Beyond position-awareness - extending a self-adaptive fall detection system
Krupitzer, Christian
;
Sztyler, Timo
;
Edinger, Janick
;
Breitbach, Martin
;
Stuckenschmidt, Heiner
;
Becker, Christian

DOI:
|
https://doi.org/10.1016/j.pmcj.2019.05.007
|
URL:
|
https://www.sciencedirect.com/science/article/abs/...
|
Weitere URL:
|
https://www.researchgate.net/publication/333464958...
|
Dokumenttyp:
|
Zeitschriftenartikel
|
Erscheinungsjahr:
|
2019
|
Titel einer Zeitschrift oder einer Reihe:
|
Pervasive and Mobile Computing
|
Band/Volume:
|
58
|
Seitenbereich:
|
Article 101026
|
Ort der Veröffentlichung:
|
Amsterdam [u.a.]
|
Verlag:
|
Elsevier
|
ISSN:
|
1574-1192
|
Sprache der Veröffentlichung:
|
Englisch
|
Einrichtung:
|
Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Practical Computer Science II: Artificial Intelligence (Stuckenschmidt 2009-) Fakultät für Betriebswirtschaftslehre > Wirtschaftsinformatik II (Becker 2006-2021)
|
Fachgebiet:
|
004 Informatik
|
Abstract:
|
Ambient Assisted Living using mobile device sensors is an active area of research in pervasive computing. Multiple approaches have shown that wearable sensors perform very well and distinguish falls reliably from Activities of Daily Living. However, these systems are tested in a controlled environment and are optimized for a given set of sensor types, sensor positions, and subjects. We propose a self-adaptive pervasive fall detection approach that is robust to the heterogeneity of real life situations. Using the data of four publicly available datasets, we show that our system is not only robust regarding the different dimensions of heterogeneity, but also adapts autonomously to spontaneous changes in the sensor's position at runtime. In this paper, we extend our self-adaptive fall detection system with (i) additional algorithms for fall detection, (ii) an approach for cross-positional sensor fusion, (iii) a fall detection approach that relies on outlier detection, and (iv) a smart fall alert. Additionally, we present implementation and evaluation of these extensions.
|
 | Dieser Eintrag ist Teil der Universitätsbibliographie. |
Suche Autoren in
BASE:
Krupitzer, Christian
;
Sztyler, Timo
;
Edinger, Janick
;
Breitbach, Martin
;
Stuckenschmidt, Heiner
;
Becker, Christian
Google Scholar:
Krupitzer, Christian
;
Sztyler, Timo
;
Edinger, Janick
;
Breitbach, Martin
;
Stuckenschmidt, Heiner
;
Becker, Christian
ORCID:
Krupitzer, Christian ORCID: https://orcid.org/0000-0002-7275-0738, Sztyler, Timo, Edinger, Janick, Breitbach, Martin, Stuckenschmidt, Heiner ORCID: https://orcid.org/0000-0002-0209-3859 and Becker, Christian
Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail
Actions (login required)
 |
Eintrag anzeigen |
|