Crowdsourcing synset relations with genus-species-match


Ustalov, Dmitry



DOI: https://doi.org/10.1109/AINL-ISMW-FRUCT.2015.7382980
URL: https://www.researchgate.net/publication/304291894...
Additional URL: https://www.fruct.org/publications/ainl-fruct/file...
Document Type: Conference or workshop publication
Year of publication: 2015
Book title: Proceedings of Artificial Intelligence and Natural Language & Information Extraction, Social Media and Web Search (AINL-ISMW) FRUCT Conference : 9-14 November 2015, St. Petersburg, Russia
Page range: 118-124
Conference title: 2015 Artificial Intelligence and Natural Language and Information Extraction, Social Media and Web Search FRUCT Conference (AINL-ISMW FRUCT)
Location of the conference venue: Saint Petersburg, Russia
Date of the conference: November 9-14, 2015
Place of publication: Piscataway, NJ
Publishing house: IEEE
ISBN: 978-1-4673-8476-6 , 978-9-5268-3970-7 , 978-952-68397-1-4
Publication language: English
Institution: School of Business Informatics and Mathematics > Information Systems III: Enterprise Data Analysis (Ponzetto 2016-)
Subject: 004 Computer science, internet
Abstract: Enabling a domain-specific lexical resource is useful for improving the performance of a natural language processing system. However, such resources may be represented in the form of glossaries-terms provided with their sense definitions. Despite the problem of integrating such domain-specific glossaries into more sophisticated general purpose resources like thesuari being highly topical, it is complicated by ambiguity of the individual terms. This paper presents Genus-Species-Match, a crowdsourcing workflow for matching noisy pairs of synsets representing hyponymic/hypernymic relations. The system demonstrates F1 score of 80% on an experiment conducted on an online labor marketplace using the EMERCOM glossary and the Yet Another RussNet sense inventory.




Dieser Datensatz wurde nicht während einer Tätigkeit an der Universität Mannheim veröffentlicht, dies ist eine Externe Publikation.




Metadata export


Citation


+ Search Authors in

BASE: Ustalov, Dmitry

Google Scholar: Ustalov, Dmitry

ORCID: Ustalov, Dmitry ORCID: 0000-0002-9979-2188

+ Page Views

Hits per month over past year

Detailed information



You have found an error? Please let us know about your desired correction here: E-Mail


Actions (login required)

Show item Show item