RUSSE: the first workshop on Russian semantic similarity


Panchenko, Alexander ; Loukachevitch, Natalia ; Ustalov, Dmitry ; Paperno, Denis ; Meyer, Christian ; Konstantinova, Natalia



URL: http://www.dialog-21.ru/digests/dialog2015/materia...
Weitere URL: http://www.dialog-21.ru/media/2778/dialogue-2015_v...
Dokumenttyp: Konferenzveröffentlichung
Erscheinungsjahr: 2015
Buchtitel: Computational Linguistics and Intellectual Technologies : Papers from the Annual conference "Dialogue 2015", Moscow, May 27 - 30, 2015
Titel einer Zeitschrift oder einer Reihe: Dialogue
Band/Volume: 14,2
Seitenbereich: 89-105
Veranstaltungstitel: Computational Linguistics and Intellectual Technologies 2015
Veranstaltungsort: Moscow, Russia
Veranstaltungsdatum: May 27-30, 2015
Ort der Veröffentlichung: Moscow
Verlag: RSUH
ISSN: 2221-7932 , 2075-7182
Sprache der Veröffentlichung: Englisch
Einrichtung: Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Information Systems III: Enterprise Data Analysis (Ponzetto 2016-)
Fachgebiet: 004 Informatik
Freie Schlagwörter (Englisch): computational linguistics , lexical semantics , semantic similarity measures , semantic relations , semantic relation extraction , semantic relatedness , synonyms , hypernyms , co-hyponyms
Abstract: The paper gives an overview of the Russian Semantic Similarity Evaluation (RUSSE) shared task held in conjunction with the Dialogue 2015 conference. There exist a lot of comparative studies on semantic similarity, yet no analysis of such measures was ever performed for the Russian language. Exploring this problem for the Russian language is even more interesting, because this language has features, such as rich morphology and free word order, which make it signi cantly di erent from English, German, and other well-studied languages. We attempt to bridge this gap by proposing a shared task on the semantic similarity of Russian nouns. Our key contribution is an evaluation methodology based on four novel benchmark datasets for the Russian language. Our analysis of the 105 submissions from 19 teams reveals that successful approaches for English, such as distributional and skip-gram models, are directly applicable to Russian as well. On the one hand, the best results in the contest were obtained by sophisticated supervised models that combine evidence from di erent sources. On the other hand, completely unsupervised approaches, such as a skip-gram model estimated on a large-scale corpus, were able score among the top 5 systems.




Dieser Datensatz wurde nicht während einer Tätigkeit an der Universität Mannheim veröffentlicht, dies ist eine Externe Publikation.




Metadaten-Export


Zitation


+ Suche Autoren in

+ Aufruf-Statistik

Aufrufe im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen