RDF2Vec: RDF graph embeddings and their applications
Ristoski, Petar
;
Rosati, Jessica
;
Di Noia, Tommaso
;
De Leone, Renato
;
Paulheim, Heiko
DOI:
|
https://doi.org/10.3233/SW-180317
|
URL:
|
https://content.iospress.com/articles/semantic-web...
|
Weitere URL:
|
http://www.semantic-web-journal.net/content/rdf2ve...
|
Dokumenttyp:
|
Zeitschriftenartikel
|
Erscheinungsjahr:
|
2019
|
Titel einer Zeitschrift oder einer Reihe:
|
Semantic Web
|
Band/Volume:
|
10
|
Heft/Issue:
|
4
|
Seitenbereich:
|
721-752
|
Ort der Veröffentlichung:
|
Amsterdam
|
Verlag:
|
IOS Press
|
ISSN:
|
1570-0844 , 2210-4968
|
Sprache der Veröffentlichung:
|
Englisch
|
Einrichtung:
|
Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Data Science (Paulheim 2018-)
|
Fachgebiet:
|
004 Informatik
|
Abstract:
|
Linked Open Data has been recognized as a valuable source for background information in many data mining and information retrieval tasks. However, most of the existing tools require features in propositional form, i.e., a vector of nominal or numerical features associated with an instance, while Linked Open Data sources are graphs by nature. In this paper, we present RDF2Vec, an approach that uses language modeling approaches for unsupervised feature extraction from sequences of words, and adapts them to RDF graphs.We generate sequences by leveraging local information from graph sub-structures, harvested by Weisfeiler-Lehman Subtree RDF Graph Kernels and graph walks, and learn latent numerical representations of entities in RDF graphs.We evaluate our approach on three different tasks: (i) standard machine learning tasks, (ii) entity and document modeling, and (iii) content-based recommender systems. The evaluation shows that the proposed entity embeddings outperform existing techniques, and that pre-computed feature vector representations of general knowledge graphs such as DBpedia and Wikidata can be easily reused for different tasks.
|
| Dieser Eintrag ist Teil der Universitätsbibliographie. |
Suche Autoren in
BASE:
Ristoski, Petar
;
Rosati, Jessica
;
Di Noia, Tommaso
;
De Leone, Renato
;
Paulheim, Heiko
Google Scholar:
Ristoski, Petar
;
Rosati, Jessica
;
Di Noia, Tommaso
;
De Leone, Renato
;
Paulheim, Heiko
ORCID:
Ristoski, Petar, Rosati, Jessica, Di Noia, Tommaso, De Leone, Renato and Paulheim, Heiko ORCID: https://orcid.org/0000-0003-4386-8195
Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail
Actions (login required)
|
Eintrag anzeigen |
|
|