Quantifying uncertainty in transdimensional Markov chain Monte Carlo using discrete Markov models
Heck, Daniel W.
;
Overstall, Antony M.
;
Gronau, Quentin F.
;
Wagenmakers, Eric-Jan
DOI:
|
https://doi.org/10.1007/s11222-018-9828-0
|
URL:
|
https://link.springer.com/article/10.1007/s11222-0...
|
Weitere URL:
|
https://arxiv.org/abs/1703.10364
|
Dokumenttyp:
|
Zeitschriftenartikel
|
Erscheinungsjahr:
|
2019
|
Titel einer Zeitschrift oder einer Reihe:
|
Statistics and Computing : SC
|
Band/Volume:
|
29
|
Heft/Issue:
|
4
|
Seitenbereich:
|
631-643
|
Ort der Veröffentlichung:
|
Dordrecht [u.a.]
|
Verlag:
|
Springer Science + Business Media
|
ISSN:
|
0960-3174 , 1573-1375
|
Verwandte URLs:
|
|
Sprache der Veröffentlichung:
|
Englisch
|
Einrichtung:
|
Außerfakultäre Einrichtungen > GESS - CDSS (SOWI) Fakultät für Sozialwissenschaften > Kognitive Psychologie (Seniorprofessur) (Erdfelder 2019-)
|
Fachgebiet:
|
150 Psychologie
|
Freie Schlagwörter (Englisch):
|
Reversible jump MCMC , Product space MCMC , Bayesian model selection , Posterior model probabilities , Bayes factor
|
Abstract:
|
Bayesian analysis often concerns an evaluation of models with different dimensionality as is necessary in, for example, model selection or mixture models. To facilitate this evaluation, transdimensional Markov chain Monte Carlo (MCMC) relies on sampling a discrete indexing variable to estimate the posterior model probabilities. However, little attention has been paid to the precision of these estimates. If only few switches occur between the models in the transdimensional MCMC output, precision may be low and assessment based on the assumption of independent samples misleading. Here, we propose a new method to estimate the precision based on the observed transition matrix of the model-indexing variable. Assuming a first-order Markov model, the method samples from the posterior of the stationary distribution. This allows assessment of the uncertainty in the estimated posterior model probabilities, model ranks, and Bayes factors. Moreover, the method provides an estimate for the effective sample size of the MCMC output. In two model selection examples, we show that the proposed approach provides a good assessment of the uncertainty associated with the estimated posterior model probabilities.
|
| Dieser Eintrag ist Teil der Universitätsbibliographie. |
Suche Autoren in
BASE:
Heck, Daniel W.
;
Overstall, Antony M.
;
Gronau, Quentin F.
;
Wagenmakers, Eric-Jan
Google Scholar:
Heck, Daniel W.
;
Overstall, Antony M.
;
Gronau, Quentin F.
;
Wagenmakers, Eric-Jan
ORCID:
Heck, Daniel W. ORCID: https://orcid.org/0000-0002-6302-9252, Overstall, Antony M., Gronau, Quentin F. and Wagenmakers, Eric-Jan
Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail
Actions (login required)
|
Eintrag anzeigen |
|
|