Big data methods, social media, and the psychology of entrepreneurial regions: capturing cross-county personality traits and their impact on entrepreneurship in the USA
Obschonka, Martin
;
Lee, Neil
;
Rodríguez-Pose, Andrés
;
Eichstaedt, Johannes C.
;
Ebert, Tobias
DOI:
|
https://doi.org/10.1007/s11187-019-00204-2
|
URL:
|
https://link.springer.com/article/10.1007/s11187-0...
|
Weitere URL:
|
https://www.researchgate.net/publication/329801162...
|
Dokumenttyp:
|
Zeitschriftenartikel
|
Erscheinungsjahr:
|
2020
|
Titel einer Zeitschrift oder einer Reihe:
|
Small Business Economics
|
Band/Volume:
|
55
|
Heft/Issue:
|
3
|
Seitenbereich:
|
567-588
|
Ort der Veröffentlichung:
|
Dordrecht [u.a.]
|
Verlag:
|
Springer
|
ISSN:
|
0921-898X , 1573-0913
|
Sprache der Veröffentlichung:
|
Englisch
|
Einrichtung:
|
Außerfakultäre Einrichtungen > MZES - Arbeitsbereich A
|
Fachgebiet:
|
300 Sozialwissenschaften, Soziologie, Anthropologie
|
Abstract:
|
There is increasing interest in the potential of artificial intelligence and Big Data (e.g., generated via social media) to help understand economic outcomes. But can artificial intelligence models based on publicly available Big Data identify geographical differences in entrepreneurial personality or culture? We use a machine learning model based on 1.5 billion tweets by 5.25 million users to estimate the Big Five personality traits and an entrepreneurial personality profile for 1,772 U.S. counties. The Twitter-based personality estimates show substantial relationships to county-level entrepreneurship activity, accounting for 20% (entrepreneurial personality profile) and 32% (Big Five traits) of the variance in local entrepreneurship, even when controlling for other factors that affect entrepreneurship. Whereas more research is clearly needed, our findings have initial implications for research and practice concerned with entrepreneurial regions and eco-systems, and regional economic outcomes interacting with local culture. The results suggest, for example, that social media datasets and artificial intelligence methods have the potential to deliver comparable information on the personality and culture of regions than studies based on millions of questionnaire-based personality tests.
|
| Dieser Eintrag ist Teil der Universitätsbibliographie. |
Suche Autoren in
BASE:
Obschonka, Martin
;
Lee, Neil
;
Rodríguez-Pose, Andrés
;
Eichstaedt, Johannes C.
;
Ebert, Tobias
Google Scholar:
Obschonka, Martin
;
Lee, Neil
;
Rodríguez-Pose, Andrés
;
Eichstaedt, Johannes C.
;
Ebert, Tobias
Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail
Actions (login required)
|
Eintrag anzeigen |
|
|