A general framework for implicit and explicit debiasing of distributional word vector spaces
Lauscher, Anne
;
Glavaš, Goran
;
Ponzetto, Simone Paolo
;
Vulić, Ivan
URL:
|
https://arxiv.org/pdf/1909.06092.pdf
|
Weitere URL:
|
https://arxiv.org/abs/1909.06092
|
Dokumenttyp:
|
Arbeitspapier
|
Erscheinungsjahr:
|
2019
|
Ort der Veröffentlichung:
|
Ithaca, NY
|
Verlag:
|
Cornell University
|
Sprache der Veröffentlichung:
|
Englisch
|
Einrichtung:
|
Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Text Analytics for Interdisciplinary Research (Juniorprofessur) (Glavaš 2017-2021) Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Information Systems III: Enterprise Data Analysis (Ponzetto 2016-)
|
Fachgebiet:
|
004 Informatik
|
Abstract:
|
Distributional word vectors have recently been shown to encode many of the human biases, most notably gender and racial biases, and models for attenuating such biases have consequently been proposed. However, existing models and studies (1) operate on under-specified and mutually differing bias definitions, (2) are tailored for a particular bias (e.g., gender bias) and (3) have been evaluated inconsistently and
non-rigorously. In this work, we introduce a general framework for debiasing word embeddings. We operationalize the definition of a bias by discerning two types of bias specification: explicit and implicit. We then propose three debiasing
models that operate on explicit or implicit bias specifications, and that can be composed towards more robust debiasing. Finally, we devise a full-fledged evaluation framework in which we couple existing bias metrics with newly proposed ones. Experimental findings across three embedding methods suggest
that the proposed debiasing models are robust and widely applicable: they often completely remove the bias both implicitly and explicitly, without degradation of semantic information encoded in any of the input distributional spaces. Moreover, we successfully transfer debiasing models, by means of cross-lingual embedding spaces, and remove or attenuate biases in
distributional word vector spaces of languages that lack readily
available bias specifications.
|
| Dieser Eintrag ist Teil der Universitätsbibliographie. |
Suche Autoren in
BASE:
Lauscher, Anne
;
Glavaš, Goran
;
Ponzetto, Simone Paolo
;
Vulić, Ivan
Google Scholar:
Lauscher, Anne
;
Glavaš, Goran
;
Ponzetto, Simone Paolo
;
Vulić, Ivan
ORCID:
Lauscher, Anne ; Glavaš, Goran ; Ponzetto, Simone Paolo ORCID: 0000-0001-7484-2049 ; Vulić, Ivan
Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail
Actions (login required)
|
Eintrag anzeigen |
|
|