Fusing object information and inertial data for activity recognition


Diete, Alexander ; Stuckenschmidt, Heiner


[img] PDF
sensors-19-04119-v2.pdf - Veröffentlichte Version

Download (3MB)

DOI: https://doi.org/10.3390/s19194119
URL: https://www.mdpi.com/1424-8220/19/19/4119
Weitere URL: https://www.x-mol.com/paper/5866858
URN: urn:nbn:de:bsz:180-madoc-522750
Dokumenttyp: Zeitschriftenartikel
Erscheinungsjahr: 2019
Titel einer Zeitschrift oder einer Reihe: Sensors
Band/Volume: 19
Heft/Issue: 19
Seitenbereich: 4119, 1-22
Ort der Veröffentlichung: Basel
Verlag: MDPI
ISSN: 1424-8220
Sprache der Veröffentlichung: Englisch
Einrichtung: Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Practical Computer Science II: Artificial Intelligence (Stuckenschmidt 2009-)
Bereits vorhandene Lizenz: Creative Commons Namensnennung 4.0 International (CC BY 4.0)
Fachgebiet: 004 Informatik
Abstract: In the field of pervasive computing, wearable devices have been widely used for recognizing human activities. One important area in this research is the recognition of activities of daily living where especially inertial sensors and interaction sensors (like RFID tags with scanners) are popular choices as data sources. Using interaction sensors, however, has one drawback: they may not differentiate between proper interaction and simple touching of an object. A positive signal from an interaction sensor is not necessarily caused by a performed activity e.g., when an object is only touched but no interaction occurred afterwards. There are, however, many scenarios like medicine intake that rely heavily on correctly recognized activities. In our work, we aim to address this limitation and present a multimodal egocentric-based activity recognition approach. Our solution relies on object detection that recognizes activity-critical objects in a frame. As it is infeasible to always expect a high quality camera view, we enrich the vision features with inertial sensor data that monitors the users’ arm movement. This way we try to overcome the drawbacks of each respective sensor. We present our results of combining inertial and video features to recognize human activities on different types of scenarios where we achieve an F 1 -measure of up to 79.6.
Zusätzliche Informationen: Online-Ressource




Dieser Eintrag ist Teil der Universitätsbibliographie.

Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.




Metadaten-Export


Zitation


+ Suche Autoren in

+ Download-Statistik

Downloads im letzten Jahr

Detaillierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen