross-subjects based recognition models and introduce an approach that considers physical characteristics. Further, to adapt such a model to the behavior of a new user, we present a personalization approach that relies on online and active machine learning. In this context, we use online random forest as a classifier to continuously adapt the model without keeping the already seen data available and an active learning approach that uses user-feedback for adapting the model while minimizing the effort for the new user. We test our approaches on a real world data set that covers 15 participants, 8 common activities, and 7 different on-body device positions. We show that our cross-subjects based approach performs constantly +3% better than the standard approach. Further, the personalized cross-subjects models, gained through user-feedback, recognize dynamic activities with an F-measure of 87% where the user has significantly less effort than collecting and labeling data.
|
| Dieser Eintrag ist Teil der Universitätsbibliographie. |
Suche Autoren in
Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail
Actions (login required)
|
Eintrag anzeigen |
|
|