Human and machine judgements for Russian semantic relatedness
Panchenko, Alexander
;
Ustalov, Dmitry
;
Arefyev, Nikolay
;
Paperno, Denis
;
Konstantinova, Natalia
;
Loukachevitch, Natalia
;
Biemann, Chris
DOI:
|
https://doi.org/10.1007/978-3-319-52920-2_21
|
URL:
|
https://arxiv.org/abs/1708.09702
|
Weitere URL:
|
https://www.lt.informatik.tu-darmstadt.de/fileadmi...
|
Dokumenttyp:
|
Konferenzveröffentlichung
|
Erscheinungsjahr:
|
2017
|
Buchtitel:
|
Analysis of Images, Social Networks and Texts : 5th International Conference, AIST 2016, Yekaterinburg, Russia, April 7-9, 2016, Revised Selected Papers
|
Titel einer Zeitschrift oder einer Reihe:
|
Communications in Computer and Information Science
|
Band/Volume:
|
661
|
Seitenbereich:
|
221-235
|
Veranstaltungstitel:
|
5th International Conference on Analysis of Images, Social Networks and Texts, AIST 2016
|
Veranstaltungsort:
|
Yekaterinburg, Russia
|
Veranstaltungsdatum:
|
April 7-9, 2016
|
Herausgeber:
|
Ignatov, Dmitry I.
|
Ort der Veröffentlichung:
|
Cham
|
Verlag:
|
Springer
|
ISBN:
|
978-3-319-52919-6 , 978-3-319-52920-2
|
ISSN:
|
1865-0929 , 1865-0937
|
Verwandte URLs:
|
|
Sprache der Veröffentlichung:
|
Englisch
|
Einrichtung:
|
Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Information Systems III: Enterprise Data Analysis (Ponzetto 2016-)
|
Fachgebiet:
|
004 Informatik
|
Freie Schlagwörter (Englisch):
|
Semantic similarity , Semantic relatedness , Evaluation , Distributional thesaurus , Crowdsourcing , Language resources
|
Abstract:
|
Semantic relatedness of terms represents similarity of meaning by a numerical score. On the one hand, humans easily make judgements about semantic relatedness. On the other hand, this kind of information is useful in language processing systems. While semantic relatedness has been extensively studied for English using numerous language resources, such as associative norms, human judgements and datasets generated from lexical databases, no evaluation resources of this kind have been available for Russian to date. Our contribution addresses this problem. We present five language resources of different scale and purpose for Russian semantic relatedness, each being a list of triples (wordi,wordj,similarityij
). Four of them are designed for evaluation of systems for computing semantic relatedness, complementing each other in terms of the semantic relation type they represent. These benchmarks were used to organise a shared task on Russian semantic relatedness, which attracted 19 teams. We use one of the best approaches identified in this competition to generate the fifth high-coverage resource, the first open distributional thesaurus of Russian. Multiple evaluations of this thesaurus, including a large-scale crowdsourcing study involving native speakers, indicate its high accuracy.
|
| Dieser Eintrag ist Teil der Universitätsbibliographie. |
Suche Autoren in
BASE:
Panchenko, Alexander
;
Ustalov, Dmitry
;
Arefyev, Nikolay
;
Paperno, Denis
;
Konstantinova, Natalia
;
Loukachevitch, Natalia
;
Biemann, Chris
Google Scholar:
Panchenko, Alexander
;
Ustalov, Dmitry
;
Arefyev, Nikolay
;
Paperno, Denis
;
Konstantinova, Natalia
;
Loukachevitch, Natalia
;
Biemann, Chris
ORCID:
Panchenko, Alexander ORCID: https://orcid.org/0000-0001-6097-6118, Ustalov, Dmitry ORCID: https://orcid.org/0000-0002-9979-2188, Arefyev, Nikolay, Paperno, Denis, Konstantinova, Natalia, Loukachevitch, Natalia and Biemann, Chris
Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail
Actions (login required)
|
Eintrag anzeigen |
|